blob: 4ac927201b8d24e804284ad5c9c5f081dbd69fa6 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-array-gen.h"
#include "src/builtins/builtins-iterator-gen.h"
#include "src/builtins/builtins-string-gen.h"
#include "src/builtins/builtins-typed-array-gen.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/code-stub-assembler.h"
#include "src/frame-constants.h"
#include "src/heap/factory-inl.h"
#include "src/objects/arguments-inl.h"
namespace v8 {
namespace internal {
using Node = compiler::Node;
ArrayBuiltinsAssembler::ArrayBuiltinsAssembler(
compiler::CodeAssemblerState* state)
: BaseBuiltinsFromDSLAssembler(state),
k_(this, MachineRepresentation::kTagged),
a_(this, MachineRepresentation::kTagged),
to_(this, MachineRepresentation::kTagged, SmiConstant(0)),
fully_spec_compliant_(this, {&k_, &a_, &to_}) {}
void ArrayBuiltinsAssembler::FindResultGenerator() {
a_.Bind(UndefinedConstant());
}
Node* ArrayBuiltinsAssembler::FindProcessor(Node* k_value, Node* k) {
Node* value = CallJS(CodeFactory::Call(isolate()), context(), callbackfn(),
this_arg(), k_value, k, o());
Label false_continue(this), return_true(this);
BranchIfToBooleanIsTrue(value, &return_true, &false_continue);
BIND(&return_true);
ReturnFromBuiltin(k_value);
BIND(&false_continue);
return a();
}
void ArrayBuiltinsAssembler::FindIndexResultGenerator() {
a_.Bind(SmiConstant(-1));
}
Node* ArrayBuiltinsAssembler::FindIndexProcessor(Node* k_value, Node* k) {
Node* value = CallJS(CodeFactory::Call(isolate()), context(), callbackfn(),
this_arg(), k_value, k, o());
Label false_continue(this), return_true(this);
BranchIfToBooleanIsTrue(value, &return_true, &false_continue);
BIND(&return_true);
ReturnFromBuiltin(k);
BIND(&false_continue);
return a();
}
void ArrayBuiltinsAssembler::ForEachResultGenerator() {
a_.Bind(UndefinedConstant());
}
Node* ArrayBuiltinsAssembler::ForEachProcessor(Node* k_value, Node* k) {
CallJS(CodeFactory::Call(isolate()), context(), callbackfn(), this_arg(),
k_value, k, o());
return a();
}
void ArrayBuiltinsAssembler::SomeResultGenerator() {
a_.Bind(FalseConstant());
}
Node* ArrayBuiltinsAssembler::SomeProcessor(Node* k_value, Node* k) {
Node* value = CallJS(CodeFactory::Call(isolate()), context(), callbackfn(),
this_arg(), k_value, k, o());
Label false_continue(this), return_true(this);
BranchIfToBooleanIsTrue(value, &return_true, &false_continue);
BIND(&return_true);
ReturnFromBuiltin(TrueConstant());
BIND(&false_continue);
return a();
}
void ArrayBuiltinsAssembler::EveryResultGenerator() {
a_.Bind(TrueConstant());
}
Node* ArrayBuiltinsAssembler::EveryProcessor(Node* k_value, Node* k) {
Node* value = CallJS(CodeFactory::Call(isolate()), context(), callbackfn(),
this_arg(), k_value, k, o());
Label true_continue(this), return_false(this);
BranchIfToBooleanIsTrue(value, &true_continue, &return_false);
BIND(&return_false);
ReturnFromBuiltin(FalseConstant());
BIND(&true_continue);
return a();
}
void ArrayBuiltinsAssembler::ReduceResultGenerator() {
return a_.Bind(this_arg());
}
Node* ArrayBuiltinsAssembler::ReduceProcessor(Node* k_value, Node* k) {
VARIABLE(result, MachineRepresentation::kTagged);
Label done(this, {&result}), initial(this);
GotoIf(WordEqual(a(), TheHoleConstant()), &initial);
result.Bind(CallJS(CodeFactory::Call(isolate()), context(), callbackfn(),
UndefinedConstant(), a(), k_value, k, o()));
Goto(&done);
BIND(&initial);
result.Bind(k_value);
Goto(&done);
BIND(&done);
return result.value();
}
void ArrayBuiltinsAssembler::ReducePostLoopAction() {
Label ok(this);
GotoIf(WordNotEqual(a(), TheHoleConstant()), &ok);
ThrowTypeError(context(), MessageTemplate::kReduceNoInitial);
BIND(&ok);
}
void ArrayBuiltinsAssembler::FilterResultGenerator() {
// 7. Let A be ArraySpeciesCreate(O, 0).
// This version of ArraySpeciesCreate will create with the correct
// ElementsKind in the fast case.
GenerateArraySpeciesCreate();
}
Node* ArrayBuiltinsAssembler::FilterProcessor(Node* k_value, Node* k) {
// ii. Let selected be ToBoolean(? Call(callbackfn, T, kValue, k, O)).
Node* selected = CallJS(CodeFactory::Call(isolate()), context(),
callbackfn(), this_arg(), k_value, k, o());
Label true_continue(this, &to_), false_continue(this);
BranchIfToBooleanIsTrue(selected, &true_continue, &false_continue);
BIND(&true_continue);
// iii. If selected is true, then...
{
Label after_work(this, &to_);
Node* kind = nullptr;
// If a() is a JSArray, we can have a fast path.
Label fast(this);
Label runtime(this);
Label object_push_pre(this), object_push(this), double_push(this);
BranchIfFastJSArray(a(), context(), &fast, &runtime);
BIND(&fast);
{
GotoIf(WordNotEqual(LoadJSArrayLength(a()), to_.value()), &runtime);
kind = EnsureArrayPushable(LoadMap(a()), &runtime);
GotoIf(IsElementsKindGreaterThan(kind, HOLEY_SMI_ELEMENTS),
&object_push_pre);
BuildAppendJSArray(HOLEY_SMI_ELEMENTS, a(), k_value, &runtime);
Goto(&after_work);
}
BIND(&object_push_pre);
{
Branch(IsElementsKindGreaterThan(kind, HOLEY_ELEMENTS), &double_push,
&object_push);
}
BIND(&object_push);
{
BuildAppendJSArray(HOLEY_ELEMENTS, a(), k_value, &runtime);
Goto(&after_work);
}
BIND(&double_push);
{
BuildAppendJSArray(HOLEY_DOUBLE_ELEMENTS, a(), k_value, &runtime);
Goto(&after_work);
}
BIND(&runtime);
{
// 1. Perform ? CreateDataPropertyOrThrow(A, ToString(to), kValue).
CallRuntime(Runtime::kCreateDataProperty, context(), a(), to_.value(),
k_value);
Goto(&after_work);
}
BIND(&after_work);
{
// 2. Increase to by 1.
to_.Bind(NumberInc(to_.value()));
Goto(&false_continue);
}
}
BIND(&false_continue);
return a();
}
void ArrayBuiltinsAssembler::MapResultGenerator() {
GenerateArraySpeciesCreate(len_);
}
void ArrayBuiltinsAssembler::TypedArrayMapResultGenerator() {
// 6. Let A be ? TypedArraySpeciesCreate(O, len).
TNode<JSTypedArray> original_array = CAST(o());
TNode<Smi> length = CAST(len_);
const char* method_name = "%TypedArray%.prototype.map";
TypedArrayBuiltinsAssembler typedarray_asm(state());
TNode<JSTypedArray> a = typedarray_asm.SpeciesCreateByLength(
context(), original_array, length, method_name);
// In the Spec and our current implementation, the length check is already
// performed in TypedArraySpeciesCreate.
CSA_ASSERT(this, SmiLessThanOrEqual(CAST(len_), LoadTypedArrayLength(a)));
fast_typed_array_target_ =
Word32Equal(LoadInstanceType(LoadElements(original_array)),
LoadInstanceType(LoadElements(a)));
a_.Bind(a);
}
Node* ArrayBuiltinsAssembler::SpecCompliantMapProcessor(Node* k_value,
Node* k) {
// i. Let kValue be ? Get(O, Pk). Performed by the caller of
// SpecCompliantMapProcessor.
// ii. Let mapped_value be ? Call(callbackfn, T, kValue, k, O).
Node* mapped_value = CallJS(CodeFactory::Call(isolate()), context(),
callbackfn(), this_arg(), k_value, k, o());
// iii. Perform ? CreateDataPropertyOrThrow(A, Pk, mapped_value).
CallRuntime(Runtime::kCreateDataProperty, context(), a(), k, mapped_value);
return a();
}
Node* ArrayBuiltinsAssembler::FastMapProcessor(Node* k_value, Node* k) {
// i. Let kValue be ? Get(O, Pk). Performed by the caller of
// FastMapProcessor.
// ii. Let mapped_value be ? Call(callbackfn, T, kValue, k, O).
Node* mapped_value = CallJS(CodeFactory::Call(isolate()), context(),
callbackfn(), this_arg(), k_value, k, o());
// mode is SMI_PARAMETERS because k has tagged representation.
ParameterMode mode = SMI_PARAMETERS;
Label runtime(this), finished(this);
Label transition_pre(this), transition_smi_fast(this),
transition_smi_double(this);
Label array_not_smi(this), array_fast(this), array_double(this);
TNode<Int32T> kind = LoadElementsKind(a());
Node* elements = LoadElements(a());
GotoIf(IsElementsKindGreaterThan(kind, HOLEY_SMI_ELEMENTS), &array_not_smi);
TryStoreArrayElement(HOLEY_SMI_ELEMENTS, mode, &transition_pre, elements, k,
mapped_value);
Goto(&finished);
BIND(&transition_pre);
{
// array is smi. Value is either tagged or a heap number.
CSA_ASSERT(this, TaggedIsNotSmi(mapped_value));
GotoIf(IsHeapNumberMap(LoadMap(mapped_value)), &transition_smi_double);
Goto(&transition_smi_fast);
}
BIND(&array_not_smi);
{
Branch(IsElementsKindGreaterThan(kind, HOLEY_ELEMENTS), &array_double,
&array_fast);
}
BIND(&transition_smi_fast);
{
// iii. Perform ? CreateDataPropertyOrThrow(A, Pk, mapped_value).
Node* const native_context = LoadNativeContext(context());
Node* const fast_map = LoadContextElement(
native_context, Context::JS_ARRAY_HOLEY_ELEMENTS_MAP_INDEX);
// Since this transition is only a map change, just do it right here.
// Since a() doesn't have an allocation site, it's safe to do the
// map store directly, otherwise I'd call TransitionElementsKind().
StoreMap(a(), fast_map);
Goto(&array_fast);
}
BIND(&array_fast);
{
TryStoreArrayElement(HOLEY_ELEMENTS, mode, &runtime, elements, k,
mapped_value);
Goto(&finished);
}
BIND(&transition_smi_double);
{
// iii. Perform ? CreateDataPropertyOrThrow(A, Pk, mapped_value).
