blob: 59dc300f683ff54e75ab05956f29a09578251a52 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h>
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#if V8_TARGET_ARCH_MIPS
#include "src/assembler.h"
#include "src/base/bits.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/mips/constants-mips.h"
#include "src/mips/simulator-mips.h"
#include "src/ostreams.h"
#include "src/runtime/runtime-utils.h"
// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USE_SIMULATOR)
namespace v8 {
namespace internal {
// Utils functions.
bool HaveSameSign(int32_t a, int32_t b) {
return ((a ^ b) >= 0);
}
uint32_t get_fcsr_condition_bit(uint32_t cc) {
if (cc == 0) {
return 23;
} else {
return 24 + cc;
}
}
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent was through
// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The MipsDebugger class is used by the simulator while debugging simulated
// code.
class MipsDebugger {
public:
explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
void Stop(Instruction* instr);
void Debug();
// Print all registers with a nice formatting.
void PrintAllRegs();
void PrintAllRegsIncludingFPU();
private:
// We set the breakpoint code to 0xfffff to easily recognize it.
static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
static const Instr kNopInstr = 0x0;
Simulator* sim_;
int32_t GetRegisterValue(int regnum);
int32_t GetFPURegisterValue32(int regnum);
int64_t GetFPURegisterValue64(int regnum);
float GetFPURegisterValueFloat(int regnum);
double GetFPURegisterValueDouble(int regnum);
bool GetValue(const char* desc, int32_t* value);
bool GetValue(const char* desc, int64_t* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instruction* breakpc);
bool DeleteBreakpoint(Instruction* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
#define UNSUPPORTED() printf("Sim: Unsupported instruction.\n");
void MipsDebugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->Bits(25, 6);
PrintF("Simulator hit (%u)\n", code);
sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
Debug();
}
int32_t MipsDebugger::GetRegisterValue(int regnum) {
if (regnum == kNumSimuRegisters) {
return sim_->get_pc();
} else {
return sim_->get_register(regnum);
}
}
int32_t MipsDebugger::GetFPURegisterValue32(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_word(regnum);
}
}
int64_t MipsDebugger::GetFPURegisterValue64(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register(regnum);
}
}
float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_float(regnum);
}
}
double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_double(regnum);
}
}
bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
int regnum = Registers::Number(desc);
int fpuregnum = FPURegisters::Number(desc);
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != kInvalidFPURegister) {
*value = GetFPURegisterValue32(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
} else {
return SScanF(desc, "%i", value) == 1;
}
return false;
}
bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
int regnum = Registers::Number(desc);
int fpuregnum = FPURegisters::Number(desc);
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != kInvalidFPURegister) {
*value = GetFPURegisterValue64(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" SCNx64,
reinterpret_cast<uint64_t*>(value)) == 1;
} else {
return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
}
return false;
}
bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void MipsDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void MipsDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
PrintF("\n");
// at, v0, a0.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(1), REG_INFO(2), REG_INFO(4));
// v1, a1.
PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
"", REG_INFO(3), REG_INFO(5));
// a2.
PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
// a3.
PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
PrintF("\n");
// t0-t7, s0-s7
for (int i = 0; i < 8; i++) {
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(8+i), REG_INFO(16+i));
}
PrintF("\n");
// t8, k0, LO.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(24), REG_INFO(26), REG_INFO(32));
// t9, k1, HI.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(25), REG_INFO(27), REG_INFO(33));
// sp, fp, gp.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(29), REG_INFO(30), REG_INFO(28));
// pc.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(31), REG_INFO(34));
#undef REG_INFO
#undef FPU_REG_INFO
}
void MipsDebugger::PrintAllRegsIncludingFPU() {
#define FPU_REG_INFO32(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
GetFPURegisterValue32(n+1), \
GetFPURegisterValue32(n), \
GetFPURegisterValueDouble(n)
#define FPU_REG_INFO64(n) FPURegisters::Name(n), \
GetFPURegisterValue64(n), \
GetFPURegisterValueDouble(n)
PrintAllRegs();
PrintF("\n\n");
// f0, f1, f2, ... f31.
