blob: 635b23bc4bddeb05de8223c88e1abb3f935a8b5b [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PARSING_PARSER_H_
#define V8_PARSING_PARSER_H_
#include <cstddef>
#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/base/compiler-specific.h"
#include "src/globals.h"
#include "src/parsing/parser-base.h"
#include "src/parsing/parsing.h"
#include "src/parsing/preparse-data.h"
#include "src/parsing/preparser.h"
#include "src/utils.h"
#include "src/zone/zone-chunk-list.h"
namespace v8 {
class ScriptCompiler;
namespace internal {
class ConsumedPreParsedScopeData;
class ParseInfo;
class ParserTarget;
class ParserTargetScope;
class PendingCompilationErrorHandler;
class PreParsedScopeData;
class FunctionEntry BASE_EMBEDDED {
public:
enum {
kStartPositionIndex,
kEndPositionIndex,
kNumParametersIndex,
kFlagsIndex,
kNumInnerFunctionsIndex,
kSize
};
explicit FunctionEntry(Vector<unsigned> backing)
: backing_(backing) { }
FunctionEntry() : backing_() { }
class LanguageModeField : public BitField<LanguageMode, 0, 1> {};
class UsesSuperPropertyField
: public BitField<bool, LanguageModeField::kNext, 1> {};
static uint32_t EncodeFlags(LanguageMode language_mode,
bool uses_super_property) {
return LanguageModeField::encode(language_mode) |
UsesSuperPropertyField::encode(uses_super_property);
}
int start_pos() const { return backing_[kStartPositionIndex]; }
int end_pos() const { return backing_[kEndPositionIndex]; }
int num_parameters() const { return backing_[kNumParametersIndex]; }
LanguageMode language_mode() const {
return LanguageModeField::decode(backing_[kFlagsIndex]);
}
bool uses_super_property() const {
return UsesSuperPropertyField::decode(backing_[kFlagsIndex]);
}
int num_inner_functions() const { return backing_[kNumInnerFunctionsIndex]; }
bool is_valid() const { return !backing_.is_empty(); }
private:
Vector<unsigned> backing_;
};
// ----------------------------------------------------------------------------
// JAVASCRIPT PARSING
class Parser;
struct ParserFormalParameters : FormalParametersBase {
struct Parameter : public ZoneObject {
Parameter(const AstRawString* name, Expression* pattern,
Expression* initializer, int position,
int initializer_end_position, bool is_rest)
: name(name),
pattern(pattern),
initializer(initializer),
position(position),
initializer_end_position(initializer_end_position),
is_rest(is_rest) {}
const AstRawString* name;
Expression* pattern;
Expression* initializer;
int position;
int initializer_end_position;
bool is_rest;
Parameter* next_parameter = nullptr;
bool is_simple() const {
return pattern->IsVariableProxy() && initializer == nullptr && !is_rest;
}
Parameter** next() { return &next_parameter; }
Parameter* const* next() const { return &next_parameter; }
};
explicit ParserFormalParameters(DeclarationScope* scope)
: FormalParametersBase(scope) {}
ThreadedList<Parameter> params;
};
template <>
struct ParserTypes<Parser> {
typedef ParserBase<Parser> Base;
typedef Parser Impl;
// Return types for traversing functions.
typedef const AstRawString* Identifier;
typedef v8::internal::Expression* Expression;
typedef v8::internal::FunctionLiteral* FunctionLiteral;
typedef ObjectLiteral::Property* ObjectLiteralProperty;
typedef ClassLiteral::Property* ClassLiteralProperty;
typedef v8::internal::Suspend* Suspend;
typedef v8::internal::RewritableExpression* RewritableExpression;
typedef ZonePtrList<v8::internal::Expression>* ExpressionList;
typedef ZonePtrList<ObjectLiteral::Property>* ObjectPropertyList;
typedef ZonePtrList<ClassLiteral::Property>* ClassPropertyList;
typedef ParserFormalParameters FormalParameters;
typedef v8::internal::Statement* Statement;
typedef ZonePtrList<v8::internal::Statement>* StatementList;
typedef v8::internal::Block* Block;
typedef v8::internal::BreakableStatement* BreakableStatement;
typedef v8::internal::ForStatement* ForStatement;
typedef v8::internal::IterationStatement* IterationStatement;
// For constructing objects returned by the traversing functions.
typedef AstNodeFactory Factory;
typedef ParserTarget Target;
typedef ParserTargetScope TargetScope;
};
class V8_EXPORT_PRIVATE Parser : public NON_EXPORTED_BASE(ParserBase<Parser>) {
public:
explicit Parser(ParseInfo* info);
~Parser() {
delete reusable_preparser_;
reusable_preparser_ = nullptr;
}
static bool IsPreParser() { return false; }
void ParseOnBackground(ParseInfo* info);
// Deserialize the scope chain prior to parsing in which the script is going
// to be executed. If the script is a top-level script, or the scope chain
// consists of only a native context, maybe_outer_scope_info should be an
// empty handle.