Node* const native_context = LoadNativeContext(context());
Node* const double_map = LoadContextElement(
native_context, Context::JS_ARRAY_HOLEY_DOUBLE_ELEMENTS_MAP_INDEX);
const ElementsKind kFromKind = HOLEY_SMI_ELEMENTS;
const ElementsKind kToKind = HOLEY_DOUBLE_ELEMENTS;
const bool kIsJSArray = true;
Label transition_in_runtime(this, Label::kDeferred);
TransitionElementsKind(a(), double_map, kFromKind, kToKind, kIsJSArray,
&transition_in_runtime);
Goto(&array_double);
BIND(&transition_in_runtime);
CallRuntime(Runtime::kTransitionElementsKind, context(), a(), double_map);
Goto(&array_double);
}
BIND(&array_double);
{
// TODO(mvstanton): If we use a variable for elements and bind it
// appropriately, we can avoid an extra load of elements by binding the
// value only after a transition from smi to double.
elements = LoadElements(a());
// If the mapped_value isn't a number, this will bail out to the runtime
// to make the transition.
TryStoreArrayElement(HOLEY_DOUBLE_ELEMENTS, mode, &runtime, elements, k,
mapped_value);
Goto(&finished);
}
BIND(&runtime);
{
// iii. Perform ? CreateDataPropertyOrThrow(A, Pk, mapped_value).
CallRuntime(Runtime::kCreateDataProperty, context(), a(), k,
mapped_value);
Goto(&finished);
}
BIND(&finished);
return a();
}
// See tc39.github.io/ecma262/#sec-%typedarray%.prototype.map.
Node* ArrayBuiltinsAssembler::TypedArrayMapProcessor(Node* k_value, Node* k) {
// 8. c. Let mapped_value be ? Call(callbackfn, T, « kValue, k, O »).
Node* mapped_value = CallJS(CodeFactory::Call(isolate()), context(),
callbackfn(), this_arg(), k_value, k, o());
Label fast(this), slow(this), done(this), detached(this, Label::kDeferred);
// 8. d. Perform ? Set(A, Pk, mapped_value, true).
// Since we know that A is a TypedArray, this always ends up in
// #sec-integer-indexed-exotic-objects-set-p-v-receiver and then
// tc39.github.io/ecma262/#sec-integerindexedelementset .
Branch(fast_typed_array_target_, &fast, &slow);
BIND(&fast);
// #sec-integerindexedelementset
// 5. If arrayTypeName is "BigUint64Array" or "BigInt64Array", let
// numValue be ? ToBigInt(v).
// 6. Otherwise, let numValue be ? ToNumber(value).
Node* num_value;
if (source_elements_kind_ == BIGINT64_ELEMENTS ||
source_elements_kind_ == BIGUINT64_ELEMENTS) {
num_value = ToBigInt(context(), mapped_value);
} else {
num_value = ToNumber_Inline(context(), mapped_value);
}
// The only way how this can bailout is because of a detached buffer.
EmitElementStore(a(), k, num_value, false, source_elements_kind_,
KeyedAccessStoreMode::STANDARD_STORE, &detached,
context());
Goto(&done);
BIND(&slow);
SetPropertyStrict(context(), CAST(a()), CAST(k), CAST(mapped_value));
Goto(&done);
BIND(&detached);
// tc39.github.io/ecma262/#sec-integerindexedelementset
// 8. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
ThrowTypeError(context_, MessageTemplate::kDetachedOperation, name_);
BIND(&done);
return a();
}
void ArrayBuiltinsAssembler::NullPostLoopAction() {}
void ArrayBuiltinsAssembler::ReturnFromBuiltin(Node* value) {
if (argc_ == nullptr) {
Return(value);
} else {
// argc_ doesn't include the receiver, so it has to be added back in
// manually.
PopAndReturn(IntPtrAdd(argc_, IntPtrConstant(1)), value);
}
}
void ArrayBuiltinsAssembler::InitIteratingArrayBuiltinBody(
TNode<Context> context, TNode<Object> receiver, Node* callbackfn,
Node* this_arg, TNode<IntPtrT> argc) {
context_ = context;
receiver_ = receiver;
callbackfn_ = callbackfn;
this_arg_ = this_arg;
argc_ = argc;
}
void ArrayBuiltinsAssembler::GenerateIteratingArrayBuiltinBody(
const char* name, const BuiltinResultGenerator& generator,
const CallResultProcessor& processor, const PostLoopAction& action,
const Callable& slow_case_continuation,
MissingPropertyMode missing_property_mode, ForEachDirection direction) {
Label non_array(this), array_changes(this, {&k_, &a_, &to_});
// TODO(danno): Seriously? Do we really need to throw the exact error
// message on null and undefined so that the webkit tests pass?
Label throw_null_undefined_exception(this, Label::kDeferred);
GotoIf(IsNullOrUndefined(receiver()), &throw_null_undefined_exception);
// By the book: taken directly from the ECMAScript 2015 specification
// 1. Let O be ToObject(this value).
// 2. ReturnIfAbrupt(O)
o_ = ToObject(context(), receiver());
// 3. Let len be ToLength(Get(O, "length")).
// 4. ReturnIfAbrupt(len).
TVARIABLE(Number, merged_length);
Label has_length(this, &merged_length), not_js_array(this);
GotoIf(DoesntHaveInstanceType(o(), JS_ARRAY_TYPE), &not_js_array);
merged_length = LoadJSArrayLength(CAST(o()));
Goto(&has_length);
BIND(&not_js_array);
{
Node* len_property =
GetProperty(context(), o(), isolate()->factory()->length_string());
merged_length = ToLength_Inline(context(), len_property);
Goto(&has_length);
}
BIND(&has_length);
{
len_ = merged_length.value();
// 5. If IsCallable(callbackfn) is false, throw a TypeError exception.
Label type_exception(this, Label::kDeferred);
Label done(this);
GotoIf(TaggedIsSmi(callbackfn()), &type_exception);
Branch(IsCallableMap(LoadMap(callbackfn())), &done, &type_exception);
BIND(&throw_null_undefined_exception);
ThrowTypeError(context(), MessageTemplate::kCalledOnNullOrUndefined,
name);
BIND(&type_exception);
ThrowTypeError(context(), MessageTemplate::kCalledNonCallable,
callbackfn());
BIND(&done);
}
// 6. If thisArg was supplied, let T be thisArg; else let T be undefined.
// [Already done by the arguments adapter]
if (direction == ForEachDirection::kForward) {
// 7. Let k be 0.
k_.Bind(SmiConstant(0));
} else {
k_.Bind(NumberDec(len()));
}
generator(this);
HandleFastElements(processor, action, &fully_spec_compliant_, direction,
missing_property_mode);
BIND(&fully_spec_compliant_);
Node* result =
CallStub(slow_case_continuation, context(), receiver(), callbackfn(),
this_arg(), a_.value(), o(), k_.value(), len(), to_.value());
ReturnFromBuiltin(result);
}
void ArrayBuiltinsAssembler::InitIteratingArrayBuiltinLoopContinuation(
TNode<Context> context, TNode<Object> receiver, Node* callbackfn,
Node* this_arg, Node* a, TNode<JSReceiver> o, Node* initial_k,
TNode<Number> len, Node* to) {
context_ = context;
this_arg_ = this_arg;
callbackfn_ = callbackfn;
a_.Bind(a);
k_.Bind(initial_k);
o_ = o;
len_ = len;
to_.Bind(to);
}
void ArrayBuiltinsAssembler::GenerateIteratingTypedArrayBuiltinBody(
const char* name, const BuiltinResultGenerator& generator,
const CallResultProcessor& processor, const PostLoopAction& action,
ForEachDirection direction) {
name_ = name;
// ValidateTypedArray: tc39.github.io/ecma262/#sec-validatetypedarray
Label throw_not_typed_array(this, Label::kDeferred),
throw_detached(this, Label::kDeferred);
GotoIf(TaggedIsSmi(receiver_), &throw_not_typed_array);
GotoIfNot(HasInstanceType(CAST(receiver_), JS_TYPED_ARRAY_TYPE),
&throw_not_typed_array);
TNode<JSTypedArray> typed_array = CAST(receiver_);
o_ = typed_array;
Node* array_buffer =
LoadObjectField(typed_array, JSTypedArray::kBufferOffset);
GotoIf(IsDetachedBuffer(array_buffer), &throw_detached);
len_ = LoadTypedArrayLength(typed_array);
Label throw_not_callable(this, Label::kDeferred);
Label distinguish_types(this);
GotoIf(TaggedIsSmi(callbackfn_), &throw_not_callable);
Branch(IsCallableMap(LoadMap(callbackfn_)), &distinguish_types,
&throw_not_callable);
BIND(&throw_not_typed_array);
ThrowTypeError(context_, MessageTemplate::kNotTypedArray);
BIND(&throw_detached);
ThrowTypeError(context_, MessageTemplate::kDetachedOperation, name_);
BIND(&throw_not_callable);
ThrowTypeError(context_, MessageTemplate::kCalledNonCallable, callbackfn_);
Label unexpected_instance_type(this);
BIND(&unexpected_instance_type);
Unreachable();
std::vector<int32_t> instance_types = {
#define INSTANCE_TYPE(Type, type, TYPE, ctype) FIXED_##TYPE##_ARRAY_TYPE,
TYPED_ARRAYS(INSTANCE_TYPE)
#undef INSTANCE_TYPE
};
std::vector<Label> labels;
for (size_t i = 0; i < instance_types.size(); ++i) {
labels.push_back(Label(this));
}
std::vector<Label*> label_ptrs;
for (Label& label : labels) {
label_ptrs.push_back(&label);
}
BIND(&distinguish_types);
generator(this);
if (direction == ForEachDirection::kForward) {
k_.Bind(SmiConstant(0));
} else {
k_.Bind(NumberDec(len()));
}
CSA_ASSERT(this, IsSafeInteger(k()));
Node* instance_type = LoadInstanceType(LoadElements(typed_array));
Switch(instance_type, &unexpected_instance_type, instance_types.data(),
label_ptrs.data(), labels.size());
for (size_t i = 0; i < labels.size(); ++i) {
BIND(&labels[i]);
Label done(this);
source_elements_kind_ = ElementsKindForInstanceType(
static_cast<InstanceType>(instance_types[i]));
// TODO(tebbi): Silently cancelling the loop on buffer detachment is a
// spec violation. Should go to &throw_detached and throw a TypeError
// instead.
