blob: 4a8e0076d9d3094cc5524fb50d06f7b79541579d [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h>
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#if V8_TARGET_ARCH_MIPS64
#include "src/assembler.h"
#include "src/base/bits.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/mips64/constants-mips64.h"
#include "src/mips64/simulator-mips64.h"
#include "src/ostreams.h"
#include "src/runtime/runtime-utils.h"
// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USE_SIMULATOR)
namespace v8 {
namespace internal {
// Util functions.
inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); }
uint32_t get_fcsr_condition_bit(uint32_t cc) {
if (cc == 0) {
return 23;
} else {
return 24 + cc;
}
}
static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
uint64_t u0, v0, w0;
int64_t u1, v1, w1, w2, t;
u0 = u & 0xffffffffL;
u1 = u >> 32;
v0 = v & 0xffffffffL;
v1 = v >> 32;
w0 = u0 * v0;
t = u1 * v0 + (w0 >> 32);
w1 = t & 0xffffffffL;
w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent was through
// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The MipsDebugger class is used by the simulator while debugging simulated
// code.
class MipsDebugger {
public:
explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
void Stop(Instruction* instr);
void Debug();
// Print all registers with a nice formatting.
void PrintAllRegs();
void PrintAllRegsIncludingFPU();
private:
// We set the breakpoint code to 0xfffff to easily recognize it.
static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
static const Instr kNopInstr = 0x0;
Simulator* sim_;
int64_t GetRegisterValue(int regnum);
int64_t GetFPURegisterValue(int regnum);
float GetFPURegisterValueFloat(int regnum);
double GetFPURegisterValueDouble(int regnum);
bool GetValue(const char* desc, int64_t* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instruction* breakpc);
bool DeleteBreakpoint(Instruction* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); }
void MipsDebugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->Bits(25, 6);
PrintF("Simulator hit (%u)\n", code);
// TODO(yuyin): 2 -> 3?
sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize);
Debug();
}
int64_t MipsDebugger::GetRegisterValue(int regnum) {
if (regnum == kNumSimuRegisters) {
return sim_->get_pc();
} else {
return sim_->get_register(regnum);
}
}
int64_t MipsDebugger::GetFPURegisterValue(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register(regnum);
}
}
float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_float(regnum);
}
}
double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_double(regnum);
}
}
bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
int regnum = Registers::Number(desc);
int fpuregnum = FPURegisters::Number(desc);
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != kInvalidFPURegister) {
*value = GetFPURegisterValue(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" SCNx64,
reinterpret_cast<uint64_t*>(value)) == 1;
} else {
return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
}
return false;
}
bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void MipsDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void MipsDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
PrintF("\n");
// at, v0, a0.
PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64
"\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n",
REG_INFO(1), REG_INFO(2), REG_INFO(4));
// v1, a1.
PrintF("%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
" %14" PRId64 " \n",
"", REG_INFO(3), REG_INFO(5));
// a2.
PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "",
REG_INFO(6));
// a3.
PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "",
REG_INFO(7));
PrintF("\n");
// a4-t3, s0-s7
for (int i = 0; i < 8; i++) {
PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
" %14" PRId64 " \n",
REG_INFO(8 + i), REG_INFO(16 + i));
}
PrintF("\n");
// t8, k0, LO.
PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
" %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n",
REG_INFO(24), REG_INFO(26), REG_INFO(32));
// t9, k1, HI.
PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
" %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n",
REG_INFO(25), REG_INFO(27), REG_INFO(33));
// sp, fp, gp.
PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
" %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n",
REG_INFO(29), REG_INFO(30), REG_INFO(28));
// pc.
PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
" %14" PRId64 " \n",
REG_INFO(31), REG_INFO(34));
#undef REG_INFO
#undef FPU_REG_INFO
}
void MipsDebugger::PrintAllRegsIncludingFPU() {
#define FPU_REG_INFO(n) FPURegisters::Name(n), \
GetFPURegisterValue(n), \
GetFPURegisterValueDouble(n)
PrintAllRegs();
PrintF("\n\n");
// f0, f1, f2, ... f31.
// TODO(plind): consider printing 2 columns for space efficiency.
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(0));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(1));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(2));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(3));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(4));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(5));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(6));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(7));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(8));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(9));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(10));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(11));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(12));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(13));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(14));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(15));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(16));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(17));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(18));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(19));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(20));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(21));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(22));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(23));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(24));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(25));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(26));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(27));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(28));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(29));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(30));
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(31));
#undef REG_INFO
#undef FPU_REG_INFO
}
void MipsDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = { cmd, arg1, arg2 };
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%016" PRIx64 " %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != NULL) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
if (!(instr->IsTrap()) ||
instr->InstructionBits() == rtCallRedirInstr) {
sim_->InstructionDecode(
reinterpret_cast<Instruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
PrintF("/!\\ Jumping over generated breakpoint.\n");
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2) {
int64_t value;
double dvalue;
if (strcmp(arg1, "all") == 0) {
PrintAllRegs();
} else if (strcmp(arg1, "allf") == 0) {
PrintAllRegsIncludingFPU();
} else {
int regnum = Registers::Number(arg1);
int fpuregnum = FPURegisters::Number(arg1);
if (regnum != kInvalidRegister) {
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08" PRIx64 " %" PRId64 " \n", arg1, value,
value);
} else if (fpuregnum != kInvalidFPURegister) {
value = GetFPURegisterValue(fpuregnum);
dvalue = GetFPURegisterValueDouble(fpuregnum);
PrintF("%3s: 0x%016" PRIx64 " %16.4e\n",
FPURegisters::Name(fpuregnum), value, dvalue);
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
if (argc == 3) {
if (strcmp(arg2, "single") == 0) {
int64_t value;
float fvalue;
int fpuregnum = FPURegisters::Number(arg1);
if (fpuregnum != kInvalidFPURegister) {
value = GetFPURegisterValue(fpuregnum);
value &= 0xffffffffUL;
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("print <fpu register> single\n");
}
} else {
PrintF("print <register> or print <fpu register> single\n");
}
}
} else if ((strcmp(cmd, "po") == 0)
|| (strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
int64_t value;
OFStream os(stdout);
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj->Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int64_t* cur = NULL;
int64_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp));
} else { // Command "mem".
int64_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int64_t*>(value);
next_arg++;
}
int64_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
PrintF(" 0x%012" PRIxPTR " : 0x%016" PRIx64 " %14" PRId64 " ",
reinterpret_cast<intptr_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
int64_t value = *cur;
Heap* current_heap = sim_->isolate_->heap();
if (((value & 1) == 0) ||
current_heap->ContainsSlow(obj->address())) {
PrintF(" (");
if ((value & 1) == 0) {
PrintF("smi %d", static_cast<int>(value >> 32));
} else {
obj->ShortPrint();
}
PrintF(")");
}
PrintF("\n");
cur++;
}
} else if ((strcmp(cmd, "disasm") == 0) ||
(strcmp(cmd, "dpc") == 0) ||
(strcmp(cmd, "di") == 0)) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int64_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * Instruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
int64_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * Instruction::kInstrSize);
}
}
} else {
int64_t value1;
int64_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += Instruction::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int64_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
PrintF("No flags on MIPS !\n");
} else if (strcmp(cmd, "stop") == 0) {
int64_t value;
intptr_t stop_pc = sim_->get_pc() -
2 * Instruction::kInstrSize;
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc +
Instruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->IsStopInstruction(stop_instr)) {
stop_instr->SetInstructionBits(kNopInstr);
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
// Print registers and disassemble.
PrintAllRegs();
PrintF("\n");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int64_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// no length parameter passed, assume 10 instructions
end = cur + (10 * Instruction::kInstrSize);
}
} else {
int64_t value1;
int64_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += Instruction::kInstrSize;
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi\n");
PrintF(" step one instruction (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to print all registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("stack [<words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("flags\n");
PrintF(" print flags\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and and give control to the Debugger.\n");
PrintF(" All stop codes are watched:\n");
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool ICacheMatch(void* one, void* two) {
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, size_t size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
void* start_addr, size_t size) {
int64_t start = reinterpret_cast<int64_t>(start_addr);
int64_t intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ((int64_t)0, start & CachePage::kPageMask);
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page) {
base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
if (entry->value == NULL) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
intptr_t start, size_t size) {
DCHECK(size <= CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK((start & CachePage::kLineMask) == 0);
DCHECK((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr) {
int64_t address = reinterpret_cast<int64_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset),
Instruction::kInstrSize));
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(isolate,
&RedirectExternalReference);
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
i_cache_ = isolate_->simulator_i_cache();
if (i_cache_ == NULL) {
i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
isolate_->set_simulator_i_cache(i_cache_);
}
Initialize(isolate);
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
stack_size_ = FLAG_sim_stack_size * KB;
stack_ = reinterpret_cast<char*>(malloc(stack_size_));
pc_modified_ = false;
icount_ = 0;
break_count_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumSimuRegisters; i++) {
registers_[i] = 0;
}
for (int i = 0; i < kNumFPURegisters; i++) {
FPUregisters_[i] = 0;
}
if (kArchVariant == kMips64r6) {
FCSR_ = kFCSRNaN2008FlagMask;
} else {
FCSR_ = 0;
}
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
last_debugger_input_ = NULL;
}
Simulator::~Simulator() { free(stack_); }
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(Isolate* isolate, void* external_function,
ExternalReference::Type type)
: external_function_(external_function),
swi_instruction_(rtCallRedirInstr),
type_(type),
next_(NULL) {
next_ = isolate->simulator_redirection();
Simulator::current(isolate)->
FlushICache(isolate->simulator_i_cache(),
reinterpret_cast<void*>(&swi_instruction_),
Instruction::kInstrSize);
isolate->set_simulator_redirection(this);
}
void* address_of_swi_instruction() {
return reinterpret_cast<void*>(&swi_instruction_);
}
void* external_function() { return external_function_; }
ExternalReference::Type type() { return type_; }
static Redirection* Get(Isolate* isolate, void* external_function,
ExternalReference::Type type) {
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) return current;
}
return new Redirection(isolate, external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
char* addr_of_redirection =
addr_of_swi - offsetof(Redirection, swi_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static void* ReverseRedirection(int64_t reg) {
Redirection* redirection = FromSwiInstruction(
reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
return redirection->external_function();
}
static void DeleteChain(Redirection* redirection) {
while (redirection != nullptr) {
Redirection* next = redirection->next_;
delete redirection;
redirection = next;
}
}
private:
void* external_function_;
uint32_t swi_instruction_;
ExternalReference::Type type_;
Redirection* next_;
};
// static
void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
Redirection* first) {
Redirection::DeleteChain(first);
if (i_cache != nullptr) {
for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
entry = i_cache->Next(entry)) {
delete static_cast<CachePage*>(entry->value);
}
delete i_cache;
}
}
void* Simulator::RedirectExternalReference(Isolate* isolate,
void* external_function,
ExternalReference::Type type) {
Redirection* redirection = Redirection::Get(isolate, external_function, type);
return redirection->address_of_swi_instruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK(isolate_data != NULL);
DCHECK(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int64_t value) {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == pc) {
pc_modified_ = true;
}
// Zero register always holds 0.
registers_[reg] = (reg == 0) ? 0 : value;
}
void Simulator::set_dw_register(int reg, const int* dbl) {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
registers_[reg] = dbl[1];
registers_[reg] = registers_[reg] << 32;
registers_[reg] += dbl[0];
}
void Simulator::set_fpu_register(int fpureg, int64_t value) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
FPUregisters_[fpureg] = value;
}
void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
// Set ONLY lower 32-bits, leaving upper bits untouched.