//
// This only deserializes the scope chain, but doesn't connect the scopes to
// their corresponding scope infos. Therefore, looking up variables in the
// deserialized scopes is not possible.
void DeserializeScopeChain(Isolate* isolate, ParseInfo* info,
MaybeHandle<ScopeInfo> maybe_outer_scope_info);
// Move statistics to Isolate
void UpdateStatistics(Isolate* isolate, Handle<Script> script);
void HandleSourceURLComments(Isolate* isolate, Handle<Script> script);
private:
friend class ParserBase<Parser>;
friend class v8::internal::ExpressionClassifier<ParserTypes<Parser>>;
friend bool v8::internal::parsing::ParseProgram(ParseInfo*, Isolate*);
friend bool v8::internal::parsing::ParseFunction(
ParseInfo*, Handle<SharedFunctionInfo> shared_info, Isolate*);
bool AllowsLazyParsingWithoutUnresolvedVariables() const {
return scope()->AllowsLazyParsingWithoutUnresolvedVariables(
original_scope_);
}
bool parse_lazily() const { return mode_ == PARSE_LAZILY; }
enum Mode { PARSE_LAZILY, PARSE_EAGERLY };
class ParsingModeScope BASE_EMBEDDED {
public:
ParsingModeScope(Parser* parser, Mode mode)
: parser_(parser), old_mode_(parser->mode_) {
parser_->mode_ = mode;
}
~ParsingModeScope() { parser_->mode_ = old_mode_; }
private:
Parser* parser_;
Mode old_mode_;
};
// Runtime encoding of different completion modes.
enum CompletionKind {
kNormalCompletion,
kThrowCompletion,
kAbruptCompletion
};
Variable* NewTemporary(const AstRawString* name) {
return scope()->NewTemporary(name);
}
void PrepareGeneratorVariables();
// Returns nullptr if parsing failed.
FunctionLiteral* ParseProgram(Isolate* isolate, ParseInfo* info);
FunctionLiteral* ParseFunction(Isolate* isolate, ParseInfo* info,
Handle<SharedFunctionInfo> shared_info);
FunctionLiteral* DoParseFunction(Isolate* isolate, ParseInfo* info,
const AstRawString* raw_name);
// Called by ParseProgram after setting up the scanner.
FunctionLiteral* DoParseProgram(Isolate* isolate, ParseInfo* info);
// Parse with the script as if the source is implicitly wrapped in a function.
// We manually construct the AST and scopes for a top-level function and the
// function wrapper.
void ParseWrapped(Isolate* isolate, ParseInfo* info,
ZonePtrList<Statement>* body, DeclarationScope* scope,
Zone* zone, bool* ok);
ZonePtrList<const AstRawString>* PrepareWrappedArguments(Isolate* isolate,
ParseInfo* info,
Zone* zone);
void StitchAst(ParseInfo* top_level_parse_info, Isolate* isolate);
PreParser* reusable_preparser() {
if (reusable_preparser_ == nullptr) {
reusable_preparser_ =
new PreParser(zone(), &scanner_, stack_limit_, ast_value_factory(),
pending_error_handler(), runtime_call_stats_, logger_,
-1, parsing_module_, parsing_on_main_thread_);
#define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name());
SET_ALLOW(natives);
SET_ALLOW(harmony_do_expressions);
SET_ALLOW(harmony_public_fields);
SET_ALLOW(harmony_static_fields);
SET_ALLOW(harmony_dynamic_import);
SET_ALLOW(harmony_import_meta);
SET_ALLOW(harmony_bigint);
SET_ALLOW(harmony_private_fields);
SET_ALLOW(eval_cache);
#undef SET_ALLOW
}
return reusable_preparser_;
}
void ParseModuleItemList(ZonePtrList<Statement>* body, bool* ok);
Statement* ParseModuleItem(bool* ok);
const AstRawString* ParseModuleSpecifier(bool* ok);
void ParseImportDeclaration(bool* ok);
Statement* ParseExportDeclaration(bool* ok);
Statement* ParseExportDefault(bool* ok);
struct ExportClauseData {
const AstRawString* export_name;
const AstRawString* local_name;
Scanner::Location location;
};
ZoneChunkList<ExportClauseData>* ParseExportClause(
Scanner::Location* reserved_loc, bool* ok);
struct NamedImport : public ZoneObject {
const AstRawString* import_name;
const AstRawString* local_name;
const Scanner::Location location;
NamedImport(const AstRawString* import_name, const AstRawString* local_name,
Scanner::Location location)
: import_name(import_name),
local_name(local_name),
location(location) {}
};
ZonePtrList<const NamedImport>* ParseNamedImports(int pos, bool* ok);
Block* BuildInitializationBlock(DeclarationParsingResult* parsing_result,
ZonePtrList<const AstRawString>* names,
bool* ok);
void DeclareLabel(ZonePtrList<const AstRawString>** labels,
ZonePtrList<const AstRawString>** own_labels,
VariableProxy* expr, bool* ok);
bool ContainsLabel(ZonePtrList<const AstRawString>* labels,
const AstRawString* label);
Expression* RewriteReturn(Expression* return_value, int pos);
Statement* RewriteSwitchStatement(SwitchStatement* switch_statement,
Scope* scope);
void RewriteCatchPattern(CatchInfo* catch_info, bool* ok);
void ValidateCatchBlock(const CatchInfo& catch_info, bool* ok);
Statement* RewriteTryStatement(Block* try_block, Block* catch_block,
const SourceRange& catch_range,
Block* finally_block,
const SourceRange& finally_range,
const CatchInfo& catch_info, int pos);
void ParseAndRewriteGeneratorFunctionBody(int pos, FunctionKind kind,
ZonePtrList<Statement>* body,
bool* ok);
void ParseAndRewriteAsyncGeneratorFunctionBody(int pos, FunctionKind kind,
ZonePtrList<Statement>* body,
bool* ok);
void DeclareFunctionNameVar(const AstRawString* function_name,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope);