VisitAllTypedArrayElements(array_buffer, processor, &done, direction,
typed_array);
Goto(&done);
// No exception, return success
BIND(&done);
action(this);
ReturnFromBuiltin(a_.value());
}
}
void ArrayBuiltinsAssembler::GenerateIteratingArrayBuiltinLoopContinuation(
const CallResultProcessor& processor, const PostLoopAction& action,
MissingPropertyMode missing_property_mode, ForEachDirection direction) {
Label loop(this, {&k_, &a_, &to_});
Label after_loop(this);
Goto(&loop);
BIND(&loop);
{
if (direction == ForEachDirection::kForward) {
// 8. Repeat, while k < len
GotoIfNumberGreaterThanOrEqual(k(), len_, &after_loop);
} else {
// OR
// 10. Repeat, while k >= 0
GotoIfNumberGreaterThanOrEqual(SmiConstant(-1), k(), &after_loop);
}
Label done_element(this, &to_);
// a. Let Pk be ToString(k).
// k() is guaranteed to be a positive integer, hence ToString is
// side-effect free and HasProperty/GetProperty do the conversion inline.
CSA_ASSERT(this, IsSafeInteger(k()));
if (missing_property_mode == MissingPropertyMode::kSkip) {
// b. Let kPresent be HasProperty(O, Pk).
// c. ReturnIfAbrupt(kPresent).
TNode<Oddball> k_present =
HasProperty(o(), k(), context(), kHasProperty);
// d. If kPresent is true, then
GotoIf(IsFalse(k_present), &done_element);
}
// i. Let kValue be Get(O, Pk).
// ii. ReturnIfAbrupt(kValue).
Node* k_value = GetProperty(context(), o(), k());
// iii. Let funcResult be Call(callbackfn, T, «kValue, k, O»).
// iv. ReturnIfAbrupt(funcResult).
a_.Bind(processor(this, k_value, k()));
Goto(&done_element);
BIND(&done_element);
if (direction == ForEachDirection::kForward) {
// e. Increase k by 1.
k_.Bind(NumberInc(k()));
} else {
// e. Decrease k by 1.
k_.Bind(NumberDec(k()));
}
Goto(&loop);
}
BIND(&after_loop);
action(this);
Return(a_.value());
}
ElementsKind ArrayBuiltinsAssembler::ElementsKindForInstanceType(
InstanceType type) {
switch (type) {
#define INSTANCE_TYPE_TO_ELEMENTS_KIND(Type, type, TYPE, ctype) \
case FIXED_##TYPE##_ARRAY_TYPE: \
return TYPE##_ELEMENTS;
TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENTS_KIND)
#undef INSTANCE_TYPE_TO_ELEMENTS_KIND
default:
UNREACHABLE();
}
}
void ArrayBuiltinsAssembler::VisitAllTypedArrayElements(
Node* array_buffer, const CallResultProcessor& processor, Label* detached,
ForEachDirection direction, TNode<JSTypedArray> typed_array) {
VariableList list({&a_, &k_, &to_}, zone());
FastLoopBody body = [&](Node* index) {
GotoIf(IsDetachedBuffer(array_buffer), detached);
Node* elements = LoadElements(typed_array);
Node* base_ptr =
LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset);
Node* external_ptr =
LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset,
MachineType::Pointer());
Node* data_ptr = IntPtrAdd(BitcastTaggedToWord(base_ptr), external_ptr);
Node* value = LoadFixedTypedArrayElementAsTagged(
data_ptr, index, source_elements_kind_, SMI_PARAMETERS);
k_.Bind(index);
a_.Bind(processor(this, value, index));
};
Node* start = SmiConstant(0);
Node* end = len_;
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPost;
int incr = 1;
if (direction == ForEachDirection::kReverse) {
std::swap(start, end);
advance_mode = IndexAdvanceMode::kPre;
incr = -1;
}
BuildFastLoop(list, start, end, body, incr, ParameterMode::SMI_PARAMETERS,
advance_mode);
}
void ArrayBuiltinsAssembler::VisitAllFastElementsOneKind(
ElementsKind kind, const CallResultProcessor& processor,
Label* array_changed, ParameterMode mode, ForEachDirection direction,
MissingPropertyMode missing_property_mode, TNode<Smi> length) {
Comment("begin VisitAllFastElementsOneKind");
// We only use this kind of processing if the no-elements protector is
// in place at the start. We'll continue checking during array iteration.
CSA_ASSERT(this, Word32BinaryNot(IsNoElementsProtectorCellInvalid()));
VARIABLE(original_map, MachineRepresentation::kTagged);
original_map.Bind(LoadMap(o()));
VariableList list({&original_map, &a_, &k_, &to_}, zone());
Node* start = IntPtrOrSmiConstant(0, mode);
Node* end = TaggedToParameter(length, mode);
IndexAdvanceMode advance_mode = direction == ForEachDirection::kReverse
? IndexAdvanceMode::kPre
: IndexAdvanceMode::kPost;
if (direction == ForEachDirection::kReverse) std::swap(start, end);
BuildFastLoop(
list, start, end,
[=, &original_map](Node* index) {
k_.Bind(ParameterToTagged(index, mode));
Label one_element_done(this), hole_element(this),
process_element(this);
// Check if o's map has changed during the callback. If so, we have to
// fall back to the slower spec implementation for the rest of the
// iteration.
Node* o_map = LoadMap(o());
GotoIf(WordNotEqual(o_map, original_map.value()), array_changed);
TNode<JSArray> o_array = CAST(o());
// Check if o's length has changed during the callback and if the
// index is now out of range of the new length.
GotoIf(SmiGreaterThanOrEqual(CAST(k_.value()),
CAST(LoadJSArrayLength(o_array))),
array_changed);
// Re-load the elements array. If may have been resized.
Node* elements = LoadElements(o_array);
// Fast case: load the element directly from the elements FixedArray
// and call the callback if the element is not the hole.
DCHECK(kind == PACKED_ELEMENTS || kind == PACKED_DOUBLE_ELEMENTS);
int base_size = kind == PACKED_ELEMENTS
? FixedArray::kHeaderSize
: (FixedArray::kHeaderSize - kHeapObjectTag);
Node* offset = ElementOffsetFromIndex(index, kind, mode, base_size);
VARIABLE(value, MachineRepresentation::kTagged);
if (kind == PACKED_ELEMENTS) {
value.Bind(LoadObjectField(elements, offset));
GotoIf(WordEqual(value.value(), TheHoleConstant()), &hole_element);
} else {
Node* double_value =
LoadDoubleWithHoleCheck(elements, offset, &hole_element);
value.Bind(AllocateHeapNumberWithValue(double_value));
}
Goto(&process_element);
BIND(&hole_element);
if (missing_property_mode == MissingPropertyMode::kSkip) {
// The NoElementsProtectorCell could go invalid during callbacks.
Branch(IsNoElementsProtectorCellInvalid(), array_changed,
&one_element_done);
} else {
value.Bind(UndefinedConstant());
Goto(&process_element);
}
BIND(&process_element);
{
a_.Bind(processor(this, value.value(), k()));
Goto(&one_element_done);
}
BIND(&one_element_done);
},
1, mode, advance_mode);
Comment("end VisitAllFastElementsOneKind");
}
void ArrayBuiltinsAssembler::HandleFastElements(
const CallResultProcessor& processor, const PostLoopAction& action,
Label* slow, ForEachDirection direction,
MissingPropertyMode missing_property_mode) {
Label switch_on_elements_kind(this), fast_elements(this),
maybe_double_elements(this), fast_double_elements(this);
Comment("begin HandleFastElements");
// Non-smi lengths must use the slow path.
GotoIf(TaggedIsNotSmi(len()), slow);
BranchIfFastJSArray(o(), context(),
&switch_on_elements_kind, slow);
BIND(&switch_on_elements_kind);
TNode<Smi> smi_len = CAST(len());
// Select by ElementsKind
Node* o_map = LoadMap(o());
Node* bit_field2 = LoadMapBitField2(o_map);
Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2);
Branch(IsElementsKindGreaterThan(kind, HOLEY_ELEMENTS),
&maybe_double_elements, &fast_elements);
ParameterMode mode = OptimalParameterMode();
BIND(&fast_elements);
{
VisitAllFastElementsOneKind(PACKED_ELEMENTS, processor, slow, mode,
direction, missing_property_mode, smi_len);
action(this);
// No exception, return success
ReturnFromBuiltin(a_.value());
}
BIND(&maybe_double_elements);
Branch(IsElementsKindGreaterThan(kind, HOLEY_DOUBLE_ELEMENTS), slow,
&fast_double_elements);
BIND(&fast_double_elements);
{
VisitAllFastElementsOneKind(PACKED_DOUBLE_ELEMENTS, processor, slow, mode,
direction, missing_property_mode, smi_len);
action(this);
// No exception, return success
ReturnFromBuiltin(a_.value());
}
}
// Perform ArraySpeciesCreate (ES6 #sec-arrayspeciescreate).
// This version is specialized to create a zero length array
// of the elements kind of the input array.
void ArrayBuiltinsAssembler::GenerateArraySpeciesCreate() {
Label runtime(this, Label::kDeferred), done(this);
TNode<Smi> len = SmiConstant(0);
TNode<Map> original_map = LoadMap(o());
GotoIfNot(
InstanceTypeEqual(LoadMapInstanceType(original_map), JS_ARRAY_TYPE),
&runtime);
GotoIfNot(IsPrototypeInitialArrayPrototype(context(), original_map),
&runtime);
Node* species_protector = ArraySpeciesProtectorConstant();
Node* value =
LoadObjectField(species_protector, PropertyCell::kValueOffset);
TNode<Smi> const protector_invalid =
SmiConstant(Isolate::kProtectorInvalid);
GotoIf(WordEqual(value, protector_invalid), &runtime);
// Respect the ElementsKind of the input array.
TNode<Int32T> elements_kind = LoadMapElementsKind(original_map);
GotoIfNot(IsFastElementsKind(elements_kind), &runtime);
TNode<Context> native_context = LoadNativeContext(context());
TNode<Map> array_map =
LoadJSArrayElementsMap(elements_kind, native_context);
TNode<JSArray> array =
CAST(AllocateJSArray(GetInitialFastElementsKind(), array_map, len, len,
nullptr, CodeStubAssembler::SMI_PARAMETERS));
a_.Bind(array);
Goto(&done);
BIND(&runtime);
{
// 5. Let A be ? ArraySpeciesCreate(O, len).