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
int32_t* pword;
if (kArchEndian == kLittle) {
pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
} else {
pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1;
}
*pword = value;
}
void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
// Set ONLY upper 32-bits, leaving lower bits untouched.
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
int32_t* phiword;
if (kArchEndian == kLittle) {
phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1;
} else {
phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
}
*phiword = value;
}
void Simulator::set_fpu_register_float(int fpureg, float value) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
*bit_cast<float*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::set_fpu_register_double(int fpureg, double value) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
*bit_cast<double*>(&FPUregisters_[fpureg]) = value;
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int64_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == 0)
return 0;
else
return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}
double Simulator::get_double_from_register_pair(int reg) {
// TODO(plind): bad ABI stuff, refactor or remove.
DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
double dm_val = 0.0;
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[sizeof(registers_[0])];
memcpy(buffer, &registers_[reg], sizeof(registers_[0]));
memcpy(&dm_val, buffer, sizeof(registers_[0]));
return(dm_val);
}
int64_t Simulator::get_fpu_register(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return FPUregisters_[fpureg];
}
int32_t Simulator::get_fpu_register_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
}
int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
}
int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff);
}
float Simulator::get_fpu_register_float(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg]));
}
double Simulator::get_fpu_register_double(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *bit_cast<double*>(&FPUregisters_[fpureg]);
}
// Runtime FP routines take up to two double arguments and zero
// or one integer arguments. All are constructed here,
// from a0-a3 or f12 and f13 (n64), or f14 (O32).
void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
if (!IsMipsSoftFloatABI) {
const int fparg2 = 13;
*x = get_fpu_register_double(12);
*y = get_fpu_register_double(fparg2);
*z = static_cast<int32_t>(get_register(a2));
} else {
// TODO(plind): bad ABI stuff, refactor or remove.
// We use a char buffer to get around the strict-aliasing rules which
// otherwise allow the compiler to optimize away the copy.
char buffer[sizeof(*x)];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
// Registers a0 and a1 -> x.
reg_buffer[0] = get_register(a0);
reg_buffer[1] = get_register(a1);
memcpy(x, buffer, sizeof(buffer));
// Registers a2 and a3 -> y.
reg_buffer[0] = get_register(a2);
reg_buffer[1] = get_register(a3);
memcpy(y, buffer, sizeof(buffer));
// Register 2 -> z.
reg_buffer[0] = get_register(a2);
memcpy(z, buffer, sizeof(*z));
}
}
// The return value is either in v0/v1 or f0.
void Simulator::SetFpResult(const double& result) {
if (!IsMipsSoftFloatABI) {
set_fpu_register_double(0, result);
} else {
char buffer[2 * sizeof(registers_[0])];
int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer);
memcpy(buffer, &result, sizeof(buffer));
// Copy result to v0 and v1.
set_register(v0, reg_buffer[0]);
set_register(v1, reg_buffer[1]);
}
}
// Helper functions for setting and testing the FCSR register's bits.
void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
if (value) {
FCSR_ |= (1 << cc);
} else {
FCSR_ &= ~(1 << cc);
}
}
bool Simulator::test_fcsr_bit(uint32_t cc) {
return FCSR_ & (1 << cc);
}
void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
FCSR_ |= mode & kFPURoundingModeMask;
}
unsigned int Simulator::get_fcsr_rounding_mode() {
return FCSR_ & kFPURoundingModeMask;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(double original, double rounded) {
bool ret = false;
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > max_int32 || rounded < min_int32) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round64_error(double original, double rounded) {
bool ret = false;
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded >= max_int64 || rounded < min_int64) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(float original, float rounded) {
bool ret = false;
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > max_int32 || rounded < min_int32) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
void Simulator::set_fpu_register_word_invalid_result(float original,
float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register_word(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result64(float original,
float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded >= max_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
} else if (rounded < min_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
}
}
void Simulator::set_fpu_register_word_invalid_result(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register_word(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result64(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded >= max_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
} else if (rounded < min_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
}
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round64_error(float original, float rounded) {
bool ret = false;
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded >= max_int64 || rounded < min_int64) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// For cvt instructions only
void Simulator::round_according_to_fcsr(double toRound, double& rounded,
int32_t& rounded_int, double fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int32_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
}
}
void Simulator::round64_according_to_fcsr(double toRound, double& rounded,
int64_t& rounded_int, double fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or.
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int64_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
}
}
// for cvt instructions only
void Simulator::round_according_to_fcsr(float toRound, float& rounded,
int32_t& rounded_int, float fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int32_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
}
}
void Simulator::round64_according_to_fcsr(float toRound, float& rounded,
int64_t& rounded_int, float fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or.
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int64_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
}
}
// Raw access to the PC register.
void Simulator::set_pc(int64_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int64_t Simulator::get_pc() const {
return registers_[pc];
}
// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an
// interrupt is caused. On others it does a funky rotation thing. For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour. Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator. Since the host is typically IA32 we will not
// get the correct MIPS-like behaviour on unaligned accesses.
// TODO(plind): refactor this messy debug code when we do unaligned access.
void Simulator::DieOrDebug() {
if (1) { // Flag for this was removed.
MipsDebugger dbg(this);
dbg.Debug();
} else {
base::OS::Abort();
}
}
void Simulator::TraceRegWr(int64_t value) {
if (::v8::internal::FLAG_trace_sim) {
SNPrintF(trace_buf_, "%016" PRIx64 " ", value);
}
}
// TODO(plind): consider making icount_ printing a flag option.
void Simulator::TraceMemRd(int64_t addr, int64_t value) {
if (::v8::internal::FLAG_trace_sim) {
SNPrintF(trace_buf_,
"%016" PRIx64 " <-- [%016" PRIx64 " ] (%" PRId64 " )", value,
addr, icount_);
}
}
void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
switch (t) {
case BYTE:
SNPrintF(trace_buf_, " %02x --> [%016" PRIx64 " ]",
static_cast<int8_t>(value), addr);
break;
case HALF:
SNPrintF(trace_buf_, " %04x --> [%016" PRIx64 " ]",
static_cast<int16_t>(value), addr);
break;
case WORD:
SNPrintF(trace_buf_, " %08x --> [%016" PRIx64 " ]",
static_cast<int32_t>(value), addr);
break;
case DWORD:
SNPrintF(trace_buf_,
"%016" PRIx64 " --> [%016" PRIx64 " ] (%" PRId64 " )",
value, addr, icount_);
break;
}
}
}
// TODO(plind): sign-extend and zero-extend not implmented properly
// on all the ReadXX functions, I don't think re-interpret cast does it.
int32_t Simulator::ReadW(int64_t addr, Instruction* instr) {
if (addr >=0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
" \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
TraceMemRd(addr, static_cast<int64_t>(*ptr));
return *ptr;
}
PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
DieOrDebug();
return 0;
}
uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) {
if (addr >=0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
" \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
TraceMemRd(addr, static_cast<int64_t>(*ptr));
return *ptr;
}
PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
DieOrDebug();
return 0;
}
void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) {
if (addr >= 0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
" \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
TraceMemWr(addr, value, WORD);
int* ptr = reinterpret_cast<int*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
int64_t Simulator::Read2W(int64_t addr, Instruction* instr) {
if (addr >=0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
" \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) {
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
TraceMemRd(addr, *ptr);
return *ptr;
}
PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
DieOrDebug();
return 0;
}
void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) {
if (addr >= 0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
"\n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) {
TraceMemWr(addr, value, DWORD);
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
double Simulator::ReadD(int64_t addr, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n",
addr, reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
void Simulator::WriteD(int64_t addr, double value, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) {
double* ptr = reinterpret_cast<double*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR
"\n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) {
if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
TraceMemRd(addr, static_cast<int64_t>(*ptr));
return *ptr;
}
PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64
" , pc=0x%08" V8PRIxPTR "\n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
return 0;
}
int16_t Simulator::ReadH(int64_t addr, Instruction* instr) {
if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
TraceMemRd(addr, static_cast<int64_t>(*ptr));
return *ptr;
}
PrintF("Unaligned signed halfword read at 0x%08" PRIx64
" , pc=0x%08" V8PRIxPTR "\n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
return 0;
}
void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) {
if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
TraceMemWr(addr, value, HALF);
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64
" , pc=0x%08" V8PRIxPTR "\n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) {
if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
TraceMemWr(addr, value, HALF);
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR
"\n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
uint32_t Simulator::ReadBU(int64_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
TraceMemRd(addr, static_cast<int64_t>(*ptr));
return *ptr & 0xff;
}
int32_t Simulator::ReadB(int64_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
TraceMemRd(addr, static_cast<int64_t>(*ptr));
return *ptr;
}
void Simulator::WriteB(int64_t addr, uint8_t value) {
TraceMemWr(addr, value, BYTE);
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::WriteB(int64_t addr, int8_t value) {
TraceMemWr(addr, value, BYTE);
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (GetCurrentStackPosition() < c_limit) {
return reinterpret_cast<uintptr_t>(get_sp());
}
// Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
// to prevent overrunning the stack when pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 1024;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED_MIPS();
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
int64_t arg1,
int64_t arg2,
int64_t arg3,
int64_t arg4,
int64_t arg5);
typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int64_t arg0, int64_t arg1,
int64_t arg2, int64_t arg3,
int64_t arg4);
// These prototypes handle the four types of FP calls.
typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(
int64_t arg0, int64_t arg1, void* arg2);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt() {
// There are several instructions that could get us here,
// the break_ instruction, or several variants of traps. All
// Are "SPECIAL" class opcode, and are distinuished by function.
int32_t func = instr_.FunctionFieldRaw();
uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
// We first check if we met a call_rt_redirected.
if (instr_.InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
int64_t arg0 = get_register(a0);
int64_t arg1 = get_register(a1);
int64_t arg2 = get_register(a2);
int64_t arg3 = get_register(a3);
int64_t arg4, arg5;
arg4 = get_register(a4); // Abi n64 register a4.
arg5 = get_register(a5); // Abi n64 register a5.
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
if (!IsMipsSoftFloatABI) {
// With the hard floating point calling convention, double
// arguments are passed in FPU registers. Fetch the arguments
// from there and call the builtin using soft floating point
// convention.