Statement* DeclareFunction(const AstRawString* variable_name,
FunctionLiteral* function, VariableMode mode,
int pos, bool is_sloppy_block_function,
ZonePtrList<const AstRawString>* names, bool* ok);
Variable* CreateSyntheticContextVariable(const AstRawString* synthetic_name,
bool* ok);
FunctionLiteral* CreateInitializerFunction(
DeclarationScope* scope, ZonePtrList<ClassLiteral::Property>* fields);
V8_INLINE Statement* DeclareClass(const AstRawString* variable_name,
Expression* value,
ZonePtrList<const AstRawString>* names,
int class_token_pos, int end_pos, bool* ok);
V8_INLINE void DeclareClassVariable(const AstRawString* name,
ClassInfo* class_info,
int class_token_pos, bool* ok);
V8_INLINE void DeclareClassProperty(const AstRawString* class_name,
ClassLiteralProperty* property,
const AstRawString* property_name,
ClassLiteralProperty::Kind kind,
bool is_static, bool is_constructor,
bool is_computed_name,
ClassInfo* class_info, bool* ok);
V8_INLINE Expression* RewriteClassLiteral(Scope* block_scope,
const AstRawString* name,
ClassInfo* class_info, int pos,
int end_pos, bool* ok);
V8_INLINE Statement* DeclareNative(const AstRawString* name, int pos,
bool* ok);
V8_INLINE Block* IgnoreCompletion(Statement* statement);
V8_INLINE Scope* NewHiddenCatchScope();
// PatternRewriter and associated methods defined in pattern-rewriter.cc.
friend class PatternRewriter;
void DeclareAndInitializeVariables(
Block* block, const DeclarationDescriptor* declaration_descriptor,
const DeclarationParsingResult::Declaration* declaration,
ZonePtrList<const AstRawString>* names, bool* ok);
void RewriteDestructuringAssignment(RewritableExpression* expr);
Expression* RewriteDestructuringAssignment(Assignment* assignment);
// [if (IteratorType == kAsync)]
// !%_IsJSReceiver(result = Await(next.[[Call]](iterator, « »)) &&
// %ThrowIteratorResultNotAnObject(result)
// [else]
// !%_IsJSReceiver(result = next.[[Call]](iterator, « »)) &&
// %ThrowIteratorResultNotAnObject(result)
// [endif]
Expression* BuildIteratorNextResult(VariableProxy* iterator,
VariableProxy* next, Variable* result,
IteratorType type, int pos);
// Initialize the components of a for-in / for-of statement.
Statement* InitializeForEachStatement(ForEachStatement* stmt,
Expression* each, Expression* subject,
Statement* body);
Statement* InitializeForOfStatement(ForOfStatement* stmt, Expression* each,
Expression* iterable, Statement* body,
bool finalize, IteratorType type,
int next_result_pos = kNoSourcePosition);
Block* RewriteForVarInLegacy(const ForInfo& for_info);
void DesugarBindingInForEachStatement(ForInfo* for_info, Block** body_block,
Expression** each_variable, bool* ok);
Block* CreateForEachStatementTDZ(Block* init_block, const ForInfo& for_info,
bool* ok);
Statement* DesugarLexicalBindingsInForStatement(
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
Statement* body, Scope* inner_scope, const ForInfo& for_info, bool* ok);
Expression* RewriteDoExpression(Block* body, int pos, bool* ok);
FunctionLiteral* ParseFunctionLiteral(
const AstRawString* name, Scanner::Location function_name_location,
FunctionNameValidity function_name_validity, FunctionKind kind,
int function_token_position, FunctionLiteral::FunctionType type,
LanguageMode language_mode,
ZonePtrList<const AstRawString>* arguments_for_wrapped_function,
bool* ok);
ObjectLiteral* InitializeObjectLiteral(ObjectLiteral* object_literal) {
object_literal->CalculateEmitStore(main_zone());
return object_literal;
}
// Check if the scope has conflicting var/let declarations from different
// scopes. This covers for example
//
// function f() { { { var x; } let x; } }
// function g() { { var x; let x; } }
//
// The var declarations are hoisted to the function scope, but originate from
// a scope where the name has also been let bound or the var declaration is
// hoisted over such a scope.
void CheckConflictingVarDeclarations(Scope* scope, bool* ok);
bool IsPropertyWithPrivateFieldKey(Expression* property);
// Insert initializer statements for var-bindings shadowing parameter bindings
// from a non-simple parameter list.
void InsertShadowingVarBindingInitializers(Block* block);
// Implement sloppy block-scoped functions, ES2015 Annex B 3.3
void InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope);
VariableProxy* NewUnresolved(const AstRawString* name, int begin_pos,
VariableKind kind = NORMAL_VARIABLE);
VariableProxy* NewUnresolved(const AstRawString* name);
Variable* Declare(Declaration* declaration,
DeclarationDescriptor::Kind declaration_kind,
VariableMode mode, InitializationFlag init, bool* ok,
Scope* declaration_scope = nullptr,
int var_end_pos = kNoSourcePosition);
Declaration* DeclareVariable(const AstRawString* name, VariableMode mode,
int pos, bool* ok);
Declaration* DeclareVariable(const AstRawString* name, VariableMode mode,
InitializationFlag init, int pos, bool* ok);
bool TargetStackContainsLabel(const AstRawString* label);
BreakableStatement* LookupBreakTarget(const AstRawString* label, bool* ok);
IterationStatement* LookupContinueTarget(const AstRawString* label, bool* ok);
Statement* BuildAssertIsCoercible(Variable* var, ObjectLiteral* pattern);
// Factory methods.