Node* constructor =
CallRuntime(Runtime::kArraySpeciesConstructor, context(), o());
a_.Bind(ConstructJS(CodeFactory::Construct(isolate()), context(),
constructor, len));
Goto(&fully_spec_compliant_);
}
BIND(&done);
}
// Perform ArraySpeciesCreate (ES6 #sec-arrayspeciescreate).
void ArrayBuiltinsAssembler::GenerateArraySpeciesCreate(TNode<Number> len) {
Label runtime(this, Label::kDeferred), done(this);
Node* const original_map = LoadMap(o());
GotoIfNot(
InstanceTypeEqual(LoadMapInstanceType(original_map), JS_ARRAY_TYPE),
&runtime);
GotoIfNot(IsPrototypeInitialArrayPrototype(context(), original_map),
&runtime);
Node* species_protector = ArraySpeciesProtectorConstant();
Node* value =
LoadObjectField(species_protector, PropertyCell::kValueOffset);
Node* const protector_invalid = SmiConstant(Isolate::kProtectorInvalid);
GotoIf(WordEqual(value, protector_invalid), &runtime);
GotoIfNot(TaggedIsPositiveSmi(len), &runtime);
GotoIf(
SmiAbove(CAST(len), SmiConstant(JSArray::kInitialMaxFastElementArray)),
&runtime);
// We need to be conservative and start with holey because the builtins
// that create output arrays aren't guaranteed to be called for every
// element in the input array (maybe the callback deletes an element).
const ElementsKind elements_kind =
GetHoleyElementsKind(GetInitialFastElementsKind());
TNode<Context> native_context = LoadNativeContext(context());
TNode<Map> array_map =
LoadJSArrayElementsMap(elements_kind, native_context);
a_.Bind(AllocateJSArray(PACKED_SMI_ELEMENTS, array_map, len, len, nullptr,
CodeStubAssembler::SMI_PARAMETERS));
Goto(&done);
BIND(&runtime);
{
// 5. Let A be ? ArraySpeciesCreate(O, len).
Node* constructor =
CallRuntime(Runtime::kArraySpeciesConstructor, context(), o());
a_.Bind(ConstructJS(CodeFactory::Construct(isolate()), context(),
constructor, len));
Goto(&fully_spec_compliant_);
}
BIND(&done);
}
TF_BUILTIN(ArrayPrototypePop, CodeStubAssembler) {
TNode<Int32T> argc =
UncheckedCast<Int32T>(Parameter(Descriptor::kJSActualArgumentsCount));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CSA_ASSERT(this, IsUndefined(Parameter(Descriptor::kJSNewTarget)));
CodeStubArguments args(this, ChangeInt32ToIntPtr(argc));
TNode<Object> receiver = args.GetReceiver();
Label runtime(this, Label::kDeferred);
Label fast(this);
// Only pop in this stub if
// 1) the array has fast elements
// 2) the length is writable,
// 3) the elements backing store isn't copy-on-write,
// 4) we aren't supposed to shrink the backing store.
// 1) Check that the array has fast elements.
BranchIfFastJSArray(receiver, context, &fast, &runtime);
BIND(&fast);
{
TNode<JSArray> array_receiver = CAST(receiver);
CSA_ASSERT(this, TaggedIsPositiveSmi(LoadJSArrayLength(array_receiver)));
Node* length =
LoadAndUntagObjectField(array_receiver, JSArray::kLengthOffset);
Label return_undefined(this), fast_elements(this);
GotoIf(IntPtrEqual(length, IntPtrConstant(0)), &return_undefined);
// 2) Ensure that the length is writable.
EnsureArrayLengthWritable(LoadMap(array_receiver), &runtime);
// 3) Check that the elements backing store isn't copy-on-write.
Node* elements = LoadElements(array_receiver);
GotoIf(WordEqual(LoadMap(elements),
LoadRoot(Heap::kFixedCOWArrayMapRootIndex)),
&runtime);
Node* new_length = IntPtrSub(length, IntPtrConstant(1));
// 4) Check that we're not supposed to shrink the backing store, as
// implemented in elements.cc:ElementsAccessorBase::SetLengthImpl.
Node* capacity = SmiUntag(LoadFixedArrayBaseLength(elements));
GotoIf(IntPtrLessThan(
IntPtrAdd(IntPtrAdd(new_length, new_length),
IntPtrConstant(JSObject::kMinAddedElementsCapacity)),
capacity),
&runtime);
StoreObjectFieldNoWriteBarrier(array_receiver, JSArray::kLengthOffset,
SmiTag(new_length));
TNode<Int32T> elements_kind = LoadElementsKind(array_receiver);
GotoIf(Int32LessThanOrEqual(elements_kind,
Int32Constant(TERMINAL_FAST_ELEMENTS_KIND)),
&fast_elements);
Node* value = LoadFixedDoubleArrayElement(
elements, new_length, MachineType::Float64(), 0, INTPTR_PARAMETERS,
&return_undefined);
int32_t header_size = FixedDoubleArray::kHeaderSize - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(new_length, HOLEY_DOUBLE_ELEMENTS,
INTPTR_PARAMETERS, header_size);
if (Is64()) {
Node* double_hole = Int64Constant(kHoleNanInt64);
StoreNoWriteBarrier(MachineRepresentation::kWord64, elements, offset,
double_hole);
} else {
STATIC_ASSERT(kHoleNanLower32 == kHoleNanUpper32);
Node* double_hole = Int32Constant(kHoleNanLower32);
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset,
double_hole);
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements,
IntPtrAdd(offset, IntPtrConstant(kPointerSize)),
double_hole);
}
args.PopAndReturn(AllocateHeapNumberWithValue(value));
BIND(&fast_elements);
{
Node* value = LoadFixedArrayElement(CAST(elements), new_length);
StoreFixedArrayElement(CAST(elements), new_length, TheHoleConstant());
GotoIf(WordEqual(value, TheHoleConstant()), &return_undefined);
args.PopAndReturn(value);
}
BIND(&return_undefined);
{ args.PopAndReturn(UndefinedConstant()); }
}
BIND(&runtime);
{
// We are not using Parameter(Descriptor::kJSTarget) and loading the value
// from the current frame here in order to reduce register pressure on the
// fast path.
TNode<JSFunction> target = LoadTargetFromFrame();
TailCallBuiltin(Builtins::kArrayPop, context, target, UndefinedConstant(),
argc);
}
}
TF_BUILTIN(ArrayPrototypePush, CodeStubAssembler) {
TVARIABLE(IntPtrT, arg_index);
Label default_label(this, &arg_index);
Label smi_transition(this);
Label object_push_pre(this);
Label object_push(this, &arg_index);
Label double_push(this, &arg_index);
Label double_transition(this);
Label runtime(this, Label::kDeferred);
// TODO(ishell): use constants from Descriptor once the JSFunction linkage
// arguments are reordered.
TNode<Int32T> argc =
UncheckedCast<Int32T>(Parameter(Descriptor::kJSActualArgumentsCount));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CSA_ASSERT(this, IsUndefined(Parameter(Descriptor::kJSNewTarget)));
CodeStubArguments args(this, ChangeInt32ToIntPtr(argc));
TNode<Object> receiver = args.GetReceiver();
TNode<JSArray> array_receiver;
Node* kind = nullptr;
Label fast(this);
BranchIfFastJSArray(receiver, context, &fast, &runtime);
BIND(&fast);
{
array_receiver = CAST(receiver);
arg_index = IntPtrConstant(0);
kind = EnsureArrayPushable(LoadMap(array_receiver), &runtime);
GotoIf(IsElementsKindGreaterThan(kind, HOLEY_SMI_ELEMENTS),
&object_push_pre);
Node* new_length = BuildAppendJSArray(PACKED_SMI_ELEMENTS, array_receiver,
&args, &arg_index, &smi_transition);
args.PopAndReturn(new_length);
}
// If the argument is not a smi, then use a heavyweight SetProperty to
// transition the array for only the single next element. If the argument is
// a smi, the failure is due to some other reason and we should fall back on
// the most generic implementation for the rest of the array.
BIND(&smi_transition);
{
Node* arg = args.AtIndex(arg_index.value());
GotoIf(TaggedIsSmi(arg), &default_label);
Node* length = LoadJSArrayLength(array_receiver);
// TODO(danno): Use the KeyedStoreGeneric stub here when possible,
// calling into the runtime to do the elements transition is overkill.
SetPropertyStrict(context, array_receiver, CAST(length), CAST(arg));
Increment(&arg_index);
// The runtime SetProperty call could have converted the array to dictionary
// mode, which must be detected to abort the fast-path.
Node* map = LoadMap(array_receiver);
Node* bit_field2 = LoadMapBitField2(map);
Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2);
GotoIf(Word32Equal(kind, Int32Constant(DICTIONARY_ELEMENTS)),
&default_label);
GotoIfNotNumber(arg, &object_push);
Goto(&double_push);
}
BIND(&object_push_pre);
{
Branch(IsElementsKindGreaterThan(kind, HOLEY_ELEMENTS), &double_push,
&object_push);
}
BIND(&object_push);
{
Node* new_length = BuildAppendJSArray(PACKED_ELEMENTS, array_receiver,
&args, &arg_index, &default_label);
args.PopAndReturn(new_length);
}
BIND(&double_push);
{
Node* new_length =
BuildAppendJSArray(PACKED_DOUBLE_ELEMENTS, array_receiver, &args,
&arg_index, &double_transition);
args.PopAndReturn(new_length);
}
// If the argument is not a double, then use a heavyweight SetProperty to
// transition the array for only the single next element. If the argument is
// a double, the failure is due to some other reason and we should fall back
// on the most generic implementation for the rest of the array.
BIND(&double_transition);
{
Node* arg = args.AtIndex(arg_index.value());
GotoIfNumber(arg, &default_label);
Node* length = LoadJSArrayLength(array_receiver);
// TODO(danno): Use the KeyedStoreGeneric stub here when possible,
// calling into the runtime to do the elements transition is overkill.
SetPropertyStrict(context, array_receiver, CAST(length), CAST(arg));
Increment(&arg_index);
// The runtime SetProperty call could have converted the array to dictionary
// mode, which must be detected to abort the fast-path.
Node* map = LoadMap(array_receiver);
Node* bit_field2 = LoadMapBitField2(map);
Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2);
GotoIf(Word32Equal(kind, Int32Constant(DICTIONARY_ELEMENTS)),
&default_label);
Goto(&object_push);
}
// Fallback that stores un-processed arguments using the full, heavyweight
// SetProperty machinery.
BIND(&default_label);
{
args.ForEach(
[this, array_receiver, context](Node* arg) {
Node* length = LoadJSArrayLength(array_receiver);
SetPropertyStrict(context, array_receiver, CAST(length), CAST(arg));
},
arg_index.value());
args.PopAndReturn(LoadJSArrayLength(array_receiver));
}
BIND(&runtime);
{
// We are not using Parameter(Descriptor::kJSTarget) and loading the value
// from the current frame here in order to reduce register pressure on the
// fast path.
TNode<JSFunction> target = LoadTargetFromFrame();
TailCallBuiltin(Builtins::kArrayPush, context, target, UndefinedConstant(),
argc);
}
}
class ArrayPrototypeSliceCodeStubAssembler : public CodeStubAssembler {
public:
explicit ArrayPrototypeSliceCodeStubAssembler(
compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
Node* HandleFastSlice(TNode<Context> context, Node* array, Node* from,
Node* count, Label* slow) {
VARIABLE(result, MachineRepresentation::kTagged);
Label done(this);
GotoIf(TaggedIsNotSmi(from), slow);
GotoIf(TaggedIsNotSmi(count), slow);
Label try_fast_arguments(this), try_simple_slice(this);
Node* map = LoadMap(array);
GotoIfNot(IsJSArrayMap(map), &try_fast_arguments);
// Check prototype chain if receiver does not have packed elements
GotoIfNot(IsPrototypeInitialArrayPrototype(context, map), slow);
GotoIf(IsNoElementsProtectorCellInvalid(), slow);
GotoIf(IsArraySpeciesProtectorCellInvalid(), slow);
// Bailout if receiver has slow elements.