// This must be a compile-time switch,
// compiler will throw out warnings otherwise.
if (kFpuMode == kFP64) {
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(0) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(1) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(2) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(3) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(4) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(5) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(6) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(7) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(8) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(9) );
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(10));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(11));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(12));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(13));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(14));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(15));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(16));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(17));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(18));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(19));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(20));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(21));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(22));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(23));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(24));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(25));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(26));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(27));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(28));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(29));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(30));
PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(31));
} else {
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(0) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(2) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(4) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(6) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(8) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(10));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(12));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(14));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(16));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(18));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(20));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(22));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(24));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(26));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(28));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(30));
}
#undef REG_INFO
#undef FPU_REG_INFO32
#undef FPU_REG_INFO64
}
void MipsDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = { cmd, arg1, arg2 };
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != NULL) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
if (!(instr->IsTrap()) ||
instr->InstructionBits() == rtCallRedirInstr) {
sim_->InstructionDecode(
reinterpret_cast<Instruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
PrintF("/!\\ Jumping over generated breakpoint.\n");
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2) {
if (strcmp(arg1, "all") == 0) {
PrintAllRegs();
} else if (strcmp(arg1, "allf") == 0) {
PrintAllRegsIncludingFPU();
} else {
int regnum = Registers::Number(arg1);
int fpuregnum = FPURegisters::Number(arg1);
if (regnum != kInvalidRegister) {
int32_t value;
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08x %d \n", arg1, value, value);
} else if (fpuregnum != kInvalidFPURegister) {
if (IsFp64Mode()) {
int64_t value;
double dvalue;
value = GetFPURegisterValue64(fpuregnum);
dvalue = GetFPURegisterValueDouble(fpuregnum);
PrintF("%3s: 0x%016llx %16.4e\n",
FPURegisters::Name(fpuregnum), value, dvalue);
} else {
if (fpuregnum % 2 == 1) {
int32_t value;
float fvalue;
value = GetFPURegisterValue32(fpuregnum);
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
} else {
double dfvalue;
int32_t lvalue1 = GetFPURegisterValue32(fpuregnum);
int32_t lvalue2 = GetFPURegisterValue32(fpuregnum + 1);
dfvalue = GetFPURegisterValueDouble(fpuregnum);
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
FPURegisters::Name(fpuregnum+1),
FPURegisters::Name(fpuregnum),
lvalue1,
lvalue2,
dfvalue);
}
}
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
if (argc == 3) {
if (strcmp(arg2, "single") == 0) {
int32_t value;
float fvalue;
int fpuregnum = FPURegisters::Number(arg1);
if (fpuregnum != kInvalidFPURegister) {
value = GetFPURegisterValue32(fpuregnum);
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("print <fpu register> single\n");
}
} else {
PrintF("print <register> or print <fpu register> single\n");
}
}
} else if ((strcmp(cmd, "po") == 0)
|| (strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
int32_t value;
OFStream os(stdout);
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj->Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int32_t* cur = NULL;
int32_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
} else { // Command "mem".
int32_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int32_t*>(value);
next_arg++;
}
// TODO(palfia): optimize this.
if (IsFp64Mode()) {
int64_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
} else {
int32_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
}
while (cur < end) {
PrintF(" 0x%08" PRIxPTR ": 0x%08x %10d",
reinterpret_cast<intptr_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
int value = *cur;
Heap* current_heap = sim_->isolate_->heap();
if (((value & 1) == 0) ||
current_heap->ContainsSlow(obj->address())) {
PrintF(" (");
if ((value & 1) == 0) {
PrintF("smi %d", value / 2);
} else {
obj->ShortPrint();
}
PrintF(")");
}
PrintF("\n");
cur++;
}
} else if ((strcmp(cmd, "disasm") == 0) ||
(strcmp(cmd, "dpc") == 0) ||
(strcmp(cmd, "di") == 0)) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * Instruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * Instruction::kInstrSize);
}
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += Instruction::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
PrintF("No flags on MIPS !\n");
} else if (strcmp(cmd, "stop") == 0) {
int32_t value;
intptr_t stop_pc = sim_->get_pc() -
2 * Instruction::kInstrSize;
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc +
Instruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->IsStopInstruction(stop_instr)) {
stop_instr->SetInstructionBits(kNopInstr);
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
// Print registers and disassemble.
