blob: 844958ec47474e2f9dfe8b4704911f8fb8112db2 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/code-stubs.h"
#include "src/api-arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/mips/code-stubs-mips.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ sll(t9, a0, kPointerSizeLog2);
__ Addu(t9, sp, t9);
__ sw(a1, MemOperand(t9, 0));
__ Push(a1);
__ Push(a2);
__ Addu(a0, a0, Operand(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
}
void FastFunctionBindStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
}
static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Condition cc);
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* rhs_not_nan,
Label* slow,
bool strict);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register lhs,
Register rhs);
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetRegisterParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
DCHECK(param_count == 0 ||
a0.is(descriptor.GetRegisterParameter(param_count - 1)));
// Push arguments, adjust sp.
__ Subu(sp, sp, Operand(param_count * kPointerSize));
for (int i = 0; i < param_count; ++i) {
// Store argument to stack.
__ sw(descriptor.GetRegisterParameter(i),
MemOperand(sp, (param_count - 1 - i) * kPointerSize));
}
__ CallExternalReference(miss, param_count);
}
__ Ret();
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done;
Register input_reg = source();
Register result_reg = destination();
int double_offset = offset();
// Account for saved regs if input is sp.
if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
Register scratch =
GetRegisterThatIsNotOneOf(input_reg, result_reg);
Register scratch2 =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
Register scratch3 =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
DoubleRegister double_scratch = kLithiumScratchDouble;
__ Push(scratch, scratch2, scratch3);
if (!skip_fastpath()) {
// Load double input.
__ ldc1(double_scratch, MemOperand(input_reg, double_offset));
// Clear cumulative exception flags and save the FCSR.
__ cfc1(scratch2, FCSR);
__ ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
__ Trunc_w_d(double_scratch, double_scratch);
// Move the converted value into the result register.
__ mfc1(scratch3, double_scratch);
// Retrieve and restore the FCSR.
__ cfc1(scratch, FCSR);
__ ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
__ And(
scratch, scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
| kFCSRInvalidOpFlagMask);
// If we had no exceptions then set result_reg and we are done.
Label error;
__ Branch(&error, ne, scratch, Operand(zero_reg));
__ Move(result_reg, scratch3);
__ Branch(&done);
__ bind(&error);
}
// Load the double value and perform a manual truncation.
Register input_high = scratch2;
Register input_low = scratch3;
__ lw(input_low,
MemOperand(input_reg, double_offset + Register::kMantissaOffset));
__ lw(input_high,
MemOperand(input_reg, double_offset + Register::kExponentOffset));
Label normal_exponent, restore_sign;
// Extract the biased exponent in result.
__ Ext(result_reg,
input_high,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Check for Infinity and NaNs, which should return 0.
__ Subu(scratch, result_reg, HeapNumber::kExponentMask);
__ Movz(result_reg, zero_reg, scratch);
__ Branch(&done, eq, scratch, Operand(zero_reg));
// Express exponent as delta to (number of mantissa bits + 31).
__ Subu(result_reg,
result_reg,
Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
// If the delta is strictly positive, all bits would be shifted away,
// which means that we can return 0.
__ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
__ mov(result_reg, zero_reg);
__ Branch(&done);
__ bind(&normal_exponent);
const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
// Calculate shift.
__ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
// Save the sign.
Register sign = result_reg;
result_reg = no_reg;
__ And(sign, input_high, Operand(HeapNumber::kSignMask));
// On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
// to check for this specific case.
Label high_shift_needed, high_shift_done;
__ Branch(&high_shift_needed, lt, scratch, Operand(32));
__ mov(input_high, zero_reg);
__ Branch(&high_shift_done);
__ bind(&high_shift_needed);
// Set the implicit 1 before the mantissa part in input_high.
__ Or(input_high,
input_high,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
// Shift the mantissa bits to the correct position.
// We don't need to clear non-mantissa bits as they will be shifted away.
// If they weren't, it would mean that the answer is in the 32bit range.
__ sllv(input_high, input_high, scratch);
__ bind(&high_shift_done);
// Replace the shifted bits with bits from the lower mantissa word.
Label pos_shift, shift_done;
__ li(at, 32);
__ subu(scratch, at, scratch);
__ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
// Negate scratch.
__ Subu(scratch, zero_reg, scratch);
__ sllv(input_low, input_low, scratch);
__ Branch(&shift_done);
__ bind(&pos_shift);
__ srlv(input_low, input_low, scratch);
__ bind(&shift_done);
__ Or(input_high, input_high, Operand(input_low));
// Restore sign if necessary.
__ mov(scratch, sign);
result_reg = sign;
sign = no_reg;
__ Subu(result_reg, zero_reg, input_high);
__ Movz(result_reg, input_high, scratch);
__ bind(&done);
__ Pop(scratch, scratch2, scratch3);
__ Ret();
}
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Condition cc) {
Label not_identical;
Label heap_number, return_equal;
Register exp_mask_reg = t5;
__ Branch(&not_identical, ne, a0, Operand(a1));
__ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
__ GetObjectType(a0, t4, t4);
if (cc == less || cc == greater) {
// Call runtime on identical JSObjects.
__ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE));
// Call runtime on identical symbols since we need to throw a TypeError.
__ Branch(slow, eq, t4, Operand(SYMBOL_TYPE));
// Call runtime on identical SIMD values since we must throw a TypeError.
__ Branch(slow, eq, t4, Operand(SIMD128_VALUE_TYPE));
} else {
__ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
// Comparing JS objects with <=, >= is complicated.
if (cc != eq) {
__ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE));
// Call runtime on identical symbols since we need to throw a TypeError.
__ Branch(slow, eq, t4, Operand(SYMBOL_TYPE));
// Call runtime on identical SIMD values since we must throw a TypeError.
__ Branch(slow, eq, t4, Operand(SIMD128_VALUE_TYPE));
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if (cc == less_equal || cc == greater_equal) {
__ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
__ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
__ Branch(&return_equal, ne, a0, Operand(t2));
DCHECK(is_int16(GREATER) && is_int16(LESS));
__ Ret(USE_DELAY_SLOT);
if (cc == le) {
// undefined <= undefined should fail.
__ li(v0, Operand(GREATER));
} else {
// undefined >= undefined should fail.
__ li(v0, Operand(LESS));
}
}
}
}
__ bind(&return_equal);
DCHECK(is_int16(GREATER) && is_int16(LESS));
__ Ret(USE_DELAY_SLOT);
if (cc == less) {
__ li(v0, Operand(GREATER)); // Things aren't less than themselves.
} else if (cc == greater) {
__ li(v0, Operand(LESS)); // Things aren't greater than themselves.
} else {
__ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
}
// For less and greater we don't have to check for NaN since the result of
// x < x is false regardless. For the others here is some code to check
// for NaN.
if (cc != lt && cc != gt) {
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if it's
// not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
__ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
__ And(t3, t2, Operand(exp_mask_reg));
// If all bits not set (ne cond), then not a NaN, objects are equal.
__ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
// Shift out flag and all exponent bits, retaining only mantissa.
__ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
// Or with all low-bits of mantissa.
__ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
__ Or(v0, t3, Operand(t2));
// For equal we already have the right value in v0: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
// not (it's a NaN). For <= and >= we need to load v0 with the failing
// value if it's a NaN.
if (cc != eq) {
// All-zero means Infinity means equal.
__ Ret(eq, v0, Operand(zero_reg));
DCHECK(is_int16(GREATER) && is_int16(LESS));
__ Ret(USE_DELAY_SLOT);
if (cc == le) {
__ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
} else {
__ li(v0, Operand(LESS)); // NaN >= NaN should fail.
}
}
}
// No fall through here.