Node* elements_kind = LoadMapElementsKind(map);
GotoIfNot(IsFastElementsKind(elements_kind), &try_simple_slice);
// Make sure that the length hasn't been changed by side-effect.
Node* array_length = LoadJSArrayLength(array);
GotoIf(TaggedIsNotSmi(array_length), slow);
GotoIf(SmiAbove(SmiAdd(CAST(from), CAST(count)), CAST(array_length)), slow);
CSA_ASSERT(this, SmiGreaterThanOrEqual(CAST(from), SmiConstant(0)));
result.Bind(CallBuiltin(Builtins::kExtractFastJSArray, context, array, from,
count));
Goto(&done);
BIND(&try_fast_arguments);
Node* const native_context = LoadNativeContext(context);
Node* const fast_aliasted_arguments_map = LoadContextElement(
native_context, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
GotoIf(WordNotEqual(map, fast_aliasted_arguments_map), &try_simple_slice);
TNode<SloppyArgumentsElements> sloppy_elements = CAST(LoadElements(array));
TNode<Smi> sloppy_elements_length =
LoadFixedArrayBaseLength(sloppy_elements);
TNode<Smi> parameter_map_length =
SmiSub(sloppy_elements_length,
SmiConstant(SloppyArgumentsElements::kParameterMapStart));
VARIABLE(index_out, MachineType::PointerRepresentation());
int max_fast_elements =
(kMaxRegularHeapObjectSize - FixedArray::kHeaderSize - JSArray::kSize -
AllocationMemento::kSize) /
kPointerSize;
GotoIf(SmiAboveOrEqual(CAST(count), SmiConstant(max_fast_elements)),
&try_simple_slice);
GotoIf(SmiLessThan(CAST(from), SmiConstant(0)), slow);
TNode<Smi> end = SmiAdd(CAST(from), CAST(count));
TNode<FixedArray> unmapped_elements = CAST(LoadFixedArrayElement(
sloppy_elements, SloppyArgumentsElements::kArgumentsIndex));
TNode<Smi> unmapped_elements_length =
LoadFixedArrayBaseLength(unmapped_elements);
GotoIf(SmiAbove(end, unmapped_elements_length), slow);
Node* array_map = LoadJSArrayElementsMap(HOLEY_ELEMENTS, native_context);
result.Bind(AllocateJSArray(HOLEY_ELEMENTS, array_map, count, count,
nullptr, SMI_PARAMETERS));
index_out.Bind(IntPtrConstant(0));
TNode<FixedArray> result_elements = CAST(LoadElements(result.value()));
TNode<Smi> from_mapped = SmiMin(parameter_map_length, CAST(from));
TNode<Smi> to = SmiMin(parameter_map_length, end);
Node* arguments_context = LoadFixedArrayElement(
sloppy_elements, SloppyArgumentsElements::kContextIndex);
VariableList var_list({&index_out}, zone());
BuildFastLoop(
var_list, from_mapped, to,
[this, result_elements, arguments_context, sloppy_elements,
unmapped_elements, &index_out](Node* current) {
Node* context_index = LoadFixedArrayElement(
sloppy_elements, current,
kPointerSize * SloppyArgumentsElements::kParameterMapStart,
SMI_PARAMETERS);
Label is_the_hole(this), done(this);
GotoIf(IsTheHole(context_index), &is_the_hole);
Node* mapped_argument =
LoadContextElement(arguments_context, SmiUntag(context_index));
StoreFixedArrayElement(result_elements, index_out.value(),
mapped_argument, SKIP_WRITE_BARRIER);
Goto(&done);
BIND(&is_the_hole);
Node* argument = LoadFixedArrayElement(unmapped_elements, current, 0,
SMI_PARAMETERS);
StoreFixedArrayElement(result_elements, index_out.value(), argument,
SKIP_WRITE_BARRIER);
Goto(&done);
BIND(&done);
index_out.Bind(IntPtrAdd(index_out.value(), IntPtrConstant(1)));
},
1, SMI_PARAMETERS, IndexAdvanceMode::kPost);
TNode<Smi> unmapped_from =
SmiMin(SmiMax(parameter_map_length, CAST(from)), end);
BuildFastLoop(
var_list, unmapped_from, end,
[this, unmapped_elements, result_elements, &index_out](Node* current) {
Node* argument = LoadFixedArrayElement(unmapped_elements, current, 0,
SMI_PARAMETERS);
StoreFixedArrayElement(result_elements, index_out.value(), argument,
SKIP_WRITE_BARRIER);
index_out.Bind(IntPtrAdd(index_out.value(), IntPtrConstant(1)));
},
1, SMI_PARAMETERS, IndexAdvanceMode::kPost);
Goto(&done);
BIND(&try_simple_slice);
Node* simple_result = CallRuntime(Runtime::kTrySliceSimpleNonFastElements,
context, array, from, count);
GotoIfNumber(simple_result, slow);
result.Bind(simple_result);
Goto(&done);
BIND(&done);
return result.value();
}
void CopyOneElement(TNode<Context> context, Node* o, Node* a, Node* p_k,
Variable& n) {
// b. Let kPresent be HasProperty(O, Pk).
// c. ReturnIfAbrupt(kPresent).
TNode<Oddball> k_present = HasProperty(o, p_k, context, kHasProperty);
// d. If kPresent is true, then
Label done_element(this);
GotoIf(IsFalse(k_present), &done_element);
// i. Let kValue be Get(O, Pk).
// ii. ReturnIfAbrupt(kValue).
Node* k_value = GetProperty(context, o, p_k);
// iii. Let status be CreateDataPropertyOrThrow(A, ToString(n), kValue).
// iv. ReturnIfAbrupt(status).
CallRuntime(Runtime::kCreateDataProperty, context, a, n.value(), k_value);
Goto(&done_element);
BIND(&done_element);
}
};
TF_BUILTIN(ArrayPrototypeSlice, ArrayPrototypeSliceCodeStubAssembler) {
Node* const argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
Label slow(this, Label::kDeferred), fast_elements_kind(this);
CodeStubArguments args(this, argc);
TNode<Object> receiver = args.GetReceiver();
TVARIABLE(JSReceiver, o);
VARIABLE(len, MachineRepresentation::kTagged);
Label length_done(this), generic_length(this), check_arguments_length(this),
load_arguments_length(this);
GotoIf(TaggedIsSmi(receiver), &generic_length);
GotoIfNot(IsJSArray(CAST(receiver)), &check_arguments_length);
TNode<JSArray> array_receiver = CAST(receiver);
o = array_receiver;
len.Bind(LoadJSArrayLength(array_receiver));
// Check for the array clone case. There can be no arguments to slice, the
// array prototype chain must be intact and have no elements, the array has to
// have fast elements.
GotoIf(WordNotEqual(argc, IntPtrConstant(0)), &length_done);
Label clone(this);
BranchIfFastJSArrayForCopy(receiver, context, &clone, &length_done);
BIND(&clone);
args.PopAndReturn(
CallBuiltin(Builtins::kCloneFastJSArray, context, receiver));
BIND(&check_arguments_length);
Node* map = LoadMap(array_receiver);
Node* native_context = LoadNativeContext(context);
GotoIfContextElementEqual(map, native_context,
Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX,
&load_arguments_length);
GotoIfContextElementEqual(map, native_context,
Context::SLOW_ALIASED_ARGUMENTS_MAP_INDEX,
&load_arguments_length);
GotoIfContextElementEqual(map, native_context,
Context::STRICT_ARGUMENTS_MAP_INDEX,
&load_arguments_length);
GotoIfContextElementEqual(map, native_context,
Context::SLOPPY_ARGUMENTS_MAP_INDEX,
&load_arguments_length);
Goto(&generic_length);
BIND(&load_arguments_length);
Node* arguments_length =
LoadObjectField(array_receiver, JSArgumentsObject::kLengthOffset);
GotoIf(TaggedIsNotSmi(arguments_length), &generic_length);
o = CAST(receiver);
len.Bind(arguments_length);
Goto(&length_done);
BIND(&generic_length);
// 1. Let O be ToObject(this value).
// 2. ReturnIfAbrupt(O).
o = ToObject(context, receiver);
// 3. Let len be ToLength(Get(O, "length")).
// 4. ReturnIfAbrupt(len).
len.Bind(ToLength_Inline(
context,
GetProperty(context, o.value(), isolate()->factory()->length_string())));
Goto(&length_done);
BIND(&length_done);
// 5. Let relativeStart be ToInteger(start).
// 6. ReturnIfAbrupt(relativeStart).
TNode<Object> arg0 = args.GetOptionalArgumentValue(0, SmiConstant(0));
Node* relative_start = ToInteger_Inline(context, arg0);
// 7. If relativeStart < 0, let k be max((len + relativeStart),0);
// else let k be min(relativeStart, len.value()).
VARIABLE(k, MachineRepresentation::kTagged);
Label relative_start_positive(this), relative_start_done(this);
GotoIfNumberGreaterThanOrEqual(relative_start, SmiConstant(0),
&relative_start_positive);
k.Bind(NumberMax(NumberAdd(len.value(), relative_start), NumberConstant(0)));
Goto(&relative_start_done);
BIND(&relative_start_positive);
k.Bind(NumberMin(relative_start, len.value()));
Goto(&relative_start_done);
BIND(&relative_start_done);
// 8. If end is undefined, let relativeEnd be len;
// else let relativeEnd be ToInteger(end).
// 9. ReturnIfAbrupt(relativeEnd).
TNode<Object> end = args.GetOptionalArgumentValue(1, UndefinedConstant());
Label end_undefined(this), end_done(this);
VARIABLE(relative_end, MachineRepresentation::kTagged);
GotoIf(WordEqual(end, UndefinedConstant()), &end_undefined);
relative_end.Bind(ToInteger_Inline(context, end));
Goto(&end_done);
BIND(&end_undefined);
relative_end.Bind(len.value());
Goto(&end_done);
BIND(&end_done);
// 10. If relativeEnd < 0, let final be max((len + relativeEnd),0);
// else let final be min(relativeEnd, len).
VARIABLE(final, MachineRepresentation::kTagged);
Label relative_end_positive(this), relative_end_done(this);
GotoIfNumberGreaterThanOrEqual(relative_end.value(), NumberConstant(0),
&relative_end_positive);
final.Bind(NumberMax(NumberAdd(len.value(), relative_end.value()),
NumberConstant(0)));
Goto(&relative_end_done);
BIND(&relative_end_positive);
final.Bind(NumberMin(relative_end.value(), len.value()));
Goto(&relative_end_done);
BIND(&relative_end_done);
// 11. Let count be max(final – k, 0).
