blob: 6830a049c9a9a7d2359c87e400ff965ef150d153 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/counters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/mips64/constants-mips64.h"
#include "src/objects-inl.h"
#include "src/objects/js-generator.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
__ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ Ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
a4, Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
a4, Operand(MAP_TYPE));
}
// Run the native code for the InternalArray function called as a normal
// function.
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a1 : target function (preserved for callee)
// -- a3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
// Push a copy of the target function and the new target.
__ SmiTag(a0);
__ Push(a0, a1, a3, a1);
__ CallRuntime(function_id, 1);
// Restore target function and new target.
__ Pop(a0, a1, a3);
__ SmiUntag(a0);
}
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0);
__ SmiUntag(a0);
// The receiver for the builtin/api call.
__ PushRoot(Heap::kTheHoleValueRootIndex);
// Set up pointer to last argument.
__ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(t3, a0);
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a3: new target
// -- t2: pointer to last argument
// -- t3: counter
// -- sp[0*kPointerSize]: the hole (receiver)
// -- sp[1*kPointerSize]: number of arguments (tagged)
// -- sp[2*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ Dlsa(t0, t2, t3, kPointerSizeLog2);
__ Ld(t1, MemOperand(t0));
__ push(t1);
__ bind(&entry);
__ Daddu(t3, t3, Operand(-1));
__ Branch(&loop, greater_equal, t3, Operand(zero_reg));
// Call the function.
// a0: number of arguments (untagged)
// a1: constructor function
// a3: new target
ParameterCount actual(a0);
__ InvokeFunction(a1, a3, actual, CALL_FUNCTION);
// Restore context from the frame.
__ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
__ Daddu(sp, sp, kPointerSize);
__ Ret();
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a1: constructor function
// -- a3: new target
// -- cp: context
// -- ra: return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0, a1);
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ Push(a3);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- a1 and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset));
__ And(t2, t2, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
__ Branch(&not_create_implicit_receiver, ne, t2, Operand(zero_reg));
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
t2, t3);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ Branch(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(v0, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- v0: receiver
// -- Slot 4 / sp[0*kPointerSize]: new target
// -- Slot 3 / sp[1*kPointerSize]: padding
// -- Slot 2 / sp[2*kPointerSize]: constructor function
// -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(a3);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(v0, v0);
// ----------- S t a t e -------------
// -- r3: new target
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
// Restore constructor function and argument count.
__ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ Ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(a0);
// Set up pointer to last argument.
__ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(t3, a0);
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a3: new target
// -- t2: pointer to last argument
// -- t3: counter
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- a1 and sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ Dlsa(t0, t2, t3, kPointerSizeLog2);
__ Ld(t1, MemOperand(t0));
__ push(t1);
__ bind(&entry);
__ Daddu(t3, t3, Operand(-1));
__ Branch(&loop, greater_equal, t3, Operand(zero_reg));
// Call the function.
ParameterCount actual(a0);
__ InvokeFunction(a1, a3, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- v0: constructor result
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: padding
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(v0, Heap::kUndefinedValueRootIndex, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(v0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, t2, t2);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE));
__ Branch(&use_receiver);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ Ld(v0, MemOperand(sp, 0 * kPointerSize));
__ JumpIfRoot(v0, Heap::kTheHoleValueRootIndex, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
__ Daddu(sp, sp, kPointerSize);
__ Ret();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ GetObjectType(sfi_data, scratch1, scratch1);
__ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE));
__ Ld(sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : the value to pass to the generator
// -- a1 : the JSGeneratorObject to resume
// -- ra : return address
// -----------------------------------
__ AssertGeneratorObject(a1);
// Store input value into generator object.
__ Sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3,
kRAHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ Ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ li(a5, debug_hook);
__ Lb(a5, MemOperand(a5));
__ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg));
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ li(a5, debug_suspended_generator);
__ Ld(a5, MemOperand(a5));
__ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5));
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex);
__ Branch(&stack_overflow, lo, sp, Operand(kScratchReg));
// Push receiver.
__ Ld(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
__ Push(a5);
// ----------- S t a t e -------------
// -- a1 : the JSGeneratorObject to resume
// -- a4 : generator function
// -- cp : generator context
// -- ra : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ Lhu(a3,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
__ Ld(t1,
FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ Move(t2, zero_reg);
__ bind(&loop);
__ Dsubu(a3, a3, Operand(1));
__ Branch(&done_loop, lt, a3, Operand(zero_reg));
__ Dlsa(kScratchReg, t1, t2, kPointerSizeLog2);
__ Ld(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize));
__ Push(kScratchReg);
__ Daddu(t2, t2, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ Ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, a3, a0);
__ GetObjectType(a3, a3, a3);
__ Assert(eq, AbortReason::kMissingBytecodeArray, a3,
Operand(BYTECODE_ARRAY_TYPE));
}
// Resume (Ignition/TurboFan) generator object.
