blob: 3f770292fbe13f84b1b678c49b7107aa6e717b22 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/objects/elements.h"
#include "src/base/atomicops.h"
#include "src/base/safe_conversions.h"
#include "src/common/message-template.h"
#include "src/execution/arguments.h"
#include "src/execution/frames.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/protectors-inl.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h" // For MaxNumberToStringCacheSize.
#include "src/heap/heap-write-barrier-inl.h"
#include "src/numbers/conversions.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-shared-array-inl.h"
#include "src/objects/keys.h"
#include "src/objects/objects-inl.h"
#include "src/objects/slots-atomic-inl.h"
#include "src/objects/slots.h"
#include "src/utils/utils.h"
#include "third_party/fp16/src/include/fp16.h"
// Each concrete ElementsAccessor can handle exactly one ElementsKind,
// several abstract ElementsAccessor classes are used to allow sharing
// common code.
//
// Inheritance hierarchy:
// - ElementsAccessorBase (abstract)
// - FastElementsAccessor (abstract)
// - FastSmiOrObjectElementsAccessor
// - FastPackedSmiElementsAccessor
// - FastHoleySmiElementsAccessor
// - FastPackedObjectElementsAccessor
// - FastNonextensibleObjectElementsAccessor: template
// - FastPackedNonextensibleObjectElementsAccessor
// - FastHoleyNonextensibleObjectElementsAccessor
// - FastSealedObjectElementsAccessor: template
// - FastPackedSealedObjectElementsAccessor
// - FastHoleySealedObjectElementsAccessor
// - FastFrozenObjectElementsAccessor: template
// - FastPackedFrozenObjectElementsAccessor
// - FastHoleyFrozenObjectElementsAccessor
// - FastHoleyObjectElementsAccessor
// - FastDoubleElementsAccessor
// - FastPackedDoubleElementsAccessor
// - FastHoleyDoubleElementsAccessor
// - TypedElementsAccessor: template, with instantiations:
// - Uint8ElementsAccessor
// - Int8ElementsAccessor
// - Uint16ElementsAccessor
// - Int16ElementsAccessor
// - Uint32ElementsAccessor
// - Int32ElementsAccessor
// - Float32ElementsAccessor
// - Float64ElementsAccessor
// - Uint8ClampedElementsAccessor
// - BigUint64ElementsAccessor
// - BigInt64ElementsAccessor
// - RabGsabUint8ElementsAccessor
// - RabGsabInt8ElementsAccessor
// - RabGsabUint16ElementsAccessor
// - RabGsabInt16ElementsAccessor
// - RabGsabUint32ElementsAccessor
// - RabGsabInt32ElementsAccessor
// - RabGsabFloat32ElementsAccessor
// - RabGsabFloat64ElementsAccessor
// - RabGsabUint8ClampedElementsAccessor
// - RabGsabBigUint64ElementsAccessor
// - RabGsabBigInt64ElementsAccessor
// - DictionaryElementsAccessor
// - SloppyArgumentsElementsAccessor
// - FastSloppyArgumentsElementsAccessor
// - SlowSloppyArgumentsElementsAccessor
// - StringWrapperElementsAccessor
// - FastStringWrapperElementsAccessor
// - SlowStringWrapperElementsAccessor
namespace v8 {
namespace internal {
namespace {
#define RETURN_NOTHING_IF_NOT_SUCCESSFUL(call) \
do { \
if (!(call)) return Nothing<bool>(); \
} while (false)
#define RETURN_FAILURE_IF_NOT_SUCCESSFUL(call) \
do { \
ExceptionStatus status_enum_result = (call); \
if (!status_enum_result) return status_enum_result; \
} while (false)
static const int kPackedSizeNotKnown = -1;
enum Where { AT_START, AT_END };
// First argument in list is the accessor class, the second argument is the
// accessor ElementsKind, and the third is the backing store class. Use the
// fast element handler for smi-only arrays. The implementation is currently
// identical. Note that the order must match that of the ElementsKind enum for
// the |accessor_array[]| below to work.
#define ELEMENTS_LIST(V) \
V(FastPackedSmiElementsAccessor, PACKED_SMI_ELEMENTS, FixedArray) \
V(FastHoleySmiElementsAccessor, HOLEY_SMI_ELEMENTS, FixedArray) \
V(FastPackedObjectElementsAccessor, PACKED_ELEMENTS, FixedArray) \
V(FastHoleyObjectElementsAccessor, HOLEY_ELEMENTS, FixedArray) \
V(FastPackedDoubleElementsAccessor, PACKED_DOUBLE_ELEMENTS, \
FixedDoubleArray) \
V(FastHoleyDoubleElementsAccessor, HOLEY_DOUBLE_ELEMENTS, FixedDoubleArray) \
V(FastPackedNonextensibleObjectElementsAccessor, \
PACKED_NONEXTENSIBLE_ELEMENTS, FixedArray) \
V(FastHoleyNonextensibleObjectElementsAccessor, \
HOLEY_NONEXTENSIBLE_ELEMENTS, FixedArray) \
V(FastPackedSealedObjectElementsAccessor, PACKED_SEALED_ELEMENTS, \
FixedArray) \
V(FastHoleySealedObjectElementsAccessor, HOLEY_SEALED_ELEMENTS, FixedArray) \
V(FastPackedFrozenObjectElementsAccessor, PACKED_FROZEN_ELEMENTS, \
FixedArray) \
V(FastHoleyFrozenObjectElementsAccessor, HOLEY_FROZEN_ELEMENTS, FixedArray) \
V(SharedArrayElementsAccessor, SHARED_ARRAY_ELEMENTS, FixedArray) \
V(DictionaryElementsAccessor, DICTIONARY_ELEMENTS, NumberDictionary) \
V(FastSloppyArgumentsElementsAccessor, FAST_SLOPPY_ARGUMENTS_ELEMENTS, \
FixedArray) \
V(SlowSloppyArgumentsElementsAccessor, SLOW_SLOPPY_ARGUMENTS_ELEMENTS, \
FixedArray) \
V(FastStringWrapperElementsAccessor, FAST_STRING_WRAPPER_ELEMENTS, \
FixedArray) \
V(SlowStringWrapperElementsAccessor, SLOW_STRING_WRAPPER_ELEMENTS, \
FixedArray) \
V(Uint8ElementsAccessor, UINT8_ELEMENTS, ByteArray) \
V(Int8ElementsAccessor, INT8_ELEMENTS, ByteArray) \
V(Uint16ElementsAccessor, UINT16_ELEMENTS, ByteArray) \
V(Int16ElementsAccessor, INT16_ELEMENTS, ByteArray) \
V(Uint32ElementsAccessor, UINT32_ELEMENTS, ByteArray) \
V(Int32ElementsAccessor, INT32_ELEMENTS, ByteArray) \
V(Float32ElementsAccessor, FLOAT32_ELEMENTS, ByteArray) \
V(Float64ElementsAccessor, FLOAT64_ELEMENTS, ByteArray) \
V(Uint8ClampedElementsAccessor, UINT8_CLAMPED_ELEMENTS, ByteArray) \
V(BigUint64ElementsAccessor, BIGUINT64_ELEMENTS, ByteArray) \
V(BigInt64ElementsAccessor, BIGINT64_ELEMENTS, ByteArray) \
V(Float16ElementsAccessor, FLOAT16_ELEMENTS, ByteArray) \
V(RabGsabUint8ElementsAccessor, RAB_GSAB_UINT8_ELEMENTS, ByteArray) \
V(RabGsabInt8ElementsAccessor, RAB_GSAB_INT8_ELEMENTS, ByteArray) \
V(RabGsabUint16ElementsAccessor, RAB_GSAB_UINT16_ELEMENTS, ByteArray) \
V(RabGsabInt16ElementsAccessor, RAB_GSAB_INT16_ELEMENTS, ByteArray) \
V(RabGsabUint32ElementsAccessor, RAB_GSAB_UINT32_ELEMENTS, ByteArray) \
V(RabGsabInt32ElementsAccessor, RAB_GSAB_INT32_ELEMENTS, ByteArray) \
V(RabGsabFloat32ElementsAccessor, RAB_GSAB_FLOAT32_ELEMENTS, ByteArray) \
V(RabGsabFloat64ElementsAccessor, RAB_GSAB_FLOAT64_ELEMENTS, ByteArray) \
V(RabGsabUint8ClampedElementsAccessor, RAB_GSAB_UINT8_CLAMPED_ELEMENTS, \
ByteArray) \
V(RabGsabBigUint64ElementsAccessor, RAB_GSAB_BIGUINT64_ELEMENTS, ByteArray) \
V(RabGsabBigInt64ElementsAccessor, RAB_GSAB_BIGINT64_ELEMENTS, ByteArray) \
V(RabGsabFloat16ElementsAccessor, RAB_GSAB_FLOAT16_ELEMENTS, ByteArray)
template <ElementsKind Kind>
class ElementsKindTraits {
public:
using BackingStore = FixedArrayBase;
};
#define ELEMENTS_TRAITS(Class, KindParam, Store) \
template <> \
class ElementsKindTraits<KindParam> { \
public: /* NOLINT */ \
static constexpr ElementsKind Kind = KindParam; \
using BackingStore = Store; \
}; \
constexpr ElementsKind ElementsKindTraits<KindParam>::Kind;
ELEMENTS_LIST(ELEMENTS_TRAITS)
#undef ELEMENTS_TRAITS
V8_WARN_UNUSED_RESULT
MaybeHandle<Object> ThrowArrayLengthRangeError(Isolate* isolate) {
THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kInvalidArrayLength),
Object);
}
WriteBarrierMode GetWriteBarrierMode(Tagged<FixedArrayBase> elements,
ElementsKind kind,
const DisallowGarbageCollection& promise) {
if (IsSmiElementsKind(kind)) return SKIP_WRITE_BARRIER;
if (IsDoubleElementsKind(kind)) return SKIP_WRITE_BARRIER;
return elements->GetWriteBarrierMode(promise);
}
// If kCopyToEndAndInitializeToHole is specified as the copy_size to
// CopyElements, it copies all of elements from source after source_start to
// destination array, padding any remaining uninitialized elements in the
// destination array with the hole.
constexpr int kCopyToEndAndInitializeToHole = -1;
void CopyObjectToObjectElements(Isolate* isolate,
Tagged<FixedArrayBase> from_base,
ElementsKind from_kind, uint32_t from_start,
Tagged<FixedArrayBase> to_base,
ElementsKind to_kind, uint32_t to_start,
int raw_copy_size) {
ReadOnlyRoots roots(isolate);
DCHECK(to_base->map() != roots.fixed_cow_array_map());
DisallowGarbageCollection no_gc;
int copy_size = raw_copy_size;
if (raw_copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = std::min(from_base->length() - from_start,
to_base->length() - to_start);
int start = to_start + copy_size;
int length = to_base->length() - start;
if (length > 0) {
MemsetTagged(FixedArray::cast(to_base)->RawFieldOfElementAt(start),
roots.the_hole_value(), length);
}
}
DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
(copy_size + static_cast<int>(from_start)) <= from_base->length());
if (copy_size == 0) return;
Tagged<FixedArray> from = FixedArray::cast(from_base);
Tagged<FixedArray> to = FixedArray::cast(to_base);
DCHECK(IsSmiOrObjectElementsKind(from_kind));
DCHECK(IsSmiOrObjectElementsKind(to_kind));
WriteBarrierMode write_barrier_mode =
(IsObjectElementsKind(from_kind) && IsObjectElementsKind(to_kind))
? UPDATE_WRITE_BARRIER
: SKIP_WRITE_BARRIER;
to->CopyElements(isolate, to_start, from, from_start, copy_size,
write_barrier_mode);
}
void CopyDictionaryToObjectElements(Isolate* isolate,
Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base,
ElementsKind to_kind, uint32_t to_start,
int raw_copy_size) {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> from = NumberDictionary::cast(from_base);
int copy_size = raw_copy_size;
if (raw_copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = from->max_number_key() + 1 - from_start;
int start = to_start + copy_size;
int length = to_base->length() - start;
if (length > 0) {
MemsetTagged(FixedArray::cast(to_base)->RawFieldOfElementAt(start),
ReadOnlyRoots(isolate).the_hole_value(), length);
}
}
DCHECK(to_base != from_base);
DCHECK(IsSmiOrObjectElementsKind(to_kind));
if (copy_size == 0) return;
Tagged<FixedArray> to = FixedArray::cast(to_base);
uint32_t to_length = to->length();
if (to_start + copy_size > to_length) {
copy_size = to_length - to_start;
}
WriteBarrierMode write_barrier_mode = GetWriteBarrierMode(to, to_kind, no_gc);
for (int i = 0; i < copy_size; i++) {
InternalIndex entry = from->FindEntry(isolate, i + from_start);
if (entry.is_found()) {
Tagged<Object> value = from->ValueAt(entry);
DCHECK(!IsTheHole(value, isolate));
to->set(i + to_start, value, write_barrier_mode);
} else {
to->set_the_hole(isolate, i + to_start);
}
}
}
// NOTE: this method violates the handlified function signature convention:
// raw pointer parameters in the function that allocates.
// See ElementsAccessorBase::CopyElements() for details.
void CopyDoubleToObjectElements(Isolate* isolate,
Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base,
uint32_t to_start, int raw_copy_size) {
int copy_size = raw_copy_size;
if (raw_copy_size < 0) {
DisallowGarbageCollection no_gc;
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = std::min(from_base->length() - from_start,
to_base->length() - to_start);
// Also initialize the area that will be copied over since HeapNumber
// allocation below can cause an incremental marking step, requiring all
// existing heap objects to be propertly initialized.
int start = to_start;
int length = to_base->length() - start;
if (length > 0) {
MemsetTagged(FixedArray::cast(to_base)->RawFieldOfElementAt(start),
ReadOnlyRoots(isolate).the_hole_value(), length);
}
}
DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
(copy_size + static_cast<int>(from_start)) <= from_base->length());
if (copy_size == 0) return;
// From here on, the code below could actually allocate. Therefore the raw
// values are wrapped into handles.
Handle<FixedDoubleArray> from(FixedDoubleArray::cast(from_base), isolate);
Handle<FixedArray> to(FixedArray::cast(to_base), isolate);
// Use an outer loop to not waste too much time on creating HandleScopes.
// On the other hand we might overflow a single handle scope depending on
// the copy_size.
int offset = 0;
while (offset < copy_size) {
HandleScope scope(isolate);
offset += 100;
for (int i = offset - 100; i < offset && i < copy_size; ++i) {
Handle<Object> value =
FixedDoubleArray::get(*from, i + from_start, isolate);
to->set(i + to_start, *value, UPDATE_WRITE_BARRIER);
}
}
}
void CopyDoubleToDoubleElements(Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base,
uint32_t to_start, int raw_copy_size) {
DisallowGarbageCollection no_gc;
int copy_size = raw_copy_size;
if (raw_copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = std::min(from_base->length() - from_start,
to_base->length() - to_start);
for (int i = to_start + copy_size; i < to_base->length(); ++i) {
FixedDoubleArray::cast(to_base)->set_the_hole(i);
}
}
DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
(copy_size + static_cast<int>(from_start)) <= from_base->length());
if (copy_size == 0) return;
Tagged<FixedDoubleArray> from = FixedDoubleArray::cast(from_base);
Tagged<FixedDoubleArray> to = FixedDoubleArray::cast(to_base);
Address to_address = to.address() + FixedDoubleArray::kHeaderSize;
Address from_address = from.address() + FixedDoubleArray::kHeaderSize;
to_address += kDoubleSize * to_start;
from_address += kDoubleSize * from_start;
#ifdef V8_COMPRESS_POINTERS
// TODO(ishell, v8:8875): we use CopyTagged() in order to avoid unaligned
// access to double values in the arrays. This will no longed be necessary
// once the allocations alignment issue is fixed.
int words_per_double = (kDoubleSize / kTaggedSize);
CopyTagged(to_address, from_address,
static_cast<size_t>(words_per_double * copy_size));
#else
int words_per_double = (kDoubleSize / kSystemPointerSize);
CopyWords(to_address, from_address,
static_cast<size_t>(words_per_double * copy_size));
#endif
}
void CopySmiToDoubleElements(Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base, uint32_t to_start,
int raw_copy_size) {
DisallowGarbageCollection no_gc;
int copy_size = raw_copy_size;
if (raw_copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = from_base->length() - from_start;
for (int i = to_start + copy_size; i < to_base->length(); ++i) {
FixedDoubleArray::cast(to_base)->set_the_hole(i);
}
}
DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
(copy_size + static_cast<int>(from_start)) <= from_base->length());
if (copy_size == 0) return;
Tagged<FixedArray> from = FixedArray::cast(from_base);
Tagged<FixedDoubleArray> to = FixedDoubleArray::cast(to_base);
Tagged<Object> the_hole = from->GetReadOnlyRoots().the_hole_value();
for (uint32_t from_end = from_start + static_cast<uint32_t>(copy_size);
from_start < from_end; from_start++, to_start++) {
Tagged<Object> hole_or_smi = from->get(from_start);
if (hole_or_smi == the_hole) {
to->set_the_hole(to_start);
} else {
to->set(to_start, Smi::ToInt(hole_or_smi));
}
}
}
void CopyPackedSmiToDoubleElements(Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base,
uint32_t to_start, int packed_size,
int raw_copy_size) {
DisallowGarbageCollection no_gc;
int copy_size = raw_copy_size;
uint32_t to_end;
if (raw_copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = packed_size - from_start;
to_end = to_base->length();
for (uint32_t i = to_start + copy_size; i < to_end; ++i) {
FixedDoubleArray::cast(to_base)->set_the_hole(i);
}
} else {
to_end = to_start + static_cast<uint32_t>(copy_size);
}
DCHECK(static_cast<int>(to_end) <= to_base->length());
DCHECK(packed_size >= 0 && packed_size <= copy_size);
DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
(copy_size + static_cast<int>(from_start)) <= from_base->length());
if (copy_size == 0) return;
Tagged<FixedArray> from = FixedArray::cast(from_base);
Tagged<FixedDoubleArray> to = FixedDoubleArray::cast(to_base);
for (uint32_t from_end = from_start + static_cast<uint32_t>(packed_size);
from_start < from_end; from_start++, to_start++) {
Tagged<Object> smi = from->get(from_start);
DCHECK(!IsTheHole(smi));
to->set(to_start, Smi::ToInt(smi));
}
}
void CopyObjectToDoubleElements(Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base,
uint32_t to_start, int raw_copy_size) {
DisallowGarbageCollection no_gc;
int copy_size = raw_copy_size;
if (raw_copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, raw_copy_size);
copy_size = from_base->length() - from_start;
for (int i = to_start + copy_size; i < to_base->length(); ++i) {
FixedDoubleArray::cast(to_base)->set_the_hole(i);
}
}
DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
(copy_size + static_cast<int>(from_start)) <= from_base->length());
if (copy_size == 0) return;
Tagged<FixedArray> from = FixedArray::cast(from_base);
Tagged<FixedDoubleArray> to = FixedDoubleArray::cast(to_base);
Tagged<Object> the_hole = from->GetReadOnlyRoots().the_hole_value();
for (uint32_t from_end = from_start + copy_size; from_start < from_end;
from_start++, to_start++) {
Tagged<Object> hole_or_object = from->get(from_start);
if (hole_or_object == the_hole) {
to->set_the_hole(to_start);
} else {
to->set(to_start, Object::Number(hole_or_object));
}
}
}
void CopyDictionaryToDoubleElements(Isolate* isolate,
Tagged<FixedArrayBase> from_base,
uint32_t from_start,
Tagged<FixedArrayBase> to_base,
uint32_t to_start, int raw_copy_size) {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> from = NumberDictionary::cast(from_base);
int copy_size = raw_copy_size;
if (copy_size < 0) {
DCHECK_EQ(kCopyToEndAndInitializeToHole, copy_size);
copy_size = from->max_number_key() + 1 - from_start;
for (int i = to_start + copy_size; i < to_base->length(); ++i) {
FixedDoubleArray::cast(to_base)->set_the_hole(i);
}
}
if (copy_size == 0) return;
Tagged<FixedDoubleArray> to = FixedDoubleArray::cast(to_base);
uint32_t to_length = to->length();
if (to_start + copy_size > to_length) {
copy_size = to_length - to_start;
}
for (int i = 0; i < copy_size; i++) {
InternalIndex entry = from->FindEntry(isolate, i + from_start);
if (entry.is_found()) {
to->set(i + to_start, Object::Number(from->ValueAt(entry)));
} else {
to->set_the_hole(i + to_start);
}
}
}
void SortIndices(Isolate* isolate, Handle<FixedArray> indices,
uint32_t sort_size) {
if (sort_size == 0) return;
// Use AtomicSlot wrapper to ensure that std::sort uses atomic load and
// store operations that are safe for concurrent marking.
AtomicSlot start(indices->RawFieldOfFirstElement());
AtomicSlot end(start + sort_size);
std::sort(start, end, [isolate](Tagged_t elementA, Tagged_t elementB) {
#ifdef V8_COMPRESS_POINTERS
Tagged<Object> a(
V8HeapCompressionScheme::DecompressTagged(isolate, elementA));
Tagged<Object> b(
V8HeapCompressionScheme::DecompressTagged(isolate, elementB));
#else
Tagged<Object> a(elementA);
Tagged<Object> b(elementB);
#endif
if (IsSmi(a) || !IsUndefined(a, isolate)) {
if (!IsSmi(b) && IsUndefined(b, isolate)) {
return true;
}
return Object::Number(a) < Object::Number(b);
}
return !IsSmi(b) && IsUndefined(b, isolate);
});
isolate->heap()->WriteBarrierForRange(*indices, ObjectSlot(start),
ObjectSlot(end));
}
Maybe<bool> IncludesValueSlowPath(Isolate* isolate, Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) {
bool search_for_hole = IsUndefined(*value, isolate);
for (size_t k = start_from; k < length; ++k) {
LookupIterator it(isolate, receiver, k);
if (!it.IsFound()) {
if (search_for_hole) return Just(true);
continue;
}
Handle<Object> element_k;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_k,
Object::GetProperty(&it), Nothing<bool>());
if (Object::SameValueZero(*value, *element_k)) return Just(true);
}
return Just(false);
}
Maybe<int64_t> IndexOfValueSlowPath(Isolate* isolate, Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) {
for (size_t k = start_from; k < length; ++k) {
LookupIterator it(isolate, receiver, k);
if (!it.IsFound()) {
continue;
}
Handle<Object> element_k;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_k, Object::GetProperty(&it), Nothing<int64_t>());
if (Object::StrictEquals(*value, *element_k)) return Just<int64_t>(k);
}
return Just<int64_t>(-1);
}
// The InternalElementsAccessor is a helper class to expose otherwise protected
// methods to its subclasses. Namely, we don't want to publicly expose methods
// that take an entry (instead of an index) as an argument.
class InternalElementsAccessor : public ElementsAccessor {
public:
InternalIndex GetEntryForIndex(Isolate* isolate, Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store,
size_t index) override = 0;
PropertyDetails GetDetails(Tagged<JSObject> holder,
InternalIndex entry) override = 0;
};
// Base class for element handler implementations. Contains the
// the common logic for objects with different ElementsKinds.
// Subclasses must specialize method for which the element
// implementation differs from the base class implementation.
//
// This class is intended to be used in the following way:
//
// class SomeElementsAccessor :
// public ElementsAccessorBase<SomeElementsAccessor,
// BackingStoreClass> {
// ...