Node* count =
NumberMax(NumberSub(final.value(), k.value()), NumberConstant(0));
// Handle FAST_ELEMENTS
Label non_fast(this);
Node* fast_result =
HandleFastSlice(context, o.value(), k.value(), count, &non_fast);
args.PopAndReturn(fast_result);
// 12. Let A be ArraySpeciesCreate(O, count).
// 13. ReturnIfAbrupt(A).
BIND(&non_fast);
Node* constructor =
CallRuntime(Runtime::kArraySpeciesConstructor, context, o.value());
Node* a = ConstructJS(CodeFactory::Construct(isolate()), context, constructor,
count);
// 14. Let n be 0.
VARIABLE(n, MachineRepresentation::kTagged);
n.Bind(SmiConstant(0));
Label loop(this, {&k, &n});
Label after_loop(this);
Goto(&loop);
BIND(&loop);
{
// 15. Repeat, while k < final
GotoIfNumberGreaterThanOrEqual(k.value(), final.value(), &after_loop);
Node* p_k = k.value(); // ToString(context, k.value()) is no-op
CopyOneElement(context, o.value(), a, p_k, n);
// e. Increase k by 1.
k.Bind(NumberInc(k.value()));
// f. Increase n by 1.
n.Bind(NumberInc(n.value()));
Goto(&loop);
}
BIND(&after_loop);
// 16. Let setStatus be Set(A, "length", n, true).
// 17. ReturnIfAbrupt(setStatus).
SetPropertyStrict(context, CAST(a), CodeStubAssembler::LengthStringConstant(),
CAST(n.value()));
args.PopAndReturn(a);
}
TF_BUILTIN(ArrayPrototypeShift, CodeStubAssembler) {
TNode<Int32T> argc =
UncheckedCast<Int32T>(Parameter(Descriptor::kJSActualArgumentsCount));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CSA_ASSERT(this, IsUndefined(Parameter(Descriptor::kJSNewTarget)));
CodeStubArguments args(this, ChangeInt32ToIntPtr(argc));
TNode<Object> receiver = args.GetReceiver();
Label runtime(this, Label::kDeferred);
Label fast(this);
// Only shift in this stub if
// 1) the array has fast elements
// 2) the length is writable,
// 3) the elements backing store isn't copy-on-write,
// 4) we aren't supposed to shrink the backing store,
// 5) we aren't supposed to left-trim the backing store.
// 1) Check that the array has fast elements.
BranchIfFastJSArray(receiver, context, &fast, &runtime);
BIND(&fast);
{
TNode<JSArray> array_receiver = CAST(receiver);
CSA_ASSERT(this, TaggedIsPositiveSmi(LoadJSArrayLength(array_receiver)));
Node* length =
LoadAndUntagObjectField(array_receiver, JSArray::kLengthOffset);
Label return_undefined(this), fast_elements_tagged(this),
fast_elements_smi(this);
GotoIf(IntPtrEqual(length, IntPtrConstant(0)), &return_undefined);
// 2) Ensure that the length is writable.
EnsureArrayLengthWritable(LoadMap(array_receiver), &runtime);
// 3) Check that the elements backing store isn't copy-on-write.
Node* elements = LoadElements(array_receiver);
GotoIf(WordEqual(LoadMap(elements),
LoadRoot(Heap::kFixedCOWArrayMapRootIndex)),
&runtime);
Node* new_length = IntPtrSub(length, IntPtrConstant(1));
// 4) Check that we're not supposed to right-trim the backing store, as
// implemented in elements.cc:ElementsAccessorBase::SetLengthImpl.
Node* capacity = SmiUntag(LoadFixedArrayBaseLength(elements));
GotoIf(IntPtrLessThan(
IntPtrAdd(IntPtrAdd(new_length, new_length),
IntPtrConstant(JSObject::kMinAddedElementsCapacity)),
capacity),
&runtime);
// 5) Check that we're not supposed to left-trim the backing store, as
// implemented in elements.cc:FastElementsAccessor::MoveElements.
GotoIf(IntPtrGreaterThan(new_length,
IntPtrConstant(JSArray::kMaxCopyElements)),
&runtime);
StoreObjectFieldNoWriteBarrier(array_receiver, JSArray::kLengthOffset,
SmiTag(new_length));
TNode<Int32T> elements_kind = LoadElementsKind(array_receiver);
GotoIf(
Int32LessThanOrEqual(elements_kind, Int32Constant(HOLEY_SMI_ELEMENTS)),
&fast_elements_smi);
GotoIf(Int32LessThanOrEqual(elements_kind, Int32Constant(HOLEY_ELEMENTS)),
&fast_elements_tagged);
// Fast double elements kind:
{
CSA_ASSERT(this,
Int32LessThanOrEqual(elements_kind,
Int32Constant(HOLEY_DOUBLE_ELEMENTS)));
VARIABLE(result, MachineRepresentation::kTagged, UndefinedConstant());
Label move_elements(this);
result.Bind(AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement(
elements, IntPtrConstant(0), MachineType::Float64(), 0,
INTPTR_PARAMETERS, &move_elements)));
Goto(&move_elements);
BIND(&move_elements);
int32_t header_size = FixedDoubleArray::kHeaderSize - kHeapObjectTag;
Node* memmove =
ExternalConstant(ExternalReference::libc_memmove_function());
Node* start = IntPtrAdd(
BitcastTaggedToWord(elements),
ElementOffsetFromIndex(IntPtrConstant(0), HOLEY_DOUBLE_ELEMENTS,
INTPTR_PARAMETERS, header_size));
CallCFunction3(MachineType::AnyTagged(), MachineType::Pointer(),
MachineType::Pointer(), MachineType::UintPtr(), memmove,
start, IntPtrAdd(start, IntPtrConstant(kDoubleSize)),
IntPtrMul(new_length, IntPtrConstant(kDoubleSize)));
Node* offset = ElementOffsetFromIndex(new_length, HOLEY_DOUBLE_ELEMENTS,
INTPTR_PARAMETERS, header_size);
if (Is64()) {
Node* double_hole = Int64Constant(kHoleNanInt64);
StoreNoWriteBarrier(MachineRepresentation::kWord64, elements, offset,
double_hole);
} else {
STATIC_ASSERT(kHoleNanLower32 == kHoleNanUpper32);
Node* double_hole = Int32Constant(kHoleNanLower32);
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset,
double_hole);
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements,
IntPtrAdd(offset, IntPtrConstant(kPointerSize)),
double_hole);
}
args.PopAndReturn(result.value());
}
BIND(&fast_elements_tagged);
{
TNode<FixedArray> elements_fixed_array = CAST(elements);
Node* value = LoadFixedArrayElement(elements_fixed_array, 0);
BuildFastLoop(
IntPtrConstant(0), new_length,
[&](Node* index) {
StoreFixedArrayElement(
elements_fixed_array, index,
LoadFixedArrayElement(elements_fixed_array,
IntPtrAdd(index, IntPtrConstant(1))));
},
1, ParameterMode::INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
StoreFixedArrayElement(elements_fixed_array, new_length,
TheHoleConstant());
GotoIf(WordEqual(value, TheHoleConstant()), &return_undefined);
args.PopAndReturn(value);
}
BIND(&fast_elements_smi);
{
TNode<FixedArray> elements_fixed_array = CAST(elements);
Node* value = LoadFixedArrayElement(elements_fixed_array, 0);
BuildFastLoop(
IntPtrConstant(0), new_length,
[&](Node* index) {
StoreFixedArrayElement(
elements_fixed_array, index,
LoadFixedArrayElement(elements_fixed_array,
IntPtrAdd(index, IntPtrConstant(1))),
SKIP_WRITE_BARRIER);
},
1, ParameterMode::INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
StoreFixedArrayElement(elements_fixed_array, new_length,
TheHoleConstant());
GotoIf(WordEqual(value, TheHoleConstant()), &return_undefined);
args.PopAndReturn(value);
}
BIND(&return_undefined);
{ args.PopAndReturn(UndefinedConstant()); }
}
BIND(&runtime);
{
// We are not using Parameter(Descriptor::kJSTarget) and loading the value
// from the current frame here in order to reduce register pressure on the
// fast path.
TNode<JSFunction> target = LoadTargetFromFrame();
TailCallBuiltin(Builtins::kArrayShift, context, target, UndefinedConstant(),
argc);
}
}
TF_BUILTIN(ExtractFastJSArray, ArrayBuiltinsAssembler) {
ParameterMode mode = OptimalParameterMode();
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
Node* array = Parameter(Descriptor::kSource);
Node* begin = TaggedToParameter(Parameter(Descriptor::kBegin), mode);
Node* count = TaggedToParameter(Parameter(Descriptor::kCount), mode);
CSA_ASSERT(this, IsJSArray(array));
CSA_ASSERT(this, Word32BinaryNot(IsNoElementsProtectorCellInvalid()));
Return(ExtractFastJSArray(context, array, begin, count, mode));
}
TF_BUILTIN(CloneFastJSArray, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
Node* array = Parameter(Descriptor::kSource);
CSA_ASSERT(this, IsJSArray(array));
CSA_ASSERT(this, Word32BinaryNot(IsNoElementsProtectorCellInvalid()));
ParameterMode mode = OptimalParameterMode();
Return(CloneFastJSArray(context, array, mode));
}
TF_BUILTIN(ArrayFindLoopContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* array = Parameter(Descriptor::kArray);
TNode<JSReceiver> object = CAST(Parameter(Descriptor::kObject));
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* to = Parameter(Descriptor::kTo);
InitIteratingArrayBuiltinLoopContinuation(context, receiver, callbackfn,
this_arg, array, object, initial_k,
len, to);
GenerateIteratingArrayBuiltinLoopContinuation(
&ArrayBuiltinsAssembler::FindProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction,
MissingPropertyMode::kUseUndefined, ForEachDirection::kForward);
}
// Continuation that is called after an eager deoptimization from TF (ex. the
// array changes during iteration).
TF_BUILTIN(ArrayFindLoopEagerDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Return(CallBuiltin(Builtins::kArrayFindLoopContinuation, context, receiver,
callbackfn, this_arg, UndefinedConstant(), receiver,
initial_k, len, UndefinedConstant()));
}
// Continuation that is called after a lazy deoptimization from TF (ex. the
// callback function is no longer callable).
TF_BUILTIN(ArrayFindLoopLazyDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Return(CallBuiltin(Builtins::kArrayFindLoopContinuation, context, receiver,
callbackfn, this_arg, UndefinedConstant(), receiver,
initial_k, len, UndefinedConstant()));
}
// Continuation that is called after a lazy deoptimization from TF that happens
// right after the callback and it's returned value must be handled before
// iteration continues.
TF_BUILTIN(ArrayFindLoopAfterCallbackLazyDeoptContinuation,
ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* found_value = Parameter(Descriptor::kFoundValue);
Node* is_found = Parameter(Descriptor::kIsFound);
// This custom lazy deopt point is right after the callback. find() needs
// to pick up at the next step, which is returning the element if the callback
// value is truthy. Otherwise, continue the search by calling the
// continuation.