PrintAllRegs();
PrintF("\n");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// no length parameter passed, assume 10 instructions
end = cur + (10 * Instruction::kInstrSize);
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += Instruction::kInstrSize;
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi\n");
PrintF(" step one instruction (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to print all registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("stack [<words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("flags\n");
PrintF(" print flags\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and and give control to the Debugger.\n");
PrintF(" All stop codes are watched:\n");
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool ICacheMatch(void* one, void* two) {
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::FlushICache(base::HashMap* i_cache, void* start_addr,
size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ(0, start & CachePage::kPageMask);
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(base::HashMap* i_cache, void* page) {
base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
if (entry->value == NULL) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(base::HashMap* i_cache, intptr_t start, int size) {
DCHECK(size <= CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK((start & CachePage::kLineMask) == 0);
DCHECK((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(base::HashMap* i_cache, Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset),
Instruction::kInstrSize));
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(isolate,
&RedirectExternalReference);
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
i_cache_ = isolate_->simulator_i_cache();
if (i_cache_ == NULL) {
i_cache_ = new base::HashMap(&ICacheMatch);
isolate_->set_simulator_i_cache(i_cache_);
}
Initialize(isolate);
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
stack_ = reinterpret_cast<char*>(malloc(stack_size_));
pc_modified_ = false;
icount_ = 0;
break_count_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumSimuRegisters; i++) {
registers_[i] = 0;
}
for (int i = 0; i < kNumFPURegisters; i++) {
FPUregisters_[i] = 0;
}
if (IsMipsArchVariant(kMips32r6)) {
FCSR_ = kFCSRNaN2008FlagMask;
} else {
DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2));
FCSR_ = 0;
}
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
last_debugger_input_ = NULL;
}
Simulator::~Simulator() { free(stack_); }
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(Isolate* isolate, void* external_function,
ExternalReference::Type type)
: external_function_(external_function),
swi_instruction_(rtCallRedirInstr),
type_(type),
next_(NULL) {
next_ = isolate->simulator_redirection();
Simulator::current(isolate)->
FlushICache(isolate->simulator_i_cache(),
reinterpret_cast<void*>(&swi_instruction_),
Instruction::kInstrSize);
isolate->set_simulator_redirection(this);
}
void* address_of_swi_instruction() {
return reinterpret_cast<void*>(&swi_instruction_);
}
void* external_function() { return external_function_; }
ExternalReference::Type type() { return type_; }
static Redirection* Get(Isolate* isolate, void* external_function,
ExternalReference::Type type) {
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) return current;
}
return new Redirection(isolate, external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
char* addr_of_redirection =
addr_of_swi - offsetof(Redirection, swi_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static void* ReverseRedirection(int32_t reg) {
Redirection* redirection = FromSwiInstruction(
reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
return redirection->external_function();
}
static void DeleteChain(Redirection* redirection) {
while (redirection != nullptr) {
Redirection* next = redirection->next_;
delete redirection;
redirection = next;
}
}
private:
void* external_function_;
uint32_t swi_instruction_;
ExternalReference::Type type_;
Redirection* next_;
};
// static
void Simulator::TearDown(base::HashMap* i_cache, Redirection* first) {
Redirection::DeleteChain(first);
if (i_cache != nullptr) {
for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
entry = i_cache->Next(entry)) {
delete static_cast<CachePage*>(entry->value);
}
delete i_cache;
}
}
void* Simulator::RedirectExternalReference(Isolate* isolate,
void* external_function,
ExternalReference::Type type) {
Redirection* redirection = Redirection::Get(isolate, external_function, type);
return redirection->address_of_swi_instruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK(isolate_data != NULL);
DCHECK(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == pc) {
pc_modified_ = true;
}
// Zero register always holds 0.