FunctionLiteral* DefaultConstructor(const AstRawString* name, bool call_super,
int pos, int end_pos);
// Skip over a lazy function, either using cached data if we have it, or
// by parsing the function with PreParser. Consumes the ending }.
// If may_abort == true, the (pre-)parser may decide to abort skipping
// in order to force the function to be eagerly parsed, after all.
LazyParsingResult SkipFunction(
const AstRawString* function_name, FunctionKind kind,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope, int* num_parameters,
ProducedPreParsedScopeData** produced_preparsed_scope_data,
bool is_inner_function, bool may_abort, bool* ok);
Block* BuildParameterInitializationBlock(
const ParserFormalParameters& parameters, bool* ok);
Block* BuildRejectPromiseOnException(Block* block);
ZonePtrList<Statement>* ParseFunction(
const AstRawString* function_name, int pos, FunctionKind kind,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope, int* num_parameters,
int* function_length, bool* has_duplicate_parameters,
int* expected_property_count, int* suspend_count,
ZonePtrList<const AstRawString>* arguments_for_wrapped_function,
bool* ok);
void ThrowPendingError(Isolate* isolate, Handle<Script> script);
class TemplateLiteral : public ZoneObject {
public:
TemplateLiteral(Zone* zone, int pos)
: cooked_(8, zone), raw_(8, zone), expressions_(8, zone), pos_(pos) {}
const ZonePtrList<const AstRawString>* cooked() const { return &cooked_; }
const ZonePtrList<const AstRawString>* raw() const { return &raw_; }
const ZonePtrList<Expression>* expressions() const { return &expressions_; }
int position() const { return pos_; }
void AddTemplateSpan(const AstRawString* cooked, const AstRawString* raw,
int end, Zone* zone) {
DCHECK_NOT_NULL(raw);
cooked_.Add(cooked, zone);
raw_.Add(raw, zone);
}
void AddExpression(Expression* expression, Zone* zone) {
DCHECK_NOT_NULL(expression);
expressions_.Add(expression, zone);
}
private:
ZonePtrList<const AstRawString> cooked_;
ZonePtrList<const AstRawString> raw_;
ZonePtrList<Expression> expressions_;
int pos_;
};
typedef TemplateLiteral* TemplateLiteralState;
TemplateLiteralState OpenTemplateLiteral(int pos);
// "should_cook" means that the span can be "cooked": in tagged template
// literals, both the raw and "cooked" representations are available to user
// code ("cooked" meaning that escape sequences are converted to their
// interpreted values). Invalid escape sequences cause the cooked span
// to be represented by undefined, instead of being a syntax error.
// "tail" indicates that this span is the last in the literal.
void AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
bool tail);
void AddTemplateExpression(TemplateLiteralState* state,
Expression* expression);
Expression* CloseTemplateLiteral(TemplateLiteralState* state, int start,
Expression* tag);
ArrayLiteral* ArrayLiteralFromListWithSpread(ZonePtrList<Expression>* list);
Expression* SpreadCall(Expression* function, ZonePtrList<Expression>* args,
int pos, Call::PossiblyEval is_possibly_eval);
Expression* SpreadCallNew(Expression* function, ZonePtrList<Expression>* args,
int pos);
Expression* RewriteSuperCall(Expression* call_expression);
void SetLanguageMode(Scope* scope, LanguageMode mode);
void SetAsmModule();
// Rewrite all DestructuringAssignments in the current FunctionState.
V8_INLINE void RewriteDestructuringAssignments();
Expression* RewriteSpreads(ArrayLiteral* lit);
V8_INLINE void QueueDestructuringAssignmentForRewriting(
RewritableExpression* assignment);
friend class InitializerRewriter;
void RewriteParameterInitializer(Expression* expr);
Expression* BuildInitialYield(int pos, FunctionKind kind);
Assignment* BuildCreateJSGeneratorObject(int pos, FunctionKind kind);
Expression* BuildResolvePromise(Expression* value, int pos);
Expression* BuildRejectPromise(Expression* value, int pos);
Variable* PromiseVariable();
Variable* AsyncGeneratorAwaitVariable();
// Generic AST generator for throwing errors from compiled code.
Expression* NewThrowError(Runtime::FunctionId function_id,
MessageTemplate::Template message,
const AstRawString* arg, int pos);
void FinalizeIteratorUse(Variable* completion, Expression* condition,
Variable* iter, Block* iterator_use, Block* result,
IteratorType type);
Statement* FinalizeForOfStatement(ForOfStatement* loop, Variable* completion,
IteratorType type, int pos);
void BuildIteratorClose(ZonePtrList<Statement>* statements,
Variable* iterator, Variable* input, Variable* output,
IteratorType type);
void BuildIteratorCloseForCompletion(ZonePtrList<Statement>* statements,
Variable* iterator,
Expression* completion,
IteratorType type);
Statement* CheckCallable(Variable* var, Expression* error, int pos);
V8_INLINE void RewriteAsyncFunctionBody(ZonePtrList<Statement>* body,
Block* block,
Expression* return_value, bool* ok);
void AddArrowFunctionFormalParameters(ParserFormalParameters* parameters,
Expression* params, int end_pos,
bool* ok);
void SetFunctionName(Expression* value, const AstRawString* name,
const AstRawString* prefix = nullptr);
// Helper functions for recursive descent.