__ bind(&not_identical);
}
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
Label* slow,
bool strict) {
DCHECK((lhs.is(a0) && rhs.is(a1)) ||
(lhs.is(a1) && rhs.is(a0)));
Label lhs_is_smi;
__ JumpIfSmi(lhs, &lhs_is_smi);
// Rhs is a Smi.
// Check whether the non-smi is a heap number.
__ GetObjectType(lhs, t4, t4);
if (strict) {
// If lhs was not a number and rhs was a Smi then strict equality cannot
// succeed. Return non-equal (lhs is already not zero).
__ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
__ mov(v0, lhs);
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
}
// Rhs is a smi, lhs is a number.
// Convert smi rhs to double.
__ sra(at, rhs, kSmiTagSize);
__ mtc1(at, f14);
__ cvt_d_w(f14, f14);
__ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
// We now have both loaded as doubles.
__ jmp(both_loaded_as_doubles);
__ bind(&lhs_is_smi);
// Lhs is a Smi. Check whether the non-smi is a heap number.
__ GetObjectType(rhs, t4, t4);
if (strict) {
// If lhs was not a number and rhs was a Smi then strict equality cannot
// succeed. Return non-equal.
__ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
__ li(v0, Operand(1));
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
}
// Lhs is a smi, rhs is a number.
// Convert smi lhs to double.
__ sra(at, lhs, kSmiTagSize);
__ mtc1(at, f12);
__ cvt_d_w(f12, f12);
__ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
// Fall through to both_loaded_as_doubles.
}
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register lhs,
Register rhs) {
// If either operand is a JS object or an oddball value, then they are
// not equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Label first_non_object;
// Get the type of the first operand into a2 and compare it with
// FIRST_JS_RECEIVER_TYPE.
__ GetObjectType(lhs, a2, a2);
__ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
// Return non-zero.
Label return_not_equal;
__ bind(&return_not_equal);
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(1));
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
__ GetObjectType(rhs, a3, a3);
__ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
// Check for oddballs: true, false, null, undefined.
__ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
// Now that we have the types we might as well check for
// internalized-internalized.
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ Or(a2, a2, Operand(a3));
__ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
__ Branch(&return_not_equal, eq, at, Operand(zero_reg));
}
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
Label* not_heap_numbers,
Label* slow) {
__ GetObjectType(lhs, a3, a2);
__ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
__ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
// If first was a heap number & second wasn't, go to slow case.
__ Branch(slow, ne, a3, Operand(a2));
// Both are heap numbers. Load them up then jump to the code we have
// for that.
__ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ jmp(both_loaded_as_doubles);
}
// Fast negative check for internalized-to-internalized equality.
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
Register lhs, Register rhs,
Label* possible_strings,
Label* runtime_call) {
DCHECK((lhs.is(a0) && rhs.is(a1)) ||
(lhs.is(a1) && rhs.is(a0)));
// a2 is object type of rhs.
Label object_test, return_equal, return_unequal, undetectable;
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ And(at, a2, Operand(kIsNotStringMask));
__ Branch(&object_test, ne, at, Operand(zero_reg));
__ And(at, a2, Operand(kIsNotInternalizedMask));
__ Branch(possible_strings, ne, at, Operand(zero_reg));
__ GetObjectType(rhs, a3, a3);
__ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE));
__ And(at, a3, Operand(kIsNotInternalizedMask));
__ Branch(possible_strings, ne, at, Operand(zero_reg));
// Both are internalized. We already checked they weren't the same pointer so
// they are not equal. Return non-equal by returning the non-zero object
// pointer in v0.
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // In delay slot.
__ bind(&object_test);
__ lw(a2, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ lw(a3, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset));
__ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset));
__ And(at, t0, Operand(1 << Map::kIsUndetectable));
__ Branch(&undetectable, ne, at, Operand(zero_reg));
__ And(at, t1, Operand(1 << Map::kIsUndetectable));
__ Branch(&return_unequal, ne, at, Operand(zero_reg));
__ GetInstanceType(a2, a2);
__ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
__ GetInstanceType(a3, a3);
__ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in v0.
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // In delay slot.
__ bind(&undetectable);
__ And(at, t1, Operand(1 << Map::kIsUndetectable));
__ Branch(&return_unequal, eq, at, Operand(zero_reg));
// If both sides are JSReceivers, then the result is false according to
// the HTML specification, which says that only comparisons with null or
// undefined are affected by special casing for document.all.
__ GetInstanceType(a2, a2);
__ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE));
__ GetInstanceType(a3, a3);
__ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE));
__ bind(&return_equal);
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(EQUAL)); // In delay slot.
}
static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
Register scratch,
CompareICState::State expected,
Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
DONT_DO_SMI_CHECK);
}
// We could be strict about internalized/string here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ bind(&ok);
}
// On entry a1 and a2 are the values to be compared.
// On exit a0 is 0, positive or negative to indicate the result of
// the comparison.
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Register lhs = a1;
Register rhs = a0;
Condition cc = GetCondition();
Label miss;
CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles;
Label not_two_smis, smi_done;
__ Or(a2, a1, a0);
__ JumpIfNotSmi(a2, &not_two_smis);
__ sra(a1, a1, 1);
__ sra(a0, a0, 1);
__ Ret(USE_DELAY_SLOT);
__ subu(v0, a1, a0);
__ bind(&not_two_smis);
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, &slow, cc);
// If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber.
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
__ And(t2, lhs, Operand(rhs));
__ JumpIfNotSmi(t2, &not_smis, t0);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to rhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
// comparison and the numbers have been loaded into f12 and f14 as doubles,
// or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
EmitSmiNonsmiComparison(masm, lhs, rhs,
&both_loaded_as_doubles, &slow, strict());
__ bind(&both_loaded_as_doubles);
// f12, f14 are the double representations of the left hand side
// and the right hand side if we have FPU. Otherwise a2, a3 represent
// left hand side and a0, a1 represent right hand side.
Label nan;
__ li(t0, Operand(LESS));
__ li(t1, Operand(GREATER));
__ li(t2, Operand(EQUAL));
// Check if either rhs or lhs is NaN.
__ BranchF(NULL, &nan, eq, f12, f14);
// Check if LESS condition is satisfied. If true, move conditionally
// result to v0.
if (!IsMipsArchVariant(kMips32r6)) {
__ c(OLT, D, f12, f14);
__ Movt(v0, t0);
// Use previous check to store conditionally to v0 oposite condition
// (GREATER). If rhs is equal to lhs, this will be corrected in next
// check.
__ Movf(v0, t1);
// Check if EQUAL condition is satisfied. If true, move conditionally
// result to v0.
__ c(EQ, D, f12, f14);
__ Movt(v0, t2);
} else {
Label skip;
__ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
__ mov(v0, t0); // Return LESS as result.
__ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
__ mov(v0, t2); // Return EQUAL as result.
__ mov(v0, t1); // Return GREATER as result.
__ bind(&skip);
}
__ Ret();
__ bind(&nan);
// NaN comparisons always fail.
// Load whatever we need in v0 to make the comparison fail.
DCHECK(is_int16(GREATER) && is_int16(LESS));
__ Ret(USE_DELAY_SLOT);
if (cc == lt || cc == le) {
__ li(v0, Operand(GREATER));
} else {
__ li(v0, Operand(LESS));
}
__ bind(&not_smis);
// At this point we know we are dealing with two different objects,
// and neither of them is a Smi. The objects are in lhs_ and rhs_.
if (strict()) {
// This returns non-equal for some object types, or falls through if it
// was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
}
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap-number-heap-number comparison. Can jump to slow case,
// or load both doubles and jump to the code that handles
// that case. If the inputs are not doubles then jumps to
// check_for_internalized_strings.