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
arg0 = get_fpu_register(f12);
arg1 = get_fpu_register(f13);
arg2 = get_fpu_register(f14);
arg3 = get_fpu_register(f15);
break;
case ExternalReference::BUILTIN_FP_CALL:
arg0 = get_fpu_register(f12);
arg1 = get_fpu_register(f13);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
arg0 = get_fpu_register(f12);
arg1 = get_fpu_register(f13);
arg2 = get_register(a2);
break;
default:
break;
}
}
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int64_t saved_ra = get_register(ra);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
// Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
// FPU, or gcc soft-float routines. Hardware FPU is simulated in this
// simulator. Soft-float has additional abstraction of ExternalReference,
// to support serialization.
if (fp_call) {
double dval0, dval1; // one or two double parameters
int32_t ival; // zero or one integer parameters
int64_t iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %d",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
ival);
break;
default:
UNREACHABLE();
break;
}
}
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
set_register(v0, static_cast<int64_t>(iresult));
// set_register(v1, static_cast<int64_t>(iresult >> 32));
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
break;
}
if (::v8::internal::FLAG_trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
break;
}
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08" PRIx64 " \n",
reinterpret_cast<void*>(external), arg0);
}
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
target(arg0);
} else if (
redirection->type() == ExternalReference::PROFILING_API_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64
" \n",
reinterpret_cast<void*>(external), arg0, arg1);
}
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
target(arg0, Redirection::ReverseRedirection(arg1));
} else if (
redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64
" \n",
reinterpret_cast<void*>(external), arg0, arg1);
}
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
target(arg0, arg1);
} else if (
redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64
" %08" PRIx64 " \n",
reinterpret_cast<void*>(external), arg0, arg1, arg2);
}
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
target(arg0, arg1, Redirection::ReverseRedirection(arg2));
} else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
// builtin call returning ObjectTriple.
SimulatorRuntimeTripleCall target =
reinterpret_cast<SimulatorRuntimeTripleCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host triple returning runtime function %p "
"args %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64
", %016" PRIx64 "\n",
static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4,
arg5);
}
// arg0 is a hidden argument pointing to the return location, so don't
// pass it to the target function.
ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x),
static_cast<void*>(result.y), static_cast<void*>(result.z));
}
// Return is passed back in address pointed to by hidden first argument.
ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0);
*sim_result = result;
set_register(v0, arg0);
} else {
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host function at %p "
"args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64
" , %08" PRIx64 " , %08" PRIx64 " \n",
static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3,
arg4, arg5);
}
// int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
// set_register(v0, static_cast<int32_t>(result));
// set_register(v1, static_cast<int32_t>(result >> 32));
ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5);
set_register(v0, (int64_t)(result.x));
set_register(v1, (int64_t)(result.y));
}
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08" PRIx64 " : %08" PRIx64 " \n", get_register(v1),
get_register(v0));
}
set_register(ra, saved_ra);
set_pc(get_register(ra));
} else if (func == BREAK && code <= kMaxStopCode) {
if (IsWatchpoint(code)) {
PrintWatchpoint(code);
} else {
IncreaseStopCounter(code);
HandleStop(code, instr_.instr());
}
} else {
// All remaining break_ codes, and all traps are handled here.
MipsDebugger dbg(this);
dbg.Debug();
}
}
// Stop helper functions.
bool Simulator::IsWatchpoint(uint64_t code) {
return (code <= kMaxWatchpointCode);
}
void Simulator::PrintWatchpoint(uint64_t code) {
MipsDebugger dbg(this);
++break_count_;
PrintF("\n---- break %" PRId64 " marker: %3d (instr count: %8" PRId64
" ) ----------"
"----------------------------------",
code, break_count_, icount_);
dbg.PrintAllRegs(); // Print registers and continue running.
}
void Simulator::HandleStop(uint64_t code, Instruction* instr) {
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (IsEnabledStop(code)) {
MipsDebugger dbg(this);
dbg.Stop(instr);
} else {
set_pc(get_pc() + 2 * Instruction::kInstrSize);
}
}
bool Simulator::IsStopInstruction(Instruction* instr) {
int32_t func = instr->FunctionFieldRaw();
uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
}
bool Simulator::IsEnabledStop(uint64_t code) {
DCHECK(code <= kMaxStopCode);
DCHECK(code > kMaxWatchpointCode);
return !(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint64_t code) {
if (!IsEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint64_t code) {
if (IsEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint64_t code) {
DCHECK(code <= kMaxStopCode);
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
PrintF("Stop counter for code %" PRId64
" has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint64_t code) {
if (code <= kMaxWatchpointCode) {
PrintF("That is a watchpoint, not a stop.\n");
return;
} else if (code > kMaxStopCode) {
PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
return;
}
const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n",
code, code, state, count, watched_stops_[code].desc);
} else {
PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code,
code, state, count);
}
}
}
void Simulator::SignalException(Exception e) {
V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
static_cast<int>(e));
}
// Min/Max template functions for Double and Single arguments.
template <typename T>
static T FPAbs(T a);
template <>
double FPAbs<double>(double a) {
return fabs(a);
}
template <>
float FPAbs<float>(float a) {
return fabsf(a);
}
template <typename T>
static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) {
if (std::isnan(a) && std::isnan(b)) {
result = a;
} else if (std::isnan(a)) {
result = b;
} else if (std::isnan(b)) {
result = a;
} else if (b == a) {
// Handle -0.0 == 0.0 case.
// std::signbit() returns int 0 or 1 so substracting MaxMinKind::kMax
// negates the result.
result = std::signbit(b) - static_cast<int>(kind) ? b : a;
} else {
return false;
}
return true;
}
template <typename T>
static T FPUMin(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
return result;
} else {
return b < a ? b : a;
}
}
template <typename T>
static T FPUMax(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) {
return result;
} else {
return b > a ? b : a;
}
}
template <typename T>
static T FPUMinA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
if (FPAbs(a) < FPAbs(b)) {
result = a;
} else if (FPAbs(b) < FPAbs(a)) {
result = b;
} else {
result = a < b ? a : b;
}
}
return result;
}
template <typename T>
static T FPUMaxA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
if (FPAbs(a) > FPAbs(b)) {
result = a;
} else if (FPAbs(b) > FPAbs(a)) {
result = b;
} else {
result = a > b ? a : b;
}
}
return result;
}
enum class KeepSign : bool { no = false, yes };
template <typename T, typename std::enable_if<std::is_floating_point<T>::value,
int>::type = 0>
T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) {
DCHECK(std::isnan(arg));
T qNaN = std::numeric_limits<T>::quiet_NaN();
if (keepSign == KeepSign::yes) {
return std::copysign(qNaN, result);
}
return qNaN;
}
template <typename T>
T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) {
if (std::isnan(first)) {
return FPUCanonalizeNaNArg(result, first, keepSign);
}
return result;
}
template <typename T, typename... Args>
T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) {
if (std::isnan(first)) {
return FPUCanonalizeNaNArg(result, first, keepSign);
}
return FPUCanonalizeNaNArgs(result, keepSign, args...);
}
template <typename Func, typename T, typename... Args>
T FPUCanonalizeOperation(Func f, T first, Args... args) {
return FPUCanonalizeOperation(f, KeepSign::no, first, args...);
}
template <typename Func, typename T, typename... Args>
T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) {
T result = f(first, args...);
if (std::isnan(result)) {
result = FPUCanonalizeNaNArgs(result, keepSign, first, args...);
}
return result;
}
// Handle execution based on instruction types.
void Simulator::DecodeTypeRegisterSRsType() {
float fs, ft, fd;
fs = get_fpu_register_float(fs_reg());
ft = get_fpu_register_float(ft_reg());
fd = get_fpu_register_float(fd_reg());
int32_t ft_int = bit_cast<int32_t>(ft);
int32_t fd_int = bit_cast<int32_t>(fd);
uint32_t cc, fcsr_cc;
cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(kArchVariant == kMips64r6);
float result, temp_result;
double temp;
float upper = std::ceil(fs);
float lower = std::floor(fs);
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
if (upper - fs < fs - lower) {
result = upper;
} else if (upper - fs > fs - lower) {
result = lower;
} else {
temp_result = upper / 2;
float reminder = modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fs > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
set_fpu_register_float(fd_reg(), result);
if (result != fs) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
break;
}
case ADD_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; },
fs, ft));
break;
case SUB_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; },
fs, ft));
break;
case MADDF_S:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), fd + (fs * ft));
break;
case MSUBF_S:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), fd - (fs * ft));
break;
case MUL_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; },
fs, ft));
break;
case DIV_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; },
fs, ft));
break;
case ABS_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float fs) { return FPAbs(fs); }, fs));
break;
case MOV_S:
set_fpu_register_float(fd_reg(), fs);
break;
case NEG_S:
set_fpu_register_float(
fd_reg(), FPUCanonalizeOperation([](float src) { return -src; },
KeepSign::yes, fs));
break;
case SQRT_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs));
break;
case RSQRT_S:
set_fpu_register_float(
fd_reg(), FPUCanonalizeOperation(
[](float src) { return 1.0 / std::sqrt(src); }, fs));
break;
case RECIP_S:
set_fpu_register_float(
fd_reg(),
FPUCanonalizeOperation([](float src) { return 1.0 / src; }, fs));
break;
case C_F_D:
set_fcsr_bit(fcsr_cc, false);
break;
case C_UN_D:
set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
break;
case C_EQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft));
break;
case C_UEQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
break;
case C_OLT_D:
set_fcsr_bit(fcsr_cc, (fs < ft));
break;
case C_ULT_D:
set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
break;
case C_OLE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft));
break;
case C_ULE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
break;
case CVT_D_S:
set_fpu_register_double(fd_reg(), static_cast<double>(fs));
break;
case CLASS_S: { // Mips64r6 instruction
// Convert float input to uint32_t for easier bit manipulation
uint32_t classed = bit_cast<uint32_t>(fs);
// Extracting sign, exponent and mantissa from the input float
uint32_t sign = (classed >> 31) & 1;
uint32_t exponent = (classed >> 23) & 0x000000ff;
uint32_t mantissa = classed & 0x007fffff;
uint32_t result;
float fResult;
// Setting flags if input float is negative infinity,
// positive infinity, negative zero or positive zero
bool negInf = (classed == 0xFF800000);
bool posInf = (classed == 0x7F800000);
bool negZero = (classed == 0x80000000);
bool posZero = (classed == 0x00000000);
bool signalingNan;
bool quietNan;
bool negSubnorm;
bool posSubnorm;
bool negNorm;
bool posNorm;
// Setting flags if float is NaN
signalingNan = false;
quietNan = false;
if (!negInf && !posInf && (exponent == 0xff)) {
quietNan = ((mantissa & 0x00200000) == 0) &&
((mantissa & (0x00200000 - 1)) == 0);
signalingNan = !quietNan;
}
// Setting flags if float is subnormal number
posSubnorm = false;
negSubnorm = false;
if ((exponent == 0) && (mantissa != 0)) {
DCHECK(sign == 0 || sign == 1);
posSubnorm = (sign == 0);
negSubnorm = (sign == 1);
}
// Setting flags if float is normal number
posNorm = false;
negNorm = false;
if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
!quietNan && !negZero && !posZero) {
DCHECK(sign == 0 || sign == 1);
posNorm = (sign == 0);
negNorm = (sign == 1);
}
// Calculating result according to description of CLASS.S instruction
result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
(posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
(negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
DCHECK(result != 0);
fResult = bit_cast<float>(result);
set_fpu_register_float(fd_reg(), fResult);
break;
}
case CVT_L_S: {
float rounded;
int64_t result;
round64_according_to_fcsr(fs, rounded, result, fs);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case CVT_W_S: {
float rounded;
int32_t result;
round_according_to_fcsr(fs, rounded, result, fs);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
break;
}
case TRUNC_W_S: { // Truncate single to word (round towards 0).
float rounded = trunc(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case TRUNC_L_S: { // Mips64r2 instruction.
float rounded = trunc(fs);
int64_t result = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case ROUND_W_S: {
float rounded = std::floor(fs + 0.5);
int32_t result = static_cast<int32_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
break;
}
case ROUND_L_S: { // Mips64r2 instruction.
float rounded = std::floor(fs + 0.5);
int64_t result = static_cast<int64_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
int64_t i64 = static_cast<int64_t>(result);
set_fpu_register(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case FLOOR_L_S: { // Mips64r2 instruction.
float rounded = floor(fs);
int64_t result = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case FLOOR_W_S: // Round double to word towards negative infinity.