V8_INLINE bool IsEval(const AstRawString* identifier) const {
return identifier == ast_value_factory()->eval_string();
}
V8_INLINE bool IsArguments(const AstRawString* identifier) const {
return identifier == ast_value_factory()->arguments_string();
}
V8_INLINE bool IsEvalOrArguments(const AstRawString* identifier) const {
return IsEval(identifier) || IsArguments(identifier);
}
// Returns true if the expression is of type "this.foo".
V8_INLINE static bool IsThisProperty(Expression* expression) {
DCHECK_NOT_NULL(expression);
Property* property = expression->AsProperty();
return property != nullptr && property->obj()->IsVariableProxy() &&
property->obj()->AsVariableProxy()->is_this();
}
// This returns true if the expression is an indentifier (wrapped
// inside a variable proxy). We exclude the case of 'this', which
// has been converted to a variable proxy.
V8_INLINE static bool IsIdentifier(Expression* expression) {
DCHECK_NOT_NULL(expression);
VariableProxy* operand = expression->AsVariableProxy();
return operand != nullptr && !operand->is_this() &&
!operand->is_new_target();
}
V8_INLINE static const AstRawString* AsIdentifier(Expression* expression) {
DCHECK(IsIdentifier(expression));
return expression->AsVariableProxy()->raw_name();
}
V8_INLINE VariableProxy* AsIdentifierExpression(Expression* expression) {
return expression->AsVariableProxy();
}
V8_INLINE bool IsConstructor(const AstRawString* identifier) const {
return identifier == ast_value_factory()->constructor_string();
}
V8_INLINE bool IsName(const AstRawString* identifier) const {
return identifier == ast_value_factory()->name_string();
}
V8_INLINE static bool IsBoilerplateProperty(
ObjectLiteral::Property* property) {
return !property->IsPrototype();
}
V8_INLINE bool IsNative(Expression* expr) const {
DCHECK_NOT_NULL(expr);
return expr->IsVariableProxy() &&
expr->AsVariableProxy()->raw_name() ==
ast_value_factory()->native_string();
}
V8_INLINE static bool IsArrayIndex(const AstRawString* string,
uint32_t* index) {
return string->AsArrayIndex(index);
}
V8_INLINE bool IsUseStrictDirective(Statement* statement) const {
return IsStringLiteral(statement, ast_value_factory()->use_strict_string());
}
V8_INLINE bool IsUseAsmDirective(Statement* statement) const {
return IsStringLiteral(statement, ast_value_factory()->use_asm_string());
}
// Returns true if the statement is an expression statement containing
// a single string literal. If a second argument is given, the literal
// is also compared with it and the result is true only if they are equal.
V8_INLINE bool IsStringLiteral(Statement* statement,
const AstRawString* arg = nullptr) const {
ExpressionStatement* e_stat = statement->AsExpressionStatement();
if (e_stat == nullptr) return false;
Literal* literal = e_stat->expression()->AsLiteral();
if (literal == nullptr || !literal->IsString()) return false;
return arg == nullptr || literal->AsRawString() == arg;
}
V8_INLINE void GetDefaultStrings(
const AstRawString** default_string,
const AstRawString** star_default_star_string) {
*default_string = ast_value_factory()->default_string();
*star_default_star_string = ast_value_factory()->star_default_star_string();
}
// Functions for encapsulating the differences between parsing and preparsing;
// operations interleaved with the recursive descent.
V8_INLINE void PushLiteralName(const AstRawString* id) {
DCHECK_NOT_NULL(fni_);
fni_->PushLiteralName(id);
}
V8_INLINE void PushVariableName(const AstRawString* id) {
DCHECK_NOT_NULL(fni_);
fni_->PushVariableName(id);
}
V8_INLINE void PushPropertyName(Expression* expression) {
DCHECK_NOT_NULL(fni_);
if (expression->IsPropertyName()) {
fni_->PushLiteralName(expression->AsLiteral()->AsRawPropertyName());
} else {
fni_->PushLiteralName(ast_value_factory()->anonymous_function_string());
}
}
V8_INLINE void PushEnclosingName(const AstRawString* name) {
DCHECK_NOT_NULL(fni_);
fni_->PushEnclosingName(name);
}
V8_INLINE void AddFunctionForNameInference(FunctionLiteral* func_to_infer) {
DCHECK_NOT_NULL(fni_);
fni_->AddFunction(func_to_infer);
}
V8_INLINE void InferFunctionName() {
DCHECK_NOT_NULL(fni_);
fni_->Infer();
}
// If we assign a function literal to a property we pretenure the
// literal so it can be added as a constant function property.
V8_INLINE static void CheckAssigningFunctionLiteralToProperty(
Expression* left, Expression* right) {
DCHECK_NOT_NULL(left);
if (left->IsProperty() && right->IsFunctionLiteral()) {
right->AsFunctionLiteral()->set_pretenure();
}
}
// Determine if the expression is a variable proxy and mark it as being used
// in an assignment or with a increment/decrement operator.