Label if_true(this), if_false(this);
BranchIfToBooleanIsTrue(is_found, &if_true, &if_false);
BIND(&if_true);
Return(found_value);
BIND(&if_false);
Return(CallBuiltin(Builtins::kArrayFindLoopContinuation, context, receiver,
callbackfn, this_arg, UndefinedConstant(), receiver,
initial_k, len, UndefinedConstant()));
}
// ES #sec-get-%typedarray%.prototype.find
TF_BUILTIN(ArrayPrototypeFind, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingArrayBuiltinBody(
"Array.prototype.find", &ArrayBuiltinsAssembler::FindResultGenerator,
&ArrayBuiltinsAssembler::FindProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction,
Builtins::CallableFor(isolate(), Builtins::kArrayFindLoopContinuation),
MissingPropertyMode::kUseUndefined, ForEachDirection::kForward);
}
TF_BUILTIN(ArrayFindIndexLoopContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* array = Parameter(Descriptor::kArray);
TNode<JSReceiver> object = CAST(Parameter(Descriptor::kObject));
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* to = Parameter(Descriptor::kTo);
InitIteratingArrayBuiltinLoopContinuation(context, receiver, callbackfn,
this_arg, array, object, initial_k,
len, to);
GenerateIteratingArrayBuiltinLoopContinuation(
&ArrayBuiltinsAssembler::FindIndexProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction,
MissingPropertyMode::kUseUndefined, ForEachDirection::kForward);
}
TF_BUILTIN(ArrayFindIndexLoopEagerDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Return(CallBuiltin(Builtins::kArrayFindIndexLoopContinuation, context,
receiver, callbackfn, this_arg, SmiConstant(-1), receiver,
initial_k, len, UndefinedConstant()));
}
TF_BUILTIN(ArrayFindIndexLoopLazyDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Return(CallBuiltin(Builtins::kArrayFindIndexLoopContinuation, context,
receiver, callbackfn, this_arg, SmiConstant(-1), receiver,
initial_k, len, UndefinedConstant()));
}
TF_BUILTIN(ArrayFindIndexLoopAfterCallbackLazyDeoptContinuation,
ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* found_value = Parameter(Descriptor::kFoundValue);
Node* is_found = Parameter(Descriptor::kIsFound);
// This custom lazy deopt point is right after the callback. find() needs
// to pick up at the next step, which is returning the element if the callback
// value is truthy. Otherwise, continue the search by calling the
// continuation.
Label if_true(this), if_false(this);
BranchIfToBooleanIsTrue(is_found, &if_true, &if_false);
BIND(&if_true);
Return(found_value);
BIND(&if_false);
Return(CallBuiltin(Builtins::kArrayFindIndexLoopContinuation, context,
receiver, callbackfn, this_arg, SmiConstant(-1), receiver,
initial_k, len, UndefinedConstant()));
}
// ES #sec-get-%typedarray%.prototype.findIndex
TF_BUILTIN(ArrayPrototypeFindIndex, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingArrayBuiltinBody(
"Array.prototype.findIndex",
&ArrayBuiltinsAssembler::FindIndexResultGenerator,
&ArrayBuiltinsAssembler::FindIndexProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction,
Builtins::CallableFor(isolate(),
Builtins::kArrayFindIndexLoopContinuation),
MissingPropertyMode::kUseUndefined, ForEachDirection::kForward);
}
class ArrayPopulatorAssembler : public CodeStubAssembler {
public:
explicit ArrayPopulatorAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
TNode<Object> ConstructArrayLike(TNode<Context> context,
TNode<Object> receiver) {
TVARIABLE(Object, array);
Label is_constructor(this), is_not_constructor(this), done(this);
GotoIf(TaggedIsSmi(receiver), &is_not_constructor);
Branch(IsConstructor(CAST(receiver)), &is_constructor, &is_not_constructor);
BIND(&is_constructor);
{
array = CAST(
ConstructJS(CodeFactory::Construct(isolate()), context, receiver));
Goto(&done);
}
BIND(&is_not_constructor);
{
Label allocate_js_array(this);
TNode<Map> array_map = CAST(LoadContextElement(
context, Context::JS_ARRAY_PACKED_SMI_ELEMENTS_MAP_INDEX));
array = CAST(AllocateJSArray(PACKED_SMI_ELEMENTS, array_map,
SmiConstant(0), SmiConstant(0), nullptr,
ParameterMode::SMI_PARAMETERS));
Goto(&done);
}
BIND(&done);
return array.value();
}
TNode<Object> ConstructArrayLike(TNode<Context> context,
TNode<Object> receiver,
TNode<Number> length) {
TVARIABLE(Object, array);
Label is_constructor(this), is_not_constructor(this), done(this);
CSA_ASSERT(this, IsNumberNormalized(length));
GotoIf(TaggedIsSmi(receiver), &is_not_constructor);
Branch(IsConstructor(CAST(receiver)), &is_constructor, &is_not_constructor);
BIND(&is_constructor);
{
array = CAST(ConstructJS(CodeFactory::Construct(isolate()), context,
receiver, length));
Goto(&done);
}
BIND(&is_not_constructor);
{
Label allocate_js_array(this);
Label next(this), runtime(this, Label::kDeferred);
TNode<Smi> limit = SmiConstant(JSArray::kInitialMaxFastElementArray);
CSA_ASSERT_BRANCH(this, [=](Label* ok, Label* not_ok) {
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual,
length, SmiConstant(0), ok, not_ok);
});
// This check also transitively covers the case where length is too big
// to be representable by a SMI and so is not usable with
// AllocateJSArray.
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length,
limit, &runtime, &next);
BIND(&runtime);
{
TNode<Context> native_context = LoadNativeContext(context);
TNode<JSFunction> array_function = CAST(
LoadContextElement(native_context, Context::ARRAY_FUNCTION_INDEX));
array = CallRuntime(Runtime::kNewArray, context, array_function, length,
array_function, UndefinedConstant());
Goto(&done);
}
BIND(&next);
CSA_ASSERT(this, TaggedIsSmi(length));
TNode<Map> array_map = CAST(LoadContextElement(
context, Context::JS_ARRAY_PACKED_SMI_ELEMENTS_MAP_INDEX));
// TODO(delphick): Consider using
// AllocateUninitializedJSArrayWithElements to avoid initializing an
// array and then writing over it.
array = CAST(AllocateJSArray(PACKED_SMI_ELEMENTS, array_map, length,
SmiConstant(0), nullptr,
ParameterMode::SMI_PARAMETERS));
Goto(&done);
}
BIND(&done);
return array.value();
}
void GenerateSetLength(TNode<Context> context, TNode<Object> array,
TNode<Number> length) {
Label fast(this), runtime(this), done(this);
// There's no need to set the length, if
// 1) the array is a fast JS array and
// 2) the new length is equal to the old length.
// as the set is not observable. Otherwise fall back to the run-time.
// 1) Check that the array has fast elements.
// TODO(delphick): Consider changing this since it does an an unnecessary
// check for SMIs.
// TODO(delphick): Also we could hoist this to after the array construction
// and copy the args into array in the same way as the Array constructor.
BranchIfFastJSArray(array, context, &fast, &runtime);
BIND(&fast);
{
TNode<JSArray> fast_array = CAST(array);
TNode<Smi> length_smi = CAST(length);
TNode<Smi> old_length = LoadFastJSArrayLength(fast_array);
CSA_ASSERT(this, TaggedIsPositiveSmi(old_length));
// 2) If the created array's length matches the required length, then
// there's nothing else to do. Otherwise use the runtime to set the
// property as that will insert holes into excess elements or shrink
// the backing store as appropriate.
Branch(SmiNotEqual(length_smi, old_length), &runtime, &done);
}
BIND(&runtime);
{
SetPropertyStrict(context, array,
CodeStubAssembler::LengthStringConstant(), length);
Goto(&done);
}
BIND(&done);
}
};
// ES #sec-array.from
TF_BUILTIN(ArrayFrom, ArrayPopulatorAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Int32T> argc =
UncheckedCast<Int32T>(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, ChangeInt32ToIntPtr(argc));
TNode<Object> map_function = args.GetOptionalArgumentValue(1);
// If map_function is not undefined, then ensure it's callable else throw.
{
Label no_error(this), error(this);
GotoIf(IsUndefined(map_function), &no_error);
GotoIf(TaggedIsSmi(map_function), &error);
Branch(IsCallable(CAST(map_function)), &no_error, &error);
BIND(&error);
ThrowTypeError(context, MessageTemplate::kCalledNonCallable, map_function);
BIND(&no_error);
}
Label iterable(this), not_iterable(this), finished(this), if_exception(this);
TNode<Object> this_arg = args.GetOptionalArgumentValue(2);
TNode<Object> items = args.GetOptionalArgumentValue(0);
// The spec doesn't require ToObject to be called directly on the iterable
// branch, but it's part of GetMethod that is in the spec.
TNode<JSReceiver> array_like = ToObject(context, items);
TVARIABLE(Object, array);
TVARIABLE(Number, length);
// Determine whether items[Symbol.iterator] is defined:
IteratorBuiltinsAssembler iterator_assembler(state());
Node* iterator_method =
iterator_assembler.GetIteratorMethod(context, array_like);
Branch(IsNullOrUndefined(iterator_method), &not_iterable, &iterable);
BIND(&iterable);
{
TVARIABLE(Number, index, SmiConstant(0));
TVARIABLE(Object, var_exception);
Label loop(this, &index), loop_done(this),
on_exception(this, Label::kDeferred),
index_overflow(this, Label::kDeferred);
// Check that the method is callable.
{
Label get_method_not_callable(this, Label::kDeferred), next(this);
GotoIf(TaggedIsSmi(iterator_method), &get_method_not_callable);
GotoIfNot(IsCallable(CAST(iterator_method)), &get_method_not_callable);
Goto(&next);
BIND(&get_method_not_callable);
ThrowTypeError(context, MessageTemplate::kCalledNonCallable,
iterator_method);
BIND(&next);
}
// Construct the output array with empty length.
array = ConstructArrayLike(context, args.GetReceiver());
// Actually get the iterator and throw if the iterator method does not yield
// one.
IteratorRecord iterator_record =
iterator_assembler.GetIterator(context, items, iterator_method);
TNode<Context> native_context = LoadNativeContext(context);
TNode<Object> fast_iterator_result_map =
LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX);
Goto(&loop);
BIND(&loop);
{
// Loop while iterator is not done.
TNode<Object> next = CAST(iterator_assembler.IteratorStep(
context, iterator_record, &loop_done, fast_iterator_result_map));
TVARIABLE(Object, value,
CAST(iterator_assembler.IteratorValue(
context, next, fast_iterator_result_map)));
// If a map_function is supplied then call it (using this_arg as
// receiver), on the value returned from the iterator. Exceptions are
// caught so the iterator can be closed.