// }
//
// This is an example of the Curiously Recurring Template Pattern (see
// http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern). We use
// CRTP to guarantee aggressive compile time optimizations (i.e. inlining and
// specialization of SomeElementsAccessor methods).
template <typename Subclass, typename ElementsTraitsParam>
class ElementsAccessorBase : public InternalElementsAccessor {
public:
ElementsAccessorBase() = default;
ElementsAccessorBase(const ElementsAccessorBase&) = delete;
ElementsAccessorBase& operator=(const ElementsAccessorBase&) = delete;
using ElementsTraits = ElementsTraitsParam;
using BackingStore = typename ElementsTraitsParam::BackingStore;
static ElementsKind kind() { return ElementsTraits::Kind; }
static void ValidateContents(Tagged<JSObject> holder, size_t length) {}
static void ValidateImpl(Tagged<JSObject> holder) {
Tagged<FixedArrayBase> fixed_array_base = holder->elements();
if (!IsHeapObject(fixed_array_base)) return;
// Arrays that have been shifted in place can't be verified.
if (IsFreeSpaceOrFiller(fixed_array_base)) return;
size_t length = 0;
if (IsJSArray(holder)) {
Tagged<Object> length_obj = JSArray::cast(holder)->length();
if (IsSmi(length_obj)) {
length = Smi::ToInt(length_obj);
}
} else if (IsJSTypedArray(holder)) {
length = JSTypedArray::cast(holder)->length();
} else {
length = fixed_array_base->length();
}
Subclass::ValidateContents(holder, length);
}
void Validate(Tagged<JSObject> holder) final {
DisallowGarbageCollection no_gc;
Subclass::ValidateImpl(holder);
}
bool HasElement(Tagged<JSObject> holder, uint32_t index,
Tagged<FixedArrayBase> backing_store,
PropertyFilter filter) final {
return Subclass::HasElementImpl(holder->GetIsolate(), holder, index,
backing_store, filter);
}
static bool HasElementImpl(Isolate* isolate, Tagged<JSObject> holder,
size_t index, Tagged<FixedArrayBase> backing_store,
PropertyFilter filter = ALL_PROPERTIES) {
return Subclass::GetEntryForIndexImpl(isolate, holder, backing_store, index,
filter)
.is_found();
}
bool HasEntry(Tagged<JSObject> holder, InternalIndex entry) final {
return Subclass::HasEntryImpl(holder->GetIsolate(), holder->elements(),
entry);
}
static bool HasEntryImpl(Isolate* isolate,
Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
UNIMPLEMENTED();
}
bool HasAccessors(Tagged<JSObject> holder) final {
return Subclass::HasAccessorsImpl(holder, holder->elements());
}
static bool HasAccessorsImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
return false;
}
Handle<Object> Get(Isolate* isolate, Handle<JSObject> holder,
InternalIndex entry) final {
return Subclass::GetInternalImpl(isolate, holder, entry);
}
static Handle<Object> GetInternalImpl(Isolate* isolate,
Handle<JSObject> holder,
InternalIndex entry) {
return Subclass::GetImpl(isolate, holder->elements(), entry);
}
static Handle<Object> GetImpl(Isolate* isolate,
Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return handle(BackingStore::cast(backing_store)->get(entry.as_int()),
isolate);
}
Handle<Object> GetAtomic(Isolate* isolate, Handle<JSObject> holder,
InternalIndex entry, SeqCstAccessTag tag) final {
return Subclass::GetAtomicInternalImpl(isolate, holder->elements(), entry,
tag);
}
static Handle<Object> GetAtomicInternalImpl(
Isolate* isolate, Tagged<FixedArrayBase> backing_store,
InternalIndex entry, SeqCstAccessTag tag) {
UNREACHABLE();
}
void SetAtomic(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value, SeqCstAccessTag tag) final {
Subclass::SetAtomicInternalImpl(holder->elements(), entry, value, tag);
}
static void SetAtomicInternalImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value,
SeqCstAccessTag tag) {
UNREACHABLE();
}
Handle<Object> SwapAtomic(Isolate* isolate, Handle<JSObject> holder,
InternalIndex entry, Tagged<Object> value,
SeqCstAccessTag tag) final {
return Subclass::SwapAtomicInternalImpl(isolate, holder->elements(), entry,
value, tag);
}
static Handle<Object> SwapAtomicInternalImpl(
Isolate* isolate, Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value, SeqCstAccessTag tag) {
UNREACHABLE();
}
Handle<Object> CompareAndSwapAtomic(Isolate* isolate, Handle<JSObject> holder,
InternalIndex entry,
Tagged<Object> expected,
Tagged<Object> value,
SeqCstAccessTag tag) final {
return handle(HeapObject::SeqCst_CompareAndSwapField(
expected, value,
[=](Tagged<Object> expected_value,
Tagged<Object> new_value) {
return Subclass::CompareAndSwapAtomicInternalImpl(
holder->elements(), entry, expected_value,
new_value, tag);
}),
isolate);
}
static Tagged<Object> CompareAndSwapAtomicInternalImpl(
Tagged<FixedArrayBase> backing_store, InternalIndex entry,
Tagged<Object> expected, Tagged<Object> value, SeqCstAccessTag tag) {
UNREACHABLE();
}
void Set(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) final {
Subclass::SetImpl(holder, entry, value);
}
void Reconfigure(Handle<JSObject> object, Handle<FixedArrayBase> store,
InternalIndex entry, Handle<Object> value,
PropertyAttributes attributes) final {
Subclass::ReconfigureImpl(object, store, entry, value, attributes);
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
UNREACHABLE();
}
Maybe<bool> Add(Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes, uint32_t new_capacity) final {
return Subclass::AddImpl(object, index, value, attributes, new_capacity);
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
UNREACHABLE();
}
Maybe<uint32_t> Push(Handle<JSArray> receiver, BuiltinArguments* args,
uint32_t push_size) final {
return Subclass::PushImpl(receiver, args, push_size);
}
static Maybe<uint32_t> PushImpl(Handle<JSArray> receiver,
BuiltinArguments* args, uint32_t push_sized) {
UNREACHABLE();
}
Maybe<uint32_t> Unshift(Handle<JSArray> receiver, BuiltinArguments* args,
uint32_t unshift_size) final {
return Subclass::UnshiftImpl(receiver, args, unshift_size);
}
static Maybe<uint32_t> UnshiftImpl(Handle<JSArray> receiver,
BuiltinArguments* args,
uint32_t unshift_size) {
UNREACHABLE();
}
MaybeHandle<Object> Pop(Handle<JSArray> receiver) final {
return Subclass::PopImpl(receiver);
}
static MaybeHandle<Object> PopImpl(Handle<JSArray> receiver) {
UNREACHABLE();
}
MaybeHandle<Object> Shift(Handle<JSArray> receiver) final {
return Subclass::ShiftImpl(receiver);
}
static MaybeHandle<Object> ShiftImpl(Handle<JSArray> receiver) {
UNREACHABLE();
}
Maybe<bool> SetLength(Handle<JSArray> array, uint32_t length) final {
return Subclass::SetLengthImpl(
array->GetIsolate(), array, length,
handle(array->elements(), array->GetIsolate()));
}
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> backing_store) {
DCHECK(!array->SetLengthWouldNormalize(length));
DCHECK(IsFastElementsKind(array->GetElementsKind()));
uint32_t old_length = 0;
CHECK(Object::ToArrayIndex(array->length(), &old_length));
if (old_length < length) {
ElementsKind kind = array->GetElementsKind();
if (!IsHoleyElementsKind(kind)) {
kind = GetHoleyElementsKind(kind);
JSObject::TransitionElementsKind(array, kind);
}
}
// Check whether the backing store should be shrunk.
uint32_t capacity = backing_store->length();
old_length = std::min(old_length, capacity);
if (length == 0) {
array->initialize_elements();
} else if (length <= capacity) {
if (IsSmiOrObjectElementsKind(kind())) {
JSObject::EnsureWritableFastElements(array);
if (array->elements() != *backing_store) {
backing_store = handle(array->elements(), isolate);
}
}
if (2 * length + JSObject::kMinAddedElementsCapacity <= capacity) {
// If more than half the elements won't be used, trim the array.
// Do not trim from short arrays to prevent frequent trimming on
// repeated pop operations.
// Leave some space to allow for subsequent push operations.
uint32_t new_capacity =
length + 1 == old_length ? (capacity + length) / 2 : length;
DCHECK_LT(new_capacity, capacity);
isolate->heap()->RightTrimArray(BackingStore::cast(*backing_store),
new_capacity, capacity);
// Fill the non-trimmed elements with holes.
BackingStore::cast(*backing_store)
->FillWithHoles(length, std::min(old_length, new_capacity));
} else {
// Otherwise, fill the unused tail with holes.
BackingStore::cast(*backing_store)->FillWithHoles(length, old_length);
}
} else {
// Check whether the backing store should be expanded.
capacity = std::max(length, JSObject::NewElementsCapacity(capacity));
MAYBE_RETURN(Subclass::GrowCapacityAndConvertImpl(array, capacity),
Nothing<bool>());
}
array->set_length(Smi::FromInt(length));
JSObject::ValidateElements(*array);
return Just(true);
}
size_t NumberOfElements(Tagged<JSObject> receiver) final {
return Subclass::NumberOfElementsImpl(receiver, receiver->elements());
}
static uint32_t NumberOfElementsImpl(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> backing_store) {
UNREACHABLE();
}
static size_t GetMaxIndex(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> elements) {
if (IsJSArray(receiver)) {
DCHECK(IsSmi(JSArray::cast(receiver)->length()));
return static_cast<uint32_t>(
Smi::ToInt(JSArray::cast(receiver)->length()));
}
return Subclass::GetCapacityImpl(receiver, elements);
}
static size_t GetMaxNumberOfEntries(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> elements) {
return Subclass::GetMaxIndex(receiver, elements);
}
static MaybeHandle<FixedArrayBase> ConvertElementsWithCapacity(
Handle<JSObject> object, Handle<FixedArrayBase> old_elements,
ElementsKind from_kind, uint32_t capacity) {
return ConvertElementsWithCapacity(object, old_elements, from_kind,
capacity, 0, 0);
}
static MaybeHandle<FixedArrayBase> ConvertElementsWithCapacity(
Handle<JSObject> object, Handle<FixedArrayBase> old_elements,
ElementsKind from_kind, uint32_t capacity, uint32_t src_index,
uint32_t dst_index) {
Isolate* isolate = object->GetIsolate();
Handle<FixedArrayBase> new_elements;
// TODO(victorgomes): Retrieve native context in optimized code
// and remove the check isolate->context().is_null().
if (IsDoubleElementsKind(kind())) {
if (!isolate->context().is_null() &&
!base::IsInRange(capacity, 0, FixedDoubleArray::kMaxLength)) {
return isolate->Throw<FixedArrayBase>(isolate->factory()->NewRangeError(
MessageTemplate::kInvalidArrayLength));
}
new_elements = isolate->factory()->NewFixedDoubleArray(capacity);
} else {
if (!isolate->context().is_null() &&
!base::IsInRange(capacity, 0, FixedArray::kMaxLength)) {
return isolate->Throw<FixedArrayBase>(isolate->factory()->NewRangeError(
MessageTemplate::kInvalidArrayLength));
}
new_elements = isolate->factory()->NewFixedArray(capacity);
}
int packed_size = kPackedSizeNotKnown;
if (IsFastPackedElementsKind(from_kind) && IsJSArray(*object)) {
packed_size = Smi::ToInt(JSArray::cast(*object)->length());
}
Subclass::CopyElementsImpl(isolate, *old_elements, src_index, *new_elements,
from_kind, dst_index, packed_size,
kCopyToEndAndInitializeToHole);
return MaybeHandle<FixedArrayBase>(new_elements);
}
static Maybe<bool> TransitionElementsKindImpl(Handle<JSObject> object,
Handle<Map> to_map) {
Isolate* isolate = object->GetIsolate();
Handle<Map> from_map = handle(object->map(), isolate);
ElementsKind from_kind = from_map->elements_kind();
ElementsKind to_kind = to_map->elements_kind();
if (IsHoleyElementsKind(from_kind)) {
to_kind = GetHoleyElementsKind(to_kind);
}
if (from_kind != to_kind) {
// This method should never be called for any other case.
DCHECK(IsFastElementsKind(from_kind));
DCHECK(IsFastElementsKind(to_kind));
DCHECK_NE(TERMINAL_FAST_ELEMENTS_KIND, from_kind);
Handle<FixedArrayBase> from_elements(object->elements(), isolate);
if (object->elements() == ReadOnlyRoots(isolate).empty_fixed_array() ||
IsDoubleElementsKind(from_kind) == IsDoubleElementsKind(to_kind)) {
// No change is needed to the elements() buffer, the transition
// only requires a map change.
JSObject::MigrateToMap(isolate, object, to_map);
} else {
DCHECK(
(IsSmiElementsKind(from_kind) && IsDoubleElementsKind(to_kind)) ||
(IsDoubleElementsKind(from_kind) && IsObjectElementsKind(to_kind)));
uint32_t capacity = static_cast<uint32_t>(object->elements()->length());
Handle<FixedArrayBase> elements;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
object->GetIsolate(), elements,
ConvertElementsWithCapacity(object, from_elements, from_kind,
capacity),
Nothing<bool>());
JSObject::SetMapAndElements(object, to_map, elements);
}
if (v8_flags.trace_elements_transitions) {
JSObject::PrintElementsTransition(stdout, object, from_kind,
from_elements, to_kind,
handle(object->elements(), isolate));
}
}
return Just(true);
}
static Maybe<bool> GrowCapacityAndConvertImpl(Handle<JSObject> object,
uint32_t capacity) {
ElementsKind from_kind = object->GetElementsKind();
if (IsSmiOrObjectElementsKind(from_kind)) {
// Array optimizations rely on the prototype lookups of Array objects
// always returning undefined. If there is a store to the initial
// prototype object, make sure all of these optimizations are invalidated.
object->GetIsolate()->UpdateNoElementsProtectorOnSetLength(object);
}
Handle<FixedArrayBase> old_elements(object->elements(),
object->GetIsolate());
// This method should only be called if there's a reason to update the
// elements.
DCHECK(IsDoubleElementsKind(from_kind) != IsDoubleElementsKind(kind()) ||
IsDictionaryElementsKind(from_kind) ||
static_cast<uint32_t>(old_elements->length()) < capacity);
return Subclass::BasicGrowCapacityAndConvertImpl(
object, old_elements, from_kind, kind(), capacity);
}
static Maybe<bool> BasicGrowCapacityAndConvertImpl(
Handle<JSObject> object, Handle<FixedArrayBase> old_elements,
ElementsKind from_kind, ElementsKind to_kind, uint32_t capacity) {
Handle<FixedArrayBase> elements;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
object->GetIsolate(), elements,
ConvertElementsWithCapacity(object, old_elements, from_kind, capacity),
Nothing<bool>());
if (IsHoleyElementsKind(from_kind)) {
to_kind = GetHoleyElementsKind(to_kind);
}
Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, to_kind);
JSObject::SetMapAndElements(object, new_map, elements);
// Transition through the allocation site as well if present.
JSObject::UpdateAllocationSite(object, to_kind);
if (v8_flags.trace_elements_transitions) {
JSObject::PrintElementsTransition(stdout, object, from_kind, old_elements,
to_kind, elements);
}
return Just(true);
}
Maybe<bool> TransitionElementsKind(Handle<JSObject> object,
Handle<Map> map) final {
return Subclass::TransitionElementsKindImpl(object, map);
}
Maybe<bool> GrowCapacityAndConvert(Handle<JSObject> object,
uint32_t capacity) final {
return Subclass::GrowCapacityAndConvertImpl(object, capacity);
}
Maybe<bool> GrowCapacity(Handle<JSObject> object, uint32_t index) final {
// This function is intended to be called from optimized code. We don't
// want to trigger lazy deopts there, so refuse to handle cases that would.
if (object->map()->is_prototype_map() ||
object->WouldConvertToSlowElements(index)) {
return Just(false);
}
Handle<FixedArrayBase> old_elements(object->elements(),
object->GetIsolate());
uint32_t new_capacity = JSObject::NewElementsCapacity(index + 1);
DCHECK(static_cast<uint32_t>(old_elements->length()) < new_capacity);
const uint32_t kMaxLength = IsDoubleElementsKind(kind())
? FixedDoubleArray::kMaxLength
: FixedArray::kMaxLength;
if (new_capacity > kMaxLength) {
return Just(false);
}
Handle<FixedArrayBase> elements;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
object->GetIsolate(), elements,
ConvertElementsWithCapacity(object, old_elements, kind(), new_capacity),
Nothing<bool>());
DCHECK_EQ(object->GetElementsKind(), kind());
// Transition through the allocation site as well if present.
if (JSObject::UpdateAllocationSite<AllocationSiteUpdateMode::kCheckOnly>(
object, kind())) {
return Just(false);
}
object->set_elements(*elements);
return Just(true);
}
void Delete(Handle<JSObject> obj, InternalIndex entry) final {
Subclass::DeleteImpl(obj, entry);
}
static void CopyElementsImpl(Isolate* isolate, Tagged<FixedArrayBase> from,
uint32_t from_start, Tagged<FixedArrayBase> to,
ElementsKind from_kind, uint32_t to_start,
int packed_size, int copy_size) {
UNREACHABLE();
}
void CopyElements(Tagged<JSObject> from_holder, uint32_t from_start,
ElementsKind from_kind, Handle<FixedArrayBase> to,
uint32_t to_start, int copy_size) final {
int packed_size = kPackedSizeNotKnown;
bool is_packed =
IsFastPackedElementsKind(from_kind) && IsJSArray(from_holder);
if (is_packed) {
packed_size = Smi::ToInt(JSArray::cast(from_holder)->length());
if (copy_size >= 0 && packed_size > copy_size) {
packed_size = copy_size;
}
}
Tagged<FixedArrayBase> from = from_holder->elements();
// NOTE: the Subclass::CopyElementsImpl() methods
// violate the handlified function signature convention:
// raw pointer parameters in the function that allocates. This is done
// intentionally to avoid ArrayConcat() builtin performance degradation.
//
// Details: The idea is that allocations actually happen only in case of
// copying from object with fast double elements to object with object
// elements. In all the other cases there are no allocations performed and
// handle creation causes noticeable performance degradation of the builtin.
Subclass::CopyElementsImpl(from_holder->GetIsolate(), from, from_start, *to,
from_kind, to_start, packed_size, copy_size);
}
void CopyElements(Isolate* isolate, Handle<FixedArrayBase> source,
ElementsKind source_kind,
Handle<FixedArrayBase> destination, int size) override {
Subclass::CopyElementsImpl(isolate, *source, 0, *destination, source_kind,
0, kPackedSizeNotKnown, size);
}
void CopyTypedArrayElementsSlice(Tagged<JSTypedArray> source,
Tagged<JSTypedArray> destination,
size_t start, size_t end) override {
Subclass::CopyTypedArrayElementsSliceImpl(source, destination, start, end);
}
static void CopyTypedArrayElementsSliceImpl(Tagged<JSTypedArray> source,
Tagged<JSTypedArray> destination,
size_t start, size_t end) {
UNREACHABLE();
}
Tagged<Object> CopyElements(Handle<Object> source,
Handle<JSObject> destination, size_t length,
size_t offset) final {
return Subclass::CopyElementsHandleImpl(source, destination, length,
offset);
}
static Tagged<Object> CopyElementsHandleImpl(Handle<Object> source,
Handle<JSObject> destination,
size_t length, size_t offset) {
UNREACHABLE();
}
Handle<NumberDictionary> Normalize(Handle<JSObject> object) final {
return Subclass::NormalizeImpl(
object, handle(object->elements(), object->GetIsolate()));
}
static Handle<NumberDictionary> NormalizeImpl(
Handle<JSObject> object, Handle<FixedArrayBase> elements) {
UNREACHABLE();
}
Maybe<bool> CollectValuesOrEntries(Isolate* isolate, Handle<JSObject> object,
Handle<FixedArray> values_or_entries,
bool get_entries, int* nof_items,
PropertyFilter filter) override {
return Subclass::CollectValuesOrEntriesImpl(
isolate, object, values_or_entries, get_entries, nof_items, filter);
}
static Maybe<bool> CollectValuesOrEntriesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArray> values_or_entries, bool get_entries, int* nof_items,
PropertyFilter filter) {
DCHECK_EQ(*nof_items, 0);
KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly,
ALL_PROPERTIES);
RETURN_NOTHING_IF_NOT_SUCCESSFUL(Subclass::CollectElementIndicesImpl(
object, handle(object->elements(), isolate), &accumulator));
Handle<FixedArray> keys = accumulator.GetKeys();
int count = 0;
int i = 0;
ElementsKind original_elements_kind = object->GetElementsKind();
for (; i < keys->length(); ++i) {
Handle<Object> key(keys->get(i), isolate);
uint32_t index;
if (!Object::ToUint32(*key, &index)) continue;
DCHECK_EQ(object->GetElementsKind(), original_elements_kind);
InternalIndex entry = Subclass::GetEntryForIndexImpl(
isolate, *object, object->elements(), index, filter);
if (entry.is_not_found()) continue;
PropertyDetails details = Subclass::GetDetailsImpl(*object, entry);
Handle<Object> value;
if (details.kind() == PropertyKind::kData) {
value = Subclass::GetInternalImpl(isolate, object, entry);
} else {
// This might modify the elements and/or change the elements kind.
LookupIterator it(isolate, object, index, LookupIterator::OWN);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, value, Object::GetProperty(&it), Nothing<bool>());
}
if (get_entries) value = MakeEntryPair(isolate, index, value);
values_or_entries->set(count++, *value);
if (object->GetElementsKind() != original_elements_kind) break;
}
// Slow path caused by changes in elements kind during iteration.
for (; i < keys->length(); i++) {
Handle<Object> key(keys->get(i), isolate);
uint32_t index;
if (!Object::ToUint32(*key, &index)) continue;
if (filter & ONLY_ENUMERABLE) {
InternalElementsAccessor* accessor =
reinterpret_cast<InternalElementsAccessor*>(
object->GetElementsAccessor());
InternalIndex entry = accessor->GetEntryForIndex(
isolate, *object, object->elements(), index);
if (entry.is_not_found()) continue;
PropertyDetails details = accessor->GetDetails(*object, entry);
if (!details.IsEnumerable()) continue;
}
Handle<Object> value;
LookupIterator it(isolate, object, index, LookupIterator::OWN);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, value, Object::GetProperty(&it),
Nothing<bool>());
if (get_entries) value = MakeEntryPair(isolate, index, value);
values_or_entries->set(count++, *value);
}
*nof_items = count;
return Just(true);
}
V8_WARN_UNUSED_RESULT ExceptionStatus CollectElementIndices(
Handle<JSObject> object, Handle<FixedArrayBase> backing_store,
KeyAccumulator* keys) final {
return Subclass::CollectElementIndicesImpl(object, backing_store, keys);
}
V8_WARN_UNUSED_RESULT static ExceptionStatus CollectElementIndicesImpl(
Handle<JSObject> object, Handle<FixedArrayBase> backing_store,
KeyAccumulator* keys) {
DCHECK_NE(DICTIONARY_ELEMENTS, kind());
// Non-dictionary elements can't have all-can-read accessors.
size_t length = Subclass::GetMaxIndex(*object, *backing_store);
PropertyFilter filter = keys->filter();
Isolate* isolate = keys->isolate();
Factory* factory = isolate->factory();
for (size_t i = 0; i < length; i++) {
if (Subclass::HasElementImpl(isolate, *object, i, *backing_store,
filter)) {
RETURN_FAILURE_IF_NOT_SUCCESSFUL(
keys->AddKey(factory->NewNumberFromSize(i)));
}
}
return ExceptionStatus::kSuccess;
}
static Handle<FixedArray> DirectCollectElementIndicesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArrayBase> backing_store, GetKeysConversion convert,
PropertyFilter filter, Handle<FixedArray> list, uint32_t* nof_indices,
uint32_t insertion_index = 0) {
size_t length = Subclass::GetMaxIndex(*object, *backing_store);
uint32_t const kMaxStringTableEntries =
isolate->heap()->MaxNumberToStringCacheSize();
for (size_t i = 0; i < length; i++) {
if (Subclass::HasElementImpl(isolate, *object, i, *backing_store,
filter)) {
if (convert == GetKeysConversion::kConvertToString) {
bool use_cache = i < kMaxStringTableEntries;
Handle<String> index_string =
isolate->factory()->SizeToString(i, use_cache);
list->set(insertion_index, *index_string);
} else {
Handle<Object> number = isolate->factory()->NewNumberFromSize(i);
list->set(insertion_index, *number);
}
insertion_index++;
}
}
*nof_indices = insertion_index;
return list;
}
MaybeHandle<FixedArray> PrependElementIndices(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArrayBase> backing_store, Handle<FixedArray> keys,
GetKeysConversion convert, PropertyFilter filter) final {
return Subclass::PrependElementIndicesImpl(isolate, object, backing_store,
keys, convert, filter);
}
static MaybeHandle<FixedArray> PrependElementIndicesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArrayBase> backing_store, Handle<FixedArray> keys,
GetKeysConversion convert, PropertyFilter filter) {
uint32_t nof_property_keys = keys->length();
size_t initial_list_length =
Subclass::GetMaxNumberOfEntries(*object, *backing_store);
if (initial_list_length > FixedArray::kMaxLength - nof_property_keys) {
return isolate->Throw<FixedArray>(isolate->factory()->NewRangeError(
MessageTemplate::kInvalidArrayLength));
}
initial_list_length += nof_property_keys;
// Collect the element indices into a new list.
DCHECK_LE(initial_list_length, std::numeric_limits<int>::max());
MaybeHandle<FixedArray> raw_array = isolate->factory()->TryNewFixedArray(
static_cast<int>(initial_list_length));
Handle<FixedArray> combined_keys;
// If we have a holey backing store try to precisely estimate the backing
// store size as a last emergency measure if we cannot allocate the big
// array.
if (!raw_array.ToHandle(&combined_keys)) {
if (IsHoleyOrDictionaryElementsKind(kind())) {
// If we overestimate the result list size we might end up in the
// large-object space which doesn't free memory on shrinking the list.
// Hence we try to estimate the final size for holey backing stores more
// precisely here.
initial_list_length =
Subclass::NumberOfElementsImpl(*object, *backing_store);
initial_list_length += nof_property_keys;
}
DCHECK_LE(initial_list_length, std::numeric_limits<int>::max());
combined_keys = isolate->factory()->NewFixedArray(
static_cast<int>(initial_list_length));
}
uint32_t nof_indices = 0;
bool needs_sorting = IsDictionaryElementsKind(kind()) ||
IsSloppyArgumentsElementsKind(kind());
combined_keys = Subclass::DirectCollectElementIndicesImpl(
isolate, object, backing_store,
needs_sorting ? GetKeysConversion::kKeepNumbers : convert, filter,
combined_keys, &nof_indices);
if (needs_sorting) {
SortIndices(isolate, combined_keys, nof_indices);
// Indices from dictionary elements should only be converted after
// sorting.
if (convert == GetKeysConversion::kConvertToString) {
for (uint32_t i = 0; i < nof_indices; i++) {
Handle<Object> index_string = isolate->factory()->Uint32ToString(
Object::Number(combined_keys->get(i)));
combined_keys->set(i, *index_string);
}
}
}
// Copy over the passed-in property keys.