// In this case a2 will contain the type of lhs_.
EmitCheckForTwoHeapNumbers(masm,
lhs,
rhs,
&both_loaded_as_doubles,
&check_for_internalized_strings,
&flat_string_check);
__ bind(&check_for_internalized_strings);
if (cc == eq && !strict()) {
// Returns an answer for two internalized strings or two
// detectable objects.
// Otherwise jumps to string case or not both strings case.
// Assumes that a2 is the type of lhs_ on entry.
EmitCheckForInternalizedStringsOrObjects(
masm, lhs, rhs, &flat_string_check, &slow);
}
// Check for both being sequential one-byte strings,
// and inline if that is the case.
__ bind(&flat_string_check);
__ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
a3);
if (cc == eq) {
StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, t0);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, t0,
t1);
}
// Never falls through to here.
__ bind(&slow);
if (cc == eq) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(lhs, rhs);
__ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
}
// Turn true into 0 and false into some non-zero value.
STATIC_ASSERT(EQUAL == 0);
__ LoadRoot(a0, Heap::kTrueValueRootIndex);
__ Ret(USE_DELAY_SLOT);
__ subu(v0, v0, a0); // In delay slot.
} else {
// Prepare for call to builtin. Push object pointers, a0 (lhs) first,
// a1 (rhs) second.
__ Push(lhs, rhs);
int ncr; // NaN compare result.
if (cc == lt || cc == le) {
ncr = GREATER;
} else {
DCHECK(cc == gt || cc == ge); // Remaining cases.
ncr = LESS;
}
__ li(a0, Operand(Smi::FromInt(ncr)));
__ push(a0);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
__ mov(t9, ra);
__ pop(ra);
__ PushSafepointRegisters();
__ Jump(t9);
}
void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
__ mov(t9, ra);
__ pop(ra);
__ PopSafepointRegisters();
__ Jump(t9);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
__ MultiPush(kJSCallerSaved | ra.bit());
if (save_doubles()) {
__ MultiPushFPU(kCallerSavedFPU);
}
const int argument_count = 1;
const int fp_argument_count = 0;
const Register scratch = a1;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
__ li(a0, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()),
argument_count);
if (save_doubles()) {
__ MultiPopFPU(kCallerSavedFPU);
}
__ MultiPop(kJSCallerSaved | ra.bit());
__ Ret();
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent.is(a2));
const DoubleRegister double_base = f2;
const DoubleRegister double_exponent = f4;
const DoubleRegister double_result = f0;
const DoubleRegister double_scratch = f6;
const FPURegister single_scratch = f8;
const Register scratch = t5;
const Register scratch2 = t3;
Label call_runtime, done, int_exponent;
if (exponent_type() == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ ldc1(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label int_exponent_convert;
// Detect integer exponents stored as double.
__ EmitFPUTruncate(kRoundToMinusInf,
scratch,
double_exponent,
at,
double_scratch,
scratch2,
kCheckForInexactConversion);
// scratch2 == 0 means there was no conversion error.
__ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
__ push(ra);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(ra);
__ MovFromFloatResult(double_result);
__ jmp(&done);
__ bind(&int_exponent_convert);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type() == INTEGER) {
__ mov(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
__ mov(exponent, scratch);
}
__ mov_d(double_scratch, double_base); // Back up base.
__ Move(double_result, 1.0);
// Get absolute value of exponent.
Label positive_exponent, bail_out;
__ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
__ Subu(scratch, zero_reg, scratch);
// Check when Subu overflows and we get negative result
// (happens only when input is MIN_INT).
__ Branch(&bail_out, gt, zero_reg, Operand(scratch));
__ bind(&positive_exponent);
__ Assert(ge, kUnexpectedNegativeValue, scratch, Operand(zero_reg));
Label while_true, no_carry, loop_end;
__ bind(&while_true);
__ And(scratch2, scratch, 1);
__ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
__ mul_d(double_result, double_result, double_scratch);
__ bind(&no_carry);
__ sra(scratch, scratch, 1);
__ Branch(&loop_end, eq, scratch, Operand(zero_reg));
__ mul_d(double_scratch, double_scratch, double_scratch);
__ Branch(&while_true);
__ bind(&loop_end);
__ Branch(&done, ge, exponent, Operand(zero_reg));
__ Move(double_scratch, 1.0);
__ div_d(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
// double_exponent may not contain the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ bind(&bail_out);
__ mtc1(exponent, single_scratch);
__ cvt_d_w(double_exponent, single_scratch);
// Returning or bailing out.
__ push(ra);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(ra);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
bool CEntryStub::NeedsImmovableCode() {
return true;
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
CreateWeakCellStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
StoreRegistersStateStub::GenerateAheadOfTime(isolate);
RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
StoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
RestoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
SaveFPRegsMode mode = kSaveFPRegs;
CEntryStub(isolate, 1, mode).GetCode();
StoreBufferOverflowStub(isolate, mode).GetCode();
isolate->set_fp_stubs_generated(true);
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function
// a0: number of arguments including receiver
// a1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_in_register():
// a2: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
if (argv_in_register()) {
// Move argv into the correct register.
__ mov(s1, a2);
} else {
// Compute the argv pointer in a callee-saved register.
__ Lsa(s1, sp, a0, kPointerSizeLog2);
__ Subu(s1, s1, kPointerSize);
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
? StackFrame::BUILTIN_EXIT
: StackFrame::EXIT);
// s0: number of arguments including receiver (C callee-saved)
// s1: pointer to first argument (C callee-saved)
// s2: pointer to builtin function (C callee-saved)
// Prepare arguments for C routine.
// a0 = argc
__ mov(s0, a0);
__ mov(s2, a1);
// We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
// also need to reserve the 4 argument slots on the stack.
__ AssertStackIsAligned();
int frame_alignment = MacroAssembler::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
int result_stack_size;
if (result_size() <= 2) {
// a0 = argc, a1 = argv, a2 = isolate
__ li(a2, Operand(ExternalReference::isolate_address(isolate())));
__ mov(a1, s1);
result_stack_size = 0;
} else {
DCHECK_EQ(3, result_size());
// Allocate additional space for the result.
result_stack_size =
((result_size() * kPointerSize) + frame_alignment_mask) &
~frame_alignment_mask;
__ Subu(sp, sp, Operand(result_stack_size));
// a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate.
__ li(a3, Operand(ExternalReference::isolate_address(isolate())));
__ mov(a2, s1);
__ mov(a1, a0);
__ mov(a0, sp);
}
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
{ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
int kNumInstructionsToJump = 4;
Label find_ra;
// Adjust the value in ra to point to the correct return location, 2nd
// instruction past the real call into C code (the jalr(t9)), and push it.
// This is the return address of the exit frame.
if (kArchVariant >= kMips32r6) {
__ addiupc(ra, kNumInstructionsToJump + 1);
} else {
// This branch-and-link sequence is needed to find the current PC on mips
// before r6, saved to the ra register.
__ bal(&find_ra); // bal exposes branch delay slot.
__ Addu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
}
__ bind(&find_ra);
// This spot was reserved in EnterExitFrame.
__ sw(ra, MemOperand(sp, result_stack_size));
// Stack space reservation moved to the branch delay slot below.
// Stack is still aligned.
// Call the C routine.
__ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
__ jalr(t9);
// Set up sp in the delay slot.
__ addiu(sp, sp, -kCArgsSlotsSize);
// Make sure the stored 'ra' points to this position.