registers_[reg] = (reg == 0) ? 0 : value;
}
void Simulator::set_dw_register(int reg, const int* dbl) {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
registers_[reg] = dbl[0];
registers_[reg + 1] = dbl[1];
}
void Simulator::set_fpu_register(int fpureg, int64_t value) {
DCHECK(IsFp64Mode());
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
FPUregisters_[fpureg] = value;
}
void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
// Set ONLY lower 32-bits, leaving upper bits untouched.
// TODO(plind): big endian issue.
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
int32_t *pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
*pword = value;
}
void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
// Set ONLY upper 32-bits, leaving lower bits untouched.
// TODO(plind): big endian issue.
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
int32_t *phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1;
*phiword = value;
}
void Simulator::set_fpu_register_float(int fpureg, float value) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
*bit_cast<float*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::set_fpu_register_double(int fpureg, double value) {
if (IsFp64Mode()) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
*bit_cast<double*>(&FPUregisters_[fpureg]) = value;
} else {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
int64_t i64 = bit_cast<int64_t>(value);
set_fpu_register_word(fpureg, i64 & 0xffffffff);
set_fpu_register_word(fpureg + 1, i64 >> 32);
}
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == 0)
return 0;
else
return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}
double Simulator::get_double_from_register_pair(int reg) {
// TODO(plind): bad ABI stuff, refactor or remove.
DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
double dm_val = 0.0;
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[2 * sizeof(registers_[0])];
memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
return(dm_val);
}
int64_t Simulator::get_fpu_register(int fpureg) const {
DCHECK(IsFp64Mode());
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return FPUregisters_[fpureg];
}
int32_t Simulator::get_fpu_register_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
}
int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
}
int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff);
}
float Simulator::get_fpu_register_float(int fpureg) const {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg]));
}
double Simulator::get_fpu_register_double(int fpureg) const {
if (IsFp64Mode()) {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *bit_cast<double*>(&FPUregisters_[fpureg]);
} else {
DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
int64_t i64;
i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg));
i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32;
return bit_cast<double>(i64);
}
}
// Runtime FP routines take up to two double arguments and zero
// or one integer arguments. All are constructed here,
// from a0-a3 or f12 and f14.
void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
if (!IsMipsSoftFloatABI) {
*x = get_fpu_register_double(12);
*y = get_fpu_register_double(14);
*z = get_register(a2);
} else {
// TODO(plind): bad ABI stuff, refactor or remove.
// We use a char buffer to get around the strict-aliasing rules which
// otherwise allow the compiler to optimize away the copy.
char buffer[sizeof(*x)];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
// Registers a0 and a1 -> x.
reg_buffer[0] = get_register(a0);
reg_buffer[1] = get_register(a1);
memcpy(x, buffer, sizeof(buffer));
// Registers a2 and a3 -> y.
reg_buffer[0] = get_register(a2);
reg_buffer[1] = get_register(a3);
memcpy(y, buffer, sizeof(buffer));
// Register 2 -> z.
reg_buffer[0] = get_register(a2);
memcpy(z, buffer, sizeof(*z));
}
}
// The return value is either in v0/v1 or f0.
void Simulator::SetFpResult(const double& result) {
if (!IsMipsSoftFloatABI) {
set_fpu_register_double(0, result);
} else {
char buffer[2 * sizeof(registers_[0])];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
memcpy(buffer, &result, sizeof(buffer));
// Copy result to v0 and v1.
set_register(v0, reg_buffer[0]);
set_register(v1, reg_buffer[1]);
}
}
// Helper functions for setting and testing the FCSR register's bits.