{
__ Ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ Lhu(a0, FieldMemOperand(
a0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(a3, a1);
__ Move(a1, a4);
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1, a4);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(a1);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(a1);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ break_(0xCC); // This should be unreachable.
}
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
// Clobbers a2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ dsubu(a2, sp, a2);
// Check if the arguments will overflow the stack.
__ dsll(a7, argc, kPointerSizeLog2);
__ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// ----------- S t a t e -------------
// -- a0: new.target
// -- a1: function
// -- a2: receiver_pointer
// -- a3: argc
// -- s0: argv
// -----------------------------------
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ li(cp, context_address);
__ Ld(cp, MemOperand(cp));
// Push the function and the receiver onto the stack.
__ Push(a1, a2);
// Check if we have enough stack space to push all arguments.
// Clobbers a2.
Generate_CheckStackOverflow(masm, a3);
// Remember new.target.
__ mov(a5, a0);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, i.e. points to first arg
Label loop, entry;
__ Dlsa(a6, s0, a3, kPointerSizeLog2);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// a6 points past last arg.
__ bind(&loop);
__ Ld(a4, MemOperand(s0)); // Read next parameter.
__ daddiu(s0, s0, kPointerSize);
__ Ld(a4, MemOperand(a4)); // Dereference handle.
__ push(a4); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, s0, Operand(a6));
// Setup new.target and argc.
__ mov(a0, a3);
__ mov(a3, a5);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
__ mov(s1, a4);
__ mov(s2, a4);
__ mov(s3, a4);
__ mov(s4, a4);
__ mov(s5, a4);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void ReplaceClosureCodeWithOptimizedCode(
MacroAssembler* masm, Register optimized_code, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
// Store code entry in the closure.
__ Sd(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
__ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ Ld(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Lw(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
// Drop receiver + arguments.
__ Daddu(sp, sp, args_count);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker)));
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee if needed, and caller)
// -- a3 : new target (preserved for callee if needed, and caller)
// -- a1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(
!AreAliased(feedback_vector, a0, a1, a3, scratch1, scratch2, scratch3));
Label optimized_code_slot_is_weak_ref, fallthrough;
Register closure = a1;
Register optimized_code_entry = scratch1;
__ Ld(optimized_code_entry,
FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret it as a weak reference to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ Branch(&fallthrough, eq, optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kNone)));
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ Assert(
eq, AbortReason::kExpectedOptimizationSentinel,
optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
}
__ jmp(&fallthrough);
}
}
{
// Optimized code slot is a weak reference.
__ bind(&optimized_code_slot_is_weak_ref);
__ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ Ld(a5, FieldMemOperand(optimized_code_entry,
Code::kCodeDataContainerOffset));
__ Lw(a5, FieldMemOperand(a5, CodeDataContainer::kKindSpecificFlagsOffset));
__ And(a5, a5, Operand(1 << Code::kMarkedForDeoptimizationBit));
__ Branch(&found_deoptimized_code, ne, a5, Operand(zero_reg));
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Daddu(a2, optimized_code_entry,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// losure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Register scratch2, Label* if_return) {
Register bytecode_size_table = scratch1;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ li(bytecode_size_table, ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ Branch(&process_bytecode, hi, bytecode, Operand(3));
__ And(scratch2, bytecode, Operand(1));
__ Branch(&extra_wide, ne, scratch2, Operand(zero_reg));
// Load the next bytecode and update table to the wide scaled table.
__ Daddu(bytecode_offset, bytecode_offset, Operand(1));
__ Daddu(scratch2, bytecode_array, bytecode_offset);
__ Lbu(bytecode, MemOperand(scratch2));
__ Daddu(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ Daddu(bytecode_offset, bytecode_offset, Operand(1));
__ Daddu(scratch2, bytecode_array, bytecode_offset);
__ Lbu(bytecode, MemOperand(scratch2));
__ Daddu(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ Branch(if_return, eq, bytecode, \
Operand(static_cast<int>(interpreter::Bytecode::k##NAME)));
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// Otherwise, load the size of the current bytecode and advance the offset.
__ Dlsa(scratch2, bytecode_size_table, bytecode, 2);
__ Lw(scratch2, MemOperand(scratch2));
__ Daddu(bytecode_offset, bytecode_offset, scratch2);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o a1: the JS function object being called.
// o a3: the incoming new target or generator object
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = a1;
Register feedback_vector = a2;
// Load the feedback vector from the closure.
__ Ld(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, a4, t3, a5);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(closure);
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ Ld(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ Ld(kInterpreterBytecodeArrayRegister,
FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, a4);
// Increment invocation count for the function.
__ Lw(a4, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ Addu(a4, a4, Operand(1));
__ Sw(a4, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ SmiTst(kInterpreterBytecodeArrayRegister, a4);
__ Assert(ne,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
a4, Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4);
__ Assert(eq,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
a4, Operand(BYTECODE_ARRAY_TYPE));
}
// Reset code age.
DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge);
__ sb(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset));
// Load initial bytecode offset.
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(a4, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, a4);
// Allocate the local and temporary register file on the stack.
{
// Load frame size (word) from the BytecodeArray object.
__ Lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ Dsubu(a5, sp, Operand(a4));
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
__ Branch(&ok, hs, a5, Operand(a2));
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ Branch(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(a5);
// Continue loop if not done.
__ bind(&loop_check);
__ Dsubu(a4, a4, Operand(kPointerSize));
__ Branch(&loop_header, ge, a4, Operand(zero_reg));
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in r3.
Label no_incoming_new_target_or_generator_register;
__ Lw(a5, FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ Branch(&no_incoming_new_target_or_generator_register, eq, a5,
Operand(zero_reg));
__ Dlsa(a5, fp, a5, kPointerSizeLog2);
__ Sd(a3, MemOperand(a5));
__ bind(&no_incoming_new_target_or_generator_register);
// Load accumulator as undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ li(kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ Daddu(a0, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a7, MemOperand(a0));
__ Dlsa(kScratchReg, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2);
__ Ld(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ld(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a1, MemOperand(a1));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, a1, a2, a3,
&do_return);
__ jmp(&do_dispatch);
__ bind(&do_return);
// The return value is in v0.
LeaveInterpreterFrame(masm, t0);
__ Jump(ra);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch1, Register scratch2,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex);
// Make scratch1 the space we have left. The stack might already be overflowed
// here which will cause scratch1 to become negative.
__ dsubu(scratch1, sp, scratch1);
// Check if the arguments will overflow the stack.
__ dsll(scratch2, num_args, kPointerSizeLog2);
// Signed comparison.
__ Branch(stack_overflow, le, scratch1, Operand(scratch2));
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register scratch, Register scratch2) {
// Find the address of the last argument.
__ mov(scratch2, num_args);
__ dsll(scratch2, scratch2, kPointerSizeLog2);
__ Dsubu(scratch2, index, Operand(scratch2));
// Push the arguments.
Label loop_header, loop_check;
__ Branch(&loop_check);
__ bind(&loop_header);
__ Ld(scratch, MemOperand(index));
__ Daddu(index, index, Operand(-kPointerSize));
__ push(scratch);
__ bind(&loop_check);
__ Branch(&loop_header, gt, index, Operand(scratch2));
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
__ Daddu(a3, a0, Operand(1)); // Add one for receiver.
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ Dsubu(a3, a3, Operand(1)); // Subtract one for receiver.
}
Generate_StackOverflowCheck(masm, a3, a4, t0, &stack_overflow);
// This function modifies a2, t0 and a4.
Generate_InterpreterPushArgs(masm, a3, a2, a4, t0);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(a2); // Pass the spread in a register
__ Dsubu(a0, a0, Operand(1)); // Subtract one for spread
}
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- a0 : argument count (not including receiver)
// -- a3 : new target
// -- a1 : constructor to call
// -- a2 : allocation site feedback if available, undefined otherwise.
// -- a4 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver.
__ push(zero_reg);
Generate_StackOverflowCheck(masm, a0, a5, t0, &stack_overflow);
// This function modifies t0, a4 and a5.
Generate_InterpreterPushArgs(masm, a0, a4, a5, t0);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(a2); // Pass the spread in a register
__ Dsubu(a0, a0, Operand(1)); // Subtract one for spread
} else {
__ AssertUndefinedOrAllocationSite(a2, t0);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(a1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
// If the SFI function_data is an InterpreterData, get the trampoline stored
// in it, otherwise get the trampoline from the builtins list.
__ Ld(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ Ld(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
__ Ld(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset));
__ GetObjectType(t0, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister);
__ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister,
Operand(INTERPRETER_DATA_TYPE));
__ Ld(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset));
__ Branch(&trampoline_loaded);
__ bind(&builtin_trampoline);
__ li(t0, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
__ bind(&trampoline_loaded);
__ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ li(kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg);
__ Assert(ne,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
kScratchReg, Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1);
__ Assert(eq,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
a1, Operand(BYTECODE_ARRAY_TYPE));
}
// Get the target bytecode offset from the frame.
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
// Dispatch to the target bytecode.
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a7, MemOperand(a1));
__ Dlsa(a1, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2);
__ Ld(kJavaScriptCallCodeStartRegister, MemOperand(a1));
__ Jump(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ld(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Load the current bytecode.