DCHECK_EQ(kNumInstructionsToJump,
masm->InstructionsGeneratedSince(&find_ra));
}
if (result_size() > 2) {
DCHECK_EQ(3, result_size());
// Read result values stored on stack.
__ lw(a0, MemOperand(v0, 2 * kPointerSize));
__ lw(v1, MemOperand(v0, 1 * kPointerSize));
__ lw(v0, MemOperand(v0, 0 * kPointerSize));
}
// Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ LoadRoot(t0, Heap::kExceptionRootIndex);
__ Branch(&exception_returned, eq, t0, Operand(v0));
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
__ li(a2, Operand(pending_exception_address));
__ lw(a2, MemOperand(a2));
__ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ Branch(&okay, eq, t0, Operand(a2));
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// v0:v1: result
// sp: stack pointer
// fp: frame pointer
Register argc;
if (argv_in_register()) {
// We don't want to pop arguments so set argc to no_reg.
argc = no_reg;
} else {
// s0: still holds argc (callee-saved).
argc = s0;
}
__ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
Isolate::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_code_address(
Isolate::kPendingHandlerCodeAddress, isolate());
ExternalReference pending_handler_offset_address(
Isolate::kPendingHandlerOffsetAddress, isolate());
ExternalReference pending_handler_fp_address(
Isolate::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
Isolate::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set v0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, a0);
__ mov(a0, zero_reg);
__ mov(a1, zero_reg);
__ li(a2, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ li(cp, Operand(pending_handler_context_address));
__ lw(cp, MemOperand(cp));
__ li(sp, Operand(pending_handler_sp_address));
__ lw(sp, MemOperand(sp));
__ li(fp, Operand(pending_handler_fp_address));
__ lw(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label zero;
__ Branch(&zero, eq, cp, Operand(zero_reg));
__ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&zero);
// Compute the handler entry address and jump to it.
__ li(a1, Operand(pending_handler_code_address));
__ lw(a1, MemOperand(a1));
__ li(a2, Operand(pending_handler_offset_address));
__ lw(a2, MemOperand(a2));
__ Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Addu(t9, a1, a2);
__ Jump(t9);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Isolate* isolate = masm->isolate();
// Registers:
// a0: entry address
// a1: function
// a2: receiver
// a3: argc
//
// Stack:
// 4 args slots
// args
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Save callee saved registers on the stack.
__ MultiPush(kCalleeSaved | ra.bit());
// Save callee-saved FPU registers.
__ MultiPushFPU(kCalleeSavedFPU);
// Set up the reserved register for 0.0.
__ Move(kDoubleRegZero, 0.0);
// Load argv in s0 register.
int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
__ InitializeRootRegister();
__ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
// We build an EntryFrame.
__ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used.
int marker = type();
__ li(t2, Operand(Smi::FromInt(marker)));
__ li(t1, Operand(Smi::FromInt(marker)));
__ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
isolate)));
__ lw(t0, MemOperand(t0));
__ Push(t3, t2, t1, t0);
// Set up frame pointer for the frame to be pushed.
__ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
// Registers:
// a0: entry_address
// a1: function
// a2: receiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// caller fp |
// function slot | entry frame
// context slot |
// bad fp (0xff...f) |
// callee saved registers + ra
// 4 args slots
// args
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
__ li(t1, Operand(ExternalReference(js_entry_sp)));
__ lw(t2, MemOperand(t1));
__ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
__ sw(fp, MemOperand(t1));
__ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
Label cont;
__ b(&cont);
__ nop(); // Branch delay slot nop.
__ bind(&non_outermost_js);
__ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
__ bind(&cont);
__ push(t0);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate)));
__ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0.
__ LoadRoot(v0, Heap::kExceptionRootIndex);
__ b(&exit); // b exposes branch delay slot.
__ nop(); // Branch delay slot nop.
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bal(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Registers:
// a0: entry_address
// a1: function
// a2: receiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// handler frame
// entry frame
// callee saved registers + ra
// 4 args slots
// args
if (type() == StackFrame::ENTRY_CONSTRUCT) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate);
__ li(t0, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
__ li(t0, Operand(entry));
}
__ lw(t9, MemOperand(t0)); // Deref address.
// Call JSEntryTrampoline.
__ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
__ Call(t9);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // v0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(t1);
__ Branch(&non_outermost_js_2,
ne,
t1,
Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
__ li(t1, Operand(ExternalReference(js_entry_sp)));
__ sw(zero_reg, MemOperand(t1));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(t1);
__ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
isolate)));
__ sw(t1, MemOperand(t0));
// Reset the stack to the callee saved registers.
__ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
// Restore callee-saved fpu registers.
__ MultiPopFPU(kCalleeSavedFPU);
// Restore callee saved registers from the stack.
__ MultiPop(kCalleeSaved | ra.bit());
// Return.
__ Jump(ra);
}
void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
// Return address is in ra.
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
Register index = LoadDescriptor::NameRegister();
Register scratch = t1;
Register result = v0;
DCHECK(!scratch.is(receiver) && !scratch.is(index));
DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
RECEIVER_IS_STRING);
char_at_generator.GenerateFast(masm);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
__ bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
}
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
// Ensure that the vector and slot registers won't be clobbered before
// calling the miss handler.
DCHECK(!AreAliased(t0, t1, LoadWithVectorDescriptor::VectorRegister(),
LoadWithVectorDescriptor::SlotRegister()));
NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, t0,
t1, &miss);
__ bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// sp[0]: last_match_info (expected JSArray)
// sp[4]: previous index
// sp[8]: subject string
// sp[12]: JSRegExp object
const int kLastMatchInfoOffset = 0 * kPointerSize;
const int kPreviousIndexOffset = 1 * kPointerSize;
const int kSubjectOffset = 2 * kPointerSize;
const int kJSRegExpOffset = 3 * kPointerSize;
Label runtime;
// Allocation of registers for this function. These are in callee save
// registers and will be preserved by the call to the native RegExp code, as
// this code is called using the normal C calling convention. When calling
// directly from generated code the native RegExp code will not do a GC and
// therefore the content of these registers are safe to use after the call.
// MIPS - using s0..s2, since we are not using CEntry Stub.
Register subject = s0;
Register regexp_data = s1;
Register last_match_info_elements = s2;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ li(a0, Operand(address_of_regexp_stack_memory_size));
__ lw(a0, MemOperand(a0, 0));
__ Branch(&runtime, eq, a0, Operand(zero_reg));
// Check that the first argument is a JSRegExp object.
__ lw(a0, MemOperand(sp, kJSRegExpOffset));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(a0, &runtime);
__ GetObjectType(a0, a1, a1);
__ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
// Check that the RegExp has been compiled (data contains a fixed array).
__ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ SmiTst(regexp_data, t0);
__ Check(nz,
kUnexpectedTypeForRegExpDataFixedArrayExpected,
t0,
Operand(zero_reg));
__ GetObjectType(regexp_data, a0, a0);
__ Check(eq,
kUnexpectedTypeForRegExpDataFixedArrayExpected,
a0,
Operand(FIXED_ARRAY_TYPE));
}
// regexp_data: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
// regexp_data: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ lw(a2,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures * 2 <= offsets vector size - 2
// Multiplying by 2 comes for free since a2 is smi-tagged.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ Branch(
&runtime, hi, a2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
// Reset offset for possibly sliced string.
__ mov(t0, zero_reg);
__ lw(subject, MemOperand(sp, kSubjectOffset));
__ JumpIfSmi(subject, &runtime);
__ mov(a3, subject); // Make a copy of the original subject string.
// subject: subject string
// a3: subject string
// regexp_data: RegExp data (FixedArray)
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (4).