CopyObjectToObjectElements(isolate, *keys, PACKED_ELEMENTS, 0,
*combined_keys, PACKED_ELEMENTS, nof_indices,
nof_property_keys);
// For holey elements and arguments we might have to shrink the collected
// keys since the estimates might be off.
if (IsHoleyOrDictionaryElementsKind(kind()) ||
IsSloppyArgumentsElementsKind(kind())) {
// Shrink combined_keys to the final size.
int final_size = nof_indices + nof_property_keys;
DCHECK_LE(final_size, combined_keys->length());
return FixedArray::RightTrimOrEmpty(isolate, combined_keys, final_size);
}
return combined_keys;
}
V8_WARN_UNUSED_RESULT ExceptionStatus AddElementsToKeyAccumulator(
Handle<JSObject> receiver, KeyAccumulator* accumulator,
AddKeyConversion convert) final {
return Subclass::AddElementsToKeyAccumulatorImpl(receiver, accumulator,
convert);
}
static uint32_t GetCapacityImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
return backing_store->length();
}
size_t GetCapacity(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) final {
return Subclass::GetCapacityImpl(holder, backing_store);
}
static MaybeHandle<Object> FillImpl(Handle<JSObject> receiver,
Handle<Object> obj_value, size_t start,
size_t end) {
UNREACHABLE();
}
MaybeHandle<Object> Fill(Handle<JSObject> receiver, Handle<Object> obj_value,
size_t start, size_t end) override {
return Subclass::FillImpl(receiver, obj_value, start, end);
}
static Maybe<bool> IncludesValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) {
return IncludesValueSlowPath(isolate, receiver, value, start_from, length);
}
Maybe<bool> IncludesValue(Isolate* isolate, Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) final {
return Subclass::IncludesValueImpl(isolate, receiver, value, start_from,
length);
}
static Maybe<int64_t> IndexOfValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> value,
size_t start_from, size_t length) {
return IndexOfValueSlowPath(isolate, receiver, value, start_from, length);
}
Maybe<int64_t> IndexOfValue(Isolate* isolate, Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) final {
return Subclass::IndexOfValueImpl(isolate, receiver, value, start_from,
length);
}
static Maybe<int64_t> LastIndexOfValueImpl(Handle<JSObject> receiver,
Handle<Object> value,
size_t start_from) {
UNREACHABLE();
}
Maybe<int64_t> LastIndexOfValue(Handle<JSObject> receiver,
Handle<Object> value,
size_t start_from) final {
return Subclass::LastIndexOfValueImpl(receiver, value, start_from);
}
static void ReverseImpl(Tagged<JSObject> receiver) { UNREACHABLE(); }
void Reverse(Tagged<JSObject> receiver) final {
Subclass::ReverseImpl(receiver);
}
static InternalIndex GetEntryForIndexImpl(
Isolate* isolate, Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store, size_t index,
PropertyFilter filter) {
DCHECK(IsFastElementsKind(kind()) ||
IsAnyNonextensibleElementsKind(kind()));
size_t length = Subclass::GetMaxIndex(holder, backing_store);
if (IsHoleyElementsKindForRead(kind())) {
DCHECK_IMPLIES(
index < length,
index <= static_cast<size_t>(std::numeric_limits<int>::max()));
return index < length &&
!BackingStore::cast(backing_store)
->is_the_hole(isolate, static_cast<int>(index))
? InternalIndex(index)
: InternalIndex::NotFound();
} else {
return index < length ? InternalIndex(index) : InternalIndex::NotFound();
}
}
InternalIndex GetEntryForIndex(Isolate* isolate, Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store,
size_t index) final {
return Subclass::GetEntryForIndexImpl(isolate, holder, backing_store, index,
ALL_PROPERTIES);
}
static PropertyDetails GetDetailsImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return PropertyDetails(PropertyKind::kData, NONE,
PropertyCellType::kNoCell);
}
static PropertyDetails GetDetailsImpl(Tagged<JSObject> holder,
InternalIndex entry) {
return PropertyDetails(PropertyKind::kData, NONE,
PropertyCellType::kNoCell);
}
PropertyDetails GetDetails(Tagged<JSObject> holder,
InternalIndex entry) final {
return Subclass::GetDetailsImpl(holder, entry);
}
Handle<FixedArray> CreateListFromArrayLike(Isolate* isolate,
Handle<JSObject> object,
uint32_t length) final {
return Subclass::CreateListFromArrayLikeImpl(isolate, object, length);
}
static Handle<FixedArray> CreateListFromArrayLikeImpl(Isolate* isolate,
Handle<JSObject> object,
uint32_t length) {
UNREACHABLE();
}
};
class DictionaryElementsAccessor
: public ElementsAccessorBase<DictionaryElementsAccessor,
ElementsKindTraits<DICTIONARY_ELEMENTS>> {
public:
static uint32_t GetMaxIndex(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> elements) {
// We cannot properly estimate this for dictionaries.
UNREACHABLE();
}
static uint32_t GetMaxNumberOfEntries(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> backing_store) {
return NumberOfElementsImpl(receiver, backing_store);
}
static uint32_t NumberOfElementsImpl(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> backing_store) {
Tagged<NumberDictionary> dict = NumberDictionary::cast(backing_store);
return dict->NumberOfElements();
}
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> backing_store) {
Handle<NumberDictionary> dict =
Handle<NumberDictionary>::cast(backing_store);
uint32_t old_length = 0;
CHECK(Object::ToArrayLength(array->length(), &old_length));
{
DisallowGarbageCollection no_gc;
ReadOnlyRoots roots(isolate);
if (length < old_length) {
if (dict->requires_slow_elements()) {
// Find last non-deletable element in range of elements to be
// deleted and adjust range accordingly.
for (InternalIndex entry : dict->IterateEntries()) {
Tagged<Object> index = dict->KeyAt(isolate, entry);
if (dict->IsKey(roots, index)) {
uint32_t number = static_cast<uint32_t>(Object::Number(index));
if (length <= number && number < old_length) {
PropertyDetails details = dict->DetailsAt(entry);
if (!details.IsConfigurable()) length = number + 1;
}
}
}
}
if (length == 0) {
// Flush the backing store.
array->initialize_elements();
} else {
// Remove elements that should be deleted.
int removed_entries = 0;
for (InternalIndex entry : dict->IterateEntries()) {
Tagged<Object> index = dict->KeyAt(isolate, entry);
if (dict->IsKey(roots, index)) {
uint32_t number = static_cast<uint32_t>(Object::Number(index));
if (length <= number && number < old_length) {
dict->ClearEntry(entry);
removed_entries++;
}
}
}
if (removed_entries > 0) {
// Update the number of elements.
dict->ElementsRemoved(removed_entries);
}
}
}
}
Handle<Object> length_obj = isolate->factory()->NewNumberFromUint(length);
array->set_length(*length_obj);
return Just(true);
}
static void CopyElementsImpl(Isolate* isolate, Tagged<FixedArrayBase> from,
uint32_t from_start, Tagged<FixedArrayBase> to,
ElementsKind from_kind, uint32_t to_start,
int packed_size, int copy_size) {
UNREACHABLE();
}
static void DeleteImpl(Handle<JSObject> obj, InternalIndex entry) {
Handle<NumberDictionary> dict(NumberDictionary::cast(obj->elements()),
obj->GetIsolate());
dict = NumberDictionary::DeleteEntry(obj->GetIsolate(), dict, entry);
obj->set_elements(*dict);
}
static bool HasAccessorsImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> dict = NumberDictionary::cast(backing_store);
if (!dict->requires_slow_elements()) return false;
PtrComprCageBase cage_base = GetPtrComprCageBase(holder);
ReadOnlyRoots roots = holder->GetReadOnlyRoots(cage_base);
for (InternalIndex i : dict->IterateEntries()) {
Tagged<Object> key = dict->KeyAt(cage_base, i);
if (!dict->IsKey(roots, key)) continue;
PropertyDetails details = dict->DetailsAt(i);
if (details.kind() == PropertyKind::kAccessor) return true;
}
return false;
}
static Tagged<Object> GetRaw(Tagged<FixedArrayBase> store,
InternalIndex entry) {
Tagged<NumberDictionary> backing_store = NumberDictionary::cast(store);
return backing_store->ValueAt(entry);
}
static Handle<Object> GetImpl(Isolate* isolate,
Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return handle(GetRaw(backing_store, entry), isolate);
}
static Handle<Object> GetAtomicInternalImpl(
Isolate* isolate, Tagged<FixedArrayBase> backing_store,
InternalIndex entry, SeqCstAccessTag tag) {
return handle(NumberDictionary::cast(backing_store)->ValueAt(entry, tag),
isolate);
}
static inline void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
SetImpl(holder->elements(), entry, value);
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value) {
NumberDictionary::cast(backing_store)->ValueAtPut(entry, value);
}
static void SetAtomicInternalImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value,
SeqCstAccessTag tag) {
NumberDictionary::cast(backing_store)->ValueAtPut(entry, value, tag);
}
static Handle<Object> SwapAtomicInternalImpl(
Isolate* isolate, Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value, SeqCstAccessTag tag) {
return handle(
NumberDictionary::cast(backing_store)->ValueAtSwap(entry, value, tag),
isolate);
}
static Tagged<Object> CompareAndSwapAtomicInternalImpl(
Tagged<FixedArrayBase> backing_store, InternalIndex entry,
Tagged<Object> expected, Tagged<Object> value, SeqCstAccessTag tag) {
return NumberDictionary::cast(backing_store)
->ValueAtCompareAndSwap(entry, expected, value, tag);
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
Tagged<NumberDictionary> dictionary = NumberDictionary::cast(*store);
if (attributes != NONE) object->RequireSlowElements(dictionary);
dictionary->ValueAtPut(entry, *value);
PropertyDetails details = dictionary->DetailsAt(entry);
details =
PropertyDetails(PropertyKind::kData, attributes,
PropertyCellType::kNoCell, details.dictionary_index());
dictionary->DetailsAtPut(entry, details);
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
PropertyDetails details(PropertyKind::kData, attributes,
PropertyCellType::kNoCell);
Handle<NumberDictionary> dictionary =
object->HasFastElements() || object->HasFastStringWrapperElements()
? JSObject::NormalizeElements(object)
: handle(NumberDictionary::cast(object->elements()),
object->GetIsolate());
Handle<NumberDictionary> new_dictionary = NumberDictionary::Add(
object->GetIsolate(), dictionary, index, value, details);
new_dictionary->UpdateMaxNumberKey(index, object);
if (attributes != NONE) object->RequireSlowElements(*new_dictionary);
if (dictionary.is_identical_to(new_dictionary)) return Just(true);
object->set_elements(*new_dictionary);
return Just(true);
}
static bool HasEntryImpl(Isolate* isolate, Tagged<FixedArrayBase> store,
InternalIndex entry) {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> dict = NumberDictionary::cast(store);
Tagged<Object> index = dict->KeyAt(isolate, entry);
return !IsTheHole(index, isolate);
}
static InternalIndex GetEntryForIndexImpl(Isolate* isolate,
Tagged<JSObject> holder,
Tagged<FixedArrayBase> store,
size_t index,
PropertyFilter filter) {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> dictionary = NumberDictionary::cast(store);
DCHECK_LE(index, std::numeric_limits<uint32_t>::max());
InternalIndex entry =
dictionary->FindEntry(isolate, static_cast<uint32_t>(index));
if (entry.is_not_found()) return entry;
if (filter != ALL_PROPERTIES) {
PropertyDetails details = dictionary->DetailsAt(entry);
PropertyAttributes attr = details.attributes();
if ((int{attr} & filter) != 0) return InternalIndex::NotFound();
}
return entry;
}
static PropertyDetails GetDetailsImpl(Tagged<JSObject> holder,
InternalIndex entry) {
return GetDetailsImpl(holder->elements(), entry);
}
static PropertyDetails GetDetailsImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return NumberDictionary::cast(backing_store)->DetailsAt(entry);
}
static uint32_t FilterKey(Handle<NumberDictionary> dictionary,
InternalIndex entry, Tagged<Object> raw_key,
PropertyFilter filter) {
DCHECK(IsNumber(raw_key));
DCHECK_LE(Object::Number(raw_key), kMaxUInt32);
PropertyDetails details = dictionary->DetailsAt(entry);
PropertyAttributes attr = details.attributes();
if ((int{attr} & filter) != 0) return kMaxUInt32;
return static_cast<uint32_t>(Object::Number(raw_key));
}
static uint32_t GetKeyForEntryImpl(Isolate* isolate,
Handle<NumberDictionary> dictionary,
InternalIndex entry,
PropertyFilter filter) {
DisallowGarbageCollection no_gc;
Tagged<Object> raw_key = dictionary->KeyAt(isolate, entry);
if (!dictionary->IsKey(ReadOnlyRoots(isolate), raw_key)) return kMaxUInt32;
return FilterKey(dictionary, entry, raw_key, filter);
}
V8_WARN_UNUSED_RESULT static ExceptionStatus CollectElementIndicesImpl(
Handle<JSObject> object, Handle<FixedArrayBase> backing_store,
KeyAccumulator* keys) {
if (keys->filter() & SKIP_STRINGS) return ExceptionStatus::kSuccess;
Isolate* isolate = keys->isolate();
Handle<NumberDictionary> dictionary =
Handle<NumberDictionary>::cast(backing_store);
Handle<FixedArray> elements = isolate->factory()->NewFixedArray(
GetMaxNumberOfEntries(*object, *backing_store));
int insertion_index = 0;
PropertyFilter filter = keys->filter();
ReadOnlyRoots roots(isolate);
for (InternalIndex i : dictionary->IterateEntries()) {
AllowGarbageCollection allow_gc;
Tagged<Object> raw_key = dictionary->KeyAt(isolate, i);
if (!dictionary->IsKey(roots, raw_key)) continue;
uint32_t key = FilterKey(dictionary, i, raw_key, filter);
if (key == kMaxUInt32) {
// This might allocate, but {raw_key} is not used afterwards.
keys->AddShadowingKey(raw_key, &allow_gc);
continue;
}
elements->set(insertion_index, raw_key);
insertion_index++;
}
SortIndices(isolate, elements, insertion_index);
for (int i = 0; i < insertion_index; i++) {
RETURN_FAILURE_IF_NOT_SUCCESSFUL(keys->AddKey(elements->get(i)));
}
return ExceptionStatus::kSuccess;
}
static Handle<FixedArray> DirectCollectElementIndicesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArrayBase> backing_store, GetKeysConversion convert,
PropertyFilter filter, Handle<FixedArray> list, uint32_t* nof_indices,
uint32_t insertion_index = 0) {
if (filter & SKIP_STRINGS) return list;
Handle<NumberDictionary> dictionary =
Handle<NumberDictionary>::cast(backing_store);
for (InternalIndex i : dictionary->IterateEntries()) {
uint32_t key = GetKeyForEntryImpl(isolate, dictionary, i, filter);
if (key == kMaxUInt32) continue;
Handle<Object> index = isolate->factory()->NewNumberFromUint(key);
list->set(insertion_index, *index);
insertion_index++;
}
*nof_indices = insertion_index;
return list;
}
V8_WARN_UNUSED_RESULT static ExceptionStatus AddElementsToKeyAccumulatorImpl(
Handle<JSObject> receiver, KeyAccumulator* accumulator,
AddKeyConversion convert) {
Isolate* isolate = accumulator->isolate();
Handle<NumberDictionary> dictionary(
NumberDictionary::cast(receiver->elements()), isolate);
ReadOnlyRoots roots(isolate);
for (InternalIndex i : dictionary->IterateEntries()) {
Tagged<Object> k = dictionary->KeyAt(isolate, i);
if (!dictionary->IsKey(roots, k)) continue;
Tagged<Object> value = dictionary->ValueAt(isolate, i);
DCHECK(!IsTheHole(value, isolate));
DCHECK(!IsAccessorPair(value));
DCHECK(!IsAccessorInfo(value));
RETURN_FAILURE_IF_NOT_SUCCESSFUL(accumulator->AddKey(value, convert));
}
return ExceptionStatus::kSuccess;
}
static bool IncludesValueFastPath(Isolate* isolate, Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length, Maybe<bool>* result) {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> dictionary =
NumberDictionary::cast(receiver->elements());
Tagged<Object> the_hole = ReadOnlyRoots(isolate).the_hole_value();
Tagged<Object> undefined = ReadOnlyRoots(isolate).undefined_value();
// Scan for accessor properties. If accessors are present, then elements
// must be accessed in order via the slow path.
bool found = false;
for (InternalIndex i : dictionary->IterateEntries()) {
Tagged<Object> k = dictionary->KeyAt(isolate, i);
if (k == the_hole) continue;
if (k == undefined) continue;
uint32_t index;
if (!Object::ToArrayIndex(k, &index) || index < start_from ||
index >= length) {
continue;
}
if (dictionary->DetailsAt(i).kind() == PropertyKind::kAccessor) {
// Restart from beginning in slow path, otherwise we may observably
// access getters out of order
return false;
} else if (!found) {
Tagged<Object> element_k = dictionary->ValueAt(isolate, i);
if (Object::SameValueZero(*value, element_k)) found = true;
}
}
*result = Just(found);
return true;
}
static Maybe<bool> IncludesValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *receiver));
bool search_for_hole = IsUndefined(*value, isolate);
if (!search_for_hole) {
Maybe<bool> result = Nothing<bool>();
if (DictionaryElementsAccessor::IncludesValueFastPath(
isolate, receiver, value, start_from, length, &result)) {
return result;
}
}
ElementsKind original_elements_kind = receiver->GetElementsKind();
USE(original_elements_kind);
Handle<NumberDictionary> dictionary(
NumberDictionary::cast(receiver->elements()), isolate);
// Iterate through the entire range, as accessing elements out of order is
// observable.
for (size_t k = start_from; k < length; ++k) {
DCHECK_EQ(receiver->GetElementsKind(), original_elements_kind);
InternalIndex entry =
dictionary->FindEntry(isolate, static_cast<uint32_t>(k));
if (entry.is_not_found()) {
if (search_for_hole) return Just(true);
continue;
}
PropertyDetails details = GetDetailsImpl(*dictionary, entry);
switch (details.kind()) {
case PropertyKind::kData: {
Tagged<Object> element_k = dictionary->ValueAt(entry);
if (Object::SameValueZero(*value, element_k)) return Just(true);
break;
}
case PropertyKind::kAccessor: {
LookupIterator it(isolate, receiver, k,
LookupIterator::OWN_SKIP_INTERCEPTOR);
DCHECK(it.IsFound());
DCHECK_EQ(it.state(), LookupIterator::ACCESSOR);
Handle<Object> element_k;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_k,
Object::GetPropertyWithAccessor(&it),
Nothing<bool>());
if (Object::SameValueZero(*value, *element_k)) return Just(true);
// Bailout to slow path if elements on prototype changed
if (!JSObject::PrototypeHasNoElements(isolate, *receiver)) {
return IncludesValueSlowPath(isolate, receiver, value, k + 1,
length);
}
// Continue if elements unchanged
if (*dictionary == receiver->elements()) continue;
// Otherwise, bailout or update elements
// If switched to initial elements, return true if searching for
// undefined, and false otherwise.
if (receiver->map()->GetInitialElements() == receiver->elements()) {
return Just(search_for_hole);
}
// If switched to fast elements, continue with the correct accessor.
if (receiver->GetElementsKind() != DICTIONARY_ELEMENTS) {
ElementsAccessor* accessor = receiver->GetElementsAccessor();
return accessor->IncludesValue(isolate, receiver, value, k + 1,
length);
}
dictionary =
handle(NumberDictionary::cast(receiver->elements()), isolate);
break;
}
}
}
return Just(false);
}
static Maybe<int64_t> IndexOfValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> value,
size_t start_from, size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *receiver));
ElementsKind original_elements_kind = receiver->GetElementsKind();
USE(original_elements_kind);
Handle<NumberDictionary> dictionary(
NumberDictionary::cast(receiver->elements()), isolate);
// Iterate through entire range, as accessing elements out of order is
// observable.
for (size_t k = start_from; k < length; ++k) {
DCHECK_EQ(receiver->GetElementsKind(), original_elements_kind);
DCHECK_LE(k, std::numeric_limits<uint32_t>::max());
InternalIndex entry =
dictionary->FindEntry(isolate, static_cast<uint32_t>(k));
if (entry.is_not_found()) continue;
PropertyDetails details =
GetDetailsImpl(*dictionary, InternalIndex(entry));
switch (details.kind()) {
case PropertyKind::kData: {
Tagged<Object> element_k = dictionary->ValueAt(entry);
if (Object::StrictEquals(*value, element_k)) {
return Just<int64_t>(k);
}
break;
}
case PropertyKind::kAccessor: {
LookupIterator it(isolate, receiver, k,
LookupIterator::OWN_SKIP_INTERCEPTOR);
DCHECK(it.IsFound());
DCHECK_EQ(it.state(), LookupIterator::ACCESSOR);
Handle<Object> element_k;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_k,
Object::GetPropertyWithAccessor(&it),
Nothing<int64_t>());
if (Object::StrictEquals(*value, *element_k)) return Just<int64_t>(k);
// Bailout to slow path if elements on prototype changed.
if (!JSObject::PrototypeHasNoElements(isolate, *receiver)) {
return IndexOfValueSlowPath(isolate, receiver, value, k + 1,
length);
}
// Continue if elements unchanged.
if (*dictionary == receiver->elements()) continue;
// Otherwise, bailout or update elements.
if (receiver->GetElementsKind() != DICTIONARY_ELEMENTS) {
// Otherwise, switch to slow path.
return IndexOfValueSlowPath(isolate, receiver, value, k + 1,
length);
}
dictionary =
handle(NumberDictionary::cast(receiver->elements()), isolate);
break;
}
}
}
return Just<int64_t>(-1);
}
static void ValidateContents(Tagged<JSObject> holder, size_t length) {
DisallowGarbageCollection no_gc;
#if DEBUG
DCHECK_EQ(holder->map()->elements_kind(), DICTIONARY_ELEMENTS);
if (!v8_flags.enable_slow_asserts) return;
ReadOnlyRoots roots = holder->GetReadOnlyRoots();
Tagged<NumberDictionary> dictionary =
NumberDictionary::cast(holder->elements());
// Validate the requires_slow_elements and max_number_key values.
bool requires_slow_elements = false;
int max_key = 0;
for (InternalIndex i : dictionary->IterateEntries()) {
Tagged<Object> k;
if (!dictionary->ToKey(roots, i, &k)) continue;
DCHECK_LE(0.0, Object::Number(k));
if (Object::Number(k) > NumberDictionary::kRequiresSlowElementsLimit) {
requires_slow_elements = true;
} else {
max_key = std::max(max_key, Smi::ToInt(k));
}
}
if (requires_slow_elements) {
DCHECK(dictionary->requires_slow_elements());
} else if (!dictionary->requires_slow_elements()) {
DCHECK_LE(max_key, dictionary->max_number_key());
}
#endif
}
};
// Super class for all fast element arrays.
template <typename Subclass, typename KindTraits>
class FastElementsAccessor : public ElementsAccessorBase<Subclass, KindTraits> {
public:
using BackingStore = typename KindTraits::BackingStore;
static Handle<NumberDictionary> NormalizeImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store) {
Isolate* isolate = object->GetIsolate();
ElementsKind kind = Subclass::kind();
// Ensure that notifications fire if the array or object prototypes are
// normalizing.
if (IsSmiOrObjectElementsKind(kind) ||
kind == FAST_STRING_WRAPPER_ELEMENTS) {
isolate->UpdateNoElementsProtectorOnNormalizeElements(object);
}
int capacity = object->GetFastElementsUsage();
Handle<NumberDictionary> dictionary =
NumberDictionary::New(isolate, capacity);
PropertyDetails details = PropertyDetails::Empty();
int j = 0;
int max_number_key = -1;
for (int i = 0; j < capacity; i++) {
if (IsHoleyElementsKindForRead(kind)) {
if (BackingStore::cast(*store)->is_the_hole(isolate, i)) continue;
}
max_number_key = i;
Handle<Object> value =
Subclass::GetImpl(isolate, *store, InternalIndex(i));
dictionary =
NumberDictionary::Add(isolate, dictionary, i, value, details);
j++;
}
if (max_number_key > 0) {
dictionary->UpdateMaxNumberKey(static_cast<uint32_t>(max_number_key),
object);
}
return dictionary;
}
static void DeleteAtEnd(Handle<JSObject> obj,
Handle<BackingStore> backing_store, uint32_t entry) {
uint32_t length = static_cast<uint32_t>(backing_store->length());
DCHECK_LT(entry, length);
Isolate* isolate = obj->GetIsolate();
for (; entry > 0; entry--) {
if (!backing_store->is_the_hole(isolate, entry - 1)) break;
}
if (entry == 0) {
Tagged<FixedArray> empty = ReadOnlyRoots(isolate).empty_fixed_array();
// Dynamically ask for the elements kind here since we manually redirect
// the operations for argument backing stores.
if (obj->GetElementsKind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS) {
SloppyArgumentsElements::cast(obj->elements())->set_arguments(empty);
} else {
obj->set_elements(empty);
}
return;
}
isolate->heap()->RightTrimArray(*backing_store, entry, length);
}
static void DeleteCommon(Handle<JSObject> obj, uint32_t entry,
Handle<FixedArrayBase> store) {
DCHECK(obj->HasSmiOrObjectElements() || obj->HasDoubleElements() ||
obj->HasNonextensibleElements() || obj->HasFastArgumentsElements() ||
obj->HasFastStringWrapperElements());
Handle<BackingStore> backing_store = Handle<BackingStore>::cast(store);
if (!IsJSArray(*obj) &&
entry == static_cast<uint32_t>(store->length()) - 1) {
DeleteAtEnd(obj, backing_store, entry);
return;
}
Isolate* isolate = obj->GetIsolate();
backing_store->set_the_hole(isolate, entry);
// TODO(verwaest): Move this out of elements.cc.