V8_INLINE static void MarkExpressionAsAssigned(Expression* expression) {
DCHECK_NOT_NULL(expression);
if (expression->IsVariableProxy()) {
expression->AsVariableProxy()->set_is_assigned();
}
}
// A shortcut for performing a ToString operation
V8_INLINE Expression* ToString(Expression* expr) {
if (expr->IsStringLiteral()) return expr;
ZonePtrList<Expression>* args =
new (zone()) ZonePtrList<Expression>(1, zone());
args->Add(expr, zone());
return factory()->NewCallRuntime(Runtime::kInlineToString, args,
expr->position());
}
// Returns true if we have a binary expression between two numeric
// literals. In that case, *x will be changed to an expression which is the
// computed value.
bool ShortcutNumericLiteralBinaryExpression(Expression** x, Expression* y,
Token::Value op, int pos);
// Returns true if we have a binary operation between a binary/n-ary
// expression (with the same operation) and a value, which can be collapsed
// into a single n-ary expression. In that case, *x will be changed to an
// n-ary expression.
bool CollapseNaryExpression(Expression** x, Expression* y, Token::Value op,
int pos, const SourceRange& range);
// Returns a UnaryExpression or, in one of the following cases, a Literal.
// ! <literal> -> true / false
// + <Number literal> -> <Number literal>
// - <Number literal> -> <Number literal with value negated>
// ~ <literal> -> true / false
Expression* BuildUnaryExpression(Expression* expression, Token::Value op,
int pos);
// Generate AST node that throws a ReferenceError with the given type.
V8_INLINE Expression* NewThrowReferenceError(
MessageTemplate::Template message, int pos) {
return NewThrowError(Runtime::kNewReferenceError, message,
ast_value_factory()->empty_string(), pos);
}
// Generate AST node that throws a SyntaxError with the given
// type. The first argument may be null (in the handle sense) in
// which case no arguments are passed to the constructor.
V8_INLINE Expression* NewThrowSyntaxError(MessageTemplate::Template message,
const AstRawString* arg, int pos) {
return NewThrowError(Runtime::kNewSyntaxError, message, arg, pos);
}
// Generate AST node that throws a TypeError with the given
// type. Both arguments must be non-null (in the handle sense).
V8_INLINE Expression* NewThrowTypeError(MessageTemplate::Template message,
const AstRawString* arg, int pos) {
return NewThrowError(Runtime::kNewTypeError, message, arg, pos);
}
// Reporting errors.
void ReportMessageAt(Scanner::Location source_location,
MessageTemplate::Template message,
const char* arg = nullptr,
ParseErrorType error_type = kSyntaxError) {
if (stack_overflow()) {
// Suppress the error message (syntax error or such) in the presence of a
// stack overflow. The isolate allows only one pending exception at at
// time
// and we want to report the stack overflow later.
return;
}
pending_error_handler()->ReportMessageAt(source_location.beg_pos,
source_location.end_pos, message,
arg, error_type);
}
void ReportMessageAt(Scanner::Location source_location,
MessageTemplate::Template message,
const AstRawString* arg,
ParseErrorType error_type = kSyntaxError) {
if (stack_overflow()) {
// Suppress the error message (syntax error or such) in the presence of a
// stack overflow. The isolate allows only one pending exception at at
// time
// and we want to report the stack overflow later.
return;
}
pending_error_handler()->ReportMessageAt(source_location.beg_pos,
source_location.end_pos, message,
arg, error_type);
}
// "null" return type creators.
V8_INLINE static std::nullptr_t NullIdentifier() { return nullptr; }
V8_INLINE static std::nullptr_t NullExpression() { return nullptr; }
V8_INLINE static std::nullptr_t NullLiteralProperty() { return nullptr; }
V8_INLINE static ZonePtrList<Expression>* NullExpressionList() {
return nullptr;
}
V8_INLINE static ZonePtrList<Statement>* NullStatementList() {
return nullptr;
}
V8_INLINE static std::nullptr_t NullStatement() { return nullptr; }
template <typename T>
V8_INLINE static bool IsNull(T subject) {
return subject == nullptr;
}
// Non-null empty string.
V8_INLINE const AstRawString* EmptyIdentifierString() const {
return ast_value_factory()->empty_string();
}
// Producing data during the recursive descent.