void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
if (value) {
FCSR_ |= (1 << cc);
} else {
FCSR_ &= ~(1 << cc);
}
}
bool Simulator::test_fcsr_bit(uint32_t cc) {
return FCSR_ & (1 << cc);
}
void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
FCSR_ |= mode & kFPURoundingModeMask;
}
unsigned int Simulator::get_fcsr_rounding_mode() {
return FCSR_ & kFPURoundingModeMask;
}
void Simulator::set_fpu_register_word_invalid_result(float original,
float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register_word(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result64(float original,
float rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded >= max_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
} else if (rounded < min_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
}
}
void Simulator::set_fpu_register_word_invalid_result(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register_word(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register_word(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded > max_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResult);
} else if (rounded < min_int32) {
set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPUInvalidResult);
}
}
void Simulator::set_fpu_register_invalid_result64(double original,
double rounded) {
if (FCSR_ & kFCSRNaN2008FlagMask) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (std::isnan(original)) {
set_fpu_register(fd_reg(), 0);
} else if (rounded >= max_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
} else if (rounded < min_int64) {
set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
} else {
set_fpu_register(fd_reg(), kFPU64InvalidResult);
}
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(double original, double rounded) {
bool ret = false;
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > max_int32 || rounded < min_int32) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round64_error(double original, double rounded) {
bool ret = false;
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded >= max_int64 || rounded < min_int64) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(float original, float rounded) {
bool ret = false;
double max_int32 = std::numeric_limits<int32_t>::max();
double min_int32 = std::numeric_limits<int32_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > max_int32 || rounded < min_int32) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round64_error(float original, float rounded) {
bool ret = false;
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = std::numeric_limits<int64_t>::max();
double min_int64 = std::numeric_limits<int64_t>::min();
if (!std::isfinite(original) || !std::isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded >= max_int64 || rounded < min_int64) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
void Simulator::round_according_to_fcsr(double toRound, double& rounded,
int32_t& rounded_int, double fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RD (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int32_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
}
}
void Simulator::round_according_to_fcsr(float toRound, float& rounded,
int32_t& rounded_int, float fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RD (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int32_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int32_t>(rounded);
break;
}
}
void Simulator::round64_according_to_fcsr(double toRound, double& rounded,
int64_t& rounded_int, double fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or.
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int64_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
}
}
void Simulator::round64_according_to_fcsr(float toRound, float& rounded,
int64_t& rounded_int, float fs) {
// 0 RN (round to nearest): Round a result to the nearest
// representable value; if the result is exactly halfway between
// two representable values, round to zero. Behave like round_w_d.
// 1 RZ (round toward zero): Round a result to the closest
// representable value whose absolute value is less than or.
// equal to the infinitely accurate result. Behave like trunc_w_d.
// 2 RP (round up, or toward +infinity): Round a result to the
// next representable value up. Behave like ceil_w_d.
// 3 RN (round down, or toward −infinity): Round a result to
// the next representable value down. Behave like floor_w_d.
switch (FCSR_ & 3) {
case kRoundToNearest:
rounded = std::floor(fs + 0.5);
rounded_int = static_cast<int64_t>(rounded);
if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
rounded_int--;
}
break;
case kRoundToZero:
rounded = trunc(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToPlusInf:
rounded = std::ceil(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
case kRoundToMinusInf:
rounded = std::floor(fs);
rounded_int = static_cast<int64_t>(rounded);
break;
}
}
// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
return registers_[pc];
}
// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an
// interrupt is caused. On others it does a funky rotation thing. For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour. Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator. Since the host is typically IA32 we will not
// get the correct MIPS-like behaviour on unaligned accesses.
void Simulator::TraceRegWr(int32_t value) {
if (::v8::internal::FLAG_trace_sim) {
SNPrintF(trace_buf_, "%08x", value);
}
}
// TODO(plind): consider making icount_ printing a flag option.