// If the backing store is larger than a certain size and
// has too few used values, normalize it.
const int kMinLengthForSparsenessCheck = 64;
if (backing_store->length() < kMinLengthForSparsenessCheck) return;
uint32_t length = 0;
if (IsJSArray(*obj)) {
Object::ToArrayLength(JSArray::cast(*obj)->length(), &length);
} else {
length = static_cast<uint32_t>(store->length());
}
// To avoid doing the check on every delete, use a counter-based heuristic.
const int kLengthFraction = 16;
// The above constant must be large enough to ensure that we check for
// normalization frequently enough. At a minimum, it should be large
// enough to reliably hit the "window" of remaining elements count where
// normalization would be beneficial.
static_assert(kLengthFraction >=
NumberDictionary::kEntrySize *
NumberDictionary::kPreferFastElementsSizeFactor);
size_t current_counter = isolate->elements_deletion_counter();
if (current_counter < length / kLengthFraction) {
isolate->set_elements_deletion_counter(current_counter + 1);
return;
}
// Reset the counter whenever the full check is performed.
isolate->set_elements_deletion_counter(0);
if (!IsJSArray(*obj)) {
uint32_t i;
for (i = entry + 1; i < length; i++) {
if (!backing_store->is_the_hole(isolate, i)) break;
}
if (i == length) {
DeleteAtEnd(obj, backing_store, entry);
return;
}
}
int num_used = 0;
for (int i = 0; i < backing_store->length(); ++i) {
if (!backing_store->is_the_hole(isolate, i)) {
++num_used;
// Bail out if a number dictionary wouldn't be able to save much space.
if (NumberDictionary::kPreferFastElementsSizeFactor *
NumberDictionary::ComputeCapacity(num_used) *
NumberDictionary::kEntrySize >
static_cast<uint32_t>(backing_store->length())) {
return;
}
}
}
JSObject::NormalizeElements(obj);
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
Handle<NumberDictionary> dictionary = JSObject::NormalizeElements(object);
entry = InternalIndex(
dictionary->FindEntry(object->GetIsolate(), entry.as_uint32()));
DictionaryElementsAccessor::ReconfigureImpl(
object, Handle<FixedArrayBase>::cast(dictionary), entry, value,
attributes);
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
DCHECK_EQ(NONE, attributes);
ElementsKind from_kind = object->GetElementsKind();
ElementsKind to_kind = Subclass::kind();
if (IsDictionaryElementsKind(from_kind) ||
IsDoubleElementsKind(from_kind) != IsDoubleElementsKind(to_kind) ||
Subclass::GetCapacityImpl(*object, object->elements()) !=
new_capacity) {
MAYBE_RETURN(Subclass::GrowCapacityAndConvertImpl(object, new_capacity),
Nothing<bool>());
} else {
if (IsFastElementsKind(from_kind) && from_kind != to_kind) {
JSObject::TransitionElementsKind(object, to_kind);
}
if (IsSmiOrObjectElementsKind(from_kind)) {
DCHECK(IsSmiOrObjectElementsKind(to_kind));
JSObject::EnsureWritableFastElements(object);
}
}
Subclass::SetImpl(object, InternalIndex(index), *value);
return Just(true);
}
static void DeleteImpl(Handle<JSObject> obj, InternalIndex entry) {
ElementsKind kind = KindTraits::Kind;
if (IsFastPackedElementsKind(kind) ||
kind == PACKED_NONEXTENSIBLE_ELEMENTS) {
JSObject::TransitionElementsKind(obj, GetHoleyElementsKind(kind));
}
if (IsSmiOrObjectElementsKind(KindTraits::Kind) ||
IsNonextensibleElementsKind(kind)) {
JSObject::EnsureWritableFastElements(obj);
}
DeleteCommon(obj, entry.as_uint32(),
handle(obj->elements(), obj->GetIsolate()));
}
static bool HasEntryImpl(Isolate* isolate,
Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return !BackingStore::cast(backing_store)
->is_the_hole(isolate, entry.as_int());
}
static uint32_t NumberOfElementsImpl(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> backing_store) {
size_t max_index = Subclass::GetMaxIndex(receiver, backing_store);
DCHECK_LE(max_index, std::numeric_limits<uint32_t>::max());
if (IsFastPackedElementsKind(Subclass::kind())) {
return static_cast<uint32_t>(max_index);
}
Isolate* isolate = receiver->GetIsolate();
uint32_t count = 0;
for (size_t i = 0; i < max_index; i++) {
if (Subclass::HasEntryImpl(isolate, backing_store, InternalIndex(i))) {
count++;
}
}
return count;
}
V8_WARN_UNUSED_RESULT static ExceptionStatus AddElementsToKeyAccumulatorImpl(
Handle<JSObject> receiver, KeyAccumulator* accumulator,
AddKeyConversion convert) {
Isolate* isolate = accumulator->isolate();
Handle<FixedArrayBase> elements(receiver->elements(), isolate);
size_t length = Subclass::GetMaxNumberOfEntries(*receiver, *elements);
for (size_t i = 0; i < length; i++) {
if (IsFastPackedElementsKind(KindTraits::Kind) ||
HasEntryImpl(isolate, *elements, InternalIndex(i))) {
RETURN_FAILURE_IF_NOT_SUCCESSFUL(accumulator->AddKey(
Subclass::GetImpl(isolate, *elements, InternalIndex(i)), convert));
}
}
return ExceptionStatus::kSuccess;
}
static void ValidateContents(Tagged<JSObject> holder, size_t length) {
#if DEBUG
Isolate* isolate = holder->GetIsolate();
Heap* heap = isolate->heap();
Tagged<FixedArrayBase> elements = holder->elements();
Tagged<Map> map = elements->map();
if (IsSmiOrObjectElementsKind(KindTraits::Kind)) {
DCHECK_NE(map, ReadOnlyRoots(heap).fixed_double_array_map());
} else if (IsDoubleElementsKind(KindTraits::Kind)) {
DCHECK_NE(map, ReadOnlyRoots(heap).fixed_cow_array_map());
if (map == ReadOnlyRoots(heap).fixed_array_map()) DCHECK_EQ(0u, length);
} else {
UNREACHABLE();
}
if (length == 0u) return; // nothing to do!
#if ENABLE_SLOW_DCHECKS
DisallowGarbageCollection no_gc;
Tagged<BackingStore> backing_store = BackingStore::cast(elements);
DCHECK(length <= std::numeric_limits<int>::max());
int length_int = static_cast<int>(length);
if (IsSmiElementsKind(KindTraits::Kind)) {
HandleScope scope(isolate);
for (int i = 0; i < length_int; i++) {
Tagged<Object> element = FixedArray::cast(backing_store)->get(i);
DCHECK(IsSmi(element) || (IsHoleyElementsKind(KindTraits::Kind) &&
IsTheHole(element, isolate)));
}
} else if (KindTraits::Kind == PACKED_ELEMENTS ||
KindTraits::Kind == PACKED_DOUBLE_ELEMENTS) {
for (int i = 0; i < length_int; i++) {
DCHECK(!backing_store->is_the_hole(isolate, i));
}
} else {
DCHECK(IsHoleyElementsKind(KindTraits::Kind));
}
#endif
#endif
}
static MaybeHandle<Object> PopImpl(Handle<JSArray> receiver) {
return Subclass::RemoveElement(receiver, AT_END);
}
static MaybeHandle<Object> ShiftImpl(Handle<JSArray> receiver) {
return Subclass::RemoveElement(receiver, AT_START);
}
static Maybe<uint32_t> PushImpl(Handle<JSArray> receiver,
BuiltinArguments* args, uint32_t push_size) {
Handle<FixedArrayBase> backing_store(receiver->elements(),
receiver->GetIsolate());
return Subclass::AddArguments(receiver, backing_store, args, push_size,
AT_END);
}
static Maybe<uint32_t> UnshiftImpl(Handle<JSArray> receiver,
BuiltinArguments* args,
uint32_t unshift_size) {
Handle<FixedArrayBase> backing_store(receiver->elements(),
receiver->GetIsolate());
return Subclass::AddArguments(receiver, backing_store, args, unshift_size,
AT_START);
}
static void MoveElements(Isolate* isolate, Handle<JSArray> receiver,
Handle<FixedArrayBase> backing_store, int dst_index,
int src_index, int len, int hole_start,
int hole_end) {
DisallowGarbageCollection no_gc;
Tagged<BackingStore> dst_elms = BackingStore::cast(*backing_store);
if (len > JSArray::kMaxCopyElements && dst_index == 0 &&
isolate->heap()->CanMoveObjectStart(dst_elms)) {
dst_elms = BackingStore::cast(
isolate->heap()->LeftTrimFixedArray(dst_elms, src_index));
// Update all the copies of this backing_store handle.
backing_store.PatchValue(dst_elms);
receiver->set_elements(dst_elms);
// Adjust the hole offset as the array has been shrunk.
hole_end -= src_index;
DCHECK_LE(hole_start, backing_store->length());
DCHECK_LE(hole_end, backing_store->length());
} else if (len != 0) {
WriteBarrierMode mode =
GetWriteBarrierMode(dst_elms, KindTraits::Kind, no_gc);
dst_elms->MoveElements(isolate, dst_index, src_index, len, mode);
}
if (hole_start != hole_end) {
dst_elms->FillWithHoles(hole_start, hole_end);
}
}
static MaybeHandle<Object> FillImpl(Handle<JSObject> receiver,
Handle<Object> obj_value, size_t start,
size_t end) {
// Ensure indexes are within array bounds
DCHECK_LE(0, start);
DCHECK_LE(start, end);
// Make sure COW arrays are copied.
if (IsSmiOrObjectElementsKind(Subclass::kind())) {
JSObject::EnsureWritableFastElements(receiver);
}
// Make sure we have enough space.
DCHECK_LE(end, std::numeric_limits<uint32_t>::max());
if (end > Subclass::GetCapacityImpl(*receiver, receiver->elements())) {
MAYBE_RETURN_NULL(Subclass::GrowCapacityAndConvertImpl(
receiver, static_cast<uint32_t>(end)));
CHECK_EQ(Subclass::kind(), receiver->GetElementsKind());
}
DCHECK_LE(end, Subclass::GetCapacityImpl(*receiver, receiver->elements()));
for (size_t index = start; index < end; ++index) {
Subclass::SetImpl(receiver, InternalIndex(index), *obj_value);
}
return MaybeHandle<Object>(receiver);
}
static Maybe<bool> IncludesValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> search_value,
size_t start_from, size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *receiver));
DisallowGarbageCollection no_gc;
Tagged<FixedArrayBase> elements_base = receiver->elements();
Tagged<Object> the_hole = ReadOnlyRoots(isolate).the_hole_value();
Tagged<Object> undefined = ReadOnlyRoots(isolate).undefined_value();
Tagged<Object> value = *search_value;
if (start_from >= length) return Just(false);
// Elements beyond the capacity of the backing store treated as undefined.
size_t elements_length = static_cast<size_t>(elements_base->length());
if (value == undefined && elements_length < length) return Just(true);
if (elements_length == 0) {
DCHECK_NE(value, undefined);
return Just(false);
}
length = std::min(elements_length, length);
DCHECK_LE(length, std::numeric_limits<int>::max());
if (!IsNumber(value)) {
if (value == undefined) {
// Search for `undefined` or The Hole. Even in the case of
// PACKED_DOUBLE_ELEMENTS or PACKED_SMI_ELEMENTS, we might encounter The
// Hole here, since the {length} used here can be larger than
// JSArray::length.
if (IsSmiOrObjectElementsKind(Subclass::kind()) ||
IsAnyNonextensibleElementsKind(Subclass::kind())) {
Tagged<FixedArray> elements = FixedArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
Tagged<Object> element_k = elements->get(static_cast<int>(k));
if (element_k == the_hole || element_k == undefined) {
return Just(true);
}
}
return Just(false);
} else {
// Search for The Hole in HOLEY_DOUBLE_ELEMENTS or
// PACKED_DOUBLE_ELEMENTS.
DCHECK(IsDoubleElementsKind(Subclass::kind()));
Tagged<FixedDoubleArray> elements =
FixedDoubleArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
if (elements->is_the_hole(static_cast<int>(k))) return Just(true);
}
return Just(false);
}
} else if (!IsObjectElementsKind(Subclass::kind()) &&
!IsAnyNonextensibleElementsKind(Subclass::kind())) {
// Search for non-number, non-Undefined value, with either
// PACKED_SMI_ELEMENTS, PACKED_DOUBLE_ELEMENTS, HOLEY_SMI_ELEMENTS or
// HOLEY_DOUBLE_ELEMENTS. Guaranteed to return false, since these
// elements kinds can only contain Number values or undefined.
return Just(false);
} else {
// Search for non-number, non-Undefined value with either
// PACKED_ELEMENTS or HOLEY_ELEMENTS.
DCHECK(IsObjectElementsKind(Subclass::kind()) ||
IsAnyNonextensibleElementsKind(Subclass::kind()));
Tagged<FixedArray> elements = FixedArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
Tagged<Object> element_k = elements->get(static_cast<int>(k));
if (element_k == the_hole) continue;
if (Object::SameValueZero(value, element_k)) return Just(true);
}
return Just(false);
}
} else {
if (!IsNaN(value)) {
double search_number = Object::Number(value);
if (IsDoubleElementsKind(Subclass::kind())) {
// Search for non-NaN Number in PACKED_DOUBLE_ELEMENTS or
// HOLEY_DOUBLE_ELEMENTS --- Skip TheHole, and trust UCOMISD or
// similar operation for result.
Tagged<FixedDoubleArray> elements =
FixedDoubleArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
if (elements->is_the_hole(static_cast<int>(k))) continue;
if (elements->get_scalar(static_cast<int>(k)) == search_number) {
return Just(true);
}
}
return Just(false);
} else {
// Search for non-NaN Number in PACKED_ELEMENTS, HOLEY_ELEMENTS,
// PACKED_SMI_ELEMENTS or HOLEY_SMI_ELEMENTS --- Skip non-Numbers,
// and trust UCOMISD or similar operation for result
Tagged<FixedArray> elements = FixedArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
Tagged<Object> element_k = elements->get(static_cast<int>(k));
if (IsNumber(element_k) &&
Object::Number(element_k) == search_number) {
return Just(true);
}
}
return Just(false);
}
} else {
// Search for NaN --- NaN cannot be represented with Smi elements, so
// abort if ElementsKind is PACKED_SMI_ELEMENTS or HOLEY_SMI_ELEMENTS
if (IsSmiElementsKind(Subclass::kind())) return Just(false);
if (IsDoubleElementsKind(Subclass::kind())) {
// Search for NaN in PACKED_DOUBLE_ELEMENTS or
// HOLEY_DOUBLE_ELEMENTS --- Skip The Hole and trust
// std::isnan(elementK) for result
Tagged<FixedDoubleArray> elements =
FixedDoubleArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
if (elements->is_the_hole(static_cast<int>(k))) continue;
if (std::isnan(elements->get_scalar(static_cast<int>(k)))) {
return Just(true);
}
}
return Just(false);
} else {
// Search for NaN in PACKED_ELEMENTS or HOLEY_ELEMENTS. Return true
// if elementK->IsHeapNumber() && std::isnan(elementK->Number())
DCHECK(IsObjectElementsKind(Subclass::kind()) ||
IsAnyNonextensibleElementsKind(Subclass::kind()));
Tagged<FixedArray> elements = FixedArray::cast(receiver->elements());
for (size_t k = start_from; k < length; ++k) {
if (IsNaN(elements->get(static_cast<int>(k)))) return Just(true);
}
return Just(false);
}
}
}
}
static Handle<FixedArray> CreateListFromArrayLikeImpl(Isolate* isolate,
Handle<JSObject> object,
uint32_t length) {
Handle<FixedArray> result = isolate->factory()->NewFixedArray(length);
Handle<FixedArrayBase> elements(object->elements(), isolate);
for (uint32_t i = 0; i < length; i++) {
InternalIndex entry(i);
if (!Subclass::HasEntryImpl(isolate, *elements, entry)) continue;
Handle<Object> value;
value = Subclass::GetImpl(isolate, *elements, entry);
if (IsName(*value)) {
value = isolate->factory()->InternalizeName(Handle<Name>::cast(value));
}
result->set(i, *value);
}
return result;
}
static MaybeHandle<Object> RemoveElement(Handle<JSArray> receiver,
Where remove_position) {
Isolate* isolate = receiver->GetIsolate();
ElementsKind kind = KindTraits::Kind;
if (IsSmiOrObjectElementsKind(kind)) {
HandleScope scope(isolate);
JSObject::EnsureWritableFastElements(receiver);
}
Handle<FixedArrayBase> backing_store(receiver->elements(), isolate);
uint32_t length = static_cast<uint32_t>(Smi::ToInt(receiver->length()));
DCHECK_GT(length, 0);
int new_length = length - 1;
int remove_index = remove_position == AT_START ? 0 : new_length;
Handle<Object> result =
Subclass::GetImpl(isolate, *backing_store, InternalIndex(remove_index));
if (remove_position == AT_START) {
Subclass::MoveElements(isolate, receiver, backing_store, 0, 1, new_length,
0, 0);
}
MAYBE_RETURN_NULL(
Subclass::SetLengthImpl(isolate, receiver, new_length, backing_store));
if (IsHoleyElementsKind(kind) && IsTheHole(*result, isolate)) {
return isolate->factory()->undefined_value();
}
return MaybeHandle<Object>(result);
}
static Maybe<uint32_t> AddArguments(Handle<JSArray> receiver,
Handle<FixedArrayBase> backing_store,
BuiltinArguments* args, uint32_t add_size,
Where add_position) {
uint32_t length = Smi::ToInt(receiver->length());
DCHECK_LT(0, add_size);
uint32_t elms_len = backing_store->length();
// Check we do not overflow the new_length.
DCHECK(add_size <= static_cast<uint32_t>(Smi::kMaxValue - length));
uint32_t new_length = length + add_size;
Isolate* isolate = receiver->GetIsolate();
if (new_length > elms_len) {
// New backing storage is needed.
uint32_t capacity = JSObject::NewElementsCapacity(new_length);
// If we add arguments to the start we have to shift the existing objects.
int copy_dst_index = add_position == AT_START ? add_size : 0;
// Copy over all objects to a new backing_store.
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, backing_store,
Subclass::ConvertElementsWithCapacity(receiver, backing_store,
KindTraits::Kind, capacity, 0,
copy_dst_index),
Nothing<uint32_t>());
receiver->set_elements(*backing_store);
} else if (add_position == AT_START) {
// If the backing store has enough capacity and we add elements to the
// start we have to shift the existing objects.
Subclass::MoveElements(isolate, receiver, backing_store, add_size, 0,
length, 0, 0);
}
int insertion_index = add_position == AT_START ? 0 : length;
// Copy the arguments to the start.
Subclass::CopyArguments(args, backing_store, add_size, 1, insertion_index);
// Set the length.
receiver->set_length(Smi::FromInt(new_length));
return Just(new_length);
}
static void CopyArguments(BuiltinArguments* args,
Handle<FixedArrayBase> dst_store,
uint32_t copy_size, uint32_t src_index,
uint32_t dst_index) {
// Add the provided values.
DisallowGarbageCollection no_gc;
Tagged<FixedArrayBase> raw_backing_store = *dst_store;
WriteBarrierMode mode = raw_backing_store->GetWriteBarrierMode(no_gc);
for (uint32_t i = 0; i < copy_size; i++) {
Tagged<Object> argument = (*args)[src_index + i];
DCHECK(!IsTheHole(argument));
Subclass::SetImpl(raw_backing_store, InternalIndex(dst_index + i),
argument, mode);
}
}
};
template <typename Subclass, typename KindTraits>
class FastSmiOrObjectElementsAccessor
: public FastElementsAccessor<Subclass, KindTraits> {
public:
static inline void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
SetImpl(holder->elements(), entry, value);
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value) {
FixedArray::cast(backing_store)->set(entry.as_int(), value);
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value,
WriteBarrierMode mode) {
FixedArray::cast(backing_store)->set(entry.as_int(), value, mode);
}
static Tagged<Object> GetRaw(Tagged<FixedArray> backing_store,
InternalIndex entry) {
return backing_store->get(entry.as_int());
}
// NOTE: this method violates the handlified function signature convention:
// raw pointer parameters in the function that allocates.
// See ElementsAccessor::CopyElements() for details.
// This method could actually allocate if copying from double elements to
// object elements.
static void CopyElementsImpl(Isolate* isolate, Tagged<FixedArrayBase> from,
uint32_t from_start, Tagged<FixedArrayBase> to,
ElementsKind from_kind, uint32_t to_start,
int packed_size, int copy_size) {
DisallowGarbageCollection no_gc;
ElementsKind to_kind = KindTraits::Kind;
switch (from_kind) {
case PACKED_SMI_ELEMENTS:
case HOLEY_SMI_ELEMENTS:
case PACKED_ELEMENTS:
case PACKED_FROZEN_ELEMENTS:
case PACKED_SEALED_ELEMENTS:
case PACKED_NONEXTENSIBLE_ELEMENTS:
case HOLEY_ELEMENTS:
case HOLEY_FROZEN_ELEMENTS:
case HOLEY_SEALED_ELEMENTS:
case HOLEY_NONEXTENSIBLE_ELEMENTS:
case SHARED_ARRAY_ELEMENTS:
CopyObjectToObjectElements(isolate, from, from_kind, from_start, to,
to_kind, to_start, copy_size);
break;
case PACKED_DOUBLE_ELEMENTS:
case HOLEY_DOUBLE_ELEMENTS: {
AllowGarbageCollection allow_allocation;
DCHECK(IsObjectElementsKind(to_kind));
CopyDoubleToObjectElements(isolate, from, from_start, to, to_start,
copy_size);
break;
}
case DICTIONARY_ELEMENTS:
CopyDictionaryToObjectElements(isolate, from, from_start, to, to_kind,
to_start, copy_size);
break;
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case WASM_ARRAY_ELEMENTS:
// This function is currently only used for JSArrays with non-zero
// length.
UNREACHABLE();
case NO_ELEMENTS:
break; // Nothing to do.
}
}
static Maybe<bool> CollectValuesOrEntriesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArray> values_or_entries, bool get_entries, int* nof_items,
PropertyFilter filter) {
int count = 0;
if (get_entries) {
// Collecting entries needs to allocate, so this code must be handlified.
Handle<FixedArray> elements(FixedArray::cast(object->elements()),
isolate);
uint32_t length = elements->length();
for (uint32_t index = 0; index < length; ++index) {
InternalIndex entry(index);
if (!Subclass::HasEntryImpl(isolate, *elements, entry)) continue;
Handle<Object> value = Subclass::GetImpl(isolate, *elements, entry);
value = MakeEntryPair(isolate, index, value);
values_or_entries->set(count++, *value);
}
} else {
// No allocations here, so we can avoid handlification overhead.
DisallowGarbageCollection no_gc;
Tagged<FixedArray> elements = FixedArray::cast(object->elements());
uint32_t length = elements->length();
for (uint32_t index = 0; index < length; ++index) {
InternalIndex entry(index);
if (!Subclass::HasEntryImpl(isolate, elements, entry)) continue;
Tagged<Object> value = GetRaw(elements, entry);
values_or_entries->set(count++, value);
}
}
*nof_items = count;
return Just(true);
}
static Maybe<int64_t> IndexOfValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> search_value,
size_t start_from, size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *receiver));
DisallowGarbageCollection no_gc;
Tagged<FixedArrayBase> elements_base = receiver->elements();
Tagged<Object> value = *search_value;
if (start_from >= length) return Just<int64_t>(-1);
length = std::min(static_cast<size_t>(elements_base->length()), length);
// Only FAST_{,HOLEY_}ELEMENTS can store non-numbers.
if (!IsNumber(value) && !IsObjectElementsKind(Subclass::kind()) &&
!IsAnyNonextensibleElementsKind(Subclass::kind())) {
return Just<int64_t>(-1);
}
// NaN can never be found by strict equality.
if (IsNaN(value)) return Just<int64_t>(-1);
// k can be greater than receiver->length() below, but it is bounded by
// elements_base->length() so we never read out of bounds. This means that
// elements->get(k) can return the hole, for which the StrictEquals will
// always fail.