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a1, MemOperand(a1));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, a1, a2, a3,
&if_return);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(a2, kInterpreterBytecodeOffsetRegister);
__ Sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a1 : new target (preserved for callee)
// -- a3 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ Move(t2, a0);
__ SmiTag(a0);
__ Push(a0, a1, a3, a1);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ Branch(&over, ne, t2, Operand(j));
}
for (int i = j - 1; i >= 0; --i) {
__ Ld(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(t2);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(v0, &failed);
__ Drop(2);
__ pop(t2);
__ SmiUntag(t2);
scope.GenerateLeaveFrame();
__ Daddu(t2, t2, Operand(1));
__ Dlsa(sp, sp, t2, kPointerSizeLog2);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ Pop(a0, a1, a3);
__ SmiUntag(a0);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ Sd(v0,
MemOperand(
sp, config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize));
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ Pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
__ Ld(fp, MemOperand(
sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(t0);
__ Daddu(sp, sp,
Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(ra);
__ Daddu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(t0);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code());
__ Ld(v0, MemOperand(sp, 0 * kPointerSize));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ Ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ld(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ Ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(a0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
__ Ret(eq, v0, Operand(Smi::kZero));
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ Ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ SmiUntag(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex) -
kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Daddu(v0, v0, a1);
__ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
Register argc = a0;
Register arg_array = a2;
Register receiver = a1;
Register this_arg = a5;
Register undefined_value = a3;
Register scratch = a4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load receiver into a1, argArray into a2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
// Claim (2 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Dsubu(sp, sp, Operand(2 * kPointerSize));
__ Dlsa(sp, sp, argc, kPointerSizeLog2);
__ mov(scratch, argc);
__ Pop(this_arg, arg_array); // Overwrite argc
__ Movz(arg_array, undefined_value, scratch); // if argc == 0
__ Movz(this_arg, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arg_array, undefined_value, scratch); // if argc == 1
__ Ld(receiver, MemOperand(sp));
__ Sd(this_arg, MemOperand(sp));
}
// ----------- S t a t e -------------
// -- a2 : argArray
// -- a1 : receiver
// -- a3 : undefined root value
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(arg_array, Heap::kNullValueRootIndex, &no_arguments);
__ Branch(&no_arguments, eq, arg_array, Operand(undefined_value));
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ mov(a0, zero_reg);
DCHECK(receiver == a1);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// a0: actual number of arguments
{
Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ Daddu(a0, a0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack.
// a0: actual number of arguments
__ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2);
__ Ld(a1, MemOperand(kScratchReg));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// a0: actual number of arguments
// a1: function
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ Dlsa(a2, sp, a0, kPointerSizeLog2);
__ bind(&loop);
__ Ld(kScratchReg, MemOperand(a2, -kPointerSize));
__ Sd(kScratchReg, MemOperand(a2));
__ Dsubu(a2, a2, Operand(kPointerSize));
__ Branch(&loop, ne, a2, Operand(sp));
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Dsubu(a0, a0, Operand(1));
__ Pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : argumentsList (if argc ==3)
// -- sp[4] : thisArgument (if argc >=2)
// -- sp[8] : target (if argc >=1)
// -- sp[12] : receiver
// -----------------------------------
Register argc = a0;
Register arguments_list = a2;
Register target = a1;
Register this_argument = a5;
Register undefined_value = a3;
Register scratch = a4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into a1 (if present), argumentsList into a2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
// Claim (3 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Dsubu(sp, sp, Operand(3 * kPointerSize));
__ Dlsa(sp, sp, argc, kPointerSizeLog2);
__ mov(scratch, argc);
__ Pop(target, this_argument, arguments_list);
__ Movz(arguments_list, undefined_value, scratch); // if argc == 0
__ Movz(this_argument, undefined_value, scratch); // if argc == 0
__ Movz(target, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 1
__ Movz(this_argument, undefined_value, scratch); // if argc == 1
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 2
__ Sd(this_argument, MemOperand(sp, 0)); // Overwrite receiver
}
// ----------- S t a t e -------------
// -- a2 : argumentsList
// -- a1 : target
// -- a3 : undefined root value
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : new.target (optional) (dummy value if argc <= 2)
// -- sp[4] : argumentsList (dummy value if argc <= 1)
// -- sp[8] : target (dummy value if argc == 0)
// -- sp[12] : receiver
// -----------------------------------
Register argc = a0;
Register arguments_list = a2;
Register target = a1;
Register new_target = a3;
Register undefined_value = a4;
Register scratch = a5;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into a1 (if present), argumentsList into a2 (if present),
// new.target into a3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
// Claim (3 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Dsubu(sp, sp, Operand(3 * kPointerSize));
__ Dlsa(sp, sp, argc, kPointerSizeLog2);
__ mov(scratch, argc);
__ Pop(target, arguments_list, new_target);
__ Movz(arguments_list, undefined_value, scratch); // if argc == 0
__ Movz(new_target, undefined_value, scratch); // if argc == 0
__ Movz(target, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 1
__ Movz(new_target, target, scratch); // if argc == 1
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(new_target, target, scratch); // if argc == 2
__ Sd(undefined_value, MemOperand(sp, 0)); // Overwrite receiver
}
// ----------- S t a t e -------------
// -- a2 : argumentsList
// -- a1 : target
// -- a3 : new.target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(a0);
__ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
__ Push(Smi::kZero); // Padding.
__ Daddu(fp, sp,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ Ld(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
// Adjust for the receiver.