// (2) Sequential or cons? If not, go to (5).
// (3) Cons string. If the string is flat, replace subject with first string
// and go to (1). Otherwise bail out to runtime.
// (4) Sequential string. Load regexp code according to encoding.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (5) Long external string? If not, go to (7).
// (6) External string. Make it, offset-wise, look like a sequential string.
// Go to (4).
// (7) Short external string or not a string? If yes, bail out to runtime.
// (8) Sliced string. Replace subject with parent. Go to (1).
Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
__ bind(&check_underlying);
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
// (1) Sequential string? If yes, go to (4).
__ And(a1,
a0,
Operand(kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask));
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
__ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (5).
// (2) Sequential or cons? If not, go to (5).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
// Go to (5).
__ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
// (3) Cons string. Check that it's flat.
// Replace subject with first string and reload instance type.
__ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
__ LoadRoot(a1, Heap::kempty_stringRootIndex);
__ Branch(&runtime, ne, a0, Operand(a1));
__ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
__ jmp(&check_underlying);
// (4) Sequential string. Load regexp code according to encoding.
__ bind(&seq_string);
// subject: sequential subject string (or look-alike, external string)
// a3: original subject string
// Load previous index and check range before a3 is overwritten. We have to
// use a3 instead of subject here because subject might have been only made
// to look like a sequential string when it actually is an external string.
__ lw(a1, MemOperand(sp, kPreviousIndexOffset));
__ JumpIfNotSmi(a1, &runtime);
__ lw(a3, FieldMemOperand(a3, String::kLengthOffset));
__ Branch(&runtime, ls, a3, Operand(a1));
__ sra(a1, a1, kSmiTagSize); // Untag the Smi.
STATIC_ASSERT(kStringEncodingMask == 4);
STATIC_ASSERT(kOneByteStringTag == 4);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one-byte.
__ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
__ sra(a3, a0, 2); // a3 is 1 for ASCII, 0 for UC16 (used below).
__ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
__ Movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
// (E) Carry on. String handling is done.
// t9: irregexp code
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(t9, &runtime);
// a1: previous index
// a3: encoding of subject string (1 if one_byte, 0 if two_byte);
// t9: code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(isolate()->counters()->regexp_entry_native(),
1, a0, a2);
// Isolates: note we add an additional parameter here (isolate pointer).
const int kRegExpExecuteArguments = 9;
const int kParameterRegisters = 4;
__ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
// Stack pointer now points to cell where return address is to be written.
// Arguments are before that on the stack or in registers, meaning we
// treat the return address as argument 5. Thus every argument after that
// needs to be shifted back by 1. Since DirectCEntryStub will handle
// allocating space for the c argument slots, we don't need to calculate
// that into the argument positions on the stack. This is how the stack will
// look (sp meaning the value of sp at this moment):
// [sp + 5] - Argument 9
// [sp + 4] - Argument 8
// [sp + 3] - Argument 7
// [sp + 2] - Argument 6
// [sp + 1] - Argument 5
// [sp + 0] - saved ra
// Argument 9: Pass current isolate address.
// CFunctionArgumentOperand handles MIPS stack argument slots.
__ li(a0, Operand(ExternalReference::isolate_address(isolate())));
__ sw(a0, MemOperand(sp, 5 * kPointerSize));
// Argument 8: Indicate that this is a direct call from JavaScript.
__ li(a0, Operand(1));
__ sw(a0, MemOperand(sp, 4 * kPointerSize));
// Argument 7: Start (high end) of backtracking stack memory area.
__ li(a0, Operand(address_of_regexp_stack_memory_address));
__ lw(a0, MemOperand(a0, 0));
__ li(a2, Operand(address_of_regexp_stack_memory_size));
__ lw(a2, MemOperand(a2, 0));
__ addu(a0, a0, a2);
__ sw(a0, MemOperand(sp, 3 * kPointerSize));
// Argument 6: Set the number of capture registers to zero to force global
// regexps to behave as non-global. This does not affect non-global regexps.
__ mov(a0, zero_reg);
__ sw(a0, MemOperand(sp, 2 * kPointerSize));
// Argument 5: static offsets vector buffer.
__ li(a0, Operand(
ExternalReference::address_of_static_offsets_vector(isolate())));
__ sw(a0, MemOperand(sp, 1 * kPointerSize));
// For arguments 4 and 3 get string length, calculate start of string data
// calculate the shift of the index (0 for one-byte and 1 for two-byte).
__ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
__ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
__ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
// If slice offset is not 0, load the length from the original sliced string.
// Argument 4, a3: End of string data
// Argument 3, a2: Start of string data
// Prepare start and end index of the input.
__ sllv(t1, t0, a3);
__ addu(t0, t2, t1);
__ sllv(t1, a1, a3);
__ addu(a2, t0, t1);
__ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
__ sra(t2, t2, kSmiTagSize);
__ sllv(t1, t2, a3);
__ addu(a3, t0, t1);
// Argument 2 (a1): Previous index.
// Already there
// Argument 1 (a0): Subject string.
__ mov(a0, subject);
// Locate the code entry and call it.
__ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
DirectCEntryStub stub(isolate());
stub.GenerateCall(masm, t9);
__ LeaveExitFrame(false, no_reg, true);
// v0: result
// subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved)
// last_match_info_elements: Last match info elements (callee saved)
// Check the result.
Label success;
__ Branch(&success, eq, v0, Operand(1));
// We expect exactly one result since we force the called regexp to behave
// as non-global.
Label failure;
__ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
// If not exception it can only be retry. Handle that in the runtime system.
__ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
__ li(a1, Operand(isolate()->factory()->the_hole_value()));
__ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ lw(v0, MemOperand(a2, 0));
__ Branch(&runtime, eq, v0, Operand(a1));
// For exception, throw the exception again.
__ TailCallRuntime(Runtime::kRegExpExecReThrow);
__ bind(&failure);
// For failure and exception return null.
__ li(v0, Operand(isolate()->factory()->null_value()));
__ DropAndRet(4);
// Process the result from the native regexp code.
__ bind(&success);
__ lw(a1,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
// Multiplying by 2 comes for free since r1 is smi-tagged.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ Addu(a1, a1, Operand(2)); // a1 was a smi.
__ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
__ JumpIfSmi(a0, &runtime);
__ GetObjectType(a0, a2, a2);
__ Branch(&runtime, ne, a2, Operand(JS_OBJECT_TYPE));
// Check that the object has fast elements.
__ lw(last_match_info_elements,
FieldMemOperand(a0, JSArray::kElementsOffset));
__ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
__ Branch(&runtime, ne, a0, Operand(at));
// Check that the last match info has space for the capture registers and the
// additional information.
__ lw(a0,
FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
__ Addu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
__ sra(at, a0, kSmiTagSize);
__ Branch(&runtime, gt, a2, Operand(at));
// a1: number of capture registers
// subject: subject string
// Store the capture count.
__ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi.
__ sw(a2, FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
__ sw(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
__ mov(a2, subject);
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastSubjectOffset,
subject,
t3,
kRAHasNotBeenSaved,
kDontSaveFPRegs);
__ mov(subject, a2);
__ sw(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastInputOffset,
subject,
t3,
kRAHasNotBeenSaved,
kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ li(a2, Operand(address_of_static_offsets_vector));
// a1: number of capture registers
// a2: offsets vector
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wrapping after zero.
__ Addu(a0,
last_match_info_elements,
Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
__ bind(&next_capture);
__ Subu(a1, a1, Operand(1));
__ Branch(&done, lt, a1, Operand(zero_reg));
// Read the value from the static offsets vector buffer.