void Simulator::TraceMemRd(int32_t addr, int32_t value) {
if (::v8::internal::FLAG_trace_sim) {
SNPrintF(trace_buf_, "%08x <-- [%08x] (%" PRIu64 ")", value, addr,
icount_);
}
}
void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
switch (t) {
case BYTE:
SNPrintF(trace_buf_, " %02x --> [%08x]",
static_cast<int8_t>(value), addr);
break;
case HALF:
SNPrintF(trace_buf_, " %04x --> [%08x]", static_cast<int16_t>(value),
addr);
break;
case WORD:
SNPrintF(trace_buf_, "%08x --> [%08x]", value, addr);
break;
}
}
}
int Simulator::ReadW(int32_t addr, Instruction* instr) {
if (addr >=0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory read from bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
return 0;
}
void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
if (addr >= 0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
TraceMemWr(addr, value, WORD);
*ptr = value;
return;
}
PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
double Simulator::ReadD(int32_t addr, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
double* ptr = reinterpret_cast<double*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
return 0;
}
void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
TraceMemWr(addr, value, HALF);
*ptr = value;
return;
}
PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
TraceMemWr(addr, value, HALF);
*ptr = value;
return;
}
PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
base::OS::Abort();
}
uint32_t Simulator::ReadBU(int32_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr & 0xff;
}
int32_t Simulator::ReadB(int32_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
TraceMemRd(addr, static_cast<int32_t>(*ptr));
return *ptr;
}
void Simulator::WriteB(int32_t addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
TraceMemWr(addr, value, BYTE);
*ptr = value;
}
void Simulator::WriteB(int32_t addr, int8_t value) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
TraceMemWr(addr, value, BYTE);
*ptr = value;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (GetCurrentStackPosition() < c_limit) {
return reinterpret_cast<uintptr_t>(get_sp());
}
// Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
// to prevent overrunning the stack when pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 1024;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR ": %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED_MIPS();
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
int32_t arg1,
int32_t arg2,
int32_t arg3,
int32_t arg4,
int32_t arg5);
typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int32_t arg0, int32_t arg1,
int32_t arg2, int32_t arg3,
int32_t arg4);
// These prototypes handle the four types of FP calls.
typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(
int32_t arg0, int32_t arg1, void* arg2);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt(Instruction* instr) {
// There are several instructions that could get us here,
// the break_ instruction, or several variants of traps. All
// Are "SPECIAL" class opcode, and are distinuished by function.
int32_t func = instr->FunctionFieldRaw();
uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
// We first check if we met a call_rt_redirected.
if (instr->InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr);
int32_t arg0 = get_register(a0);
int32_t arg1 = get_register(a1);
int32_t arg2 = get_register(a2);
int32_t arg3 = get_register(a3);
int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
// Args 4 and 5 are on the stack after the reserved space for args 0..3.
int32_t arg4 = stack_pointer[4];
int32_t arg5 = stack_pointer[5];
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
if (!IsMipsSoftFloatABI) {
// With the hard floating point calling convention, double
// arguments are passed in FPU registers. Fetch the arguments
// from there and call the builtin using soft floating point
// convention.
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
if (IsFp64Mode()) {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_hi_word(f12);
arg2 = get_fpu_register_word(f14);
arg3 = get_fpu_register_hi_word(f14);
} else {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_word(f13);
arg2 = get_fpu_register_word(f14);
arg3 = get_fpu_register_word(f15);
}
break;
case ExternalReference::BUILTIN_FP_CALL:
if (IsFp64Mode()) {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_hi_word(f12);
} else {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_word(f13);
}
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
if (IsFp64Mode()) {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_hi_word(f12);
} else {
arg0 = get_fpu_register_word(f12);
arg1 = get_fpu_register_word(f13);
}
arg2 = get_register(a2);
break;
default:
break;
}
}
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int32_t saved_ra = get_register(ra);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
// Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
// FPU, or gcc soft-float routines. Hardware FPU is simulated in this
// simulator. Soft-float has additional abstraction of ExternalReference,
// to support serialization.