__ Daddu(sp, sp, Operand(kPointerSize));
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a1 : target
// -- a0 : number of parameters on the stack (not including the receiver)
// -- a2 : arguments list (a FixedArray)
// -- a4 : len (number of elements to push from args)
// -- a3 : new.target (for [[Construct]])
// -----------------------------------
if (masm->emit_debug_code()) {
// Allow a2 to be a FixedArray, or a FixedDoubleArray if a4 == 0.
Label ok, fail;
__ AssertNotSmi(a2);
__ GetObjectType(a2, t8, t8);
__ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE));
__ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE));
__ Branch(&ok, eq, a4, Operand(zero_reg));
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
Register args = a2;
Register len = a4;
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
// Make ip the space we have left. The stack might already be overflowed
// here which will cause ip to become negative.
__ Dsubu(a5, sp, a5);
// Check if the arguments will overflow the stack.
__ dsll(kScratchReg, len, kPointerSizeLog2);
__ Branch(&done, gt, a5, Operand(kScratchReg)); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Push arguments onto the stack (thisArgument is already on the stack).
{
Label done, push, loop;
Register src = a6;
Register scratch = len;
__ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag);
__ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT);
__ Daddu(a0, a0, len); // The 'len' argument for Call() or Construct().
__ dsll(scratch, len, kPointerSizeLog2);
__ Dsubu(scratch, sp, Operand(scratch));
__ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
__ bind(&loop);
__ Ld(a5, MemOperand(src));
__ Branch(&push, ne, a5, Operand(t1));
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ daddiu(src, src, kPointerSize);
__ Push(a5);
__ Branch(&loop, ne, scratch, Operand(sp));
__ bind(&done);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a3 : the new.target (for [[Construct]] calls)
// -- a1 : the target to call (can be any Object)
// -- a2 : start index (to support rest parameters)
// -----------------------------------
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(a3, &new_target_not_constructor);
__ ld(t1, FieldMemOperand(a3, HeapObject::kMapOffset));
__ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(Map::IsConstructorBit::kMask));
__ Branch(&new_target_constructor, ne, t1, Operand(zero_reg));
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(a3);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ Ld(a6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ld(a7, MemOperand(a6, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Branch(&arguments_adaptor, eq, a7,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
{
__ Ld(a7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ld(a7, FieldMemOperand(a7, JSFunction::kSharedFunctionInfoOffset));
__ Lhu(a7, FieldMemOperand(
a7, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(a6, fp);
}
__ Branch(&arguments_done);
__ bind(&arguments_adaptor);
{
// Just get the length from the ArgumentsAdaptorFrame.
__ SmiUntag(a7,
MemOperand(a6, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ Subu(a7, a7, a2);
__ Branch(&stack_done, le, a7, Operand(zero_reg));
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, a7, a4, a5, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ Daddu(a0, a0, a7);
__ bind(&loop);
{
__ Dlsa(kScratchReg, a6, a7, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(kScratchReg, 1 * kPointerSize));
__ push(kScratchReg);
__ Subu(a7, a7, Operand(1));
__ Branch(&loop, ne, a7, Operand(zero_reg));
}
}
}
__ Branch(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(a1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset));
__ And(kScratchReg, a3,
Operand(SharedFunctionInfo::IsClassConstructorBit::kMask));
__ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg));
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset));
__ And(kScratchReg, a3,
Operand(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg));
{
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
} else {
Label convert_to_object, convert_receiver;
__ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2);
__ Ld(a3, MemOperand(kScratchReg));
__ JumpIfSmi(a3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(a3, a4, a4);
__ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
}
__ Branch(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(a0);
__ Push(a0, a1);
__ mov(a0, a3);
__ Push(cp);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ mov(a3, v0);
__ Pop(a0, a1);
__ SmiUntag(a0);
}
__ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2);
__ Sd(a3, MemOperand(kScratchReg));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ Lhu(a2,
FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(a0);
ParameterCount expected(a2);
__ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(a1);
// Patch the receiver to [[BoundThis]].
{
__ Ld(kScratchReg, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset));
__ Dlsa(a4, sp, a0, kPointerSizeLog2);
__ Sd(kScratchReg, MemOperand(a4));
}
// Load [[BoundArguments]] into a2 and length of that into a4.
__ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ dsll(a5, a4, kPointerSizeLog2);
__ Dsubu(sp, sp, Operand(a5));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex);
__ Branch(&done, gt, sp, Operand(kScratchReg)); // Signed comparison.
// Restore the stack pointer.