Tagged<FixedArray> elements = FixedArray::cast(receiver->elements());
static_assert(FixedArray::kMaxLength <=
std::numeric_limits<uint32_t>::max());
for (size_t k = start_from; k < length; ++k) {
if (Object::StrictEquals(value,
elements->get(static_cast<uint32_t>(k)))) {
return Just<int64_t>(k);
}
}
return Just<int64_t>(-1);
}
};
class FastPackedSmiElementsAccessor
: public FastSmiOrObjectElementsAccessor<
FastPackedSmiElementsAccessor,
ElementsKindTraits<PACKED_SMI_ELEMENTS>> {};
class FastHoleySmiElementsAccessor
: public FastSmiOrObjectElementsAccessor<
FastHoleySmiElementsAccessor,
ElementsKindTraits<HOLEY_SMI_ELEMENTS>> {};
class FastPackedObjectElementsAccessor
: public FastSmiOrObjectElementsAccessor<
FastPackedObjectElementsAccessor,
ElementsKindTraits<PACKED_ELEMENTS>> {};
template <typename Subclass, typename KindTraits>
class FastNonextensibleObjectElementsAccessor
: public FastSmiOrObjectElementsAccessor<Subclass, KindTraits> {
public:
using BackingStore = typename KindTraits::BackingStore;
static Maybe<uint32_t> PushImpl(Handle<JSArray> receiver,
BuiltinArguments* args, uint32_t push_size) {
UNREACHABLE();
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
UNREACHABLE();
}
// TODO(duongn): refactor this due to code duplication of sealed version.
// Consider using JSObject::NormalizeElements(). Also consider follow the fast
// element logic instead of changing to dictionary mode.
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> backing_store) {
uint32_t old_length = 0;
CHECK(Object::ToArrayIndex(array->length(), &old_length));
if (length == old_length) {
// Do nothing.
return Just(true);
}
// Transition to DICTIONARY_ELEMENTS.
// Convert to dictionary mode.
Handle<NumberDictionary> new_element_dictionary =
old_length == 0 ? isolate->factory()->empty_slow_element_dictionary()
: array->GetElementsAccessor()->Normalize(array);
// Migrate map.
Handle<Map> new_map = Map::Copy(isolate, handle(array->map(), isolate),
"SlowCopyForSetLengthImpl");
new_map->set_is_extensible(false);
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
JSObject::MigrateToMap(isolate, array, new_map);
if (!new_element_dictionary.is_null()) {
array->set_elements(*new_element_dictionary);
}
if (array->elements() !=
ReadOnlyRoots(isolate).empty_slow_element_dictionary()) {
Handle<NumberDictionary> dictionary(array->element_dictionary(), isolate);
// Make sure we never go back to the fast case
array->RequireSlowElements(*dictionary);
JSObject::ApplyAttributesToDictionary(isolate, ReadOnlyRoots(isolate),
dictionary,
PropertyAttributes::NONE);
}
// Set length.
Handle<FixedArrayBase> new_backing_store(array->elements(), isolate);
return DictionaryElementsAccessor::SetLengthImpl(isolate, array, length,
new_backing_store);
}
};
class FastPackedNonextensibleObjectElementsAccessor
: public FastNonextensibleObjectElementsAccessor<
FastPackedNonextensibleObjectElementsAccessor,
ElementsKindTraits<PACKED_NONEXTENSIBLE_ELEMENTS>> {};
class FastHoleyNonextensibleObjectElementsAccessor
: public FastNonextensibleObjectElementsAccessor<
FastHoleyNonextensibleObjectElementsAccessor,
ElementsKindTraits<HOLEY_NONEXTENSIBLE_ELEMENTS>> {};
template <typename Subclass, typename KindTraits>
class FastSealedObjectElementsAccessor
: public FastSmiOrObjectElementsAccessor<Subclass, KindTraits> {
public:
using BackingStore = typename KindTraits::BackingStore;
static Handle<Object> RemoveElement(Handle<JSArray> receiver,
Where remove_position) {
UNREACHABLE();
}
static void DeleteImpl(Handle<JSObject> obj, InternalIndex entry) {
UNREACHABLE();
}
static void DeleteAtEnd(Handle<JSObject> obj,
Handle<BackingStore> backing_store, uint32_t entry) {
UNREACHABLE();
}
static void DeleteCommon(Handle<JSObject> obj, uint32_t entry,
Handle<FixedArrayBase> store) {
UNREACHABLE();
}
static MaybeHandle<Object> PopImpl(Handle<JSArray> receiver) {
UNREACHABLE();
}
static Maybe<uint32_t> PushImpl(Handle<JSArray> receiver,
BuiltinArguments* args, uint32_t push_size) {
UNREACHABLE();
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
UNREACHABLE();
}
// TODO(duongn): refactor this due to code duplication of nonextensible
// version. Consider using JSObject::NormalizeElements(). Also consider follow
// the fast element logic instead of changing to dictionary mode.
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> backing_store) {
uint32_t old_length = 0;
CHECK(Object::ToArrayIndex(array->length(), &old_length));
if (length == old_length) {
// Do nothing.
return Just(true);
}
// Transition to DICTIONARY_ELEMENTS.
// Convert to dictionary mode
Handle<NumberDictionary> new_element_dictionary =
old_length == 0 ? isolate->factory()->empty_slow_element_dictionary()
: array->GetElementsAccessor()->Normalize(array);
// Migrate map.
Handle<Map> new_map = Map::Copy(isolate, handle(array->map(), isolate),
"SlowCopyForSetLengthImpl");
new_map->set_is_extensible(false);
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
JSObject::MigrateToMap(isolate, array, new_map);
if (!new_element_dictionary.is_null()) {
array->set_elements(*new_element_dictionary);
}
if (array->elements() !=
ReadOnlyRoots(isolate).empty_slow_element_dictionary()) {
Handle<NumberDictionary> dictionary(array->element_dictionary(), isolate);
// Make sure we never go back to the fast case
array->RequireSlowElements(*dictionary);
JSObject::ApplyAttributesToDictionary(isolate, ReadOnlyRoots(isolate),
dictionary,
PropertyAttributes::SEALED);
}
// Set length
Handle<FixedArrayBase> new_backing_store(array->elements(), isolate);
return DictionaryElementsAccessor::SetLengthImpl(isolate, array, length,
new_backing_store);
}
};
class FastPackedSealedObjectElementsAccessor
: public FastSealedObjectElementsAccessor<
FastPackedSealedObjectElementsAccessor,
ElementsKindTraits<PACKED_SEALED_ELEMENTS>> {};
class SharedArrayElementsAccessor
: public FastSealedObjectElementsAccessor<
SharedArrayElementsAccessor,
ElementsKindTraits<SHARED_ARRAY_ELEMENTS>> {
public:
static Handle<Object> GetAtomicInternalImpl(
Isolate* isolate, Tagged<FixedArrayBase> backing_store,
InternalIndex entry, SeqCstAccessTag tag) {
return handle(BackingStore::cast(backing_store)->get(entry.as_int(), tag),
isolate);
}
static void SetAtomicInternalImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value,
SeqCstAccessTag tag) {
BackingStore::cast(backing_store)->set(entry.as_int(), value, tag);
}
static Handle<Object> SwapAtomicInternalImpl(
Isolate* isolate, Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value, SeqCstAccessTag tag) {
return handle(
BackingStore::cast(backing_store)->swap(entry.as_int(), value, tag),
isolate);
}
static Tagged<Object> CompareAndSwapAtomicInternalImpl(
Tagged<FixedArrayBase> backing_store, InternalIndex entry,
Tagged<Object> expected, Tagged<Object> value, SeqCstAccessTag tag) {
return BackingStore::cast(backing_store)
->compare_and_swap(entry.as_int(), expected, value, tag);
}
};
class FastHoleySealedObjectElementsAccessor
: public FastSealedObjectElementsAccessor<
FastHoleySealedObjectElementsAccessor,
ElementsKindTraits<HOLEY_SEALED_ELEMENTS>> {};
template <typename Subclass, typename KindTraits>
class FastFrozenObjectElementsAccessor
: public FastSmiOrObjectElementsAccessor<Subclass, KindTraits> {
public:
using BackingStore = typename KindTraits::BackingStore;
static inline void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
UNREACHABLE();
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value) {
UNREACHABLE();
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value,
WriteBarrierMode mode) {
UNREACHABLE();
}
static Handle<Object> RemoveElement(Handle<JSArray> receiver,
Where remove_position) {
UNREACHABLE();
}
static void DeleteImpl(Handle<JSObject> obj, InternalIndex entry) {
UNREACHABLE();
}
static void DeleteAtEnd(Handle<JSObject> obj,
Handle<BackingStore> backing_store, uint32_t entry) {
UNREACHABLE();
}
static void DeleteCommon(Handle<JSObject> obj, uint32_t entry,
Handle<FixedArrayBase> store) {
UNREACHABLE();
}
static MaybeHandle<Object> PopImpl(Handle<JSArray> receiver) {
UNREACHABLE();
}
static Maybe<uint32_t> PushImpl(Handle<JSArray> receiver,
BuiltinArguments* args, uint32_t push_size) {
UNREACHABLE();
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
UNREACHABLE();
}
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> backing_store) {
UNREACHABLE();
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
UNREACHABLE();
}
};
class FastPackedFrozenObjectElementsAccessor
: public FastFrozenObjectElementsAccessor<
FastPackedFrozenObjectElementsAccessor,
ElementsKindTraits<PACKED_FROZEN_ELEMENTS>> {};
class FastHoleyFrozenObjectElementsAccessor
: public FastFrozenObjectElementsAccessor<
FastHoleyFrozenObjectElementsAccessor,
ElementsKindTraits<HOLEY_FROZEN_ELEMENTS>> {};
class FastHoleyObjectElementsAccessor
: public FastSmiOrObjectElementsAccessor<
FastHoleyObjectElementsAccessor, ElementsKindTraits<HOLEY_ELEMENTS>> {
};
// Helper templates to statically determine if our destination type can contain
// the source type.
template <ElementsKind Kind, typename ElementType, ElementsKind SourceKind,
typename SourceElementType>
struct CopyBetweenBackingStoresImpl;
template <typename Subclass, typename KindTraits>
class FastDoubleElementsAccessor
: public FastElementsAccessor<Subclass, KindTraits> {
public:
static Handle<Object> GetImpl(Isolate* isolate,
Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return FixedDoubleArray::get(FixedDoubleArray::cast(backing_store),
entry.as_int(), isolate);
}
static inline void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
SetImpl(holder->elements(), entry, value);
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value) {
FixedDoubleArray::cast(backing_store)
->set(entry.as_int(), Object::Number(value));
}
static inline void SetImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry, Tagged<Object> value,
WriteBarrierMode mode) {
FixedDoubleArray::cast(backing_store)
->set(entry.as_int(), Object::Number(value));
}
static void CopyElementsImpl(Isolate* isolate, Tagged<FixedArrayBase> from,
uint32_t from_start, Tagged<FixedArrayBase> to,
ElementsKind from_kind, uint32_t to_start,
int packed_size, int copy_size) {
DisallowGarbageCollection no_gc;
switch (from_kind) {
case PACKED_SMI_ELEMENTS:
CopyPackedSmiToDoubleElements(from, from_start, to, to_start,
packed_size, copy_size);
break;
case HOLEY_SMI_ELEMENTS:
CopySmiToDoubleElements(from, from_start, to, to_start, copy_size);
break;
case PACKED_DOUBLE_ELEMENTS:
case HOLEY_DOUBLE_ELEMENTS:
CopyDoubleToDoubleElements(from, from_start, to, to_start, copy_size);
break;
case PACKED_ELEMENTS:
case PACKED_FROZEN_ELEMENTS:
case PACKED_SEALED_ELEMENTS:
case PACKED_NONEXTENSIBLE_ELEMENTS:
case HOLEY_ELEMENTS:
case HOLEY_FROZEN_ELEMENTS:
case HOLEY_SEALED_ELEMENTS:
case HOLEY_NONEXTENSIBLE_ELEMENTS:
case SHARED_ARRAY_ELEMENTS:
CopyObjectToDoubleElements(from, from_start, to, to_start, copy_size);
break;
case DICTIONARY_ELEMENTS:
CopyDictionaryToDoubleElements(isolate, from, from_start, to, to_start,
copy_size);
break;
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case WASM_ARRAY_ELEMENTS:
case NO_ELEMENTS:
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
// This function is currently only used for JSArrays with non-zero
// length.
UNREACHABLE();
}
}
static Maybe<bool> CollectValuesOrEntriesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArray> values_or_entries, bool get_entries, int* nof_items,
PropertyFilter filter) {
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(object->elements()), isolate);
int count = 0;
uint32_t length = elements->length();
for (uint32_t index = 0; index < length; ++index) {
InternalIndex entry(index);
if (!Subclass::HasEntryImpl(isolate, *elements, entry)) continue;
Handle<Object> value = Subclass::GetImpl(isolate, *elements, entry);
if (get_entries) {
value = MakeEntryPair(isolate, index, value);
}
values_or_entries->set(count++, *value);
}
*nof_items = count;
return Just(true);
}
static Maybe<int64_t> IndexOfValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> search_value,
size_t start_from, size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *receiver));
DisallowGarbageCollection no_gc;
Tagged<FixedArrayBase> elements_base = receiver->elements();
Tagged<Object> value = *search_value;
length = std::min(static_cast<size_t>(elements_base->length()), length);
if (start_from >= length) return Just<int64_t>(-1);
if (!IsNumber(value)) {
return Just<int64_t>(-1);
}
if (IsNaN(value)) {
return Just<int64_t>(-1);
}
double numeric_search_value = Object::Number(value);
Tagged<FixedDoubleArray> elements =
FixedDoubleArray::cast(receiver->elements());
static_assert(FixedDoubleArray::kMaxLength <=
std::numeric_limits<int>::max());
for (size_t k = start_from; k < length; ++k) {
int k_int = static_cast<int>(k);
if (elements->is_the_hole(k_int)) {
continue;
}
if (elements->get_scalar(k_int) == numeric_search_value) {
return Just<int64_t>(k);
}
}
return Just<int64_t>(-1);
}
};
class FastPackedDoubleElementsAccessor
: public FastDoubleElementsAccessor<
FastPackedDoubleElementsAccessor,
ElementsKindTraits<PACKED_DOUBLE_ELEMENTS>> {};
class FastHoleyDoubleElementsAccessor
: public FastDoubleElementsAccessor<
FastHoleyDoubleElementsAccessor,
ElementsKindTraits<HOLEY_DOUBLE_ELEMENTS>> {};
enum IsSharedBuffer : bool { kShared = true, kUnshared = false };
// Super class for all external element arrays.
template <ElementsKind Kind, typename ElementType>
class TypedElementsAccessor
: public ElementsAccessorBase<TypedElementsAccessor<Kind, ElementType>,
ElementsKindTraits<Kind>> {
public:
using BackingStore = typename ElementsKindTraits<Kind>::BackingStore;
using AccessorClass = TypedElementsAccessor<Kind, ElementType>;
// Conversions from (other) scalar values.
static ElementType FromScalar(int value) {
return static_cast<ElementType>(value);
}
static ElementType FromScalar(uint32_t value) {
return static_cast<ElementType>(value);
}
static ElementType FromScalar(double value) {
return FromScalar(DoubleToInt32(value));
}
static ElementType FromScalar(int64_t value) { UNREACHABLE(); }
static ElementType FromScalar(uint64_t value) { UNREACHABLE(); }
// Conversions from objects / handles.
static ElementType FromObject(Tagged<Object> value,
bool* lossless = nullptr) {
if (IsSmi(value)) {
return FromScalar(Smi::ToInt(value));
} else if (IsHeapNumber(value)) {
return FromScalar(HeapNumber::cast(value)->value());
} else {
// Clamp undefined here as well. All other types have been
// converted to a number type further up in the call chain.
DCHECK(IsUndefined(value));
return FromScalar(Oddball::cast(value)->to_number_raw());
}
}
static ElementType FromHandle(Handle<Object> value,
bool* lossless = nullptr) {
return FromObject(*value, lossless);
}
// Conversion of scalar value to handlified object.
static Handle<Object> ToHandle(Isolate* isolate, ElementType value);
static void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
Handle<JSTypedArray> typed_array = Handle<JSTypedArray>::cast(holder);
DCHECK_LE(entry.raw_value(), typed_array->GetLength());
auto* entry_ptr =
static_cast<ElementType*>(typed_array->DataPtr()) + entry.raw_value();
auto is_shared = typed_array->buffer()->is_shared() ? kShared : kUnshared;
SetImpl(entry_ptr, FromObject(value), is_shared);
}
static void SetImpl(ElementType* data_ptr, ElementType value,
IsSharedBuffer is_shared) {
// TODO(ishell, v8:8875): Independent of pointer compression, 8-byte size
// fields (external pointers, doubles and BigInt data) are not always 8-byte
// aligned. This is relying on undefined behaviour in C++, since {data_ptr}
// is not aligned to {alignof(ElementType)}.
if (!is_shared) {
base::WriteUnalignedValue(reinterpret_cast<Address>(data_ptr), value);
return;
}
// The JavaScript memory model allows for racy reads and writes to a
// SharedArrayBuffer's backing store. Using relaxed atomics is not strictly
// required for JavaScript, but will avoid undefined behaviour in C++ and is
// unlikely to introduce noticable overhead.
if (IsAligned(reinterpret_cast<uintptr_t>(data_ptr),
alignof(std::atomic<ElementType>))) {
// Use a single relaxed atomic store.
static_assert(sizeof(std::atomic<ElementType>) == sizeof(ElementType));
reinterpret_cast<std::atomic<ElementType>*>(data_ptr)->store(
value, std::memory_order_relaxed);
return;
}
// Some static CHECKs (are optimized out if succeeding) to ensure that
// {data_ptr} is at least four byte aligned, and {std::atomic<uint32_t>}
// has size and alignment of four bytes, such that we can cast the
// {data_ptr} to it.
CHECK_LE(kInt32Size, alignof(ElementType));
CHECK_EQ(kInt32Size, alignof(std::atomic<uint32_t>));
CHECK_EQ(kInt32Size, sizeof(std::atomic<uint32_t>));
// And dynamically check that we indeed have at least four byte alignment.
DCHECK(IsAligned(reinterpret_cast<uintptr_t>(data_ptr), kInt32Size));
// Store as multiple 32-bit words. Make {kNumWords} >= 1 to avoid compiler
// warnings for the empty array or memcpy to an empty object.
constexpr size_t kNumWords =
std::max(size_t{1}, sizeof(ElementType) / kInt32Size);
uint32_t words[kNumWords];
CHECK_EQ(sizeof(words), sizeof(value));
memcpy(words, &value, sizeof(value));
for (size_t word = 0; word < kNumWords; ++word) {
static_assert(sizeof(std::atomic<uint32_t>) == sizeof(uint32_t));
reinterpret_cast<std::atomic<uint32_t>*>(data_ptr)[word].store(
words[word], std::memory_order_relaxed);
}
}
static Handle<Object> GetInternalImpl(Isolate* isolate,
Handle<JSObject> holder,
InternalIndex entry) {
Handle<JSTypedArray> typed_array = Handle<JSTypedArray>::cast(holder);
DCHECK_LT(entry.raw_value(), typed_array->GetLength());
DCHECK(!typed_array->IsDetachedOrOutOfBounds());
auto* element_ptr =
static_cast<ElementType*>(typed_array->DataPtr()) + entry.raw_value();
auto is_shared = typed_array->buffer()->is_shared() ? kShared : kUnshared;
ElementType elem = GetImpl(element_ptr, is_shared);
return ToHandle(isolate, elem);
}
static Handle<Object> GetImpl(Isolate* isolate,
Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
UNREACHABLE();
}
static ElementType GetImpl(ElementType* data_ptr, IsSharedBuffer is_shared) {
// TODO(ishell, v8:8875): Independent of pointer compression, 8-byte size
// fields (external pointers, doubles and BigInt data) are not always
// 8-byte aligned.
if (!is_shared) {
return base::ReadUnalignedValue<ElementType>(
reinterpret_cast<Address>(data_ptr));
}
// The JavaScript memory model allows for racy reads and writes to a
// SharedArrayBuffer's backing store. Using relaxed atomics is not strictly
// required for JavaScript, but will avoid undefined behaviour in C++ and is
// unlikely to introduce noticable overhead.
if (IsAligned(reinterpret_cast<uintptr_t>(data_ptr),
alignof(std::atomic<ElementType>))) {
// Use a single relaxed atomic load.
static_assert(sizeof(std::atomic<ElementType>) == sizeof(ElementType));
// Note: acquire semantics are not needed here, but clang seems to merge
// this atomic load with the non-atomic load above if we use relaxed
// semantics. This will result in TSan failures.
return reinterpret_cast<std::atomic<ElementType>*>(data_ptr)->load(
std::memory_order_acquire);
}
// Some static CHECKs (are optimized out if succeeding) to ensure that
// {data_ptr} is at least four byte aligned, and {std::atomic<uint32_t>}
// has size and alignment of four bytes, such that we can cast the
// {data_ptr} to it.
CHECK_LE(kInt32Size, alignof(ElementType));
CHECK_EQ(kInt32Size, alignof(std::atomic<uint32_t>));
CHECK_EQ(kInt32Size, sizeof(std::atomic<uint32_t>));
// And dynamically check that we indeed have at least four byte alignment.
DCHECK(IsAligned(reinterpret_cast<uintptr_t>(data_ptr), kInt32Size));
// Load in multiple 32-bit words. Make {kNumWords} >= 1 to avoid compiler
// warnings for the empty array or memcpy to an empty object.
constexpr size_t kNumWords =
std::max(size_t{1}, sizeof(ElementType) / kInt32Size);
uint32_t words[kNumWords];
for (size_t word = 0; word < kNumWords; ++word) {
static_assert(sizeof(std::atomic<uint32_t>) == sizeof(uint32_t));
words[word] =
reinterpret_cast<std::atomic<uint32_t>*>(data_ptr)[word].load(
std::memory_order_relaxed);
}
ElementType result;
CHECK_EQ(sizeof(words), sizeof(result));
memcpy(&result, words, sizeof(result));
return result;
}
static PropertyDetails GetDetailsImpl(Tagged<JSObject> holder,
InternalIndex entry) {
return PropertyDetails(PropertyKind::kData, NONE,
PropertyCellType::kNoCell);
}
static PropertyDetails GetDetailsImpl(Tagged<FixedArrayBase> backing_store,
InternalIndex entry) {
return PropertyDetails(PropertyKind::kData, NONE,
PropertyCellType::kNoCell);
}
static bool HasElementImpl(Isolate* isolate, Tagged<JSObject> holder,
size_t index, Tagged<FixedArrayBase> backing_store,
PropertyFilter filter) {
return index < AccessorClass::GetCapacityImpl(holder, backing_store);
}
static bool HasAccessorsImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
return false;
}
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> backing_store) {
// External arrays do not support changing their length.
UNREACHABLE();
}
static void DeleteImpl(Handle<JSObject> obj, InternalIndex entry) {
// Do nothing.
//
// TypedArray elements are configurable to explain detaching, but cannot be
// deleted otherwise.
}
static InternalIndex GetEntryForIndexImpl(
Isolate* isolate, Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store, size_t index,
PropertyFilter filter) {
return index < AccessorClass::GetCapacityImpl(holder, backing_store)
? InternalIndex(index)
: InternalIndex::NotFound();
}
static size_t GetCapacityImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
Tagged<JSTypedArray> typed_array = JSTypedArray::cast(holder);
return typed_array->GetLength();
}
static size_t NumberOfElementsImpl(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> backing_store) {
return AccessorClass::GetCapacityImpl(receiver, backing_store);
}
V8_WARN_UNUSED_RESULT static ExceptionStatus AddElementsToKeyAccumulatorImpl(
Handle<JSObject> receiver, KeyAccumulator* accumulator,
AddKeyConversion convert) {
Isolate* isolate = receiver->GetIsolate();
Handle<FixedArrayBase> elements(receiver->elements(), isolate);
size_t length = AccessorClass::GetCapacityImpl(*receiver, *elements);
for (size_t i = 0; i < length; i++) {
Handle<Object> value =
AccessorClass::GetInternalImpl(isolate, receiver, InternalIndex(i));
RETURN_FAILURE_IF_NOT_SUCCESSFUL(accumulator->AddKey(value, convert));
}
return ExceptionStatus::kSuccess;
}
static Maybe<bool> CollectValuesOrEntriesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArray> values_or_entries, bool get_entries, int* nof_items,
PropertyFilter filter) {
int count = 0;
if ((filter & ONLY_CONFIGURABLE) == 0) {
Handle<FixedArrayBase> elements(object->elements(), isolate);
size_t length = AccessorClass::GetCapacityImpl(*object, *elements);
for (size_t index = 0; index < length; ++index) {
Handle<Object> value = AccessorClass::GetInternalImpl(
isolate, object, InternalIndex(index));
if (get_entries) {
value = MakeEntryPair(isolate, index, value);
}
values_or_entries->set(count++, *value);
}
}
*nof_items = count;
return Just(true);
}
static bool ToTypedSearchValue(double search_value,
ElementType* typed_search_value) {
if (!base::IsValueInRangeForNumericType<ElementType>(search_value) &&
std::isfinite(search_value)) {
// Return true if value can't be represented in this space.
return true;
}
ElementType typed_value;
if (IsFloat16TypedArrayElementsKind(Kind)) {
typed_value = fp16_ieee_from_fp32_value(static_cast<float>(search_value));
*typed_search_value = typed_value;
return (static_cast<double>(fp16_ieee_to_fp32_value(typed_value)) !=
search_value); // Loss of precision.
}
typed_value = static_cast<ElementType>(search_value);
*typed_search_value = typed_value;
return static_cast<double>(typed_value) !=
search_value; // Loss of precision.