{
Label next(this);
GotoIf(IsUndefined(map_function), &next);
CSA_ASSERT(this, IsCallable(CAST(map_function)));
Node* v = CallJS(CodeFactory::Call(isolate()), context, map_function,
this_arg, value.value(), index.value());
GotoIfException(v, &on_exception, &var_exception);
value = CAST(v);
Goto(&next);
BIND(&next);
}
// Store the result in the output object (catching any exceptions so the
// iterator can be closed).
Node* define_status =
CallRuntime(Runtime::kCreateDataProperty, context, array.value(),
index.value(), value.value());
GotoIfException(define_status, &on_exception, &var_exception);
index = NumberInc(index.value());
// The spec requires that we throw an exception if index reaches 2^53-1,
// but an empty loop would take >100 days to do this many iterations. To
// actually run for that long would require an iterator that never set
// done to true and a target array which somehow never ran out of memory,
// e.g. a proxy that discarded the values. Ignoring this case just means
// we would repeatedly call CreateDataProperty with index = 2^53.
CSA_ASSERT_BRANCH(this, [&](Label* ok, Label* not_ok) {
BranchIfNumberRelationalComparison(Operation::kLessThan, index.value(),
NumberConstant(kMaxSafeInteger), ok,
not_ok);
});
Goto(&loop);
}
BIND(&loop_done);
{
length = index;
Goto(&finished);
}
BIND(&on_exception);
{
// Close the iterator, rethrowing either the passed exception or
// exceptions thrown during the close.
iterator_assembler.IteratorCloseOnException(context, iterator_record,
&var_exception);
}
}
BIND(&not_iterable);
{
// Treat array_like as an array and try to get its length.
length = ToLength_Inline(
context, GetProperty(context, array_like, factory()->length_string()));
// Construct an array using the receiver as constructor with the same length
// as the input array.
array = ConstructArrayLike(context, args.GetReceiver(), length.value());
TVARIABLE(Number, index, SmiConstant(0));
// TODO(ishell): remove <Object, Object>
GotoIf(WordEqual<Object, Object>(length.value(), SmiConstant(0)),
&finished);
// Loop from 0 to length-1.
{
Label loop(this, &index);
Goto(&loop);
BIND(&loop);
TVARIABLE(Object, value);
value = GetProperty(context, array_like, index.value());
// If a map_function is supplied then call it (using this_arg as
// receiver), on the value retrieved from the array.
{
Label next(this);
GotoIf(IsUndefined(map_function), &next);
CSA_ASSERT(this, IsCallable(CAST(map_function)));
value = CAST(CallJS(CodeFactory::Call(isolate()), context, map_function,
this_arg, value.value(), index.value()));
Goto(&next);
BIND(&next);
}
// Store the result in the output object.
CallRuntime(Runtime::kCreateDataProperty, context, array.value(),
index.value(), value.value());
index = NumberInc(index.value());
BranchIfNumberRelationalComparison(Operation::kLessThan, index.value(),
length.value(), &loop, &finished);
}
}
BIND(&finished);
// Finally set the length on the output and return it.
GenerateSetLength(context, array.value(), length.value());
args.PopAndReturn(array.value());
}
// ES #sec-array.of
TF_BUILTIN(ArrayOf, ArrayPopulatorAssembler) {
TNode<Int32T> argc =
UncheckedCast<Int32T>(Parameter(Descriptor::kJSActualArgumentsCount));
TNode<Smi> length = SmiFromInt32(argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CodeStubArguments args(this, length, nullptr, ParameterMode::SMI_PARAMETERS);
TNode<Object> array = ConstructArrayLike(context, args.GetReceiver(), length);
// TODO(delphick): Avoid using CreateDataProperty on the fast path.
BuildFastLoop(SmiConstant(0), length,
[=](Node* index) {
CallRuntime(
Runtime::kCreateDataProperty, context,
static_cast<Node*>(array), index,
args.AtIndex(index, ParameterMode::SMI_PARAMETERS));
},
1, ParameterMode::SMI_PARAMETERS, IndexAdvanceMode::kPost);
GenerateSetLength(context, array, length);
args.PopAndReturn(array);
}
// ES #sec-get-%typedarray%.prototype.find
TF_BUILTIN(TypedArrayPrototypeFind, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingTypedArrayBuiltinBody(
"%TypedArray%.prototype.find",
&ArrayBuiltinsAssembler::FindResultGenerator,
&ArrayBuiltinsAssembler::FindProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction);
}
// ES #sec-get-%typedarray%.prototype.findIndex
TF_BUILTIN(TypedArrayPrototypeFindIndex, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingTypedArrayBuiltinBody(
"%TypedArray%.prototype.findIndex",
&ArrayBuiltinsAssembler::FindIndexResultGenerator,
&ArrayBuiltinsAssembler::FindIndexProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction);
}
TF_BUILTIN(TypedArrayPrototypeForEach, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingTypedArrayBuiltinBody(
"%TypedArray%.prototype.forEach",
&ArrayBuiltinsAssembler::ForEachResultGenerator,
&ArrayBuiltinsAssembler::ForEachProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction);
}
TF_BUILTIN(ArraySomeLoopLazyDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* result = Parameter(Descriptor::kResult);
// This custom lazy deopt point is right after the callback. every() needs
// to pick up at the next step, which is either continuing to the next
// array element or returning false if {result} is false.
Label true_continue(this), false_continue(this);
// iii. If selected is true, then...
BranchIfToBooleanIsTrue(result, &true_continue, &false_continue);
BIND(&true_continue);
{ Return(TrueConstant()); }
BIND(&false_continue);
{
// Increment k.
initial_k = NumberInc(initial_k);
Return(CallBuiltin(Builtins::kArraySomeLoopContinuation, context, receiver,
callbackfn, this_arg, FalseConstant(), receiver,
initial_k, len, UndefinedConstant()));
}
}
TF_BUILTIN(ArraySomeLoopEagerDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Return(CallBuiltin(Builtins::kArraySomeLoopContinuation, context, receiver,
callbackfn, this_arg, FalseConstant(), receiver, initial_k,
len, UndefinedConstant()));
}
TF_BUILTIN(ArraySomeLoopContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* array = Parameter(Descriptor::kArray);
TNode<JSReceiver> object = CAST(Parameter(Descriptor::kObject));
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* to = Parameter(Descriptor::kTo);
InitIteratingArrayBuiltinLoopContinuation(context, receiver, callbackfn,
this_arg, array, object, initial_k,
len, to);
GenerateIteratingArrayBuiltinLoopContinuation(
&ArrayBuiltinsAssembler::SomeProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction, MissingPropertyMode::kSkip);
}
TF_BUILTIN(ArraySome, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingArrayBuiltinBody(
"Array.prototype.some", &ArrayBuiltinsAssembler::SomeResultGenerator,
&ArrayBuiltinsAssembler::SomeProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction,
Builtins::CallableFor(isolate(), Builtins::kArraySomeLoopContinuation),
MissingPropertyMode::kSkip);
}
TF_BUILTIN(TypedArrayPrototypeSome, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingTypedArrayBuiltinBody(
"%TypedArray%.prototype.some",
&ArrayBuiltinsAssembler::SomeResultGenerator,
&ArrayBuiltinsAssembler::SomeProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction);
}
TF_BUILTIN(ArrayEveryLoopLazyDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* result = Parameter(Descriptor::kResult);
// This custom lazy deopt point is right after the callback. every() needs
// to pick up at the next step, which is either continuing to the next
// array element or returning false if {result} is false.
Label true_continue(this), false_continue(this);
// iii. If selected is true, then...
BranchIfToBooleanIsTrue(result, &true_continue, &false_continue);
BIND(&true_continue);
{
// Increment k.
initial_k = NumberInc(initial_k);
Return(CallBuiltin(Builtins::kArrayEveryLoopContinuation, context, receiver,
callbackfn, this_arg, TrueConstant(), receiver,
initial_k, len, UndefinedConstant()));
}
BIND(&false_continue);
{ Return(FalseConstant()); }
}
TF_BUILTIN(ArrayEveryLoopEagerDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Return(CallBuiltin(Builtins::kArrayEveryLoopContinuation, context, receiver,
callbackfn, this_arg, TrueConstant(), receiver, initial_k,
len, UndefinedConstant()));
}
TF_BUILTIN(ArrayEveryLoopContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* array = Parameter(Descriptor::kArray);
TNode<JSReceiver> object = CAST(Parameter(Descriptor::kObject));
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* to = Parameter(Descriptor::kTo);
InitIteratingArrayBuiltinLoopContinuation(context, receiver, callbackfn,
this_arg, array, object, initial_k,
len, to);
GenerateIteratingArrayBuiltinLoopContinuation(
&ArrayBuiltinsAssembler::EveryProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction, MissingPropertyMode::kSkip);
}
TF_BUILTIN(ArrayEvery, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingArrayBuiltinBody(
"Array.prototype.every", &ArrayBuiltinsAssembler::EveryResultGenerator,
&ArrayBuiltinsAssembler::EveryProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction,
Builtins::CallableFor(isolate(), Builtins::kArrayEveryLoopContinuation),
MissingPropertyMode::kSkip);
}
TF_BUILTIN(TypedArrayPrototypeEvery, ArrayBuiltinsAssembler) {
TNode<IntPtrT> argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = args.GetReceiver();
Node* callbackfn = args.GetOptionalArgumentValue(0);
Node* this_arg = args.GetOptionalArgumentValue(1);
InitIteratingArrayBuiltinBody(context, receiver, callbackfn, this_arg, argc);
GenerateIteratingTypedArrayBuiltinBody(
"%TypedArray%.prototype.every",
&ArrayBuiltinsAssembler::EveryResultGenerator,
&ArrayBuiltinsAssembler::EveryProcessor,
&ArrayBuiltinsAssembler::NullPostLoopAction);
}
TF_BUILTIN(ArrayReduceLoopContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
Node* callbackfn = Parameter(Descriptor::kCallbackFn);
Node* this_arg = Parameter(Descriptor::kThisArg);
Node* accumulator = Parameter(Descriptor::kAccumulator);
TNode<JSReceiver> object = CAST(Parameter(Descriptor::kObject));
Node* initial_k = Parameter(Descriptor::kInitialK);
TNode<Number> len = CAST(Parameter(Descriptor::kLength));
Node* to = Parameter(Descriptor::kTo);
InitIteratingArrayBuiltinLoopContinuation(context, receiver, callbackfn,
this_arg, accumulator, object,
initial_k, len, to);
GenerateIteratingArrayBuiltinLoopContinuation(
&ArrayBuiltinsAssembler::ReduceProcessor,
&ArrayBuiltinsAssembler::ReducePostLoopAction,
MissingPropertyMode::kSkip);
}
TF_BUILTIN(ArrayReducePreLoopEagerDeoptContinuation, ArrayBuiltinsAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Paramete