{
float rounded = std::floor(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
} break;
case CEIL_W_S: // Round double to word towards positive infinity.
{
float rounded = std::ceil(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_invalid_result(fs, rounded);
}
} break;
case CEIL_L_S: { // Mips64r2 instruction.
float rounded = ceil(fs);
int64_t result = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case MINA:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), FPUMinA(ft, fs));
break;
case MAXA:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), FPUMaxA(ft, fs));
break;
case MIN:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), FPUMin(ft, fs));
break;
case MAX:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), FPUMax(ft, fs));
break;
case SEL:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
break;
case SELEQZ_C:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0
? get_fpu_register_float(fs_reg())
: 0.0);
break;
case SELNEZ_C:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0
? get_fpu_register_float(fs_reg())
: 0.0);
break;
case MOVZ_C: {
DCHECK(kArchVariant == kMips64r2);
if (rt() == 0) {
set_fpu_register_float(fd_reg(), fs);
}
break;
}
case MOVN_C: {
DCHECK(kArchVariant == kMips64r2);
if (rt() != 0) {
set_fpu_register_float(fd_reg(), fs);
}
break;
}
case MOVF: {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
} else {
// MOVF.D
if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
}
break;
}
default:
// TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
// CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterDRsType() {
double ft, fs, fd;
uint32_t cc, fcsr_cc;
fs = get_fpu_register_double(fs_reg());
ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
: 0.0;
fd = get_fpu_register_double(fd_reg());
cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
int64_t ft_int = bit_cast<int64_t>(ft);
int64_t fd_int = bit_cast<int64_t>(fd);
switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(kArchVariant == kMips64r6);
double result, temp, temp_result;
double upper = std::ceil(fs);
double lower = std::floor(fs);
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
if (upper - fs < fs - lower) {
result = upper;
} else if (upper - fs > fs - lower) {
result = lower;
} else {
temp_result = upper / 2;
double reminder = modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fs > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
set_fpu_register_double(fd_reg(), result);
if (result != fs) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
break;
}
case SEL:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
break;
case SELEQZ_C:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
break;
case SELNEZ_C:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
break;
case MOVZ_C: {
DCHECK(kArchVariant == kMips64r2);
if (rt() == 0) {
set_fpu_register_double(fd_reg(), fs);
}
break;
}
case MOVN_C: {
DCHECK(kArchVariant == kMips64r2);
if (rt() != 0) {
set_fpu_register_double(fd_reg(), fs);
}
break;
}
case MOVF: {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
} else {
// MOVF.D
if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
}
break;
}
case MINA:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), FPUMinA(ft, fs));
break;
case MAXA:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), FPUMaxA(ft, fs));
break;
case MIN:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), FPUMin(ft, fs));
break;
case MAX:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), FPUMax(ft, fs));
break;
case ADD_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs + rhs; }, fs, ft));
break;
case SUB_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs - rhs; }, fs, ft));
break;
case MADDF_D:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), fd + (fs * ft));
break;
case MSUBF_D:
DCHECK(kArchVariant == kMips64r6);
set_fpu_register_double(fd_reg(), fd - (fs * ft));
break;
case MUL_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs * rhs; }, fs, ft));
break;
case DIV_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation(
[](double lhs, double rhs) { return lhs / rhs; }, fs, ft));
break;
case ABS_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs));
break;
case MOV_D:
set_fpu_register_double(fd_reg(), fs);
break;
case NEG_D:
set_fpu_register_double(
fd_reg(), FPUCanonalizeOperation([](double src) { return -src; },
KeepSign::yes, fs));
break;
case SQRT_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs));
break;
case RSQRT_D:
set_fpu_register_double(
fd_reg(), FPUCanonalizeOperation(
[](double fs) { return 1.0 / std::sqrt(fs); }, fs));
break;
case RECIP_D:
set_fpu_register_double(
fd_reg(),
FPUCanonalizeOperation([](double fs) { return 1.0 / fs; }, fs));
break;
case C_UN_D:
set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
break;
case C_EQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft));
break;
case C_UEQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
break;
case C_OLT_D:
set_fcsr_bit(fcsr_cc, (fs < ft));
break;
case C_ULT_D:
set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
break;
case C_OLE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft));
break;
case C_ULE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
break;
case CVT_W_D: { // Convert double to word.
double rounded;
int32_t result;
round_according_to_fcsr(fs, rounded, result, fs);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_word_invalid_result(fs, rounded);
}
break;
}
case ROUND_W_D: // Round double to word (round half to even).
{
double rounded = std::floor(fs + 0.5);
int32_t result = static_cast<int32_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_invalid_result(fs, rounded);
}
} break;
case TRUNC_W_D: // Truncate double to word (round towards 0).
{
double rounded = trunc(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_invalid_result(fs, rounded);
}
} break;
case FLOOR_W_D: // Round double to word towards negative infinity.
{
double rounded = std::floor(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_invalid_result(fs, rounded);
}
} break;
case CEIL_W_D: // Round double to word towards positive infinity.
{
double rounded = std::ceil(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register_word(fd_reg(), result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register_invalid_result(fs, rounded);
}
} break;
case CVT_S_D: // Convert double to float (single).
set_fpu_register_float(fd_reg(), static_cast<float>(fs));
break;
case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word.
double rounded;
int64_t result;
round64_according_to_fcsr(fs, rounded, result, fs);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case ROUND_L_D: { // Mips64r2 instruction.
double rounded = std::floor(fs + 0.5);
int64_t result = static_cast<int64_t>(rounded);
if ((result & 1) != 0 && result - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
int64_t i64 = static_cast<int64_t>(result);
set_fpu_register(fd_reg(), i64);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case TRUNC_L_D: { // Mips64r2 instruction.
double rounded = trunc(fs);
int64_t result = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case FLOOR_L_D: { // Mips64r2 instruction.
double rounded = floor(fs);
int64_t result = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case CEIL_L_D: { // Mips64r2 instruction.
double rounded = ceil(fs);
int64_t result = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg(), result);
if (set_fcsr_round64_error(fs, rounded)) {
set_fpu_register_invalid_result64(fs, rounded);
}
break;
}
case CLASS_D: { // Mips64r6 instruction
// Convert double input to uint64_t for easier bit manipulation
uint64_t classed = bit_cast<uint64_t>(fs);
// Extracting sign, exponent and mantissa from the input double
uint32_t sign = (classed >> 63) & 1;
uint32_t exponent = (classed >> 52) & 0x00000000000007ff;
uint64_t mantissa = classed & 0x000fffffffffffff;
uint64_t result;
double dResult;
// Setting flags if input double is negative infinity,
// positive infinity, negative zero or positive zero
bool negInf = (classed == 0xFFF0000000000000);
bool posInf = (classed == 0x7FF0000000000000);
bool negZero = (classed == 0x8000000000000000);
bool posZero = (classed == 0x0000000000000000);
bool signalingNan;
bool quietNan;
bool negSubnorm;
bool posSubnorm;
bool negNorm;
bool posNorm;
// Setting flags if double is NaN
signalingNan = false;
quietNan = false;
if (!negInf && !posInf && exponent == 0x7ff) {
quietNan = ((mantissa & 0x0008000000000000) != 0) &&
((mantissa & (0x0008000000000000 - 1)) == 0);
signalingNan = !quietNan;
}
// Setting flags if double is subnormal number
posSubnorm = false;
negSubnorm = false;
if ((exponent == 0) && (mantissa != 0)) {
DCHECK(sign == 0 || sign == 1);
posSubnorm = (sign == 0);
negSubnorm = (sign == 1);
}
// Setting flags if double is normal number
posNorm = false;
negNorm = false;
if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
!quietNan && !negZero && !posZero) {
DCHECK(sign == 0 || sign == 1);
posNorm = (sign == 0);
negNorm = (sign == 1);
}
// Calculating result according to description of CLASS.D instruction
result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
(posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
(negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
DCHECK(result != 0);
dResult = bit_cast<double>(result);
set_fpu_register_double(fd_reg(), dResult);
break;
}
case C_F_D: {
set_fcsr_bit(fcsr_cc, false);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterWRsType() {
float fs = get_fpu_register_float(fs_reg());
float ft = get_fpu_register_float(ft_reg());
int64_t alu_out = 0x12345678;
switch (instr_.FunctionFieldRaw()) {
case CVT_S_W: // Convert word to float (single).
alu_out = get_fpu_register_signed_word(fs_reg());
set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
break;
case CVT_D_W: // Convert word to double.
alu_out = get_fpu_register_signed_word(fs_reg());
set_fpu_register_double(fd_reg(), static_cast<double>(alu_out));
break;
case CMP_AF:
set_fpu_register_word(fd_reg(), 0);
break;
case CMP_UN:
if (std::isnan(fs) || std::isnan(ft)) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_EQ:
if (fs == ft) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_UEQ:
if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_LT:
if (fs < ft) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_ULT:
if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_LE:
if (fs <= ft) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_ULE:
if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_OR:
if (!std::isnan(fs) && !std::isnan(ft)) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_UNE:
if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
case CMP_NE:
if (fs != ft) {
set_fpu_register_word(fd_reg(), -1);
} else {
set_fpu_register_word(fd_reg(), 0);
}
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterLRsType() {
double fs = get_fpu_register_double(fs_reg());
double ft = get_fpu_register_double(ft_reg());
int64_t i64;
switch (instr_.FunctionFieldRaw()) {
case CVT_D_L: // Mips32r2 instruction.
i64 = get_fpu_register(fs_reg());
set_fpu_register_double(fd_reg(), static_cast<double>(i64));
break;
case CVT_S_L:
i64 = get_fpu_register(fs_reg());
set_fpu_register_float(fd_reg(), static_cast<float>(i64));
break;
case CMP_AF:
set_fpu_register(fd_reg(), 0);
break;
case CMP_UN:
if (std::isnan(fs) || std::isnan(ft)) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_EQ:
if (fs == ft) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_UEQ:
if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_LT:
if (fs < ft) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_ULT:
if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_LE:
if (fs <= ft) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_ULE:
if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_OR:
if (!std::isnan(fs) && !std::isnan(ft)) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_UNE:
if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
case CMP_NE:
if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
set_fpu_register(fd_reg(), -1);
} else {
set_fpu_register(fd_reg(), 0);
}
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterCOP1() {
switch (instr_.RsFieldRaw()) {
case BC1: // Branch on coprocessor condition.
case BC1EQZ:
case BC1NEZ:
UNREACHABLE();
break;
case CFC1:
// At the moment only FCSR is supported.