}
static MaybeHandle<Object> FillImpl(Handle<JSObject> receiver,
Handle<Object> value, size_t start,
size_t end) {
Handle<JSTypedArray> typed_array = Handle<JSTypedArray>::cast(receiver);
DCHECK(!typed_array->IsDetachedOrOutOfBounds());
DCHECK_LE(start, end);
DCHECK_LE(end, typed_array->GetLength());
DisallowGarbageCollection no_gc;
ElementType scalar = FromHandle(value);
ElementType* data = static_cast<ElementType*>(typed_array->DataPtr());
ElementType* first = data + start;
ElementType* last = data + end;
if (typed_array->buffer()->is_shared()) {
// TypedArrays backed by shared buffers need to be filled using atomic
// operations. Since 8-byte data are not currently always 8-byte aligned,
// manually fill using SetImpl, which abstracts over alignment and atomic
// complexities.
for (; first != last; ++first) {
AccessorClass::SetImpl(first, scalar, kShared);
}
} else if ((scalar == 0 && !(std::is_floating_point_v<ElementType> &&
IsMinusZero(scalar))) ||
(std::is_integral_v<ElementType> &&
scalar == static_cast<ElementType>(-1))) {
// As of 2022-06, this is faster than {std::fill}.
// We could extend this to any {scalar} that's a pattern of repeating
// bytes, but patterns other than 0 and -1 are probably rare.
size_t num_bytes = static_cast<size_t>(reinterpret_cast<int8_t*>(last) -
reinterpret_cast<int8_t*>(first));
memset(first, static_cast<int8_t>(scalar), num_bytes);
} else if (COMPRESS_POINTERS_BOOL && alignof(ElementType) > kTaggedSize) {
// TODO(ishell, v8:8875): See UnalignedSlot<T> for details.
std::fill(UnalignedSlot<ElementType>(first),
UnalignedSlot<ElementType>(last), scalar);
} else {
std::fill(first, last, scalar);
}
return MaybeHandle<Object>(typed_array);
}
static Maybe<bool> IncludesValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> value, size_t start_from,
size_t length) {
DisallowGarbageCollection no_gc;
Tagged<JSTypedArray> typed_array = JSTypedArray::cast(*receiver);
if (typed_array->WasDetached()) {
return Just(IsUndefined(*value, isolate) && length > start_from);
}
bool out_of_bounds = false;
size_t new_length = typed_array->GetLengthOrOutOfBounds(out_of_bounds);
if (V8_UNLIKELY(out_of_bounds)) {
return Just(IsUndefined(*value, isolate) && length > start_from);
}
if (IsUndefined(*value, isolate) && length > new_length) {
return Just(true);
}
// Prototype has no elements, and not searching for the hole --- limit
// search to backing store length.
if (new_length < length) {
length = new_length;
}
ElementType typed_search_value;
ElementType* data_ptr =
reinterpret_cast<ElementType*>(typed_array->DataPtr());
auto is_shared = typed_array->buffer()->is_shared() ? kShared : kUnshared;
if (Kind == BIGINT64_ELEMENTS || Kind == BIGUINT64_ELEMENTS ||
Kind == RAB_GSAB_BIGINT64_ELEMENTS ||
Kind == RAB_GSAB_BIGUINT64_ELEMENTS) {
if (!IsBigInt(*value)) return Just(false);
bool lossless;
typed_search_value = FromHandle(value, &lossless);
if (!lossless) return Just(false);
} else {
if (!IsNumber(*value)) return Just(false);
double search_value = Object::Number(*value);
if (!std::isfinite(search_value)) {
// Integral types cannot represent +Inf or NaN.
if (!IsFloatTypedArrayElementsKind(Kind)) {
return Just(false);
}
if (std::isnan(search_value)) {
for (size_t k = start_from; k < length; ++k) {
if (IsFloat16TypedArrayElementsKind(Kind)) {
float elem_k = fp16_ieee_to_fp32_value(
AccessorClass::GetImpl(data_ptr + k, is_shared));
if (std::isnan(elem_k)) return Just(true);
} else {
double elem_k = static_cast<double>(
AccessorClass::GetImpl(data_ptr + k, is_shared));
if (std::isnan(elem_k)) return Just(true);
}
}
return Just(false);
}
}
if (AccessorClass::ToTypedSearchValue(search_value,
&typed_search_value)) {
return Just(false);
}
}
for (size_t k = start_from; k < length; ++k) {
ElementType elem_k = AccessorClass::GetImpl(data_ptr + k, is_shared);
if (elem_k == typed_search_value) return Just(true);
}
return Just(false);
}
static Maybe<int64_t> IndexOfValueImpl(Isolate* isolate,
Handle<JSObject> receiver,
Handle<Object> value,
size_t start_from, size_t length) {
DisallowGarbageCollection no_gc;
Tagged<JSTypedArray> typed_array = JSTypedArray::cast(*receiver);
// If this is called via Array.prototype.indexOf (not
// TypedArray.prototype.indexOf), it's possible that the TypedArray is
// detached / out of bounds here.
if (V8_UNLIKELY(typed_array->WasDetached())) return Just<int64_t>(-1);
bool out_of_bounds = false;
size_t typed_array_length =
typed_array->GetLengthOrOutOfBounds(out_of_bounds);
if (V8_UNLIKELY(out_of_bounds)) {
return Just<int64_t>(-1);
}
// Prototype has no elements, and not searching for the hole --- limit
// search to backing store length.
if (typed_array_length < length) {
length = typed_array_length;
}
ElementType typed_search_value;
ElementType* data_ptr =
reinterpret_cast<ElementType*>(typed_array->DataPtr());
if (IsBigIntTypedArrayElementsKind(Kind)) {
if (!IsBigInt(*value)) return Just<int64_t>(-1);
bool lossless;
typed_search_value = FromHandle(value, &lossless);
if (!lossless) return Just<int64_t>(-1);
} else {
if (!IsNumber(*value)) return Just<int64_t>(-1);
double search_value = Object::Number(*value);
if (!std::isfinite(search_value)) {
// Integral types cannot represent +Inf or NaN.
if (!IsFloatTypedArrayElementsKind(Kind)) {
return Just<int64_t>(-1);
}
if (std::isnan(search_value)) {
return Just<int64_t>(-1);
}
}
if (AccessorClass::ToTypedSearchValue(search_value,
&typed_search_value)) {
return Just<int64_t>(-1);
}
}
auto is_shared = typed_array->buffer()->is_shared() ? kShared : kUnshared;
for (size_t k = start_from; k < length; ++k) {
ElementType elem_k = AccessorClass::GetImpl(data_ptr + k, is_shared);
if (elem_k == typed_search_value) return Just<int64_t>(k);
}
return Just<int64_t>(-1);
}
static Maybe<int64_t> LastIndexOfValueImpl(Handle<JSObject> receiver,
Handle<Object> value,
size_t start_from) {
DisallowGarbageCollection no_gc;
Tagged<JSTypedArray> typed_array = JSTypedArray::cast(*receiver);
DCHECK(!typed_array->IsDetachedOrOutOfBounds());
ElementType typed_search_value;
ElementType* data_ptr =
reinterpret_cast<ElementType*>(typed_array->DataPtr());
if (IsBigIntTypedArrayElementsKind(Kind)) {
if (!IsBigInt(*value)) return Just<int64_t>(-1);
bool lossless;
typed_search_value = FromHandle(value, &lossless);
if (!lossless) return Just<int64_t>(-1);
} else {
if (!IsNumber(*value)) return Just<int64_t>(-1);
double search_value = Object::Number(*value);
if (!std::isfinite(search_value)) {
if (!IsFloat16TypedArrayElementsKind(Kind) &&
std::is_integral<ElementType>::value) {
// Integral types cannot represent +Inf or NaN.
return Just<int64_t>(-1);
} else if (std::isnan(search_value)) {
// Strict Equality Comparison of NaN is always false.
return Just<int64_t>(-1);
}
}
if (AccessorClass::ToTypedSearchValue(search_value,
&typed_search_value)) {
return Just<int64_t>(-1);
}
}
size_t typed_array_length = typed_array->GetLength();
if (V8_UNLIKELY(start_from >= typed_array_length)) {
// This can happen if the TypedArray got resized when we did ToInteger
// on the last parameter of lastIndexOf.
DCHECK(typed_array->IsVariableLength());
if (typed_array_length == 0) {
return Just<int64_t>(-1);
}
start_from = typed_array_length - 1;
}
size_t k = start_from;
auto is_shared = typed_array->buffer()->is_shared() ? kShared : kUnshared;
do {
ElementType elem_k = AccessorClass::GetImpl(data_ptr + k, is_shared);
if (elem_k == typed_search_value) return Just<int64_t>(k);
} while (k-- != 0);
return Just<int64_t>(-1);
}
static void ReverseImpl(Tagged<JSObject> receiver) {
DisallowGarbageCollection no_gc;
Tagged<JSTypedArray> typed_array = JSTypedArray::cast(receiver);
DCHECK(!typed_array->IsDetachedOrOutOfBounds());
size_t len = typed_array->GetLength();
if (len == 0) return;
ElementType* data = static_cast<ElementType*>(typed_array->DataPtr());
if (typed_array->buffer()->is_shared()) {
// TypedArrays backed by shared buffers need to be reversed using atomic
// operations. Since 8-byte data are not currently always 8-byte aligned,
// manually reverse using GetImpl and SetImpl, which abstract over
// alignment and atomic complexities.
for (ElementType *first = data, *last = data + len - 1; first < last;
++first, --last) {
ElementType first_value = AccessorClass::GetImpl(first, kShared);
ElementType last_value = AccessorClass::GetImpl(last, kShared);
AccessorClass::SetImpl(first, last_value, kShared);
AccessorClass::SetImpl(last, first_value, kShared);
}
} else if (COMPRESS_POINTERS_BOOL && alignof(ElementType) > kTaggedSize) {
// TODO(ishell, v8:8875): See UnalignedSlot<T> for details.
std::reverse(UnalignedSlot<ElementType>(data),
UnalignedSlot<ElementType>(data + len));
} else {
std::reverse(data, data + len);
}
}
static Handle<FixedArray> CreateListFromArrayLikeImpl(Isolate* isolate,
Handle<JSObject> object,
uint32_t length) {
Handle<JSTypedArray> typed_array = Handle<JSTypedArray>::cast(object);
Handle<FixedArray> result = isolate->factory()->NewFixedArray(length);
for (uint32_t i = 0; i < length; i++) {
Handle<Object> value = AccessorClass::GetInternalImpl(
isolate, typed_array, InternalIndex(i));
result->set(i, *value);
}
return result;
}
static void CopyTypedArrayElementsSliceImpl(Tagged<JSTypedArray> source,
Tagged<JSTypedArray> destination,
size_t start, size_t end) {
DisallowGarbageCollection no_gc;
DCHECK_EQ(destination->GetElementsKind(), AccessorClass::kind());
CHECK(!source->IsDetachedOrOutOfBounds());
CHECK(!destination->IsDetachedOrOutOfBounds());
DCHECK_LE(start, end);
DCHECK_LE(end, source->GetLength());
size_t count = end - start;
DCHECK_LE(count, destination->GetLength());
ElementType* dest_data = static_cast<ElementType*>(destination->DataPtr());
auto is_shared =
source->buffer()->is_shared() || destination->buffer()->is_shared()
? kShared
: kUnshared;
switch (source->GetElementsKind()) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: { \
ctype* source_data = reinterpret_cast<ctype*>(source->DataPtr()) + start; \
CopyBetweenBackingStores<TYPE##_ELEMENTS, ctype>(source_data, dest_data, \
count, is_shared); \
break; \
}
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, NON_RAB_GSAB_TYPE) \
case TYPE##_ELEMENTS: { \
ctype* source_data = reinterpret_cast<ctype*>(source->DataPtr()) + start; \
CopyBetweenBackingStores<NON_RAB_GSAB_TYPE##_ELEMENTS, ctype>( \
source_data, dest_data, count, is_shared); \
break; \
}
RAB_GSAB_TYPED_ARRAYS_WITH_NON_RAB_GSAB_ELEMENTS_KIND(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
UNREACHABLE();
break;
}
}
// TODO(v8:11111): Update this once we have external RAB / GSAB array types.
static bool HasSimpleRepresentation(ExternalArrayType type) {
return !(type == kExternalFloat32Array || type == kExternalFloat64Array ||
type == kExternalUint8ClampedArray ||
type == kExternalFloat16Array);
}
template <ElementsKind SourceKind, typename SourceElementType>
static void CopyBetweenBackingStores(SourceElementType* source_data_ptr,
ElementType* dest_data_ptr,
size_t length,
IsSharedBuffer is_shared) {
CopyBetweenBackingStoresImpl<Kind, ElementType, SourceKind,
SourceElementType>::Copy(source_data_ptr,
dest_data_ptr, length,
is_shared);
}
static void CopyElementsFromTypedArray(Tagged<JSTypedArray> source,
Tagged<JSTypedArray> destination,
size_t length, size_t offset) {
// The source is a typed array, so we know we don't need to do ToNumber
// side-effects, as the source elements will always be a number.
DisallowGarbageCollection no_gc;
CHECK(!source->IsDetachedOrOutOfBounds());
CHECK(!destination->IsDetachedOrOutOfBounds());
DCHECK_LE(offset, destination->GetLength());
DCHECK_LE(length, destination->GetLength() - offset);
DCHECK_LE(length, source->GetLength());
ExternalArrayType source_type = source->type();
ExternalArrayType destination_type = destination->type();
bool same_type = source_type == destination_type;
bool same_size = source->element_size() == destination->element_size();
bool both_are_simple = HasSimpleRepresentation(source_type) &&
HasSimpleRepresentation(destination_type);
uint8_t* source_data = static_cast<uint8_t*>(source->DataPtr());
uint8_t* dest_data = static_cast<uint8_t*>(destination->DataPtr());
size_t source_byte_length = source->GetByteLength();
size_t dest_byte_length = destination->GetByteLength();
bool source_shared = source->buffer()->is_shared();
bool destination_shared = destination->buffer()->is_shared();
// We can simply copy the backing store if the types are the same, or if
// we are converting e.g. Uint8 <-> Int8, as the binary representation
// will be the same. This is not the case for floats or clamped Uint8,
// which have special conversion operations.
if (same_type || (same_size && both_are_simple)) {
size_t element_size = source->element_size();
if (source_shared || destination_shared) {
base::Relaxed_Memcpy(
reinterpret_cast<base::Atomic8*>(dest_data + offset * element_size),
reinterpret_cast<base::Atomic8*>(source_data),
length * element_size);
} else {
std::memmove(dest_data + offset * element_size, source_data,
length * element_size);
}
} else {
std::unique_ptr<uint8_t[]> cloned_source_elements;
// If the typedarrays are overlapped, clone the source.
if (dest_data + dest_byte_length > source_data &&
source_data + source_byte_length > dest_data) {
cloned_source_elements.reset(new uint8_t[source_byte_length]);
if (source_shared) {
base::Relaxed_Memcpy(
reinterpret_cast<base::Atomic8*>(cloned_source_elements.get()),
reinterpret_cast<base::Atomic8*>(source_data),
source_byte_length);
} else {
std::memcpy(cloned_source_elements.get(), source_data,
source_byte_length);
}
source_data = cloned_source_elements.get();
}
switch (source->GetElementsKind()) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
CopyBetweenBackingStores<TYPE##_ELEMENTS, ctype>( \
reinterpret_cast<ctype*>(source_data), \
reinterpret_cast<ElementType*>(dest_data) + offset, length, \
source_shared || destination_shared ? kShared : kUnshared); \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAY_CASE)
default:
UNREACHABLE();
break;
}
#undef TYPED_ARRAY_CASE
}
}
static bool HoleyPrototypeLookupRequired(Isolate* isolate,
Tagged<Context> context,
Tagged<JSArray> source) {
DisallowGarbageCollection no_gc;
DisallowJavascriptExecution no_js(isolate);
#ifdef V8_ENABLE_FORCE_SLOW_PATH
if (isolate->force_slow_path()) return true;
#endif
Tagged<Object> source_proto = source->map()->prototype();
// Null prototypes are OK - we don't need to do prototype chain lookups on
// them.
if (IsNull(source_proto, isolate)) return false;
if (IsJSProxy(source_proto)) return true;
if (!context->native_context()->is_initial_array_prototype(
JSObject::cast(source_proto))) {
return true;
}
return !Protectors::IsNoElementsIntact(isolate);
}
static bool TryCopyElementsFastNumber(Tagged<Context> context,
Tagged<JSArray> source,
Tagged<JSTypedArray> destination,
size_t length, size_t offset) {
if (IsBigIntTypedArrayElementsKind(Kind)) return false;
Isolate* isolate = source->GetIsolate();
DisallowGarbageCollection no_gc;
DisallowJavascriptExecution no_js(isolate);
CHECK(!destination->WasDetached());
bool out_of_bounds = false;
CHECK_GE(destination->GetLengthOrOutOfBounds(out_of_bounds), length);
CHECK(!out_of_bounds);
size_t current_length;
DCHECK(IsNumber(source->length()) &&
TryNumberToSize(source->length(), &current_length) &&
length <= current_length);
USE(current_length);
size_t dest_length = destination->GetLength();
DCHECK(length + offset <= dest_length);
USE(dest_length);
ElementsKind kind = source->GetElementsKind();
auto destination_shared =
destination->buffer()->is_shared() ? kShared : kUnshared;
// When we find the hole, we normally have to look up the element on the
// prototype chain, which is not handled here and we return false instead.
// When the array has the original array prototype, and that prototype has
// not been changed in a way that would affect lookups, we can just convert
// the hole into undefined.
if (HoleyPrototypeLookupRequired(isolate, context, source)) return false;
Tagged<Oddball> undefined = ReadOnlyRoots(isolate).undefined_value();
ElementType* dest_data =
reinterpret_cast<ElementType*>(destination->DataPtr()) + offset;
// Fast-path for packed Smi kind.
if (kind == PACKED_SMI_ELEMENTS) {
Tagged<FixedArray> source_store = FixedArray::cast(source->elements());
for (size_t i = 0; i < length; i++) {
Tagged<Object> elem = source_store->get(static_cast<int>(i));
ElementType elem_k;
if (IsFloat16TypedArrayElementsKind(Kind))
elem_k = fp16_ieee_from_fp32_value(Smi::ToInt(elem));
else
elem_k = FromScalar(Smi::ToInt(elem));
SetImpl(dest_data + i, elem_k, destination_shared);
}
return true;
} else if (kind == HOLEY_SMI_ELEMENTS) {
Tagged<FixedArray> source_store = FixedArray::cast(source->elements());
for (size_t i = 0; i < length; i++) {
if (source_store->is_the_hole(isolate, static_cast<int>(i))) {
SetImpl(dest_data + i, FromObject(undefined), destination_shared);
} else {
Tagged<Object> elem = source_store->get(static_cast<int>(i));
ElementType elem_k;
if (IsFloat16TypedArrayElementsKind(Kind))
elem_k = fp16_ieee_from_fp32_value(Smi::ToInt(elem));
else
elem_k = FromScalar(Smi::ToInt(elem));
SetImpl(dest_data + i, elem_k, destination_shared);
}
}
return true;
} else if (kind == PACKED_DOUBLE_ELEMENTS) {
// Fast-path for packed double kind. We avoid boxing and then immediately
// unboxing the double here by using get_scalar.
Tagged<FixedDoubleArray> source_store =
FixedDoubleArray::cast(source->elements());
for (size_t i = 0; i < length; i++) {
// Use the from_double conversion for this specific TypedArray type,
// rather than relying on C++ to convert elem.
double elem = source_store->get_scalar(static_cast<int>(i));
SetImpl(dest_data + i, FromScalar(elem), destination_shared);
}
return true;
} else if (kind == HOLEY_DOUBLE_ELEMENTS) {
Tagged<FixedDoubleArray> source_store =
FixedDoubleArray::cast(source->elements());
for (size_t i = 0; i < length; i++) {
if (source_store->is_the_hole(static_cast<int>(i))) {
SetImpl(dest_data + i, FromObject(undefined), destination_shared);
} else {
double elem = source_store->get_scalar(static_cast<int>(i));
SetImpl(dest_data + i, FromScalar(elem), destination_shared);
}
}
return true;
}
return false;
}
// ES#sec-settypedarrayfromarraylike
static Tagged<Object> CopyElementsHandleSlow(Handle<Object> source,
Handle<JSTypedArray> destination,
size_t length, size_t offset) {
Isolate* isolate = destination->GetIsolate();
// 8. Let k be 0.
// 9. Repeat, while k < srcLength,
for (size_t i = 0; i < length; i++) {
Handle<Object> elem;
// a. Let Pk be ! ToString(𝔽(k)).
// b. Let value be ? Get(src, Pk).
LookupIterator it(isolate, source, i);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, elem,
Object::GetProperty(&it));
// c. Let targetIndex be 𝔽(targetOffset + k).
// d. Perform ? IntegerIndexedElementSet(target, targetIndex, value).
//
// Rest of loop body inlines ES#IntegerIndexedElementSet
if (IsBigIntTypedArrayElementsKind(Kind)) {
// 1. If O.[[ContentType]] is BigInt, let numValue be ? ToBigInt(value).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, elem,
BigInt::FromObject(isolate, elem));
} else {
// 2. Otherwise, let numValue be ? ToNumber(value).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, elem,
Object::ToNumber(isolate, elem));
}
// 3. If IsValidIntegerIndex(O, index) is true, then
// a. Let offset be O.[[ByteOffset]].
// b. Let elementSize be TypedArrayElementSize(O).
// c. Let indexedPosition be (ℝ(index) × elementSize) + offset.
// d. Let elementType be TypedArrayElementType(O).
// e. Perform SetValueInBuffer(O.[[ViewedArrayBuffer]],
// indexedPosition, elementType, numValue, true, Unordered).
bool out_of_bounds = false;
size_t new_length = destination->GetLengthOrOutOfBounds(out_of_bounds);
if (V8_UNLIKELY(out_of_bounds || destination->WasDetached() ||
new_length <= offset + i)) {
// Proceed with the loop so that we call get getters for the source even
// though we don't set the values in the target.
continue;
}
SetImpl(destination, InternalIndex(offset + i), *elem);
// e. Set k to k + 1.
}
// 10. Return unused.
return *isolate->factory()->undefined_value();
}
// This doesn't guarantee that the destination array will be completely
// filled. The caller must do this by passing a source with equal length, if
// that is required.
static Tagged<Object> CopyElementsHandleImpl(Handle<Object> source,
Handle<JSObject> destination,
size_t length, size_t offset) {
Isolate* isolate = destination->GetIsolate();
if (length == 0) return *isolate->factory()->undefined_value();
Handle<JSTypedArray> destination_ta =
Handle<JSTypedArray>::cast(destination);
// All conversions from TypedArrays can be done without allocation.
if (IsJSTypedArray(*source)) {
CHECK(!destination_ta->WasDetached());
bool out_of_bounds = false;
CHECK_LE(offset + length,
destination_ta->GetLengthOrOutOfBounds(out_of_bounds));
CHECK(!out_of_bounds);
Handle<JSTypedArray> source_ta = Handle<JSTypedArray>::cast(source);
ElementsKind source_kind = source_ta->GetElementsKind();
bool source_is_bigint = IsBigIntTypedArrayElementsKind(source_kind);
bool target_is_bigint = IsBigIntTypedArrayElementsKind(Kind);
// If we have to copy more elements than we have in the source, we need to
// do special handling and conversion; that happens in the slow case.
if (source_is_bigint == target_is_bigint && !source_ta->WasDetached() &&
length + offset <= source_ta->GetLength()) {
CopyElementsFromTypedArray(*source_ta, *destination_ta, length, offset);
return *isolate->factory()->undefined_value();
}
} else if (IsJSArray(*source)) {
CHECK(!destination_ta->WasDetached());
bool out_of_bounds = false;
CHECK_LE(offset + length,
destination_ta->GetLengthOrOutOfBounds(out_of_bounds));
CHECK(!out_of_bounds);
// Fast cases for packed numbers kinds where we don't need to allocate.
Handle<JSArray> source_js_array = Handle<JSArray>::cast(source);
size_t current_length;
DCHECK(IsNumber(source_js_array->length()));
if (TryNumberToSize(source_js_array->length(), &current_length) &&
length <= current_length) {
Handle<JSArray> source_array = Handle<JSArray>::cast(source);
if (TryCopyElementsFastNumber(isolate->context(), *source_array,
*destination_ta, length, offset)) {
return *isolate->factory()->undefined_value();
}
}
}
// Final generic case that handles prototype chain lookups, getters, proxies
// and observable side effects via valueOf, etc. In this case, it's possible
// that the length getter detached / resized the underlying buffer.
return CopyElementsHandleSlow(source, destination_ta, length, offset);
}
};
template <ElementsKind Kind, typename ElementType, ElementsKind SourceKind,
typename SourceElementType>
struct CopyBetweenBackingStoresImpl {
static void Copy(SourceElementType* source_data_ptr,
ElementType* dest_data_ptr, size_t length,
IsSharedBuffer is_shared) {
for (; length > 0; --length, ++source_data_ptr, ++dest_data_ptr) {
// We use scalar accessors to avoid boxing/unboxing, so there are no
// allocations.