V8_INLINE const AstRawString* GetSymbol() const {
const AstRawString* result = scanner()->CurrentSymbol(ast_value_factory());
DCHECK_NOT_NULL(result);
return result;
}
V8_INLINE const AstRawString* GetNextSymbol() const {
return scanner()->NextSymbol(ast_value_factory());
}
V8_INLINE const AstRawString* GetNumberAsSymbol() const {
double double_value = scanner()->DoubleValue();
char array[100];
const char* string = DoubleToCString(double_value, ArrayVector(array));
return ast_value_factory()->GetOneByteString(string);
}
V8_INLINE Expression* ThisExpression(int pos = kNoSourcePosition) {
return NewUnresolved(ast_value_factory()->this_string(), pos,
THIS_VARIABLE);
}
Expression* NewSuperPropertyReference(int pos);
Expression* NewSuperCallReference(int pos);
Expression* NewTargetExpression(int pos);
Expression* ImportMetaExpression(int pos);
Literal* ExpressionFromLiteral(Token::Value token, int pos);
V8_INLINE VariableProxy* ExpressionFromIdentifier(
const AstRawString* name, int start_position,
InferName infer = InferName::kYes) {
if (infer == InferName::kYes) {
fni_->PushVariableName(name);
}
return NewUnresolved(name, start_position);
}
V8_INLINE Expression* ExpressionFromString(int pos) {
const AstRawString* symbol = GetSymbol();
fni_->PushLiteralName(symbol);
return factory()->NewStringLiteral(symbol, pos);
}
V8_INLINE ZonePtrList<Expression>* NewExpressionList(int size) const {
return new (zone()) ZonePtrList<Expression>(size, zone());
}
V8_INLINE ZonePtrList<ObjectLiteral::Property>* NewObjectPropertyList(
int size) const {
return new (zone()) ZonePtrList<ObjectLiteral::Property>(size, zone());
}
V8_INLINE ZonePtrList<ClassLiteral::Property>* NewClassPropertyList(
int size) const {
return new (zone()) ZonePtrList<ClassLiteral::Property>(size, zone());
}
V8_INLINE ZonePtrList<Statement>* NewStatementList(int size) const {
return new (zone()) ZonePtrList<Statement>(size, zone());
}
V8_INLINE Expression* NewV8Intrinsic(const AstRawString* name,
ZonePtrList<Expression>* args, int pos,
bool* ok);
V8_INLINE Statement* NewThrowStatement(Expression* exception, int pos) {
return factory()->NewExpressionStatement(
factory()->NewThrow(exception, pos), pos);
}
V8_INLINE void AddParameterInitializationBlock(
const ParserFormalParameters& parameters, ZonePtrList<Statement>* body,
bool is_async, bool* ok) {
if (parameters.is_simple) return;
auto* init_block = BuildParameterInitializationBlock(parameters, ok);
if (!*ok) return;
if (is_async) {
init_block = BuildRejectPromiseOnException(init_block);
}
body->Add(init_block, zone());
}
V8_INLINE void AddFormalParameter(ParserFormalParameters* parameters,
Expression* pattern,
Expression* initializer,
int initializer_end_position,
bool is_rest) {
parameters->UpdateArityAndFunctionLength(initializer != nullptr, is_rest);
bool has_simple_name = pattern->IsVariableProxy() && initializer == nullptr;
const AstRawString* name = has_simple_name
? pattern->AsVariableProxy()->raw_name()
: ast_value_factory()->empty_string();
auto parameter = new (parameters->scope->zone())
ParserFormalParameters::Parameter(name, pattern, initializer,
scanner()->location().beg_pos,
initializer_end_position, is_rest);
parameters->params.Add(parameter);
}
V8_INLINE void DeclareFormalParameters(
DeclarationScope* scope,
const ThreadedList<ParserFormalParameters::Parameter>& parameters,
bool is_simple, bool* has_duplicate = nullptr) {
if (!is_simple) scope->SetHasNonSimpleParameters();
for (auto parameter : parameters) {
bool is_optional = parameter->initializer != nullptr;
// If the parameter list is simple, declare the parameters normally with
// their names. If the parameter list is not simple, declare a temporary
// for each parameter - the corresponding named variable is declared by
// BuildParamerterInitializationBlock.
scope->DeclareParameter(
is_simple ? parameter->name : ast_value_factory()->empty_string(),
is_simple ? VariableMode::kVar : VariableMode::kTemporary,
is_optional, parameter->is_rest, has_duplicate, ast_value_factory(),
parameter->position);
}
}
void DeclareArrowFunctionFormalParameters(ParserFormalParameters* parameters,
Expression* params,
const Scanner::Location& params_loc,
Scanner::Location* duplicate_loc,
bool* ok);
Expression* ExpressionListToExpression(ZonePtrList<Expression>* args);
void SetFunctionNameFromPropertyName(LiteralProperty* property,
const AstRawString* name,
const AstRawString* prefix = nullptr);
void SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
const AstRawString* name,
const AstRawString* prefix = nullptr);
void SetFunctionNameFromIdentifierRef(Expression* value,
Expression* identifier);
V8_INLINE ZoneList<typename ExpressionClassifier::Error>*
GetReportedErrorList() const {
return function_state_->GetReportedErrorList();
}
V8_INLINE void CountUsage(v8::Isolate::UseCounterFeature feature) {
++use_counts_[feature];
}
// Returns true iff we're parsing the first function literal during
// CreateDynamicFunction().