__ lw(a3, MemOperand(a2, 0));
__ addiu(a2, a2, kPointerSize);
// Store the smi value in the last match info.
__ sll(a3, a3, kSmiTagSize); // Convert to Smi.
__ sw(a3, MemOperand(a0, 0));
__ Branch(&next_capture, USE_DELAY_SLOT);
__ addiu(a0, a0, kPointerSize); // In branch delay slot.
__ bind(&done);
// Return last match info.
__ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
__ DropAndRet(4);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec);
// Deferred code for string handling.
// (5) Long external string? If not, go to (7).
__ bind(&not_seq_nor_cons);
// Go to (7).
__ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
// (6) External string. Make it, offset-wise, look like a sequential string.
__ bind(&external_string);
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ And(at, a0, Operand(kIsIndirectStringMask));
__ Assert(eq,
kExternalStringExpectedButNotFound,
at,
Operand(zero_reg));
}
__ lw(subject,
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Subu(subject,
subject,
SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ jmp(&seq_string); // Go to (5).
// (7) Short external string or not a string? If yes, bail out to runtime.
__ bind(&not_long_external);
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
__ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
__ Branch(&runtime, ne, at, Operand(zero_reg));
// (8) Sliced string. Replace subject with parent. Go to (4).
// Load offset into t0 and replace subject string with parent.
__ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
__ sra(t0, t0, kSmiTagSize);
__ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
__ jmp(&check_underlying); // Go to (4).
#endif // V8_INTERPRETED_REGEXP
}
static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
// a0 : number of arguments to the construct function
// a2 : feedback vector
// a3 : slot in feedback vector (Smi)
// a1 : the function to call
FrameScope scope(masm, StackFrame::INTERNAL);
const RegList kSavedRegs = 1 << 4 | // a0
1 << 5 | // a1
1 << 6 | // a2
1 << 7 | // a3
1 << cp.code();
// Number-of-arguments register must be smi-tagged to call out.
__ SmiTag(a0);
__ MultiPush(kSavedRegs);
__ CallStub(stub);
__ MultiPop(kSavedRegs);
__ SmiUntag(a0);
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a feedback vector slot. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// a0 : number of arguments to the construct function
// a1 : the function to call
// a2 : feedback vector
// a3 : slot in feedback vector (Smi)
Label initialize, done, miss, megamorphic, not_array_function;
Label done_initialize_count, done_increment_count;
DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
masm->isolate()->heap()->megamorphic_symbol());
DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
// Load the cache state into t2.
__ Lsa(t2, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ lw(t2, FieldMemOperand(t2, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
// We don't know if t2 is a WeakCell or a Symbol, but it's harmless to read at
// this position in a symbol (see static asserts in type-feedback-vector.h).
Label check_allocation_site;
Register feedback_map = t1;
Register weak_value = t4;
__ lw(weak_value, FieldMemOperand(t2, WeakCell::kValueOffset));
__ Branch(&done_increment_count, eq, a1, Operand(weak_value));
__ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
__ Branch(&done, eq, t2, Operand(at));
__ lw(feedback_map, FieldMemOperand(t2, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kWeakCellMapRootIndex);
__ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
// If the weak cell is cleared, we have a new chance to become monomorphic.
__ JumpIfSmi(weak_value, &initialize);
__ jmp(&megamorphic);
__ bind(&check_allocation_site);
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite.
__ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
__ Branch(&miss, ne, feedback_map, Operand(at));
// Make sure the function is the Array() function
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2);
__ Branch(&megamorphic, ne, a1, Operand(t2));
__ jmp(&done_increment_count);
__ bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
__ Branch(&initialize, eq, t2, Operand(at));
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ bind(&megamorphic);
__ Lsa(t2, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
__ sw(at, FieldMemOperand(t2, FixedArray::kHeaderSize));
__ jmp(&done);
// An uninitialized cache is patched with the function.
__ bind(&initialize);
// Make sure the function is the Array() function.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2);
__ Branch(&not_array_function, ne, a1, Operand(t2));
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
CreateAllocationSiteStub create_stub(masm->isolate());
CallStubInRecordCallTarget(masm, &create_stub);
__ Branch(&done_initialize_count);
__ bind(&not_array_function);
CreateWeakCellStub weak_cell_stub(masm->isolate());
CallStubInRecordCallTarget(masm, &weak_cell_stub);
__ bind(&done_initialize_count);
// Initialize the call counter.
__ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ li(t0, Operand(Smi::FromInt(1)));
__ Branch(USE_DELAY_SLOT, &done);
__ sw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ bind(&done_increment_count);
// Increment the call count for monomorphic function calls.
__ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ lw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ Addu(t0, t0, Operand(Smi::FromInt(1)));
__ sw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ bind(&done);
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// a0 : number of arguments
// a1 : the function to call
// a2 : feedback vector
// a3 : slot in feedback vector (Smi, for RecordCallTarget)
Label non_function;
// Check that the function is not a smi.
__ JumpIfSmi(a1, &non_function);
// Check that the function is a JSFunction.
__ GetObjectType(a1, t1, t1);
__ Branch(&non_function, ne, t1, Operand(JS_FUNCTION_TYPE));
GenerateRecordCallTarget(masm);
__ Lsa(t1, a2, a3, kPointerSizeLog2 - kSmiTagSize);
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into a2, or undefined.
__ lw(a2, FieldMemOperand(t1, FixedArray::kHeaderSize));
__ lw(t1, FieldMemOperand(a2, AllocationSite::kMapOffset));
__ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
__ Branch(&feedback_register_initialized, eq, t1, Operand(at));
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
__ AssertUndefinedOrAllocationSite(a2, t1);
// Pass function as new target.
__ mov(a3, a1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kConstructStubOffset));
__ Addu(at, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
__ bind(&non_function);
__ mov(a3, a1);
__ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
// a1 - function
// a3 - slot id
// a2 - vector
// t0 - loaded from vector[slot]
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
__ Branch(miss, ne, a1, Operand(at));
__ li(a0, Operand(arg_count()));
// Increment the call count for monomorphic function calls.
__ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ lw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ Addu(a3, a3, Operand(Smi::FromInt(1)));
__ sw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ mov(a2, t0);
__ mov(a3, a1);
ArrayConstructorStub stub(masm->isolate(), arg_count());
__ TailCallStub(&stub);
}
void CallICStub::Generate(MacroAssembler* masm) {
// a1 - function
// a3 - slot id (Smi)
// a2 - vector
Label extra_checks_or_miss, call, call_function;
int argc = arg_count();
ParameterCount actual(argc);
// The checks. First, does r1 match the recorded monomorphic target?
__ Lsa(t0, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ lw(t0, FieldMemOperand(t0, FixedArray::kHeaderSize));
// We don't know that we have a weak cell. We might have a private symbol
// or an AllocationSite, but the memory is safe to examine.
// AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
// FixedArray.
// WeakCell::kValueOffset - contains a JSFunction or Smi(0)
// Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
// computed, meaning that it can't appear to be a pointer. If the low bit is
// 0, then hash is computed, but the 0 bit prevents the field from appearing
// to be a pointer.
STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
WeakCell::kValueOffset &&
WeakCell::kValueOffset == Symbol::kHashFieldSlot);
__ lw(t1, FieldMemOperand(t0, WeakCell::kValueOffset));
__ Branch(&extra_checks_or_miss, ne, a1, Operand(t1));
// The compare above could have been a SMI/SMI comparison. Guard against this
// convincing us that we have a monomorphic JSFunction.
__ JumpIfSmi(a1, &extra_checks_or_miss);
// Increment the call count for monomorphic function calls.
__ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ lw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ Addu(a3, a3, Operand(Smi::FromInt(1)));
__ sw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
__ bind(&call_function);
__ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
tail_call_mode()),
RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
USE_DELAY_SLOT);
__ li(a0, Operand(argc)); // In delay slot.
__ bind(&extra_checks_or_miss);
Label uninitialized, miss, not_allocation_site;
__ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
__ Branch(&call, eq, t0, Operand(at));
// Verify that t0 contains an AllocationSite
__ lw(t1, FieldMemOperand(t0, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
__ Branch(&not_allocation_site, ne, t1, Operand(at));
HandleArrayCase(masm, &miss);
__ bind(&not_allocation_site);
// The following cases attempt to handle MISS cases without going to the
// runtime.
if (FLAG_trace_ic) {
__ Branch(&miss);
}
__ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
__ Branch(&uninitialized, eq, t0, Operand(at));
// We are going megamorphic. If the feedback is a JSFunction, it is fine
// to handle it here. More complex cases are dealt with in the runtime.
__ AssertNotSmi(t0);
__ GetObjectType(t0, t1, t1);
__ Branch(&miss, ne, t1, Operand(JS_FUNCTION_TYPE));
__ Lsa(t0, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
__ sw(at, FieldMemOperand(t0, FixedArray::kHeaderSize));
__ bind(&call);
__ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
USE_DELAY_SLOT);
__ li(a0, Operand(argc)); // In delay slot.
__ bind(&uninitialized);
// We are going monomorphic, provided we actually have a JSFunction.
__ JumpIfSmi(a1, &miss);
// Goto miss case if we do not have a function.
__ GetObjectType(a1, t0, t0);
__ Branch(&miss, ne, t0, Operand(JS_FUNCTION_TYPE));
// Make sure the function is not the Array() function, which requires special
// behavior on MISS.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t0);
__ Branch(&miss, eq, a1, Operand(t0));
// Make sure the function belongs to the same native context.
__ lw(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
__ lw(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
__ lw(t1, NativeContextMemOperand());
__ Branch(&miss, ne, t0, Operand(t1));
// Initialize the call counter.
__ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize);
__ li(t0, Operand(Smi::FromInt(1)));
__ sw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
// Store the function. Use a stub since we need a frame for allocation.
// a2 - vector
// a3 - slot
// a1 - function
{
FrameScope scope(masm, StackFrame::INTERNAL);
CreateWeakCellStub create_stub(masm->isolate());
__ Push(cp, a1);
__ CallStub(&create_stub);
__ Pop(cp, a1);
}
__ Branch(&call_function);
// We are here because tracing is on or we encountered a MISS case we can't
// handle here.
__ bind(&miss);
GenerateMiss(masm);
__ Branch(&call);
}
void CallICStub::GenerateMiss(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the function and feedback info.
__ Push(a1, a2, a3);
// Call the entry.
__ CallRuntime(Runtime::kCallIC_Miss);
// Move result to a1 and exit the internal frame.
__ mov(a1, v0);
}
// StringCharCodeAtGenerator.
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
DCHECK(!t0.is(index_));
DCHECK(!t0.is(result_));
DCHECK(!t0.is(object_));
if (check_mode_ == RECEIVER_IS_UNKNOWN) {
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ And(t0, result_, Operand(kIsNotStringMask));
__ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
}
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
__ Branch(index_out_of_range_, ls, t0, Operand(index_));
__ sra(index_, index_, kSmiTagSize);
StringCharLoadGenerator::Generate(masm,
object_,
index_,
result_,
&call_runtime_);
__ sll(result_, result_, kSmiTagSize);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
result_,
Heap::kHeapNumberMapRootIndex,
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
// Consumed by runtime conversion function:
if (embed_mode == PART_OF_IC_HANDLER) {
__ Push(LoadWithVectorDescriptor::VectorRegister(),
LoadWithVectorDescriptor::SlotRegister(), object_, index_);
} else {
__ Push(object_, index_);
}
__ CallRuntime(Runtime::kNumberToSmi);
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ Move(index_, v0);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Pop(LoadWithVectorDescriptor::VectorRegister(),
LoadWithVectorDescriptor::SlotRegister(), object_);
} else {
__ pop(object_);
}
// Reload the instance type.
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ Branch(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ sll(index_, index_, kSmiTagSize);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT);
__ Move(result_, v0);
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
DCHECK(!t0.is(result_));
DCHECK(!t0.is(code_));
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiShiftSize == 0);
DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
__ And(t0, code_, Operand(kSmiTagMask |
((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
__ Branch(&slow_case_, ne, t0, Operand(zero_reg));
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged one-byte char code.
STATIC_ASSERT(kSmiTag == 0);
__ Lsa(result_, result_, code_, kPointerSizeLog2 - kSmiTagSize);
__ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ Branch(&slow_case_, eq, result_, Operand(t0));
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kStringCharFromCode);
__ Move(result_, v0);
call_helper.AfterCall(masm);
__ Branch(&exit_);
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
}
enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
String::Encoding encoding) {
if (FLAG_debug_code) {
// Check that destination is word aligned.
__ And(scratch, dest, Operand(kPointerAlignmentMask));
__ Check(eq,
kDestinationOfCopyNotAligned,
scratch,
Operand(zero_reg));
}
// Assumes word reads and writes are little endian.
// Nothing to do for zero characters.
Label done;
if (encoding == String::TWO_BYTE_ENCODING) {
__ Addu(count, count, count);
}
Register limit = count; // Read until dest equals this.
__ Addu(limit, dest, Operand(count));
Label loop_entry, loop;
// Copy bytes from src to dest until dest hits limit.
__ Branch(&loop_entry);
__ bind(&loop);
__ lbu(scratch, MemOperand(src));
__ Addu(src, src, Operand(1));
__ sb(scratch, MemOperand(dest));
__ Addu(dest, dest, Operand(1));
__ bind(&loop_entry);
__ Branch(&loop, lt, dest, Operand(limit));
__ bind(&done);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// ra: return address
// sp[0]: to
// sp[4]: from
// sp[8]: string
// This stub is called from the native-call %_SubString(...), so
// nothing can be assumed about the arguments. It is tested that:
// "string" is a sequential string,
// both "from" and "to" are smis, and
// 0 <= from <= to <= string.length.
// If any of these assumptions fail, we call the runtime system.
const int kToOffset = 0 * kPointerSize;
const int kFromOffset = 1 * kPointerSize;
const int kStringOffset = 2 * kPointerSize;
__ lw(a2, MemOperand(sp, kToOffset));
__ lw(a3, MemOperand(sp, kFromOffset));
STATIC_ASSERT(kFromOffset == kToOffset + 4);
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
// Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
// safe in this case.
__ UntagAndJumpIfNotSmi(a2, a2, &runtime);
__ UntagAndJumpIfNotSmi(a3, a3, &runtime);
// Both a2 and a3 are untagged integers.
__ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
__ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to.
__ Subu(a2, a2, a3);
// Make sure first argument is a string.
__ lw(v0, MemOperand(sp, kStringOffset));
__ JumpIfSmi(v0, &runtime);
__ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
__ And(t0, a1, Operand(kIsNotStringMask));
__ Branch(&runtime, ne, t0, Operand(zero_reg));
Label single_char;
__ Branch(&single_char, eq, a2, Operand(1));
// Short-cut for the case of trivial substring.
Label return_v0;
// v0: original string
// a2: result string length
__ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
__ sra(t0, t0, 1);
// Return original string.
__ Branch(&return_v0, eq, a2, Operand(t0));
// Longer than original string's length or negative: unsafe arguments.
__ Branch(&runtime, hi, a2, Operand(t0));
// Shorter than original string's length: an actual substring.