SourceElementType source_elem =
TypedElementsAccessor<SourceKind, SourceElementType>::GetImpl(
source_data_ptr, is_shared);
ElementType dest_elem =
TypedElementsAccessor<Kind, ElementType>::FromScalar(source_elem);
TypedElementsAccessor<Kind, ElementType>::SetImpl(dest_data_ptr,
dest_elem, is_shared);
}
}
};
template <ElementsKind Kind, typename ElementType>
struct CopyBetweenBackingStoresImpl<Kind, ElementType, FLOAT16_ELEMENTS,
uint16_t> {
static void Copy(uint16_t* source_data_ptr, ElementType* dest_data_ptr,
size_t length, IsSharedBuffer is_shared) {
for (; length > 0; --length, ++source_data_ptr, ++dest_data_ptr) {
// We use scalar accessors to avoid boxing/unboxing, so there are no
// allocations.
uint16_t source_elem =
TypedElementsAccessor<FLOAT16_ELEMENTS, uint16_t>::GetImpl(
source_data_ptr, is_shared);
ElementType dest_elem =
TypedElementsAccessor<Kind, ElementType>::FromScalar(
fp16_ieee_to_fp32_value(source_elem));
TypedElementsAccessor<Kind, ElementType>::SetImpl(dest_data_ptr,
dest_elem, is_shared);
}
}
};
template <ElementsKind Kind, typename ElementType>
struct CopyBetweenBackingStoresImpl<Kind, ElementType,
RAB_GSAB_FLOAT16_ELEMENTS, uint16_t> {
static void Copy(uint16_t* source_data_ptr, ElementType* dest_data_ptr,
size_t length, IsSharedBuffer is_shared) {
for (; length > 0; --length, ++source_data_ptr, ++dest_data_ptr) {
// We use scalar accessors to avoid boxing/unboxing, so there are no
// allocations.
uint16_t source_elem =
TypedElementsAccessor<RAB_GSAB_FLOAT16_ELEMENTS, uint16_t>::GetImpl(
source_data_ptr, is_shared);
ElementType dest_elem =
TypedElementsAccessor<Kind, ElementType>::FromScalar(
fp16_ieee_to_fp32_value(source_elem));
TypedElementsAccessor<Kind, ElementType>::SetImpl(dest_data_ptr,
dest_elem, is_shared);
}
}
};
// static
template <>
Handle<Object> TypedElementsAccessor<INT8_ELEMENTS, int8_t>::ToHandle(
Isolate* isolate, int8_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<UINT8_ELEMENTS, uint8_t>::ToHandle(
Isolate* isolate, uint8_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<INT16_ELEMENTS, int16_t>::ToHandle(
Isolate* isolate, int16_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<UINT16_ELEMENTS, uint16_t>::ToHandle(
Isolate* isolate, uint16_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<INT32_ELEMENTS, int32_t>::ToHandle(
Isolate* isolate, int32_t value) {
return isolate->factory()->NewNumberFromInt(value);
}
// static
template <>
Handle<Object> TypedElementsAccessor<UINT32_ELEMENTS, uint32_t>::ToHandle(
Isolate* isolate, uint32_t value) {
return isolate->factory()->NewNumberFromUint(value);
}
// static
template <>
uint16_t TypedElementsAccessor<FLOAT16_ELEMENTS, uint16_t>::FromScalar(
double value) {
return DoubleToFloat16(value);
}
// static
template <>
float TypedElementsAccessor<FLOAT32_ELEMENTS, float>::FromScalar(double value) {
return DoubleToFloat32(value);
}
// static
template <>
uint16_t TypedElementsAccessor<FLOAT16_ELEMENTS, uint16_t>::FromScalar(
int value) {
return fp16_ieee_from_fp32_value(value);
}
// static
template <>
uint16_t TypedElementsAccessor<FLOAT16_ELEMENTS, uint16_t>::FromScalar(
uint32_t value) {
return fp16_ieee_from_fp32_value(value);
}
// static
template <>
Handle<Object> TypedElementsAccessor<FLOAT16_ELEMENTS, uint16_t>::ToHandle(
Isolate* isolate, uint16_t value) {
return isolate->factory()->NewNumber(fp16_ieee_to_fp32_value(value));
}
// static
template <>
Handle<Object> TypedElementsAccessor<FLOAT32_ELEMENTS, float>::ToHandle(
Isolate* isolate, float value) {
return isolate->factory()->NewNumber(value);
}
// static
template <>
double TypedElementsAccessor<FLOAT64_ELEMENTS, double>::FromScalar(
double value) {
return value;
}
// static
template <>
Handle<Object> TypedElementsAccessor<FLOAT64_ELEMENTS, double>::ToHandle(
Isolate* isolate, double value) {
return isolate->factory()->NewNumber(value);
}
// static
template <>
uint8_t TypedElementsAccessor<UINT8_CLAMPED_ELEMENTS, uint8_t>::FromScalar(
int value) {
if (value < 0x00) return 0x00;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
// static
template <>
uint8_t TypedElementsAccessor<UINT8_CLAMPED_ELEMENTS, uint8_t>::FromScalar(
uint32_t value) {
// We need this special case for Uint32 -> Uint8Clamped, because the highest
// Uint32 values will be negative as an int, clamping to 0, rather than 255.
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
// static
template <>
uint8_t TypedElementsAccessor<UINT8_CLAMPED_ELEMENTS, uint8_t>::FromScalar(
double value) {
// Handle NaNs and less than zero values which clamp to zero.
if (!(value > 0)) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(lrint(value));
}
// static
template <>
Handle<Object> TypedElementsAccessor<UINT8_CLAMPED_ELEMENTS, uint8_t>::ToHandle(
Isolate* isolate, uint8_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
int64_t TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::FromScalar(
int value) {
UNREACHABLE();
}
// static
template <>
int64_t TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::FromScalar(
uint32_t value) {
UNREACHABLE();
}
// static
template <>
int64_t TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::FromScalar(
double value) {
UNREACHABLE();
}
// static
template <>
int64_t TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::FromScalar(
int64_t value) {
return value;
}
// static
template <>
int64_t TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::FromScalar(
uint64_t value) {
return static_cast<int64_t>(value);
}
// static
template <>
int64_t TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::FromObject(
Tagged<Object> value, bool* lossless) {
return BigInt::cast(value)->AsInt64(lossless);
}
// static
template <>
Handle<Object> TypedElementsAccessor<BIGINT64_ELEMENTS, int64_t>::ToHandle(
Isolate* isolate, int64_t value) {
return BigInt::FromInt64(isolate, value);
}
// static
template <>
uint64_t TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::FromScalar(
int value) {
UNREACHABLE();
}
// static
template <>
uint64_t TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::FromScalar(
uint32_t value) {
UNREACHABLE();
}
// static
template <>
uint64_t TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::FromScalar(
double value) {
UNREACHABLE();
}
// static
template <>
uint64_t TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::FromScalar(
int64_t value) {
return static_cast<uint64_t>(value);
}
// static
template <>
uint64_t TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::FromScalar(
uint64_t value) {
return value;
}
// static
template <>
uint64_t TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::FromObject(
Tagged<Object> value, bool* lossless) {
return BigInt::cast(value)->AsUint64(lossless);
}
// static
template <>
Handle<Object> TypedElementsAccessor<BIGUINT64_ELEMENTS, uint64_t>::ToHandle(
Isolate* isolate, uint64_t value) {
return BigInt::FromUint64(isolate, value);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_INT8_ELEMENTS, int8_t>::ToHandle(
Isolate* isolate, int8_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_UINT8_ELEMENTS,
uint8_t>::ToHandle(Isolate* isolate,
uint8_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_INT16_ELEMENTS,
int16_t>::ToHandle(Isolate* isolate,
int16_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_UINT16_ELEMENTS,
uint16_t>::ToHandle(Isolate* isolate,
uint16_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_INT32_ELEMENTS,
int32_t>::ToHandle(Isolate* isolate,
int32_t value) {
return isolate->factory()->NewNumberFromInt(value);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_UINT32_ELEMENTS,
uint32_t>::ToHandle(Isolate* isolate,
uint32_t value) {
return isolate->factory()->NewNumberFromUint(value);
}
// static
template <>
uint16_t TypedElementsAccessor<RAB_GSAB_FLOAT16_ELEMENTS, uint16_t>::FromScalar(
double value) {
return DoubleToFloat16(value);
}
// static
template <>
uint16_t TypedElementsAccessor<RAB_GSAB_FLOAT16_ELEMENTS, uint16_t>::FromScalar(
int value) {
return fp16_ieee_from_fp32_value(value);
}
// static
template <>
uint16_t TypedElementsAccessor<RAB_GSAB_FLOAT16_ELEMENTS, uint16_t>::FromScalar(
uint32_t value) {
return fp16_ieee_from_fp32_value(value);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_FLOAT16_ELEMENTS,
uint16_t>::ToHandle(Isolate* isolate,
uint16_t value) {
return isolate->factory()->NewHeapNumber(fp16_ieee_to_fp32_value(value));
}
// static
template <>
float TypedElementsAccessor<RAB_GSAB_FLOAT32_ELEMENTS, float>::FromScalar(
double value) {
return DoubleToFloat32(value);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_FLOAT32_ELEMENTS,
float>::ToHandle(Isolate* isolate,
float value) {
return isolate->factory()->NewNumber(value);
}
// static
template <>
double TypedElementsAccessor<RAB_GSAB_FLOAT64_ELEMENTS, double>::FromScalar(
double value) {
return value;
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_FLOAT64_ELEMENTS,
double>::ToHandle(Isolate* isolate,
double value) {
return isolate->factory()->NewNumber(value);
}
// static
template <>
uint8_t TypedElementsAccessor<RAB_GSAB_UINT8_CLAMPED_ELEMENTS,
uint8_t>::FromScalar(int value) {
if (value < 0x00) return 0x00;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
// static
template <>
uint8_t TypedElementsAccessor<RAB_GSAB_UINT8_CLAMPED_ELEMENTS,
uint8_t>::FromScalar(uint32_t value) {
// We need this special case for Uint32 -> Uint8Clamped, because the highest
// Uint32 values will be negative as an int, clamping to 0, rather than 255.
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
// static
template <>
uint8_t TypedElementsAccessor<RAB_GSAB_UINT8_CLAMPED_ELEMENTS,
uint8_t>::FromScalar(double value) {
// Handle NaNs and less than zero values which clamp to zero.
if (!(value > 0)) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(lrint(value));
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_UINT8_CLAMPED_ELEMENTS,
uint8_t>::ToHandle(Isolate* isolate,
uint8_t value) {
return handle(Smi::FromInt(value), isolate);
}
// static
template <>
int64_t TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS, int64_t>::FromScalar(
int value) {
UNREACHABLE();
}
// static
template <>
int64_t TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS, int64_t>::FromScalar(
uint32_t value) {
UNREACHABLE();
}
// static
template <>
int64_t TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS, int64_t>::FromScalar(
double value) {
UNREACHABLE();
}
// static
template <>
int64_t TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS, int64_t>::FromScalar(
int64_t value) {
return value;
}
// static
template <>
int64_t TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS, int64_t>::FromScalar(
uint64_t value) {
return static_cast<int64_t>(value);
}
// static
template <>
int64_t TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS, int64_t>::FromObject(
Tagged<Object> value, bool* lossless) {
return BigInt::cast(value)->AsInt64(lossless);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_BIGINT64_ELEMENTS,
int64_t>::ToHandle(Isolate* isolate,
int64_t value) {
return BigInt::FromInt64(isolate, value);
}
// static
template <>
uint64_t TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::FromScalar(int value) {
UNREACHABLE();
}
// static
template <>
uint64_t TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::FromScalar(uint32_t value) {
UNREACHABLE();
}
// static
template <>
uint64_t TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::FromScalar(double value) {
UNREACHABLE();
}
// static
template <>
uint64_t TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::FromScalar(int64_t value) {
return static_cast<uint64_t>(value);
}
// static
template <>
uint64_t TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::FromScalar(uint64_t value) {
return value;
}
// static
template <>
uint64_t TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::FromObject(Tagged<Object> value,
bool* lossless) {
return BigInt::cast(value)->AsUint64(lossless);
}
// static
template <>
Handle<Object> TypedElementsAccessor<RAB_GSAB_BIGUINT64_ELEMENTS,
uint64_t>::ToHandle(Isolate* isolate,
uint64_t value) {
return BigInt::FromUint64(isolate, value);
}
#define FIXED_ELEMENTS_ACCESSOR(Type, type, TYPE, ctype) \
using Type##ElementsAccessor = TypedElementsAccessor<TYPE##_ELEMENTS, ctype>;
TYPED_ARRAYS(FIXED_ELEMENTS_ACCESSOR)
RAB_GSAB_TYPED_ARRAYS(FIXED_ELEMENTS_ACCESSOR)
#undef FIXED_ELEMENTS_ACCESSOR
template <typename Subclass, typename ArgumentsAccessor, typename KindTraits>
class SloppyArgumentsElementsAccessor
: public ElementsAccessorBase<Subclass, KindTraits> {
public:
static void ConvertArgumentsStoreResult(
Handle<SloppyArgumentsElements> elements, Handle<Object> result) {
UNREACHABLE();
}
static Handle<Object> GetImpl(Isolate* isolate,
Tagged<FixedArrayBase> parameters,
InternalIndex entry) {
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(parameters), isolate);
uint32_t length = elements->length();
if (entry.as_uint32() < length) {
// Read context mapped entry.
DisallowGarbageCollection no_gc;
Tagged<Object> probe =
elements->mapped_entries(entry.as_uint32(), kRelaxedLoad);
DCHECK(!IsTheHole(probe, isolate));
Tagged<Context> context = elements->context();
int context_entry = Smi::ToInt(probe);
DCHECK(!IsTheHole(context->get(context_entry), isolate));
return handle(context->get(context_entry), isolate);
} else {
// Entry is not context mapped, defer to the arguments.
Handle<Object> result = ArgumentsAccessor::GetImpl(
isolate, elements->arguments(), entry.adjust_down(length));
return Subclass::ConvertArgumentsStoreResult(isolate, elements, result);
}
}
static Maybe<bool> TransitionElementsKindImpl(Handle<JSObject> object,
Handle<Map> map) {
UNREACHABLE();
}
static Maybe<bool> GrowCapacityAndConvertImpl(Handle<JSObject> object,
uint32_t capacity) {
UNREACHABLE();
}
static inline void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
SetImpl(holder->elements(), entry, value);
}
static inline void SetImpl(Tagged<FixedArrayBase> store, InternalIndex entry,
Tagged<Object> value) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(store);
uint32_t length = elements->length();
if (entry.as_uint32() < length) {
// Store context mapped entry.
DisallowGarbageCollection no_gc;
Tagged<Object> probe =
elements->mapped_entries(entry.as_uint32(), kRelaxedLoad);
DCHECK(!IsTheHole(probe));
Tagged<Context> context = Context::cast(elements->context());
int context_entry = Smi::ToInt(probe);
DCHECK(!IsTheHole(context->get(context_entry)));
context->set(context_entry, value);
} else {
// Entry is not context mapped defer to arguments.
Tagged<FixedArray> arguments = elements->arguments();
Tagged<Object> current =
ArgumentsAccessor::GetRaw(arguments, entry.adjust_down(length));
if (IsAliasedArgumentsEntry(current)) {
Tagged<AliasedArgumentsEntry> alias =
AliasedArgumentsEntry::cast(current);
Tagged<Context> context = Context::cast(elements->context());
int context_entry = alias->aliased_context_slot();
DCHECK(!IsTheHole(context->get(context_entry)));
context->set(context_entry, value);
} else {
ArgumentsAccessor::SetImpl(arguments, entry.adjust_down(length), value);
}
}
}
static Maybe<bool> SetLengthImpl(Isolate* isolate, Handle<JSArray> array,
uint32_t length,
Handle<FixedArrayBase> parameter_map) {
// Sloppy arguments objects are not arrays.
UNREACHABLE();
}
static uint32_t GetCapacityImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> store) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(store);
Tagged<FixedArray> arguments = elements->arguments();
return elements->length() +
ArgumentsAccessor::GetCapacityImpl(holder, arguments);
}
static uint32_t GetMaxNumberOfEntries(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(backing_store);
Tagged<FixedArrayBase> arguments = elements->arguments();
size_t max_entries =
ArgumentsAccessor::GetMaxNumberOfEntries(holder, arguments);
DCHECK_LE(max_entries, std::numeric_limits<uint32_t>::max());
return elements->length() + static_cast<uint32_t>(max_entries);
}
static uint32_t NumberOfElementsImpl(Tagged<JSObject> receiver,
Tagged<FixedArrayBase> backing_store) {
Isolate* isolate = receiver->GetIsolate();
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(backing_store);
Tagged<FixedArrayBase> arguments = elements->arguments();
uint32_t nof_elements = 0;
uint32_t length = elements->length();
for (uint32_t index = 0; index < length; index++) {
if (HasParameterMapArg(isolate, elements, index)) nof_elements++;
}
return nof_elements +
ArgumentsAccessor::NumberOfElementsImpl(receiver, arguments);
}
V8_WARN_UNUSED_RESULT static ExceptionStatus AddElementsToKeyAccumulatorImpl(
Handle<JSObject> receiver, KeyAccumulator* accumulator,
AddKeyConversion convert) {
Isolate* isolate = accumulator->isolate();
Handle<FixedArrayBase> elements(receiver->elements(), isolate);
uint32_t length = GetCapacityImpl(*receiver, *elements);
for (uint32_t index = 0; index < length; index++) {
InternalIndex entry(index);
if (!HasEntryImpl(isolate, *elements, entry)) continue;
Handle<Object> value = GetImpl(isolate, *elements, entry);
RETURN_FAILURE_IF_NOT_SUCCESSFUL(accumulator->AddKey(value, convert));
}
return ExceptionStatus::kSuccess;
}
static bool HasEntryImpl(Isolate* isolate, Tagged<FixedArrayBase> parameters,
InternalIndex entry) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(parameters);
uint32_t length = elements->length();
if (entry.raw_value() < length) {
return HasParameterMapArg(isolate, elements, entry.raw_value());
}
Tagged<FixedArrayBase> arguments = elements->arguments();
return ArgumentsAccessor::HasEntryImpl(isolate, arguments,
entry.adjust_down(length));
}
static bool HasAccessorsImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(backing_store);
Tagged<FixedArray> arguments = elements->arguments();
return ArgumentsAccessor::HasAccessorsImpl(holder, arguments);
}
static InternalIndex GetEntryForIndexImpl(Isolate* isolate,
Tagged<JSObject> holder,
Tagged<FixedArrayBase> parameters,
size_t index,
PropertyFilter filter) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(parameters);
if (HasParameterMapArg(isolate, elements, index)) {
return InternalIndex(index);
}
Tagged<FixedArray> arguments = elements->arguments();
InternalIndex entry = ArgumentsAccessor::GetEntryForIndexImpl(
isolate, holder, arguments, index, filter);
if (entry.is_not_found()) return entry;
// Arguments entries could overlap with the dictionary entries, hence offset
// them by the number of context mapped entries.
return entry.adjust_up(elements->length());
}
static PropertyDetails GetDetailsImpl(Tagged<JSObject> holder,
InternalIndex entry) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(holder->elements());
uint32_t length = elements->length();
if (entry.as_uint32() < length) {
return PropertyDetails(PropertyKind::kData, NONE,
PropertyCellType::kNoCell);
}
Tagged<FixedArray> arguments = elements->arguments();
return ArgumentsAccessor::GetDetailsImpl(arguments,
entry.adjust_down(length));
}
static bool HasParameterMapArg(Isolate* isolate,
Tagged<SloppyArgumentsElements> elements,
size_t index) {
uint32_t length = elements->length();
if (index >= length) return false;
return !IsTheHole(
elements->mapped_entries(static_cast<uint32_t>(index), kRelaxedLoad),
isolate);
}
static void DeleteImpl(Handle<JSObject> obj, InternalIndex entry) {
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(obj->elements()), obj->GetIsolate());
uint32_t length = elements->length();
InternalIndex delete_or_entry = entry;
if (entry.as_uint32() < length) {
delete_or_entry = InternalIndex::NotFound();
}
Subclass::SloppyDeleteImpl(obj, elements, delete_or_entry);
// SloppyDeleteImpl allocates a new dictionary elements store. For making
// heap verification happy we postpone clearing out the mapped entry.
if (entry.as_uint32() < length) {
elements->set_mapped_entries(entry.as_uint32(),
obj->GetReadOnlyRoots().the_hole_value());
}
}
static void SloppyDeleteImpl(Handle<JSObject> obj,
Handle<SloppyArgumentsElements> elements,
InternalIndex entry) {
// Implemented in subclasses.
UNREACHABLE();
}
V8_WARN_UNUSED_RESULT static ExceptionStatus CollectElementIndicesImpl(
Handle<JSObject> object, Handle<FixedArrayBase> backing_store,
KeyAccumulator* keys) {
Isolate* isolate = keys->isolate();
uint32_t nof_indices = 0;
Handle<FixedArray> indices = isolate->factory()->NewFixedArray(
GetCapacityImpl(*object, *backing_store));
DirectCollectElementIndicesImpl(isolate, object, backing_store,
GetKeysConversion::kKeepNumbers,
ENUMERABLE_STRINGS, indices, &nof_indices);
SortIndices(isolate, indices, nof_indices);
for (uint32_t i = 0; i < nof_indices; i++) {
RETURN_FAILURE_IF_NOT_SUCCESSFUL(keys->AddKey(indices->get(i)));
}
return ExceptionStatus::kSuccess;
}
static Handle<FixedArray> DirectCollectElementIndicesImpl(
Isolate* isolate, Handle<JSObject> object,
Handle<FixedArrayBase> backing_store, GetKeysConversion convert,
PropertyFilter filter, Handle<FixedArray> list, uint32_t* nof_indices,
uint32_t insertion_index = 0) {
Handle<SloppyArgumentsElements> elements =
Handle<SloppyArgumentsElements>::cast(backing_store);
uint32_t length = elements->length();
for (uint32_t i = 0; i < length; ++i) {
if (IsTheHole(elements->mapped_entries(i, kRelaxedLoad), isolate))
continue;
if (convert == GetKeysConversion::kConvertToString) {
Handle<String> index_string = isolate->factory()->Uint32ToString(i);
list->set(insertion_index, *index_string);
} else {
list->set(insertion_index, Smi::FromInt(i));
}
insertion_index++;
}
Handle<FixedArray> store(elements->arguments(), isolate);
return ArgumentsAccessor::DirectCollectElementIndicesImpl(
isolate, object, store, convert, filter, list, nof_indices,
insertion_index);
}
static Maybe<bool> IncludesValueImpl(Isolate* isolate,
Handle<JSObject> object,
Handle<Object> value, size_t start_from,
size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *object));
Handle<Map> original_map(object->map(), isolate);
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(object->elements()), isolate);
bool search_for_hole = IsUndefined(*value, isolate);
for (size_t k = start_from; k < length; ++k) {
DCHECK_EQ(object->map(), *original_map);
InternalIndex entry =
GetEntryForIndexImpl(isolate, *object, *elements, k, ALL_PROPERTIES);
if (entry.is_not_found()) {
if (search_for_hole) return Just(true);
continue;
}
Handle<Object> element_k = Subclass::GetImpl(isolate, *elements, entry);
if (IsAccessorPair(*element_k)) {
LookupIterator it(isolate, object, k, LookupIterator::OWN);
DCHECK(it.IsFound());
DCHECK_EQ(it.state(), LookupIterator::ACCESSOR);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_k,
Object::GetPropertyWithAccessor(&it),
Nothing<bool>());
if (Object::SameValueZero(*value, *element_k)) return Just(true);
if (object->map() != *original_map) {
// Some mutation occurred in accessor. Abort "fast" path
return IncludesValueSlowPath(isolate, object, value, k + 1, length);
}
} else if (Object::SameValueZero(*value, *element_k)) {
return Just(true);
}
}
return Just(false);
}
static Maybe<int64_t> IndexOfValueImpl(Isolate* isolate,
Handle<JSObject> object,
Handle<Object> value,
size_t start_from, size_t length) {
DCHECK(JSObject::PrototypeHasNoElements(isolate, *object));
Handle<Map> original_map(object->map(), isolate);
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(object->elements()), isolate);
for (size_t k = start_from; k < length; ++k) {
DCHECK_EQ(object->map(), *original_map);
InternalIndex entry =
GetEntryForIndexImpl(isolate, *object, *elements, k, ALL_PROPERTIES);
if (entry.is_not_found()) {
continue;
}
Handle<Object> element_k = Subclass::GetImpl(isolate, *elements, entry);
if (IsAccessorPair(*element_k)) {
LookupIterator it(isolate, object, k, LookupIterator::OWN);
DCHECK(it.IsFound());
DCHECK_EQ(it.state(), LookupIterator::ACCESSOR);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_k,
Object::GetPropertyWithAccessor(&it),
Nothing<int64_t>());
if (Object::StrictEquals(*value, *element_k)) {
return Just<int64_t>(k);
}
if (object->map() != *original_map) {
// Some mutation occurred in accessor. Abort "fast" path.
return IndexOfValueSlowPath(isolate, object, value, k + 1, length);
}
} else if (Object::StrictEquals(*value, *element_k)) {
return Just<int64_t>(k);
}
}
return Just<int64_t>(-1);
}
};
class SlowSloppyArgumentsElementsAccessor
: public SloppyArgumentsElementsAccessor<
SlowSloppyArgumentsElementsAccessor, DictionaryElementsAccessor,
ElementsKindTraits<SLOW_SLOPPY_ARGUMENTS_ELEMENTS>> {
public:
static Handle<Object> ConvertArgumentsStoreResult(
Isolate* isolate, Handle<SloppyArgumentsElements> elements,
Handle<Object> result) {
// Elements of the arguments object in slow mode might be slow aliases.
if (IsAliasedArgumentsEntry(*result)) {
DisallowGarbageCollection no_gc;
Tagged<AliasedArgumentsEntry> alias =
AliasedArgumentsEntry::cast(*result);
Tagged<Context> context = elements->context();
int context_entry = alias->aliased_context_slot();
DCHECK(!IsTheHole(context->get(context_entry), isolate));
return handle(context->get(context_entry), isolate);
}
return result;
}
static void SloppyDeleteImpl(Handle<JSObject> obj,
Handle<SloppyArgumentsElements> elements,
InternalIndex entry) {
// No need to delete a context mapped entry from the arguments elements.
if (entry.is_not_found()) return;
Isolate* isolate = obj->GetIsolate();
Handle<NumberDictionary> dict(NumberDictionary::cast(elements->arguments()),
isolate);
uint32_t length = elements->length();
dict =
NumberDictionary::DeleteEntry(isolate, dict, entry.adjust_down(length));
elements->set_arguments(*dict);
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
Isolate* isolate = object->GetIsolate();
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(object->elements()), isolate);
Handle<FixedArrayBase> old_arguments(elements->arguments(), isolate);
Handle<NumberDictionary> dictionary =
IsNumberDictionary(*old_arguments)
? Handle<NumberDictionary>::cast(old_arguments)
: JSObject::NormalizeElements(object);
PropertyDetails details(PropertyKind::kData, attributes,
PropertyCellType::kNoCell);
Handle<NumberDictionary> new_dictionary =
NumberDictionary::Add(isolate, dictionary, index, value, details);
if (attributes != NONE) object->RequireSlowElements(*new_dictionary);
if (*dictionary != *new_dictionary) {
elements->set_arguments(*new_dictionary);
}
return Just(true);
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
Isolate* isolate = object->GetIsolate();
Handle<SloppyArgumentsElements> elements =
Handle<SloppyArgumentsElements>::cast(store);
uint32_t length = elements->length();
if (entry.as_uint32() < length) {
Tagged<Object> probe =
elements->mapped_entries(entry.as_uint32(), kRelaxedLoad);
DCHECK(!IsTheHole(probe, isolate));
Tagged<Context> context = elements->context();
int context_entry = Smi::ToInt(probe);
DCHECK(!IsTheHole(context->get(context_entry), isolate));
context->set(context_entry, *value);
// Redefining attributes of an aliased element destroys fast aliasing.
elements->set_mapped_entries(entry.as_uint32(),
ReadOnlyRoots(isolate).the_hole_value());
// For elements that are still writable we re-establish slow aliasing.
if ((attributes & READ_ONLY) == 0) {
value = isolate->factory()->NewAliasedArgumentsEntry(context_entry);
}
PropertyDetails details(PropertyKind::kData, attributes,
PropertyCellType::kNoCell);
Handle<NumberDictionary> arguments(
NumberDictionary::cast(elements->arguments()), isolate);
arguments = NumberDictionary::Add(isolate, arguments, entry.as_uint32(),
value, details);
// If the attributes were NONE, we would have called set rather than
// reconfigure.