__ Daddu(sp, sp, Operand(a5));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(a5, zero_reg);
__ bind(&loop);
__ Branch(&done_loop, gt, a5, Operand(a0));
__ Dlsa(a6, sp, a4, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(a6));
__ Dlsa(a6, sp, a5, kPointerSizeLog2);
__ Sd(kScratchReg, MemOperand(a6));
__ Daddu(a4, a4, Operand(1));
__ Daddu(a5, a5, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop, done_loop;
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Dsubu(a4, a4, Operand(1));
__ Branch(&done_loop, lt, a4, Operand(zero_reg));
__ Dlsa(a5, a2, a4, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(a5));
__ Dlsa(a5, sp, a0, kPointerSizeLog2);
__ Sd(kScratchReg, MemOperand(a5));
__ Daddu(a0, a0, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Call the [[BoundTargetFunction]] via the Call builtin.
__ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(a1, &non_callable);
__ bind(&non_smi);
__ GetObjectType(a1, t1, t2);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Check if target has a [[Call]] internal method.
__ Lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(Map::IsCallableBit::kMask));
__ Branch(&non_callable, eq, t1, Operand(zero_reg));
__ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2);
__ Sd(a1, MemOperand(kScratchReg));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(a1);
__ AssertFunction(a1);
// Calling convention for function specific ConstructStubs require
// a2 to contain either an AllocationSite or undefined.
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ Ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lwu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset));
__ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ Branch(&call_generic_stub, eq, a4, Operand(zero_reg));
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(a1);
__ AssertBoundFunction(a1);
// Load [[BoundArguments]] into a2 and length of that into a4.
__ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a3 : the new target (checked to be a constructor)
// -- a4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ dsll(a5, a4, kPointerSizeLog2);
__ Dsubu(sp, sp, Operand(a5));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex);
__ Branch(&done, gt, sp, Operand(kScratchReg)); // Signed comparison.
// Restore the stack pointer.
__ Daddu(sp, sp, Operand(a5));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(a5, zero_reg);
__ bind(&loop);
__ Branch(&done_loop, ge, a5, Operand(a0));
__ Dlsa(a6, sp, a4, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(a6));
__ Dlsa(a6, sp, a5, kPointerSizeLog2);
__ Sd(kScratchReg, MemOperand(a6));
__ Daddu(a4, a4, Operand(1));
__ Daddu(a5, a5, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop, done_loop;
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Dsubu(a4, a4, Operand(1));
__ Branch(&done_loop, lt, a4, Operand(zero_reg));
__ Dlsa(a5, a2, a4, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(a5));
__ Dlsa(a5, sp, a0, kPointerSizeLog2);
__ Sd(kScratchReg, MemOperand(a5));
__ Daddu(a0, a0, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label skip_load;
__ Branch(&skip_load, ne, a1, Operand(a3));
__ Ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&skip_load);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (can be any Object)
// -- a3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(a1, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ Lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t3, t3, Operand(Map::IsConstructorBit::kMask));
__ Branch(&non_constructor, eq, t3, Operand(zero_reg));
// Dispatch based on instance type.
__ Lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Only dispatch to proxies after checking whether they are constructors.
__ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ Dlsa(kScratchReg, sp, a0, kPointerSizeLog2);
__ Sd(a1, MemOperand(kScratchReg));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// State setup as expected by MacroAssembler::InvokePrologue.
// ----------- S t a t e -------------
// -- a0: actual arguments count
// -- a1: function (passed through to callee)
// -- a2: expected arguments count
// -- a3: new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ Branch(&dont_adapt_arguments, eq, a2,
Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
// We use Uless as the number of argument should always be greater than 0.
__ Branch(&too_few, Uless, a0, Operand(a2));
{ // Enough parameters: actual >= expected.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, a2, a5, kScratchReg, &stack_overflow);
// Calculate copy start address into a0 and copy end address into a4.
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address.
__ dsll(a4, a2, kPointerSizeLog2);
__ dsubu(a4, a0, a4);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
// a4: copy end address
Label copy;
__ bind(&copy);
__ Ld(a5, MemOperand(a0));
__ push(a5);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a4));
__ daddiu(a0, a0, -kPointerSize); // In delay slot.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, a2, a5, kScratchReg, &stack_overflow);
// Calculate copy start address into a0 and copy end address into a7.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address. Also adjust for return address.
__ Daddu(a7, fp, kPointerSize);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
// a7: copy end address
Label copy;
__ bind(&copy);
__ Ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver.
__ Dsubu(sp, sp, kPointerSize);
__ Dsubu(a0, a0, kPointerSize);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a7));
__ Sd(a4, MemOperand(sp)); // In the delay slot.
// Fill the remaining expected arguments with undefined.
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ dsll(a6, a2, kPointerSizeLog2);
__ Dsubu(a4, fp, Operand(a6));
// Adjust for frame.