DCHECK(fs_reg() == kFCSRRegister);
set_register(rt_reg(), FCSR_);
break;
case MFC1:
set_register(rt_reg(),
static_cast<int64_t>(get_fpu_register_word(fs_reg())));
break;
case DMFC1:
set_register(rt_reg(), get_fpu_register(fs_reg()));
break;
case MFHC1:
set_register(rt_reg(), get_fpu_register_hi_word(fs_reg()));
break;
case CTC1: {
// At the moment only FCSR is supported.
DCHECK(fs_reg() == kFCSRRegister);
uint32_t reg = static_cast<uint32_t>(rt());
if (kArchVariant == kMips64r6) {
FCSR_ = reg | kFCSRNaN2008FlagMask;
} else {
DCHECK(kArchVariant == kMips64r2);
FCSR_ = reg & ~kFCSRNaN2008FlagMask;
}
break;
}
case MTC1:
// Hardware writes upper 32-bits to zero on mtc1.
set_fpu_register_hi_word(fs_reg(), 0);
set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt()));
break;
case DMTC1:
set_fpu_register(fs_reg(), rt());
break;
case MTHC1:
set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt()));
break;
case S:
DecodeTypeRegisterSRsType();
break;
case D:
DecodeTypeRegisterDRsType();
break;
case W:
DecodeTypeRegisterWRsType();
break;
case L:
DecodeTypeRegisterLRsType();
break;
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterCOP1X() {
switch (instr_.FunctionFieldRaw()) {
case MADD_S: {
DCHECK(kArchVariant == kMips64r2);
float fr, ft, fs;
fr = get_fpu_register_float(fr_reg());
fs = get_fpu_register_float(fs_reg());
ft = get_fpu_register_float(ft_reg());
set_fpu_register_float(fd_reg(), fs * ft + fr);
break;
}
case MSUB_S: {
DCHECK(kArchVariant == kMips64r2);
float fr, ft, fs;
fr = get_fpu_register_float(fr_reg());
fs = get_fpu_register_float(fs_reg());
ft = get_fpu_register_float(ft_reg());
set_fpu_register_float(fd_reg(), fs * ft - fr);
break;
}
case MADD_D: {
DCHECK(kArchVariant == kMips64r2);
double fr, ft, fs;
fr = get_fpu_register_double(fr_reg());
fs = get_fpu_register_double(fs_reg());
ft = get_fpu_register_double(ft_reg());
set_fpu_register_double(fd_reg(), fs * ft + fr);
break;
}
case MSUB_D: {
DCHECK(kArchVariant == kMips64r2);
double fr, ft, fs;
fr = get_fpu_register_double(fr_reg());
fs = get_fpu_register_double(fs_reg());
ft = get_fpu_register_double(ft_reg());
set_fpu_register_double(fd_reg(), fs * ft - fr);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterSPECIAL() {
int64_t i64hilo;
uint64_t u64hilo;
int64_t alu_out;
bool do_interrupt = false;
switch (instr_.FunctionFieldRaw()) {
case SELEQZ_S:
DCHECK(kArchVariant == kMips64r6);
set_register(rd_reg(), rt() == 0 ? rs() : 0);
break;
case SELNEZ_S:
DCHECK(kArchVariant == kMips64r6);
set_register(rd_reg(), rt() != 0 ? rs() : 0);
break;
case JR: {
int64_t next_pc = rs();
int64_t current_pc = get_pc();
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_pc(next_pc);
pc_modified_ = true;
break;
}
case JALR: {
int64_t next_pc = rs();
int64_t current_pc = get_pc();
int32_t return_addr_reg = rd_reg();
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize);
set_pc(next_pc);
pc_modified_ = true;
break;
}
case SLL:
SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa());
break;
case DSLL:
SetResult(rd_reg(), rt() << sa());
break;
case DSLL32:
SetResult(rd_reg(), rt() << sa() << 32);
break;
case SRL:
if (rs_reg() == 0) {
// Regular logical right shift of a word by a fixed number of
// bits instruction. RS field is always equal to 0.
// Sign-extend the 32-bit result.
alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa());
} else if (rs_reg() == 1) {
// Logical right-rotate of a word by a fixed number of bits. This
// is special case of SRL instruction, added in MIPS32 Release 2.
// RS field is equal to 00001.
alu_out = static_cast<int32_t>(
base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
static_cast<const uint32_t>(sa())));
} else {
UNREACHABLE();
}
SetResult(rd_reg(), alu_out);
break;
case DSRL:
if (rs_reg() == 0) {
// Regular logical right shift of a word by a fixed number of
// bits instruction. RS field is always equal to 0.
// Sign-extend the 64-bit result.
alu_out = static_cast<int64_t>(rt_u() >> sa());
} else if (rs_reg() == 1) {
// Logical right-rotate of a word by a fixed number of bits. This
// is special case of SRL instruction, added in MIPS32 Release 2.
// RS field is equal to 00001.
alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa()));
} else {
UNREACHABLE();
}
SetResult(rd_reg(), alu_out);
break;
case DSRL32:
if (rs_reg() == 0) {
// Regular logical right shift of a word by a fixed number of
// bits instruction. RS field is always equal to 0.
// Sign-extend the 64-bit result.
alu_out = static_cast<int64_t>(rt_u() >> sa() >> 32);
} else if (rs_reg() == 1) {
// Logical right-rotate of a word by a fixed number of bits. This
// is special case of SRL instruction, added in MIPS32 Release 2.
// RS field is equal to 00001.
alu_out =
static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa() + 32));
} else {
UNREACHABLE();
}
SetResult(rd_reg(), alu_out);
break;
case SRA:
SetResult(rd_reg(), (int32_t)rt() >> sa());
break;
case DSRA:
SetResult(rd_reg(), rt() >> sa());
break;
case DSRA32:
SetResult(rd_reg(), rt() >> sa() >> 32);
break;
case SLLV:
SetResult(rd_reg(), (int32_t)rt() << rs());
break;
case DSLLV:
SetResult(rd_reg(), rt() << rs());
break;
case SRLV:
if (sa() == 0) {
// Regular logical right-shift of a word by a variable number of
// bits instruction. SA field is always equal to 0.
alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs());
} else {
// Logical right-rotate of a word by a variable number of bits.
// This is special case od SRLV instruction, added in MIPS32
// Release 2. SA field is equal to 00001.
alu_out = static_cast<int32_t>(
base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
static_cast<const uint32_t>(rs_u())));
}
SetResult(rd_reg(), alu_out);
break;
case DSRLV:
if (sa() == 0) {
// Regular logical right-shift of a word by a variable number of
// bits instruction. SA field is always equal to 0.
alu_out = static_cast<int64_t>(rt_u() >> rs());
} else {
// Logical right-rotate of a word by a variable number of bits.
// This is special case od SRLV instruction, added in MIPS32
// Release 2. SA field is equal to 00001.
alu_out =
static_cast<int64_t>(base::bits::RotateRight64(rt_u(), rs_u()));
}
SetResult(rd_reg(), alu_out);
break;
case SRAV:
SetResult(rd_reg(), (int32_t)rt() >> rs());
break;
case DSRAV:
SetResult(rd_reg(), rt() >> rs());
break;
case LSA: {
DCHECK(kArchVariant == kMips64r6);
int8_t sa = lsa_sa() + 1;
int32_t _rt = static_cast<int32_t>(rt());
int32_t _rs = static_cast<int32_t>(rs());
int32_t res = _rs << sa;
res += _rt;
SetResult(rd_reg(), static_cast<int64_t>(res));
break;
}
case DLSA:
DCHECK(kArchVariant == kMips64r6);
SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt());
break;
case MFHI: // MFHI == CLZ on R6.
if (kArchVariant != kMips64r6) {
DCHECK(sa() == 0);
alu_out = get_register(HI);
} else {
// MIPS spec: If no bits were set in GPR rs(), the result written to
// GPR rd() is 32.
DCHECK(sa() == 1);
alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u()));
}
SetResult(rd_reg(), alu_out);
break;
case MFLO: // MFLO == DCLZ on R6.
if (kArchVariant != kMips64r6) {
DCHECK(sa() == 0);
alu_out = get_register(LO);
} else {
// MIPS spec: If no bits were set in GPR rs(), the result written to
// GPR rd() is 64.