if (fp_call) {
double dval0, dval1; // one or two double parameters
int32_t ival; // zero or one integer parameters
int64_t iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %d",
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
ival);
break;
default:
UNREACHABLE();
break;
}
}
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
set_register(v0, static_cast<int32_t>(iresult));
set_register(v1, static_cast<int32_t>(iresult >> 32));
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
break;
}
if (::v8::internal::FLAG_trace_sim) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
break;
}
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x\n",
reinterpret_cast<void*>(external), arg0);
}
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
target(arg0);
} else if (
redirection->type() == ExternalReference::PROFILING_API_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x\n",
reinterpret_cast<void*>(external), arg0, arg1);
}
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
target(arg0, Redirection::ReverseRedirection(arg1));
} else if (
redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x\n",
reinterpret_cast<void*>(external), arg0, arg1);
}
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
target(arg0, arg1);
} else if (
redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x %08x\n",
reinterpret_cast<void*>(external), arg0, arg1, arg2);
}
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
target(arg0, arg1, Redirection::ReverseRedirection(arg2));
} else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
// builtin call returning ObjectTriple.
SimulatorRuntimeTripleCall target =
reinterpret_cast<SimulatorRuntimeTripleCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host triple returning runtime function %p "
"args %08x, %08x, %08x, %08x, %08x\n",
static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4,
arg5);
}
// arg0 is a hidden argument pointing to the return location, so don't
// pass it to the target function.
ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x),
static_cast<void*>(result.y), static_cast<void*>(result.z));
}
// Return is passed back in address pointed to by hidden first argument.
ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0);
*sim_result = result;
set_register(v0, arg0);
} else {
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host function at %p "
"args %08x, %08x, %08x, %08x, %08x, %08x\n",
static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3,
arg4, arg5);
}
int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
set_register(v0, static_cast<int32_t>(result));
set_register(v1, static_cast<int32_t>(result >> 32));
}
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
}
set_register(ra, saved_ra);
set_pc(get_register(ra));
} else if (func == BREAK && code <= kMaxStopCode) {
if (IsWatchpoint(code)) {
PrintWatchpoint(code);
} else {
IncreaseStopCounter(code);
HandleStop(code, instr);
}
} else {
// All remaining break_ codes, and all traps are handled here.
MipsDebugger dbg(this);
dbg.Debug();
}
}
// Stop helper functions.
bool Simulator::IsWatchpoint(uint32_t code) {
return (code <= kMaxWatchpointCode);
}
void Simulator::PrintWatchpoint(uint32_t code) {
MipsDebugger dbg(this);
++break_count_;
PrintF("\n---- break %d marker: %3d (instr count: %" PRIu64
") ----------"
"----------------------------------",
code, break_count_, icount_);
dbg.PrintAllRegs(); // Print registers and continue running.
}
void Simulator::HandleStop(uint32_t code, Instruction* instr) {
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (IsEnabledStop(code)) {
MipsDebugger dbg(this);
dbg.Stop(instr);
} else {
set_pc(get_pc() + 2 * Instruction::kInstrSize);
}
}
bool Simulator::IsStopInstruction(Instruction* instr) {
int32_t func = instr->FunctionFieldRaw();
uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
}
bool Simulator::IsEnabledStop(uint32_t code) {
DCHECK(code <= kMaxStopCode);
DCHECK(code > kMaxWatchpointCode);
return !(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
if (!IsEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
if (IsEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
DCHECK(code <= kMaxStopCode);
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
PrintF("Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n", code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
if (code <= kMaxWatchpointCode) {
PrintF("That is a watchpoint, not a stop.\n");
return;
} else if (code > kMaxStopCode) {
PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
return;
}
const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
code, code, state, count, watched_stops_[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
code, code, state, count);
}
}
}
void Simulator::SignalException(Exception e) {
V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
static_cast<int>(e));
}
// Min/Max template functions for Double and Single arguments.
template <typename T>
static T FPAbs(T a);
template <>
double FPAbs<double>(double a) {
return fabs(a);
}
template <>
float FPAbs<float>(float a) {
return fabsf(a);
}
template <typename T>
static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) {
if (std::isnan(a) && std::isnan(b)) {
result = a;
} else if (std::isnan(a)) {
result = b;
} else if (std::isnan(b)) {
result = a;
} else if (b == a) {
// Handle -0.0 == 0.0 case.