__ Dsubu(a4, a4,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
Label fill;
__ bind(&fill);
__ Dsubu(sp, sp, kPointerSize);
__ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4));
__ Sd(a5, MemOperand(sp));
}
// Call the entry point.
__ bind(&invoke);
__ mov(a0, a2);
// a0 : expected number of arguments
// a1 : function (passed through to callee)
// a3: new target (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(a2);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Don't adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ break_(0xCC);
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in t0 by the jump table trampoline.
// Convert to Smi for the runtime call
__ SmiTag(t0);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs =
Register::ListOf<a0, a1, a2, a3, a4, a5, a6, a7>();
constexpr RegList fp_regs =
DoubleRegister::ListOf<f2, f4, f6, f8, f10, f12, f14>();
__ MultiPush(gp_regs);
__ MultiPushFPU(fp_regs);
// Pass instance and function index as an explicit arguments to the runtime
// function.
__ Push(kWasmInstanceRegister, t0);
// Load the correct CEntry builtin from the instance object.
__ Ld(a2, FieldMemOperand(kWasmInstanceRegister,
WasmInstanceObject::kCEntryStubOffset));
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::kZero);
__ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, a2);
// Restore registers.
__ MultiPopFPU(fp_regs);
__ MultiPop(gp_regs);
}
// Finally, jump to the entrypoint.
__ Jump(v0);
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// Called from JavaScript; parameters are on stack as if calling JS function
// a0: number of arguments including receiver
// a1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// a2: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
if (argv_mode == kArgvInRegister) {
// Move argv into the correct register.
__ mov(s1, a2);
} else {
// Compute the argv pointer in a callee-saved register.
__ Dlsa(s1, sp, a0, kPointerSizeLog2);
__ Dsubu(s1, s1, kPointerSize);
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(
save_doubles == kSaveFPRegs, 0,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
// s0: number of arguments including receiver (C callee-saved)
// s1: pointer to first argument (C callee-saved)
// s2: pointer to builtin function (C callee-saved)
// Prepare arguments for C routine.
// a0 = argc
__ mov(s0, a0);
__ mov(s2, a1);
// We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
// also need to reserve the 4 argument slots on the stack.
__ AssertStackIsAligned();
// a0 = argc, a1 = argv, a2 = isolate
__ li(a2, ExternalReference::isolate_address(masm->isolate()));
__ mov(a1, s1);
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntry is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
{
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
int kNumInstructionsToJump = 4;
Label find_ra;
// Adjust the value in ra to point to the correct return location, 2nd
// instruction past the real call into C code (the jalr(t9)), and push it.
// This is the return address of the exit frame.
if (kArchVariant >= kMips64r6) {
__ addiupc(ra, kNumInstructionsToJump + 1);
} else {
// This branch-and-link sequence is needed to find the current PC on mips
// before r6, saved to the ra register.
__ bal(&find_ra); // bal exposes branch delay slot.
__ Daddu(ra, ra, kNumInstructionsToJump * kInstrSize);
}
__ bind(&find_ra);
// This spot was reserved in EnterExitFrame.
__ Sd(ra, MemOperand(sp));
// Stack space reservation moved to the branch delay slot below.
// Stack is still aligned.
// Call the C routine.
__ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
__ jalr(t9);
// Set up sp in the delay slot.
__ daddiu(sp, sp, -kCArgsSlotsSize);
// Make sure the stored 'ra' points to this position.
DCHECK_EQ(kNumInstructionsToJump,
masm->InstructionsGeneratedSince(&find_ra));
}
// Result returned in v0 or v1:v0 - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ LoadRoot(a4, Heap::kExceptionRootIndex);
__ Branch(&exception_returned, eq, a4, Operand(v0));
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ li(a2, pending_exception_address);
__ Ld(a2, MemOperand(a2));
__ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ Branch(&okay, eq, a4, Operand(a2));
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// v0:v1: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_mode == kArgvInRegister
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// s0: still holds argc (callee-saved).
: s0;
__ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set v0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, a0);
__ mov(a0, zero_reg);
__ mov(a1, zero_reg);
__ li(a2, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ li(cp, pending_handler_context_address);
__ Ld(cp, MemOperand(cp));
__ li(sp, pending_handler_sp_address);
__ Ld(sp, MemOperand(sp));
__ li(fp, pending_handler_fp_address);
__ Ld(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label zero;
__ Branch(&zero, eq, cp, Operand(zero_reg));
__ Sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&zero);
// Reset the masking register. This is done independent of the underlying
// feature flag {FLAG_branch_load_poisoning} to make the snapshot work with
// both configurations. It is safe to always do this, because the underlying
// register is caller-saved and can be arbitrarily clobbered.
__ ResetSpeculationPoisonRegister();
// Compute the handler entry address and jump to it.