DCHECK(sa() == 1);
alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u()));
}
SetResult(rd_reg(), alu_out);
break;
// Instructions using HI and LO registers.
case MULT: { // MULT == D_MUL_MUH.
int32_t rs_lo = static_cast<int32_t>(rs());
int32_t rt_lo = static_cast<int32_t>(rt());
i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo);
if (kArchVariant != kMips64r6) {
set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
set_register(HI, static_cast<int32_t>(i64hilo >> 32));
} else {
switch (sa()) {
case MUL_OP:
set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff));
break;
case MUH_OP:
set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
}
break;
}
case MULTU:
u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) *
static_cast<uint64_t>(rt_u() & 0xffffffff);
if (kArchVariant != kMips64r6) {
set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
set_register(HI, static_cast<int32_t>(u64hilo >> 32));
} else {
switch (sa()) {
case MUL_OP:
set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff));
break;
case MUH_OP:
set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
}
break;
case DMULT: // DMULT == D_MUL_MUH.
if (kArchVariant != kMips64r6) {
set_register(LO, rs() * rt());
set_register(HI, MultiplyHighSigned(rs(), rt()));
} else {
switch (sa()) {
case MUL_OP:
set_register(rd_reg(), rs() * rt());
break;
case MUH_OP:
set_register(rd_reg(), MultiplyHighSigned(rs(), rt()));
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
}
break;
case DMULTU:
UNIMPLEMENTED_MIPS();
break;
case DIV:
case DDIV: {
const int64_t int_min_value =
instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN;
switch (kArchVariant) {
case kMips64r2:
// Divide by zero and overflow was not checked in the
// configuration step - div and divu do not raise exceptions. On
// division by 0 the result will be UNPREDICTABLE. On overflow
// (INT_MIN/-1), return INT_MIN which is what the hardware does.
if (rs() == int_min_value && rt() == -1) {
set_register(LO, int_min_value);
set_register(HI, 0);
} else if (rt() != 0) {
set_register(LO, rs() / rt());
set_register(HI, rs() % rt());
}
break;
case kMips64r6:
switch (sa()) {
case DIV_OP:
if (rs() == int_min_value && rt() == -1) {
set_register(rd_reg(), int_min_value);
} else if (rt() != 0) {
set_register(rd_reg(), rs() / rt());
}
break;
case MOD_OP:
if (rs() == int_min_value && rt() == -1) {
set_register(rd_reg(), 0);
} else if (rt() != 0) {
set_register(rd_reg(), rs() % rt());
}
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
break;
default:
break;
}
break;
}
case DIVU:
switch (kArchVariant) {
case kMips64r6: {
uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
switch (sa()) {
case DIV_OP:
if (rt_u_32 != 0) {
set_register(rd_reg(), rs_u_32 / rt_u_32);
}
break;
case MOD_OP:
if (rt_u() != 0) {
set_register(rd_reg(), rs_u_32 % rt_u_32);
}
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
} break;
default: {
if (rt_u() != 0) {
uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
set_register(LO, rs_u_32 / rt_u_32);
set_register(HI, rs_u_32 % rt_u_32);
}
}
}
break;
case DDIVU:
switch (kArchVariant) {
case kMips64r6: {
switch (instr_.SaValue()) {
case DIV_OP:
if (rt_u() != 0) {
set_register(rd_reg(), rs_u() / rt_u());
}
break;
case MOD_OP:
if (rt_u() != 0) {
set_register(rd_reg(), rs_u() % rt_u());
}
break;
default:
UNIMPLEMENTED_MIPS();
break;
}
} break;
default: {
if (rt_u() != 0) {
set_register(LO, rs_u() / rt_u());
set_register(HI, rs_u() % rt_u());
}
}
}
break;
case ADD:
case DADD:
if (HaveSameSign(rs(), rt())) {
if (rs() > 0) {
if (rs() > (Registers::kMaxValue - rt())) {
SignalException(kIntegerOverflow);
}
} else if (rs() < 0) {
if (rs() < (Registers::kMinValue - rt())) {
SignalException(kIntegerUnderflow);
}
}
}
SetResult(rd_reg(), rs() + rt());
break;
case ADDU: {
int32_t alu32_out = static_cast<int32_t>(rs() + rt());
// Sign-extend result of 32bit operation into 64bit register.
SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
break;
}
case DADDU:
SetResult(rd_reg(), rs() + rt());
break;
case SUB:
case DSUB:
if (!HaveSameSign(rs(), rt())) {
if (rs() > 0) {
if (rs() > (Registers::kMaxValue + rt())) {
SignalException(kIntegerOverflow);
}
} else if (rs() < 0) {
if (rs() < (Registers::kMinValue + rt())) {
SignalException(kIntegerUnderflow);
}
}
}
SetResult(rd_reg(), rs() - rt());
break;
case SUBU: {
int32_t alu32_out = static_cast<int32_t>(rs() - rt());
// Sign-extend result of 32bit operation into 64bit register.
SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
break;
}
case DSUBU:
SetResult(rd_reg(), rs() - rt());
break;
case AND:
SetResult(rd_reg(), rs() & rt());
break;
case OR:
SetResult(rd_reg(), rs() | rt());
break;
case XOR:
SetResult(rd_reg(), rs() ^ rt());
break;
case NOR:
SetResult(rd_reg(), ~(rs() | rt()));
break;
case SLT:
SetResult(rd_reg(), rs() < rt() ? 1 : 0);
break;
case SLTU:
SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
break;
// Break and trap instructions.
case BREAK:
do_interrupt = true;
break;
case TGE:
do_interrupt = rs() >= rt();
break;
case TGEU:
do_interrupt = rs_u() >= rt_u();
break;
case TLT:
do_interrupt = rs() < rt();
break;
case TLTU:
do_interrupt = rs_u() < rt_u();
break;
case TEQ:
do_interrupt = rs() == rt();
break;
case TNE:
do_interrupt = rs() != rt();
break;
case SYNC:
// TODO(palfia): Ignore sync instruction for now.
break;
// Conditional moves.
case MOVN:
if (rt()) {
SetResult(rd_reg(), rs());
}
break;
case MOVCI: {
uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
if (instr_.Bit(16)) { // Read Tf bit.
if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
} else {
if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
}
break;
}
case MOVZ:
if (!rt()) {
SetResult(rd_reg(), rs());
}
break;
default:
UNREACHABLE();
}
if (do_interrupt) {
SoftwareInterrupt();
}
}
void Simulator::DecodeTypeRegisterSPECIAL2() {
int64_t alu_out;
switch (instr_.FunctionFieldRaw()) {
case MUL:
alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u());
SetResult(rd_reg(), alu_out);
// HI and LO are UNPREDICTABLE after the operation.
set_register(LO, Unpredictable);
set_register(HI, Unpredictable);
break;
case CLZ:
// MIPS32 spec: If no bits were set in GPR rs(), the result written to
// GPR rd is 32.
alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u()));
SetResult(rd_reg(), alu_out);
break;
case DCLZ:
// MIPS64 spec: If no bits were set in GPR rs(), the result written to
// GPR rd is 64.
alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u()));
SetResult(rd_reg(), alu_out);
break;
default:
alu_out = 0x12345678;
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegisterSPECIAL3() {
int64_t alu_out;
switch (instr_.FunctionFieldRaw()) {
case INS: { // Mips64r2 instruction.
// Interpret rd field as 5-bit msb of insert.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of insert.
uint16_t lsb = sa();
uint16_t size = msb - lsb + 1;
uint64_t mask = (1ULL << size) - 1;
alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) |
((rs_u() & mask) << lsb));
SetResult(rt_reg(), alu_out);
break;
}
case DINS: { // Mips64r2 instruction.
// Interpret rd field as 5-bit msb of insert.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of insert.
uint16_t lsb = sa();
uint16_t size = msb - lsb + 1;
uint64_t mask = (1ULL << size) - 1;
alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
SetResult(rt_reg(), alu_out);
break;
}
case EXT: { // Mips64r2 instruction.
// Interpret rd field as 5-bit msb of extract.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of extract.
uint16_t lsb = sa();
uint16_t size = msb + 1;
uint64_t mask = (1ULL << size) - 1;
alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb);
SetResult(rt_reg(), alu_out);
break;
}
case DEXT: { // Mips64r2 instruction.
// Interpret rd field as 5-bit msb of extract.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of extract.
uint16_t lsb = sa();
uint16_t size = msb + 1;
uint64_t mask = (1ULL << size) - 1;
alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
SetResult(rt_reg(), alu_out);
break;
}
case DEXTM: {
// Interpret rd field as 5-bit msb of extract.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of extract.
uint16_t lsb = sa();
uint16_t size = msb + 33;
uint64_t mask = (1ULL << size) - 1;
alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
SetResult(rt_reg(), alu_out);
break;
}
case DEXTU: {
// Interpret rd field as 5-bit msb of extract.
uint16_t msb = rd_reg();
// Interpret sa field as 5-bit lsb of extract.
uint16_t lsb = sa() + 32;
uint16_t size = msb + 1;
uint64_t mask = (1ULL << size) - 1;
alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
SetResult(rt_reg(), alu_out);
break;
}
case BSHFL: {
int32_t sa = instr_.SaFieldRaw() >> kSaShift;
switch (sa) {
case BITSWAP: {
uint32_t input = static_cast<uint32_t>(rt());
uint32_t output = 0;
uint8_t i_byte, o_byte;
// Reverse the bit in byte for each individual byte
for (int i = 0; i < 4; i++) {
output = output >> 8;
i_byte = input & 0xff;
// Fast way to reverse bits in byte
// Devised by Sean Anderson, July 13, 2001
o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
(i_byte * 0x8020LU & 0x88440LU)) *
0x10101LU >>
16);
output = output | (static_cast<uint32_t>(o_byte << 24));
input = input >> 8;
}
alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
break;
}
case SEB: {
uint8_t input = static_cast<uint8_t>(rt());
uint32_t output = input;
uint32_t mask = 0x00000080;
// Extending sign
if (mask & input) {
output |= 0xFFFFFF00;
}
alu_out = static_cast<int32_t>(output);
break;
}
case SEH: {
uint16_t input = static_cast<uint16_t>(rt());
uint32_t output = input;
uint32_t mask = 0x00008000;
// Extending sign
if (mask & input) {
output |= 0xFFFF0000;
}
alu_out = static_cast<int32_t>(output);
break;
}
case WSBH: {
uint32_t input = static_cast<uint32_t>(rt());
uint64_t output = 0;
uint32_t mask = 0xFF000000;
for (int i = 0; i < 4; i++) {
uint32_t tmp = mask & input;
if (i % 2 == 0) {
tmp = tmp >> 8;
} else {
tmp = tmp << 8;
}
output = output | tmp;
mask = mask >> 8;
}
mask = 0x80000000;
// Extending sign
if (mask & output) {
output |= 0xFFFFFFFF00000000;
}
alu_out = static_cast<int64_t>(output);
break;
}
default: {
const uint8_t bp2 = instr_.Bp2Value();
sa >>= kBp2Bits;
switch (sa) {
case ALIGN: {
if (bp2 == 0) {
alu_out = static_cast<int32_t>(rt());
} else {
uint64_t rt_hi = rt() << (8 * bp2);
uint64_t rs_lo = rs() >> (8 * (4 - bp2));
alu_out = static_cast<int32_t>(rt_hi | rs_lo);
}
break;
}
default:
alu_out = 0x12345678;
UNREACHABLE();
break;
}
break;
}
}
SetResult(rd_reg(), alu_out);
break;
}
case DBSHFL: {
int32_t sa = instr_.SaFieldRaw() >> kSaShift;
switch (sa) {
case DBITSWAP: {
switch (sa) {
case DBITSWAP_SA: { // Mips64r6
uint64_t input = static_cast<uint64_t>(rt());
uint64_t output = 0;
uint8_t i_byte, o_byte;
// Reverse the bit in byte for each individual byte
for (int i = 0; i < 8; i++) {
output = output >> 8;
i_byte = input & 0xff;
// Fast way to reverse bits in byte
// Devised by Sean Anderson, July 13, 2001
o_byte =
static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
(i_byte * 0x8020LU & 0x88440LU)) *
0x10101LU >>
16);
output = output | ((static_cast<uint64_t>(o_byte) << 56));
input = input >> 8;
}
alu_out = static_cast<int64_t>(output);
break;
}
}
break;
}
case DSBH: {
uint64_t input = static_cast<uint64_t>(rt());
uint64_t output = 0;
uint64_t mask = 0xFF00000000000000;
for (int i = 0; i < 8; i++) {
uint64_t tmp = mask & input;
if (i % 2 == 0)
tmp = tmp >> 8;
else
tmp = tmp << 8;
output = output | tmp;
mask = mask >> 8;
}
alu_out = static_cast<int64_t>(output);
break;
}
case DSHD: {
uint64_t input = static_cast<uint64_t>(rt());
uint64_t output = 0;
uint64_t mask = 0xFFFF000000000000;
for (int i = 0; i < 4; i++) {
uint64_t tmp = mask & input;
if (i == 0)
tmp = tmp >> 48;
else if (i == 1)
tmp = tmp >> 16;
else if (i == 2)
tmp = tmp << 16;
else
tmp = tmp << 48;
output = output | tmp;
mask = mask >> 16;
}
alu_out = static_cast<int64_t>(output);
break;
}
default: {
const uint8_t bp3 = instr_.Bp3Value();
sa >>= kBp3Bits;
switch (sa) {
case DALIGN: {
if (bp3 == 0) {
alu_out = static_cast<int64_t>(rt());
} else {
uint64_t rt_hi = rt() << (8 * bp3);
uint64_t rs_lo = rs() >> (8 * (8 - bp3));
alu_out = static_cast<int64_t>(rt_hi | rs_lo);
}
break;
}
default:
alu_out = 0x12345678;
UNREACHABLE();
break;
}
break;
}
}
SetResult(rd_reg(), alu_out);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::DecodeTypeRegister() {
// ---------- Execution.