DCHECK_NE(NONE, attributes);
object->RequireSlowElements(*arguments);
elements->set_arguments(*arguments);
} else {
Handle<FixedArrayBase> arguments(elements->arguments(), isolate);
DictionaryElementsAccessor::ReconfigureImpl(
object, arguments, entry.adjust_down(length), value, attributes);
}
}
};
class FastSloppyArgumentsElementsAccessor
: public SloppyArgumentsElementsAccessor<
FastSloppyArgumentsElementsAccessor, FastHoleyObjectElementsAccessor,
ElementsKindTraits<FAST_SLOPPY_ARGUMENTS_ELEMENTS>> {
public:
static Handle<Object> ConvertArgumentsStoreResult(
Isolate* isolate, Handle<SloppyArgumentsElements> paramtere_map,
Handle<Object> result) {
DCHECK(!IsAliasedArgumentsEntry(*result));
return result;
}
static Handle<FixedArray> GetArguments(Isolate* isolate,
Tagged<FixedArrayBase> store) {
Tagged<SloppyArgumentsElements> elements =
SloppyArgumentsElements::cast(store);
return Handle<FixedArray>(elements->arguments(), isolate);
}
static Handle<NumberDictionary> NormalizeImpl(
Handle<JSObject> object, Handle<FixedArrayBase> elements) {
Handle<FixedArray> arguments =
GetArguments(object->GetIsolate(), *elements);
return FastHoleyObjectElementsAccessor::NormalizeImpl(object, arguments);
}
static Handle<NumberDictionary> NormalizeArgumentsElements(
Handle<JSObject> object, Handle<SloppyArgumentsElements> elements,
InternalIndex* entry) {
Handle<NumberDictionary> dictionary = JSObject::NormalizeElements(object);
elements->set_arguments(*dictionary);
// kMaxUInt32 indicates that a context mapped element got deleted. In this
// case we only normalize the elements (aka. migrate to SLOW_SLOPPY).
if (entry->is_not_found()) return dictionary;
uint32_t length = elements->length();
if (entry->as_uint32() >= length) {
*entry =
dictionary
->FindEntry(object->GetIsolate(), entry->as_uint32() - length)
.adjust_up(length);
}
return dictionary;
}
static void SloppyDeleteImpl(Handle<JSObject> obj,
Handle<SloppyArgumentsElements> elements,
InternalIndex entry) {
// Always normalize element on deleting an entry.
NormalizeArgumentsElements(obj, elements, &entry);
SlowSloppyArgumentsElementsAccessor::SloppyDeleteImpl(obj, elements, entry);
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
DCHECK_EQ(NONE, attributes);
Isolate* isolate = object->GetIsolate();
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(object->elements()), isolate);
Handle<FixedArray> old_arguments(elements->arguments(), isolate);
if (IsNumberDictionary(*old_arguments) ||
static_cast<uint32_t>(old_arguments->length()) < new_capacity) {
MAYBE_RETURN(GrowCapacityAndConvertImpl(object, new_capacity),
Nothing<bool>());
}
Tagged<FixedArray> arguments = elements->arguments();
// For fast holey objects, the entry equals the index. The code above made
// sure that there's enough space to store the value. We cannot convert
// index to entry explicitly since the slot still contains the hole, so the
// current EntryForIndex would indicate that it is "absent" by returning
// kMaxUInt32.
FastHoleyObjectElementsAccessor::SetImpl(arguments, InternalIndex(index),
*value);
return Just(true);
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
DCHECK_EQ(object->elements(), *store);
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(*store), object->GetIsolate());
NormalizeArgumentsElements(object, elements, &entry);
SlowSloppyArgumentsElementsAccessor::ReconfigureImpl(object, store, entry,
value, attributes);
}
static void CopyElementsImpl(Isolate* isolate, Tagged<FixedArrayBase> from,
uint32_t from_start, Tagged<FixedArrayBase> to,
ElementsKind from_kind, uint32_t to_start,
int packed_size, int copy_size) {
DCHECK(!IsNumberDictionary(to));
if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) {
CopyDictionaryToObjectElements(isolate, from, from_start, to,
HOLEY_ELEMENTS, to_start, copy_size);
} else {
DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, from_kind);
CopyObjectToObjectElements(isolate, from, HOLEY_ELEMENTS, from_start, to,
HOLEY_ELEMENTS, to_start, copy_size);
}
}
static Maybe<bool> GrowCapacityAndConvertImpl(Handle<JSObject> object,
uint32_t capacity) {
Isolate* isolate = object->GetIsolate();
Handle<SloppyArgumentsElements> elements(
SloppyArgumentsElements::cast(object->elements()), isolate);
Handle<FixedArray> old_arguments(FixedArray::cast(elements->arguments()),
isolate);
ElementsKind from_kind = object->GetElementsKind();
// This method should only be called if there's a reason to update the
// elements.
DCHECK(from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS ||
static_cast<uint32_t>(old_arguments->length()) < capacity);
Handle<FixedArrayBase> arguments;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, arguments,
ConvertElementsWithCapacity(object, old_arguments, from_kind, capacity),
Nothing<bool>());
Handle<Map> new_map = JSObject::GetElementsTransitionMap(
object, FAST_SLOPPY_ARGUMENTS_ELEMENTS);
JSObject::MigrateToMap(isolate, object, new_map);
elements->set_arguments(FixedArray::cast(*arguments));
JSObject::ValidateElements(*object);
return Just(true);
}
};
template <typename Subclass, typename BackingStoreAccessor, typename KindTraits>
class StringWrapperElementsAccessor
: public ElementsAccessorBase<Subclass, KindTraits> {
public:
static Handle<Object> GetInternalImpl(Isolate* isolate,
Handle<JSObject> holder,
InternalIndex entry) {
return GetImpl(holder, entry);
}
static Handle<Object> GetImpl(Handle<JSObject> holder, InternalIndex entry) {
Isolate* isolate = holder->GetIsolate();
Handle<String> string(GetString(*holder), isolate);
uint32_t length = static_cast<uint32_t>(string->length());
if (entry.as_uint32() < length) {
return isolate->factory()->LookupSingleCharacterStringFromCode(
String::Flatten(isolate, string)->Get(entry.as_int()));
}
return BackingStoreAccessor::GetImpl(isolate, holder->elements(),
entry.adjust_down(length));
}
static Handle<Object> GetImpl(Isolate* isolate,
Tagged<FixedArrayBase> elements,
InternalIndex entry) {
UNREACHABLE();
}
static PropertyDetails GetDetailsImpl(Tagged<JSObject> holder,
InternalIndex entry) {
uint32_t length = static_cast<uint32_t>(GetString(holder)->length());
if (entry.as_uint32() < length) {
PropertyAttributes attributes =
static_cast<PropertyAttributes>(READ_ONLY | DONT_DELETE);
return PropertyDetails(PropertyKind::kData, attributes,
PropertyCellType::kNoCell);
}
return BackingStoreAccessor::GetDetailsImpl(holder,
entry.adjust_down(length));
}
static InternalIndex GetEntryForIndexImpl(
Isolate* isolate, Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store, size_t index,
PropertyFilter filter) {
uint32_t length = static_cast<uint32_t>(GetString(holder)->length());
if (index < length) return InternalIndex(index);
InternalIndex backing_store_entry =
BackingStoreAccessor::GetEntryForIndexImpl(
isolate, holder, backing_store, index, filter);
if (backing_store_entry.is_not_found()) return backing_store_entry;
return backing_store_entry.adjust_up(length);
}
static void DeleteImpl(Handle<JSObject> holder, InternalIndex entry) {
uint32_t length = static_cast<uint32_t>(GetString(*holder)->length());
if (entry.as_uint32() < length) {
return; // String contents can't be deleted.
}
BackingStoreAccessor::DeleteImpl(holder, entry.adjust_down(length));
}
static void SetImpl(Handle<JSObject> holder, InternalIndex entry,
Tagged<Object> value) {
uint32_t length = static_cast<uint32_t>(GetString(*holder)->length());
if (entry.as_uint32() < length) {
return; // String contents are read-only.
}
BackingStoreAccessor::SetImpl(holder->elements(), entry.adjust_down(length),
value);
}
static Maybe<bool> AddImpl(Handle<JSObject> object, uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
uint32_t new_capacity) {
DCHECK(index >= static_cast<uint32_t>(GetString(*object)->length()));
// Explicitly grow fast backing stores if needed. Dictionaries know how to
// extend their capacity themselves.
if (KindTraits::Kind == FAST_STRING_WRAPPER_ELEMENTS &&
(object->GetElementsKind() == SLOW_STRING_WRAPPER_ELEMENTS ||
BackingStoreAccessor::GetCapacityImpl(*object, object->elements()) !=
new_capacity)) {
MAYBE_RETURN(GrowCapacityAndConvertImpl(object, new_capacity),
Nothing<bool>());
}
BackingStoreAccessor::AddImpl(object, index, value, attributes,
new_capacity);
return Just(true);
}
static void ReconfigureImpl(Handle<JSObject> object,
Handle<FixedArrayBase> store, InternalIndex entry,
Handle<Object> value,
PropertyAttributes attributes) {
uint32_t length = static_cast<uint32_t>(GetString(*object)->length());
if (entry.as_uint32() < length) {
return; // String contents can't be reconfigured.
}
BackingStoreAccessor::ReconfigureImpl(
object, store, entry.adjust_down(length), value, attributes);
}
V8_WARN_UNUSED_RESULT static ExceptionStatus AddElementsToKeyAccumulatorImpl(
Handle<JSObject> receiver, KeyAccumulator* accumulator,
AddKeyConversion convert) {
Isolate* isolate = receiver->GetIsolate();
Handle<String> string(GetString(*receiver), isolate);
string = String::Flatten(isolate, string);
uint32_t length = static_cast<uint32_t>(string->length());
for (uint32_t i = 0; i < length; i++) {
Handle<String> key =
isolate->factory()->LookupSingleCharacterStringFromCode(
string->Get(i));
RETURN_FAILURE_IF_NOT_SUCCESSFUL(accumulator->AddKey(key, convert));
}
return BackingStoreAccessor::AddElementsToKeyAccumulatorImpl(
receiver, accumulator, convert);
}
V8_WARN_UNUSED_RESULT static ExceptionStatus CollectElementIndicesImpl(
Handle<JSObject> object, Handle<FixedArrayBase> backing_store,
KeyAccumulator* keys) {
uint32_t length = GetString(*object)->length();
Factory* factory = keys->isolate()->factory();
for (uint32_t i = 0; i < length; i++) {
RETURN_FAILURE_IF_NOT_SUCCESSFUL(
keys->AddKey(factory->NewNumberFromUint(i)));
}
return BackingStoreAccessor::CollectElementIndicesImpl(object,
backing_store, keys);
}
static Maybe<bool> GrowCapacityAndConvertImpl(Handle<JSObject> object,
uint32_t capacity) {
Handle<FixedArrayBase> old_elements(object->elements(),
object->GetIsolate());
ElementsKind from_kind = object->GetElementsKind();
if (from_kind == FAST_STRING_WRAPPER_ELEMENTS) {
// The optimizing compiler relies on the prototype lookups of String
// objects always returning undefined. If there's a store to the
// initial String.prototype object, make sure all the optimizations
// are invalidated.
object->GetIsolate()->UpdateNoElementsProtectorOnSetLength(object);
}
// This method should only be called if there's a reason to update the
// elements.
DCHECK(from_kind == SLOW_STRING_WRAPPER_ELEMENTS ||
static_cast<uint32_t>(old_elements->length()) < capacity);
return Subclass::BasicGrowCapacityAndConvertImpl(
object, old_elements, from_kind, FAST_STRING_WRAPPER_ELEMENTS,
capacity);
}
static void CopyElementsImpl(Isolate* isolate, Tagged<FixedArrayBase> from,
uint32_t from_start, Tagged<FixedArrayBase> to,
ElementsKind from_kind, uint32_t to_start,
int packed_size, int copy_size) {
DCHECK(!IsNumberDictionary(to));
if (from_kind == SLOW_STRING_WRAPPER_ELEMENTS) {
CopyDictionaryToObjectElements(isolate, from, from_start, to,
HOLEY_ELEMENTS, to_start, copy_size);
} else {
DCHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, from_kind);
CopyObjectToObjectElements(isolate, from, HOLEY_ELEMENTS, from_start, to,
HOLEY_ELEMENTS, to_start, copy_size);
}
}
static uint32_t NumberOfElementsImpl(Tagged<JSObject> object,
Tagged<FixedArrayBase> backing_store) {
uint32_t length = GetString(object)->length();
return length +
BackingStoreAccessor::NumberOfElementsImpl(object, backing_store);
}
private:
static Tagged<String> GetString(Tagged<JSObject> holder) {
DCHECK(IsJSPrimitiveWrapper(holder));
Tagged<JSPrimitiveWrapper> js_value = JSPrimitiveWrapper::cast(holder);
DCHECK(IsString(js_value->value()));
return String::cast(js_value->value());
}
};
class FastStringWrapperElementsAccessor
: public StringWrapperElementsAccessor<
FastStringWrapperElementsAccessor, FastHoleyObjectElementsAccessor,
ElementsKindTraits<FAST_STRING_WRAPPER_ELEMENTS>> {
public:
static Handle<NumberDictionary> NormalizeImpl(
Handle<JSObject> object, Handle<FixedArrayBase> elements) {
return FastHoleyObjectElementsAccessor::NormalizeImpl(object, elements);
}
};
class SlowStringWrapperElementsAccessor
: public StringWrapperElementsAccessor<
SlowStringWrapperElementsAccessor, DictionaryElementsAccessor,
ElementsKindTraits<SLOW_STRING_WRAPPER_ELEMENTS>> {
public:
static bool HasAccessorsImpl(Tagged<JSObject> holder,
Tagged<FixedArrayBase> backing_store) {
return DictionaryElementsAccessor::HasAccessorsImpl(holder, backing_store);
}
};
} // namespace
MaybeHandle<Object> ArrayConstructInitializeElements(
Handle<JSArray> array, JavaScriptArguments* args) {
if (args->length() == 0) {
// Optimize the case where there are no parameters passed.
JSArray::Initialize(array, JSArray::kPreallocatedArrayElements);
return array;
} else if (args->length() == 1 && IsNumber(*args->at(0))) {
uint32_t length;
if (!Object::ToArrayLength(*args->at(0), &length)) {
return ThrowArrayLengthRangeError(array->GetIsolate());
}
// Optimize the case where there is one argument and the argument is a small
// smi.
if (length > 0 && length < JSArray::kInitialMaxFastElementArray) {
ElementsKind elements_kind = array->GetElementsKind();
JSArray::Initialize(array, length, length);
if (!IsHoleyElementsKind(elements_kind)) {
elements_kind = GetHoleyElementsKind(elements_kind);
JSObject::TransitionElementsKind(array, elements_kind);
}
} else if (length == 0) {
JSArray::Initialize(array, JSArray::kPreallocatedArrayElements);
} else {
// Take the argument as the length.
JSArray::Initialize(array, 0);
MAYBE_RETURN_NULL(JSArray::SetLength(array, length));
}
return array;
}
Factory* factory = array->GetIsolate()->factory();
// Set length and elements on the array.
int number_of_elements = args->length();
JSObject::EnsureCanContainElements(array, args, number_of_elements,
ALLOW_CONVERTED_DOUBLE_ELEMENTS);
// Allocate an appropriately typed elements array.
ElementsKind elements_kind = array->GetElementsKind();
Handle<FixedArrayBase> elms;
if (IsDoubleElementsKind(elements_kind)) {
elms = Handle<FixedArrayBase>::cast(
factory->NewFixedDoubleArray(number_of_elements));
} else {
elms = Handle<FixedArrayBase>::cast(
factory->NewFixedArrayWithHoles(number_of_elements));
}
// Fill in the content
switch (elements_kind) {
case HOLEY_SMI_ELEMENTS:
case PACKED_SMI_ELEMENTS: {
Handle<FixedArray> smi_elms = Handle<FixedArray>::cast(elms);
for (int entry = 0; entry < number_of_elements; entry++) {
smi_elms->set(entry, (*args)[entry], SKIP_WRITE_BARRIER);
}
break;
}
case HOLEY_ELEMENTS:
case PACKED_ELEMENTS: {
DisallowGarbageCollection no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
Handle<FixedArray> object_elms = Handle<FixedArray>::cast(elms);
for (int entry = 0; entry < number_of_elements; entry++) {
object_elms->set(entry, (*args)[entry], mode);
}
break;
}
case HOLEY_DOUBLE_ELEMENTS:
case PACKED_DOUBLE_ELEMENTS: {
Handle<FixedDoubleArray> double_elms =
Handle<FixedDoubleArray>::cast(elms);
for (int entry = 0; entry < number_of_elements; entry++) {
double_elms->set(entry, Object::Number((*args)[entry]));
}
break;
}
default:
UNREACHABLE();
}
array->set_elements(*elms);
array->set_length(Smi::FromInt(number_of_elements));
return array;
}
void CopyFastNumberJSArrayElementsToTypedArray(Address raw_context,
Address raw_source,
Address raw_destination,
uintptr_t length,
uintptr_t offset) {
Tagged<Context> context = Context::cast(Tagged<Object>(raw_context));
Tagged<JSArray> source = JSArray::cast(Tagged<Object>(raw_source));
Tagged<JSTypedArray> destination =
JSTypedArray::cast(Tagged<Object>(raw_destination));
switch (destination->GetElementsKind()) {
#define TYPED_ARRAYS_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
CHECK(Type##ElementsAccessor::TryCopyElementsFastNumber( \
context, source, destination, length, offset)); \
break;
TYPED_ARRAYS(TYPED_ARRAYS_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAYS_CASE)
#undef TYPED_ARRAYS_CASE
default:
UNREACHABLE();
}
}
void CopyTypedArrayElementsToTypedArray(Address raw_source,
Address raw_destination,
uintptr_t length, uintptr_t offset) {
Tagged<JSTypedArray> source = JSTypedArray::cast(Tagged<Object>(raw_source));
Tagged<JSTypedArray> destination =
JSTypedArray::cast(Tagged<Object>(raw_destination));
switch (destination->GetElementsKind()) {
#define TYPED_ARRAYS_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
Type##ElementsAccessor::CopyElementsFromTypedArray(source, destination, \
length, offset); \
break;
TYPED_ARRAYS(TYPED_ARRAYS_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAYS_CASE)
#undef TYPED_ARRAYS_CASE
default:
UNREACHABLE();
}
}
void CopyTypedArrayElementsSlice(Address raw_source, Address raw_destination,
uintptr_t start, uintptr_t end) {
Tagged<JSTypedArray> source = JSTypedArray::cast(Tagged<Object>(raw_source));
Tagged<JSTypedArray> destination =
JSTypedArray::cast(Tagged<Object>(raw_destination));
destination->GetElementsAccessor()->CopyTypedArrayElementsSlice(
source, destination, start, end);
}
void ElementsAccessor::InitializeOncePerProcess() {
// Here we create an array with more entries than element kinds.
// This is due to the sandbox: this array is indexed with an ElementsKind
// read directly from within the sandbox, which must therefore be considered
// attacker-controlled. An ElementsKind is a uint8_t under the hood, so we
// can either use an array with 256 entries or have an explicit bounds-check
// on access. The latter is probably more expensive.
static_assert(std::is_same_v<std::underlying_type_t<ElementsKind>, uint8_t>);
static ElementsAccessor* accessor_array[256] = {
#define ACCESSOR_ARRAY(Class, Kind, Store) new Class(),
ELEMENTS_LIST(ACCESSOR_ARRAY)
#undef ACCESSOR_ARRAY
};
static_assert((sizeof(accessor_array) / sizeof(*accessor_array)) >=
kElementsKindCount);
elements_accessors_ = accessor_array;
}
void ElementsAccessor::TearDown() {
if (elements_accessors_ == nullptr) return;
#define ACCESSOR_DELETE(Class, Kind, Store) delete elements_accessors_[Kind];
ELEMENTS_LIST(ACCESSOR_DELETE)
#undef ACCESSOR_DELETE
elements_accessors_ = nullptr;
}
Handle<JSArray> ElementsAccessor::Concat(Isolate* isolate,
BuiltinArguments* args,
uint32_t concat_size,
uint32_t result_len) {
ElementsKind result_elements_kind = GetInitialFastElementsKind();
bool has_raw_doubles = false;
{
DisallowGarbageCollection no_gc;
bool is_holey = false;
for (uint32_t i = 0; i < concat_size; i++) {
Tagged<Object> arg = (*args)[i];
ElementsKind arg_kind = JSArray::cast(arg)->GetElementsKind();
has_raw_doubles = has_raw_doubles || IsDoubleElementsKind(arg_kind);
is_holey = is_holey || IsHoleyElementsKind(arg_kind);
result_elements_kind =
GetMoreGeneralElementsKind(result_elements_kind, arg_kind);
}
if (is_holey) {
result_elements_kind = GetHoleyElementsKind(result_elements_kind);
}
}
// If a double array is concatted into a fast elements array, the fast
// elements array needs to be initialized to contain proper holes, since
// boxing doubles may cause incremental marking.
bool requires_double_boxing =
has_raw_doubles && !IsDoubleElementsKind(result_elements_kind);
auto mode =
requires_double_boxing
? ArrayStorageAllocationMode::INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
: ArrayStorageAllocationMode::DONT_INITIALIZE_ARRAY_ELEMENTS;
Handle<JSArray> result_array = isolate->factory()->NewJSArray(
result_elements_kind, result_len, result_len, mode);
if (result_len == 0) return result_array;
uint32_t insertion_index = 0;
Handle<FixedArrayBase> storage(result_array->elements(), isolate);
ElementsAccessor* accessor = ElementsAccessor::ForKind(result_elements_kind);
for (uint32_t i = 0; i < concat_size; i++) {
// It is crucial to keep |array| in a raw pointer form to avoid
// performance degradation.
Tagged<JSArray> array = JSArray::cast((*args)[i]);
uint32_t len = 0;
Object::ToArrayLength(array->length(), &len);
if (len == 0) continue;
ElementsKind from_kind = array->GetElementsKind();
accessor->CopyElements(array, 0, from_kind, storage, insertion_index, len);
insertion_index += len;
}
DCHECK_EQ(insertion_index, result_len);
return result_array;
}
ElementsAccessor** ElementsAccessor::elements_accessors_ = nullptr;
#undef ELEMENTS_LIST
#undef RETURN_NOTHING_IF_NOT_SUCCESSFUL
#undef RETURN_FAILURE_IF_NOT_SUCCESSFUL
} // namespace internal
} // namespace v8