__ li(t9, pending_handler_entrypoint_address);
__ Ld(t9, MemOperand(t9));
__ Jump(t9);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done;
Register result_reg = t0;
Register scratch = GetRegisterThatIsNotOneOf(result_reg);
Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch);
Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2);
DoubleRegister double_scratch = kScratchDoubleReg;
// Account for saved regs.
const int kArgumentOffset = 4 * kPointerSize;
__ Push(result_reg);
__ Push(scratch, scratch2, scratch3);
// Load double input.
__ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset));
// Clear cumulative exception flags and save the FCSR.
__ cfc1(scratch2, FCSR);
__ ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
__ Trunc_w_d(double_scratch, double_scratch);
// Move the converted value into the result register.
__ mfc1(scratch3, double_scratch);
// Retrieve and restore the FCSR.
__ cfc1(scratch, FCSR);
__ ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
__ And(
scratch, scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
// If we had no exceptions then set result_reg and we are done.
Label error;
__ Branch(&error, ne, scratch, Operand(zero_reg));
__ Move(result_reg, scratch3);
__ Branch(&done);
__ bind(&error);
// Load the double value and perform a manual truncation.
Register input_high = scratch2;
Register input_low = scratch3;
__ Lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset));
__ Lw(input_high,
MemOperand(sp, kArgumentOffset + Register::kExponentOffset));
Label normal_exponent, restore_sign;
// Extract the biased exponent in result.
__ Ext(result_reg, input_high, HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Check for Infinity and NaNs, which should return 0.
__ Subu(scratch, result_reg, HeapNumber::kExponentMask);
__ Movz(result_reg, zero_reg, scratch);
__ Branch(&done, eq, scratch, Operand(zero_reg));
// Express exponent as delta to (number of mantissa bits + 31).
__ Subu(result_reg, result_reg,
Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
// If the delta is strictly positive, all bits would be shifted away,
// which means that we can return 0.
__ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
__ mov(result_reg, zero_reg);
__ Branch(&done);
__ bind(&normal_exponent);
const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
// Calculate shift.
__ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
// Save the sign.
Register sign = result_reg;
result_reg = no_reg;
__ And(sign, input_high, Operand(HeapNumber::kSignMask));
// On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
// to check for this specific case.
Label high_shift_needed, high_shift_done;
__ Branch(&high_shift_needed, lt, scratch, Operand(32));
__ mov(input_high, zero_reg);
__ Branch(&high_shift_done);
__ bind(&high_shift_needed);
// Set the implicit 1 before the mantissa part in input_high.
__ Or(input_high, input_high,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
// Shift the mantissa bits to the correct position.
// We don't need to clear non-mantissa bits as they will be shifted away.
// If they weren't, it would mean that the answer is in the 32bit range.
__ sllv(input_high, input_high, scratch);
__ bind(&high_shift_done);
// Replace the shifted bits with bits from the lower mantissa word.
Label pos_shift, shift_done;
__ li(kScratchReg, 32);
__ subu(scratch, kScratchReg, scratch);
__ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
// Negate scratch.
__ Subu(scratch, zero_reg, scratch);
__ sllv(input_low, input_low, scratch);
__ Branch(&shift_done);
__ bind(&pos_shift);
__ srlv(input_low, input_low, scratch);
__ bind(&shift_done);
__ Or(input_high, input_high, Operand(input_low));
// Restore sign if necessary.
__ mov(scratch, sign);
result_reg = sign;
sign = no_reg;
__ Subu(result_reg, zero_reg, input_high);
__ Movz(result_reg, input_high, scratch);
__ bind(&done);
__ Sd(result_reg, MemOperand(sp, kArgumentOffset));
__ Pop(scratch, scratch2, scratch3);
__ Pop(result_reg);
__ Ret();
}
void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
const Register exponent = a2;
const DoubleRegister double_base = f2;
const DoubleRegister double_exponent = f4;
const DoubleRegister double_result = f0;
const DoubleRegister double_scratch = f6;
const FPURegister single_scratch = f8;
const Register scratch = t1;
const Register scratch2 = a7;
Label call_runtime, done, int_exponent;
Label int_exponent_convert;
// Detect integer exponents stored as double.
__ EmitFPUTruncate(kRoundToMinusInf, scratch, double_exponent, kScratchReg,
double_scratch, scratch2, kCheckForInexactConversion);
// scratch2 == 0 means there was no conversion error.
__ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
__ push(ra);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
}
__ pop(ra);
__ MovFromFloatResult(double_result);
__ jmp(&done);
__ bind(&int_exponent_convert);
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
// Exponent has previously been stored into scratch as untagged integer.
__ mov(exponent, scratch);
__ mov_d(double_scratch, double_base); // Back up base.
__ Move(double_result, 1.0);
// Get absolute value of exponent.
Label positive_exponent, bail_out;
__ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
__ Dsubu(scratch,