switch (instr_.OpcodeFieldRaw()) {
case COP1:
DecodeTypeRegisterCOP1();
break;
case COP1X:
DecodeTypeRegisterCOP1X();
break;
case SPECIAL:
DecodeTypeRegisterSPECIAL();
break;
case SPECIAL2:
DecodeTypeRegisterSPECIAL2();
break;
case SPECIAL3:
DecodeTypeRegisterSPECIAL3();
break;
// Unimplemented opcodes raised an error in the configuration step before,
// so we can use the default here to set the destination register in common
// cases.
default:
UNREACHABLE();
}
}
// Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
void Simulator::DecodeTypeImmediate() {
// Instruction fields.
Opcode op = instr_.OpcodeFieldRaw();
int32_t rs_reg = instr_.RsValue();
int64_t rs = get_register(instr_.RsValue());
uint64_t rs_u = static_cast<uint64_t>(rs);
int32_t rt_reg = instr_.RtValue(); // Destination register.
int64_t rt = get_register(rt_reg);
int16_t imm16 = instr_.Imm16Value();
int32_t imm18 = instr_.Imm18Value();
int32_t ft_reg = instr_.FtValue(); // Destination register.
// Zero extended immediate.
uint64_t oe_imm16 = 0xffff & imm16;
// Sign extended immediate.
int64_t se_imm16 = imm16;
int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0);
// Next pc.
int64_t next_pc = bad_ra;
// Used for conditional branch instructions.
bool execute_branch_delay_instruction = false;
// Used for arithmetic instructions.
int64_t alu_out = 0;
// Used for memory instructions.
int64_t addr = 0x0;
// Alignment for 32-bit integers used in LWL, LWR, etc.
const int kInt32AlignmentMask = sizeof(uint32_t) - 1;
// Alignment for 64-bit integers used in LDL, LDR, etc.
const int kInt64AlignmentMask = sizeof(uint64_t) - 1;
// Branch instructions common part.
auto BranchAndLinkHelper =
[this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int64_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
set_register(31, current_pc + 2 * Instruction::kInstrSize);
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchHelper = [this, &next_pc,
&execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int64_t current_pc = get_pc();
if (do_branch) {
int16_t imm16 = instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int64_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
int32_t imm = instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
set_register(31, current_pc + Instruction::kInstrSize);
}
};
auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int64_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
int32_t imm = instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
}
};
switch (op) {
// ------------- COP1. Coprocessor instructions.
case COP1:
switch (instr_.RsFieldRaw()) {
case BC1: { // Branch on coprocessor condition.
uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
uint32_t cc_value = test_fcsr_bit(fcsr_cc);
bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
BranchHelper(do_branch);
break;
}
case BC1EQZ:
BranchHelper(!(get_fpu_register(ft_reg) & 0x1));
break;
case BC1NEZ:
BranchHelper(get_fpu_register(ft_reg) & 0x1);
break;
default:
UNREACHABLE();
}
break;
// ------------- REGIMM class.
case REGIMM:
switch (instr_.RtFieldRaw()) {
case BLTZ:
BranchHelper(rs < 0);
break;
case BGEZ:
BranchHelper(rs >= 0);
break;
case BLTZAL:
BranchAndLinkHelper(rs < 0);
break;
case BGEZAL:
BranchAndLinkHelper(rs >= 0);
break;
case DAHI:
SetResult(rs_reg, rs + (se_imm16 << 32));
break;
case DATI:
SetResult(rs_reg, rs + (se_imm16 << 48));
break;
default:
UNREACHABLE();
}
break; // case REGIMM.
// ------------- Branch instructions.
// When comparing to zero, the encoding of rt field is always 0, so we don't
// need to replace rt with zero.
case BEQ:
BranchHelper(rs == rt);
break;
case BNE:
BranchHelper(rs != rt);
break;
case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6)
if (kArchVariant == kMips64r6) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BLEZALC
BranchAndLinkCompactHelper(rt <= 0, 16);
} else {
if (rs_reg == rt_reg) { // BGEZALC
BranchAndLinkCompactHelper(rt >= 0, 16);
} else { // BGEUC
BranchCompactHelper(
static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16);
}
}
} else { // BLEZ
BranchHelper(rs <= 0);
}
} else { // BLEZ
BranchHelper(rs <= 0);
}
break;
case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6)
if (kArchVariant == kMips64r6) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BGTZALC
BranchAndLinkCompactHelper(rt > 0, 16);
} else {
if (rt_reg == rs_reg) { // BLTZALC
BranchAndLinkCompactHelper(rt < 0, 16);
} else { // BLTUC
BranchCompactHelper(
static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16);
}
}
} else { // BGTZ
BranchHelper(rs > 0);
}
} else { // BGTZ
BranchHelper(rs > 0);
}
break;
case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6)
if (kArchVariant == kMips64r6) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BLEZC
BranchCompactHelper(rt <= 0, 16);
} else {
if (rs_reg == rt_reg) { // BGEZC
BranchCompactHelper(rt >= 0, 16);
} else { // BGEC/BLEC
BranchCompactHelper(rs >= rt, 16);
}
}
}
} else { // BLEZL
BranchAndLinkHelper(rs <= 0);
}
break;
case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6)
if (kArchVariant == kMips64r6) {
if (rt_reg != 0) {
if (rs_reg == 0) { // BGTZC
BranchCompactHelper(rt > 0, 16);
} else {
if (rs_reg == rt_reg) { // BLTZC
BranchCompactHelper(rt < 0, 16);
} else { // BLTC/BGTC
BranchCompactHelper(rs < rt, 16);
}
}
}
} else { // BGTZL
BranchAndLinkHelper(rs > 0);
}
break;
case POP66: // BEQZC, JIC
if (rs_reg != 0) { // BEQZC
BranchCompactHelper(rs == 0, 21);
} else { // JIC
next_pc = rt + imm16;
}
break;
case POP76: // BNEZC, JIALC
if (rs_reg != 0) { // BNEZC
BranchCompactHelper(rs != 0, 21);
} else { // JIALC
int64_t current_pc = get_pc();
set_register(31, current_pc + Instruction::kInstrSize);
next_pc = rt + imm16;
}
break;
case BC:
BranchCompactHelper(true, 26);
break;
case BALC:
BranchAndLinkCompactHelper(true, 26);
break;
case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6)
if (kArchVariant == kMips64r6) {
if (rs_reg >= rt_reg) { // BOVC
bool condition = !is_int32(rs) || !is_int32(rt) || !is_int32(rs + rt);
BranchCompactHelper(condition, 16);
} else {
if (rs_reg == 0) { // BEQZALC
BranchAndLinkCompactHelper(rt == 0, 16);
} else { // BEQC
BranchCompactHelper(rt == rs, 16);
}
}
} else { // ADDI
if (HaveSameSign(rs, se_imm16)) {
if (rs > 0) {
if (rs <= Registers::kMaxValue - se_imm16) {
SignalException(kIntegerOverflow);
}
} else if (rs < 0) {
if (rs >= Registers::kMinValue - se_imm16) {
SignalException(kIntegerUnderflow);
}
}
}
SetResult(rt_reg, rs + se_imm16);
}
break;
case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6)
if (kArchVariant == kMips64r6) {
if (rs_reg >= rt_reg) { // BNVC
bool condition = is_int32(rs) && is_int32(rt) && is_int32(rs + rt);
BranchCompactHelper(condition, 16);
} else {
if (rs_reg == 0) { // BNEZALC
BranchAndLinkCompactHelper(rt != 0, 16);
} else { // BNEC
BranchCompactHelper(rt != rs, 16);
}
}
}
break;
// ------------- Arithmetic instructions.
case ADDIU: {
DCHECK(is_int32(rs));
int32_t alu32_out = static_cast<int32_t>(rs + se_imm16);
// Sign-extend result of 32bit operation into 64bit register.
SetResult(rt_reg, static_cast<int64_t>(alu32_out));
break;
}
case DADDIU:
SetResult(rt_reg, rs + se_imm16);
break;
case SLTI:
SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
break;
case SLTIU:
SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0);
break;
case ANDI:
SetResult(rt_reg, rs & oe_imm16);
break;
case ORI:
SetResult(rt_reg, rs | oe_imm16);
break;
case XORI:
SetResult(rt_reg, rs ^ oe_imm16);
break;
case LUI:
if (rs_reg != 0) {
// AUI instruction.
DCHECK(kArchVariant == kMips64r6);
int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16));
SetResult(rt_reg, static_cast<int64_t>(alu32_out));
} else {
// LUI instruction.
int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16);
// Sign-extend result of 32bit operation into 64bit register.