// Deal with different string types: update the index if necessary
// and put the underlying string into t1.
// v0: original string
// a1: instance type
// a2: length
// a3: from index (untagged)
Label underlying_unpacked, sliced_string, seq_or_external_string;
// If the string is not indirect, it can only be sequential or external.
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
STATIC_ASSERT(kIsIndirectStringMask != 0);
__ And(t0, a1, Operand(kIsIndirectStringMask));
__ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
// t0 is used as a scratch register and can be overwritten in either case.
__ And(t0, a1, Operand(kSlicedNotConsMask));
__ Branch(&sliced_string, ne, t0, Operand(zero_reg));
// Cons string. Check whether it is flat, then fetch first part.
__ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
__ LoadRoot(t0, Heap::kempty_stringRootIndex);
__ Branch(&runtime, ne, t1, Operand(t0));
__ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
// Update instance type.
__ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked);
__ bind(&sliced_string);
// Sliced string. Fetch parent and correct start index by offset.
__ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
__ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset));
__ sra(t0, t0, 1); // Add offset to index.
__ Addu(a3, a3, t0);
// Update instance type.
__ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked);
__ bind(&seq_or_external_string);
// Sequential or external string. Just move string to the expected register.
__ mov(t1, v0);
__ bind(&underlying_unpacked);
if (FLAG_string_slices) {
Label copy_routine;
// t1: underlying subject string
// a1: instance type of underlying subject string
// a2: length
// a3: adjusted start index (untagged)
// Short slice. Copy instead of slicing.
__ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
// Allocate new sliced string. At this point we do not reload the instance
// type including the string encoding because we simply rely on the info
// provided by the original string. It does not matter if the original
// string's encoding is wrong because we always have to recheck encoding of
// the newly created string's parent anyways due to externalized strings.
Label two_byte_slice, set_slice_header;
STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ And(t0, a1, Operand(kStringEncodingMask));
__ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
__ AllocateOneByteSlicedString(v0, a2, t2, t3, &runtime);
__ jmp(&set_slice_header);
__ bind(&two_byte_slice);
__ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
__ bind(&set_slice_header);
__ sll(a3, a3, 1);
__ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
__ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
__ jmp(&return_v0);
__ bind(&copy_routine);
}
// t1: underlying subject string
// a1: instance type of underlying subject string
// a2: length
// a3: adjusted start index (untagged)
Label two_byte_sequential, sequential_string, allocate_result;
STATIC_ASSERT(kExternalStringTag != 0);
STATIC_ASSERT(kSeqStringTag == 0);
__ And(t0, a1, Operand(kExternalStringTag));
__ Branch(&sequential_string, eq, t0, Operand(zero_reg));
// Handle external string.
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ And(t0, a1, Operand(kShortExternalStringTag));
__ Branch(&runtime, ne, t0, Operand(zero_reg));
__ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
// t1 already points to the first character of underlying string.
__ jmp(&allocate_result);
__ bind(&sequential_string);
// Locate first character of underlying subject string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Addu(t1, t1, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ bind(&allocate_result);
// Sequential acii string. Allocate the result.
STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
__ And(t0, a1, Operand(kStringEncodingMask));
__ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));
// Allocate and copy the resulting ASCII string.
__ AllocateOneByteString(v0, a2, t0, t2, t3, &runtime);
// Locate first character of substring to copy.
__ Addu(t1, t1, a3);
// Locate first character of result.
__ Addu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// v0: result string
// a1: first character of result string
// a2: result string length
// t1: first character of substring to copy
STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharacters(
masm, a1, t1, a2, a3, String::ONE_BYTE_ENCODING);
__ jmp(&return_v0);
// Allocate and copy the resulting two-byte string.
__ bind(&two_byte_sequential);
__ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);
// Locate first character of substring to copy.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ Lsa(t1, t1, a3, 1);
// Locate first character of result.
__ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// v0: result string.
// a1: first character of result.
// a2: result length.
// t1: first character of substring to copy.
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharacters(
masm, a1, t1, a2, a3, String::TWO_BYTE_ENCODING);
__ bind(&return_v0);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
__ DropAndRet(3);
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString);
__ bind(&single_char);
// v0: original string
// a1: instance type
// a2: length
// a3: from index (untagged)
__ SmiTag(a3, a3);
StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime,
RECEIVER_IS_STRING);
generator.GenerateFast(masm);
__ DropAndRet(3);
generator.SkipSlow(masm, &runtime);
}
void ToStringStub::Generate(MacroAssembler* masm) {
// The ToString stub takes on argument in a0.
Label is_number;
__ JumpIfSmi(a0, &is_number);
Label not_string;
__ GetObjectType(a0, a1, a1);
// a0: receiver
// a1: receiver instance type
__ Branch(&not_string, ge, a1, Operand(FIRST_NONSTRING_TYPE));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0);
__ bind(&not_string);
Label not_heap_number;
__ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
__ bind(&is_number);
NumberToStringStub stub(isolate());
__ TailCallStub(&stub);
__ bind(&not_heap_number);
Label not_oddball;
__ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
__ Ret(USE_DELAY_SLOT);
__ lw(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
__ bind(&not_oddball);
__ push(a0); // Push argument.
__ TailCallRuntime(Runtime::kToString);
}
void ToNameStub::Generate(MacroAssembler* masm) {
// The ToName stub takes on argument in a0.
Label is_number;
__ JumpIfSmi(a0, &is_number);
Label not_name;
STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
__ GetObjectType(a0, a1, a1);
// a0: receiver
// a1: receiver instance type
__ Branch(&not_name, gt, a1, Operand(LAST_NAME_TYPE));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0);
__ bind(&not_name);
Label not_heap_number;
__ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
__ bind(&is_number);
NumberToStringStub stub(isolate());
__ TailCallStub(&stub);
__ bind(&not_heap_number);
Label not_oddball;
__ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
__ Ret(USE_DELAY_SLOT);
__ lw(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
__ bind(&not_oddball);
__ push(a0); // Push argument.
__ TailCallRuntime(Runtime::kToName);
}
void StringHelper::GenerateFlatOneByteStringEquals(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ lw(length, FieldMemOperand(left, String::kLengthOffset));
__ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ Branch(&check_zero_length, eq, length, Operand(scratch2));
__ bind(&strings_not_equal);
DCHECK(is_int16(NOT_EQUAL));
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ Branch(&compare_chars, ne, length, Operand(zero_reg));
DCHECK(is_int16(EQUAL));
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(Smi::FromInt(EQUAL)));
// Compare characters.
__ bind(&compare_chars);
GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
v0, &strings_not_equal);
// Characters are equal.
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(Smi::FromInt(EQUAL)));
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4) {
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
__ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ Subu(scratch3, scratch1, Operand(scratch2));
Register length_delta = scratch3;
__ slt(scratch4, scratch2, scratch1);
__ Movn(scratch1, scratch2, scratch4);
Register min_length = scratch1;
STATIC_ASSERT(kSmiTag == 0);
__ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
// Compare loop.
GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
scratch4, v0, &result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
__ mov(scratch2, length_delta);
__ mov(scratch4, zero_reg);
__ mov(v0, zero_reg);
__ bind(&result_not_equal);
// Conditionally update the result based either on length_delta or
// the last comparion performed in the loop above.
Label ret;
__ Branch(&ret, eq, scratch2, Operand(scratch4));
__ li(v0, Operand(Smi::FromInt(GREATER)));
__ Branch(&ret, gt, scratch2, Operand(scratch4));
__ li(v0, Operand(Smi::FromInt(LESS)));
__ bind(&ret);
__ Ret();
}
void StringH