// std::signbit() returns int 0 or 1 so substracting MaxMinKind::kMax
// negates the result.
result = std::signbit(b) - static_cast<int>(kind) ? b : a;
} else {
return false;
}
return true;
}
template <typename T>
static T FPUMin(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
return result;
} else {
return b < a ? b : a;
}
}
template <typename T>
static T FPUMax(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) {
return result;
} else {
return b > a ? b : a;
}
}
template <typename T>
static T FPUMinA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
if (FPAbs(a) < FPAbs(b)) {
result = a;
} else if (FPAbs(b) < FPAbs(a)) {
result = b;
} else {
result = a < b ? a : b;
}
}
return result;
}
template <typename T>
static T FPUMaxA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
if (FPAbs(a) > FPAbs(b)) {
result = a;
} else if (FPAbs(b) > FPAbs(a)) {
result = b;
} else {
result = a > b ? a : b;
}
}
return result;
}
// Handle execution based on instruction types.
void Simulator::DecodeTypeRegisterDRsType() {
double ft, fs, fd;
uint32_t cc, fcsr_cc;
int64_t i64;
fs = get_fpu_register_double(fs_reg());
ft = (get_instr()->FunctionFieldRaw() != MOVF)
? get_fpu_register_double(ft_reg())
: 0.0;
fd = get_fpu_register_double(fd_reg());
int64_t ft_int = bit_cast<int64_t>(ft);
int64_t fd_int = bit_cast<int64_t>(fd);
cc = get_instr()->FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (get_instr()->FunctionFieldRaw()) {
case RINT: {
DCHECK(IsMipsArchVariant(kMips32r6));
double result, temp, temp_result;
double upper = std::ceil(fs);
double lower = std::floor(fs);
switch (get_fcsr_rounding_mode()) {
case kRoundToNearest:
if (upper - fs < fs - lower) {
result = upper;
} else if (upper - fs > fs - lower) {
result = lower;
} else {
temp_result = upper / 2;
double reminder = modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fs > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
set_fpu_register_double(fd_reg(), result);
if (result != fs) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
break;
}
case SEL:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
break;
case SELEQZ_C:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
break;
case SELNEZ_C:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
break;
case MOVZ_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
if (rt() == 0) {
set_fpu_register_double(fd_reg(), fs);
}
break;
}
case MOVN_C: {
DCHECK(IsMipsArchVariant(kMips32r2));
int32_t rt_reg = get_instr()->RtValue();
int32_t rt = get_register(rt_reg);
if (rt != 0) {
set_fpu_register_double(fd_reg(), fs);
}
break;
}
case MOVF: {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
if (get_instr()->Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
} else {
// MOVF.D
if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
}
break;
}
case MIN:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), FPUMin(ft, fs));
break;
case MAX:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), FPUMax(ft, fs));
break;
case MINA:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), FPUMinA(ft, fs));
break;
case MAXA:
DCHECK(IsMipsArchVariant(kMips32r6));
set_fpu_register_double(fd_reg(), FPUMaxA(ft, fs));
break;
case ADD_D:
set_fpu_register_double(fd_reg(), fs + ft);
break;
case SUB_D:
set_fpu_register_double(fd_reg(), fs - ft);
break;
case MUL_D:
set_fpu_register_double(fd_reg(), fs * ft);
break;
case DIV_D:
set_fpu_register_double(fd_reg(), fs / ft);
break;
case ABS_D:
set_fpu_register_double(fd_reg(), fabs(fs));
break;
case MOV_D:
set_fpu_register_double(fd_reg(), fs);
break;
case NEG_D:
set_fpu_register_double(fd_reg(), -fs);
break;
case SQRT_D:
lazily_initialize_fast_sqrt(isolate_);
set_fpu_register_double(fd_reg(), fast_sqrt(fs, isolate_));
break;
case RSQRT_D: {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
lazily_initialize_fast_sqrt(isolate_);