V8_INLINE bool ParsingDynamicFunctionDeclaration() const {
return parameters_end_pos_ != kNoSourcePosition;
}
V8_INLINE void ConvertBinaryToNaryOperationSourceRange(
BinaryOperation* binary_op, NaryOperation* nary_op) {
if (source_range_map_ == nullptr) return;
DCHECK_NULL(source_range_map_->Find(nary_op));
BinaryOperationSourceRanges* ranges =
static_cast<BinaryOperationSourceRanges*>(
source_range_map_->Find(binary_op));
if (ranges == nullptr) return;
SourceRange range = ranges->GetRange(SourceRangeKind::kRight);
source_range_map_->Insert(
nary_op, new (zone()) NaryOperationSourceRanges(zone(), range));
}
V8_INLINE void AppendNaryOperationSourceRange(NaryOperation* node,
const SourceRange& range) {
if (source_range_map_ == nullptr) return;
NaryOperationSourceRanges* ranges =
static_cast<NaryOperationSourceRanges*>(source_range_map_->Find(node));
if (ranges == nullptr) return;
ranges->AddRange(range);
DCHECK_EQ(node->subsequent_length(), ranges->RangeCount());
}
V8_INLINE void RecordBlockSourceRange(Block* node,
int32_t continuation_position) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node, new (zone()) BlockSourceRanges(continuation_position));
}
V8_INLINE void RecordCaseClauseSourceRange(CaseClause* node,
const SourceRange& body_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(node,
new (zone()) CaseClauseSourceRanges(body_range));
}
V8_INLINE void RecordConditionalSourceRange(Expression* node,
const SourceRange& then_range,
const SourceRange& else_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node->AsConditional(),
new (zone()) ConditionalSourceRanges(then_range, else_range));
}
V8_INLINE void RecordBinaryOperationSourceRange(
Expression* node, const SourceRange& right_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(node->AsBinaryOperation(),
new (zone())
BinaryOperationSourceRanges(right_range));
}
V8_INLINE void RecordJumpStatementSourceRange(Statement* node,
int32_t continuation_position) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
static_cast<JumpStatement*>(node),
new (zone()) JumpStatementSourceRanges(continuation_position));
}
V8_INLINE void RecordIfStatementSourceRange(Statement* node,
const SourceRange& then_range,
const SourceRange& else_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node->AsIfStatement(),
new (zone()) IfStatementSourceRanges(then_range, else_range));
}
V8_INLINE void RecordIterationStatementSourceRange(
IterationStatement* node, const SourceRange& body_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node, new (zone()) IterationStatementSourceRanges(body_range));
}
V8_INLINE void RecordSuspendSourceRange(Expression* node,
int32_t continuation_position) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(static_cast<Suspend*>(node),
new (zone())
SuspendSourceRanges(continuation_position));
}
V8_INLINE void RecordSwitchStatementSourceRange(
Statement* node, int32_t continuation_position) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node->AsSwitchStatement(),
new (zone()) SwitchStatementSourceRanges(continuation_position));
}
V8_INLINE void RecordThrowSourceRange(Statement* node,
int32_t continuation_position) {
if (source_range_map_ == nullptr) return;
ExpressionStatement* expr_stmt = static_cast<ExpressionStatement*>(node);
Throw* throw_expr = expr_stmt->expression()->AsThrow();
source_range_map_->Insert(
throw_expr, new (zone()) ThrowSourceRanges(continuation_position));
}
V8_INLINE void RecordTryCatchStatementSourceRange(
TryCatchStatement* node, const SourceRange& body_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node, new (zone()) TryCatchStatementSourceRanges(body_range));
}
V8_INLINE void RecordTryFinallyStatementSourceRange(
TryFinallyStatement* node, const SourceRange& body_range) {
if (source_range_map_ == nullptr) return;
source_range_map_->Insert(
node, new (zone()) TryFinallyStatementSourceRanges(body_range));
}
// Parser's private field members.
friend class DiscardableZoneScope; // Uses reusable_preparser_.
// FIXME(marja): Make reusable_preparser_ always use its own temp Zone (call
// DeleteAll after each function), so this won't be needed.
Scanner scanner_;
PreParser* reusable_preparser_;
Mode mode_;
SourceRangeMap* source_range_map_ = nullptr;
friend class ParserTarget;
friend class ParserTargetScope;
ParserTarget* target_stack_; // for break, continue statements
ScriptCompiler::CompileOptions compile_options_;
// Other information which will be stored in Parser and moved to Isolate after
// parsing.
int use_counts_[v8::Isolate::kUseCounterFeatureCount];
int total_preparse_skipped_;
bool allow_lazy_;
bool temp_zoned_;
ConsumedPreParsedScopeData* consumed_preparsed_scope_data_;
// If not kNoSourcePosition, indicates that the first function literal
// encountered is a dynamic function, see CreateDynamicFunction(). This field
// indicates the correct position of the ')' that closes the parameter list.
// After that ')' is encountered, this field is reset to kNoSourcePosition.
int parameters_end_pos_;
};
// ----------------------------------------------------------------------------
// Target is a support class to facilitate manipulation of the
// Parser's target_stack_ (the stack of potential 'break' and
// 'continue' statement targets). Upon construction, a new target is
// added; it is removed upon destruction.
class ParserTarget BASE_EMBEDDED {
public:
ParserTarget(ParserBase<Parser>* parser, BreakableStatement* statement)
: variable_(&parser->impl()->target_stack_),
statement_(statement),
previous_(parser->impl()->target_stack_) {
parser->impl()->target_stack_ = this;
}
~ParserTarget() { *variable_ = previous_; }
ParserTarget* previous() { return previous_; }
BreakableStatement* statement() { return statement_; }
private:
ParserTarget** variable_;
BreakableStatement* statement_;
ParserTarget* previous_;
};
class ParserTargetScope BASE_EMBEDDED {
public:
explicit ParserTargetScope(ParserBase<Parser>* parser)
: variable_(&parser->impl()->target_stack_),
previous_(parser->impl()->target_stack_) {
parser->impl()->target_stack_ = nullptr;
}
~ParserTargetScope() { *variable_ = previous_; }
private:
ParserTarget** variable_;
ParserTarget* previous_;
};
} // namespace internal
} // namespace v8
#endif // V8_PARSING_PARSER_H_