SetResult(rt_reg, static_cast<int64_t>(alu32_out));
}
break;
case DAUI:
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs_reg != 0);
SetResult(rt_reg, rs + (se_imm16 << 16));
break;
// ------------- Memory instructions.
case LB:
set_register(rt_reg, ReadB(rs + se_imm16));
break;
case LH:
set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
break;
case LWL: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
uint8_t byte_shift = kInt32AlignmentMask - al_offset;
uint32_t mask = (1 << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
int32_t val = ReadW(addr, instr_.instr());
val <<= byte_shift * 8;
val |= rt & mask;
set_register(rt_reg, static_cast<int64_t>(val));
break;
}
case LW:
set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LWU:
set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr()));
break;
case LD:
set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr()));
break;
case LBU:
set_register(rt_reg, ReadBU(rs + se_imm16));
break;
case LHU:
set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
break;
case LWR: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
uint8_t byte_shift = kInt32AlignmentMask - al_offset;
uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr_.instr());
alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
break;
}
case LDL: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
uint8_t byte_shift = kInt64AlignmentMask - al_offset;
uint64_t mask = (1UL << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
alu_out = Read2W(addr, instr_.instr());
alu_out <<= byte_shift * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
break;
}
case LDR: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
uint8_t byte_shift = kInt64AlignmentMask - al_offset;
uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL;
addr = rs + se_imm16 - al_offset;
alu_out = Read2W(addr, instr_.instr());
alu_out = alu_out >> al_offset * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
break;
}
case SB:
WriteB(rs + se_imm16, static_cast<int8_t>(rt));
break;
case SH:
WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
break;
case SWL: {
uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
uint8_t byte_shift = kInt32AlignmentMask - al_offset;
uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
uint64_t mem_value = ReadW(addr, instr_.instr()) & mask;
mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
break;
}
case SW:
WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr_.instr());
break;
case SD:
Write2W(rs + se_imm16, rt, instr_.instr());
break;
case SWR: {
uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
uint32_t mask = (1 << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
uint64_t mem_value = ReadW(addr, instr_.instr());
mem_value = (rt << al_offset * 8) | (mem_value & mask);
WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
break;
}
case SDL: {
uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
uint8_t byte_shift = kInt64AlignmentMask - al_offset;
uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
uint64_t mem_value = Read2W(addr, instr_.instr()) & mask;
mem_value |= rt >> byte_shift * 8;
Write2W(addr, mem_value, instr_.instr());
break;
}
case SDR: {
uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
uint64_t mask = (1UL << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
uint64_t mem_value = Read2W(addr, instr_.instr());
mem_value = (rt << al_offset * 8) | (mem_value & mask);
Write2W(addr, mem_value, instr_.instr());
break;
}
case LWC1:
set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits.
set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LDC1:
set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
break;
case SWC1: {
int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg));
WriteW(rs + se_imm16, alu_out_32, instr_.instr());
break;
}
case SDC1:
WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
break;
// ------------- PC-Relative instructions.
case PCREL: {
// rt field: checking 5-bits.
int32_t imm21 = instr_.Imm21Value();
int64_t current_pc = get_pc();
uint8_t rt = (imm21 >> kImm16Bits);
switch (rt) {
case ALUIPC:
addr = current_pc + (se_imm16 << 16);
alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
break;
case AUIPC:
alu_out = current_pc + (se_imm16 << 16);
break;
default: {
int32_t imm19 = instr_.Imm19Value();
// rt field: checking the most significant 3-bits.
rt = (imm21 >> kImm18Bits);
switch (rt) {
case LDPC:
addr =
(current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3);
alu_out = Read2W(addr, instr_.instr());
break;
default: {
// rt field: checking the most significant 2-bits.
rt = (imm21 >> kImm19Bits);
switch (rt) {
case LWUPC: {
// Set sign.
imm19 <<= (kOpcodeBits + kRsBits + 2);
imm19 >>= (kOpcodeBits + kRsBits + 2);
addr = current_pc + (imm19 << 2);
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
alu_out = *ptr;
break;
}
case LWPC: {
// Set sign.
imm19 <<= (kOpcodeBits + kRsBits + 2);
imm19 >>= (kOpcodeBits + kRsBits + 2);
addr = current_pc + (imm19 << 2);
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
alu_out = *ptr;
break;
}
case ADDIUPC: {
int64_t se_imm19 =
imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0);
alu_out = current_pc + (se_imm19 << 2);
break;
}
default:
UNREACHABLE();
break;
}
break;
}
}
break;
}
}
set_register(rs_reg, alu_out);
break;
}
default:
UNREACHABLE();
}
if (execute_branch_delay_instruction) {
// Execute branch delay slot
// We don't check for end_sim_pc. First it should not be met as the current
// pc is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
}
// If needed update pc after the branch delay execution.
if (next_pc != bad_ra) {
set_pc(next_pc);
}
}
// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
void Simulator::DecodeTypeJump() {
SimInstruction simInstr = instr_;
// Get current pc.
int64_t current_pc = get_pc();
// Get unchanged bits of pc.
int64_t pc_high_bits = current_pc & 0xfffffffff0000000;
// Next pc.
int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
// Execute branch delay slot.
// We don't check for end_sim_pc. First it should not be met as the current pc
// is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
// Update pc and ra if necessary.
// Do this after the branch delay execution.
if (simInstr.IsLinkingInstruction()) {
set_register(31, current_pc + 2 * Instruction::kInstrSize);
}
set_pc(next_pc);
pc_modified_ = true;
}
// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
if (v8::internal::FLAG_check_icache) {
CheckICache(isolate_->simulator_i_cache(), instr);
}
pc_modified_ = false;
v8::internal::EmbeddedVector<char, 256> buffer;
if (::v8::internal::FLAG_trace_sim) {
SNPrintF(trace_buf_, " ");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
}
instr_ = instr;
switch (instr_.InstructionType()) {
case Instruction::kRegisterType:
DecodeTypeRegister();
break;
case Instruction::kImmediateType:
DecodeTypeImmediate();
break;
case Instruction::kJumpType:
DecodeTypeJump();
break;
default:
UNSUPPORTED();
}
if (::v8::internal::FLAG_trace_sim) {
PrintF(" 0x%08" PRIxPTR " %-44s %s\n",
reinterpret_cast<intptr_t>(instr), buffer.start(),
trace_buf_.start());
}
if (!pc_modified_) {
set_register(pc, reinterpret_cast<int64_t>(instr) +
Instruction::kInstrSize);
}
}
void Simulator::Execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int64_t program_counter = get_pc();
if (::v8::internal::FLAG_stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
InstructionDecode(instr);
program_counter = get_pc();
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instuction count.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
if (icount_ == static_cast<int64_t>(::v8::internal::FLAG_stop_sim_at)) {
MipsDebugger dbg(this);
dbg.Debug();
} else {
InstructionDecode(instr);
}
program_counter = get_pc();
}
}
}
void Simulator::CallInternal(byte* entry) {
// Adjust JS-based stack limit to C-based stack limit.
isolate_->stack_guard()->AdjustStackLimitForSimulator();
// Prepare to execute the code at entry.
set_register(pc, reinterpret_cast<int64_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
set_register(ra, end_sim_pc);
// Remember the values of callee-saved registers.
// The code below assumes that r9 is not used as sb (static base) in
// simulator code and therefore is regarded as a callee-saved register.
int64_t s0_val = get_register(s0);
int64_t s1_val = get_register(s1);
int64_t s2_val = get_register(s2);
int64_t s3_val = get_register(s3);
int64_t s4_val = get_register(s4);
int64_t s5_val = get_register(s5);
int64_t s6_val = get_register(s6);
int64_t s7_val = get_register(s7);
int64_t gp_val = get_register(gp);
int64_t sp_val = get_register(sp);
int64_t fp_val = get_register(fp);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution.
int64_t callee_saved_value = icount_;
set_register(s0, callee_saved_value);
set_register(s1, callee_saved_value);
set_register(s2, callee_saved_value);
set_register(s3, callee_saved_value);
set_register(s4, callee_saved_value);
set_register(s5, callee_saved_value);
set_register(s6, callee_saved_value);
set_register(s7, callee_saved_value);
set_register(gp, callee_saved_value);
set_register(fp, callee_saved_value);
// Start the simulation.
Execute();
// Check that the callee-saved registers have been preserved.
CHECK_EQ(callee_saved_value, get_register(s0));
CHECK_EQ(callee_saved_value, get_register(s1));
CHECK_EQ(callee_saved_value, get_register(s2));
CHECK_EQ(callee_saved_value, get_register(s3));
CHECK_EQ(callee_saved_value, get_register(s4));
CHECK_EQ(callee_saved_value, get_register(s5));
CHECK_EQ(callee_saved_value, get_register(s6));
CHECK_EQ(callee_saved_value, get_register(s7));
CHECK_EQ(callee_saved_value, get_register(gp));
CHECK_EQ(callee_saved_value, get_register(fp));
// Restore callee-saved registers with the original value.
set_register(s0, s0_val);
set_register(s1, s1_val);
set_register(s2, s2_val);
set_register(s3, s3_val);
set_register(s4, s4_val);
set_register(s5, s5_val);
set_register(s6, s6_val);
set_register(s7, s7_val);
set_register(gp, gp_val);
set_register(sp, sp_val);
set_register(fp, fp_val);
}
int64_t Simulator::Call(byte* entry, int argument_count, ...) {
const int kRegisterPassedArguments = 8;
va_list parameters;
va_start(parameters, argument_count);
// Set up arguments.
// First four arguments passed in registers in both ABI's.
DCHECK(argument_count >= 4);
set_register(a0, va_arg(parameters, int64_t));
set_register(a1, va_arg(parameters, int64_t));
set_register(a2, va_arg(parameters, int64_t));
set_register(a3, va_arg(parameters, int64_t));
// Up to eight arguments passed in registers in N64 ABI.
// TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this.
if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t));
if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t));
if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t));
if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t));
// Remaining arguments passed on stack.
int64_t original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
int stack_args_count = (argument_count > kRegisterPassedArguments) ?
(argument_count - kRegisterPassedArguments) : 0;
int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize;
int64_t entry_stack = original_stack - stack_args_size;
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
// Store remaining arguments on stack, from low to high memory.
intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
for (int i = kRegisterPassedArguments; i < argument_count; i++) {
int stack_index = i - kRegisterPassedArguments + kCArgSlotCount;
stack_argument[stack_index] = va_arg(parameters, int64_t);
}
va_end(parameters);
set_register(sp, entry_stack);
CallInternal(entry);
// Pop stack passed arguments.
CHECK_EQ(entry_stack, get_register(sp));
set_register(sp, original_stack);
int64_t result = get_register(v0);
return result;
}
double Simulator::CallFP(byte* entry, double d0, double d1) {
if (!IsMipsSoftFloatABI) {
const FPURegister fparg2 = f13;
set_fpu_register_double(f12, d0);
set_fpu_register_double(fparg2, d1);
} else {
int buffer[2];
DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0));
memcpy(buffer, &d0, sizeof(d0));
set_dw_register(a0, buffer);
memcpy(buffer, &d1, sizeof(d1));
set_dw_register(a2, buffer);
}
CallInternal(entry);
if (!IsMipsSoftFloatABI) {
return get_fpu_register_double(f0);
} else {
return get_double_from_register_pair(v0);
}
}
uintptr_t Simulator::PushAddress(uintptr_t address) {
int64_t new_sp = get_register(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_register(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
int64_t current_sp = get_register(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
set_register(sp, current_sp + sizeof(uintptr_t));
return address;
}
#undef UNSUPPORTED
} // namespace internal
} // namespace v8
#endif // USE_SIMULATOR
#endif // V8_TARGET_ARCH_MIPS64