blob: d11a3c800e08525f26befa5651e67f3b44097936 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/heap/heap.h"
#include "src/register-configuration.h"
#include "src/x64/assembler-x64.h"
#include "src/x64/macro-assembler-x64.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size,
CodeObjectRequired create_code_object)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false),
root_array_available_(true) {
if (create_code_object == CodeObjectRequired::kYes) {
code_object_ =
Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
}
}
static const int64_t kInvalidRootRegisterDelta = -1;
int64_t MacroAssembler::RootRegisterDelta(ExternalReference other) {
if (predictable_code_size() &&
(other.address() < reinterpret_cast<Address>(isolate()) ||
other.address() >= reinterpret_cast<Address>(isolate() + 1))) {
return kInvalidRootRegisterDelta;
}
Address roots_register_value = kRootRegisterBias +
reinterpret_cast<Address>(isolate()->heap()->roots_array_start());
int64_t delta = kInvalidRootRegisterDelta; // Bogus initialization.
if (kPointerSize == kInt64Size) {
delta = other.address() - roots_register_value;
} else {
// For x32, zero extend the address to 64-bit and calculate the delta.
uint64_t o = static_cast<uint32_t>(
reinterpret_cast<intptr_t>(other.address()));
uint64_t r = static_cast<uint32_t>(
reinterpret_cast<intptr_t>(roots_register_value));
delta = o - r;
}
return delta;
}
Operand MacroAssembler::ExternalOperand(ExternalReference target,
Register scratch) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(target);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
return Operand(kRootRegister, static_cast<int32_t>(delta));
}
}
Move(scratch, target);
return Operand(scratch, 0);
}
void MacroAssembler::Load(Register destination, ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
movp(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
if (destination.is(rax)) {
load_rax(source);
} else {
Move(kScratchRegister, source);
movp(destination, Operand(kScratchRegister, 0));
}
}
void MacroAssembler::Store(ExternalReference destination, Register source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(destination);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
movp(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
return;
}
}
// Safe code.
if (source.is(rax)) {
store_rax(destination);
} else {
Move(kScratchRegister, destination);
movp(Operand(kScratchRegister, 0), source);
}
}
void MacroAssembler::LoadAddress(Register destination,
ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
leap(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
Move(destination, source);
}
int MacroAssembler::LoadAddressSize(ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
// This calculation depends on the internals of LoadAddress.
// It's correctness is ensured by the asserts in the Call
// instruction below.
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
// Operand is leap(scratch, Operand(kRootRegister, delta));
// Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7.
int size = 4;
if (!is_int8(static_cast<int32_t>(delta))) {
size += 3; // Need full four-byte displacement in lea.
}
return size;
}
}
// Size of movp(destination, src);
return Assembler::kMoveAddressIntoScratchRegisterInstructionLength;
}
void MacroAssembler::PushAddress(ExternalReference source) {
int64_t address = reinterpret_cast<int64_t>(source.address());
if (is_int32(address) && !serializer_enabled()) {
if (emit_debug_code()) {
Move(kScratchRegister, kZapValue, Assembler::RelocInfoNone());
}
Push(Immediate(static_cast<int32_t>(address)));
return;
}
LoadAddress(kScratchRegister, source);
Push(kScratchRegister);
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
DCHECK(root_array_available_);
movp(destination, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::LoadRootIndexed(Register destination,
Register variable_offset,
int fixed_offset) {
DCHECK(root_array_available_);
movp(destination,
Operand(kRootRegister,
variable_offset, times_pointer_size,
(fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
DCHECK(root_array_available_);
movp(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
source);
}
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
DCHECK(root_array_available_);
Push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
DCHECK(root_array_available_);
cmpp(with, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(const Operand& with,
Heap::RootListIndex index) {
DCHECK(root_array_available_);
DCHECK(!with.AddressUsesRegister(kScratchRegister));
LoadRoot(kScratchRegister, index);
cmpp(with, kScratchRegister);
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then) {
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
int3();
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
movp(scratch, ExternalOperand(store_buffer));
// Store pointer to buffer.
movp(Operand(scratch, 0), addr);
// Increment buffer top.
addp(scratch, Immediate(kPointerSize));
// Write back new top of buffer.
movp(ExternalOperand(store_buffer), scratch);
// Call stub on end of buffer.
Label done;
// Check for end of buffer.
testp(scratch, Immediate(StoreBuffer::kStoreBufferMask));
if (and_then == kReturnAtEnd) {
Label buffer_overflowed;
j(equal, &buffer_overflowed, Label::kNear);
ret(0);
bind(&buffer_overflowed);
} else {
DCHECK(and_then == kFallThroughAtEnd);
j(not_equal, &done, Label::kNear);
}
StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
CallStub(&store_buffer_overflow);
if (and_then == kReturnAtEnd) {
ret(0);
} else {
DCHECK(and_then == kFallThroughAtEnd);
bind(&done);
}
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch,
Label::Distance distance) {
CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cc, branch,
distance);
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
leap(dst, FieldOperand(object, offset));
if (emit_debug_code()) {
Label ok;
testb(dst, Immediate((1 << kPointerSizeLog2) - 1));
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(value, kZapValue, Assembler::RelocInfoNone());
Move(dst, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteArray(
Register object,
Register value,
Register index,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Array access: calculate the destination address. Index is not a smi.
Register dst = index;
leap(dst, Operand(object, index, times_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(value, kZapValue, Assembler::RelocInfoNone());
Move(index, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
SaveFPRegsMode fp_mode) {
DCHECK(!object.is(kScratchRegister));
DCHECK(!object.is(map));
DCHECK(!object.is(dst));
DCHECK(!map.is(dst));
AssertNotSmi(object);
if (emit_debug_code()) {
Label ok;
if (map.is(kScratchRegister)) pushq(map);
CompareMap(map, isolate()->factory()->meta_map());
if (map.is(kScratchRegister)) popq(map);
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
if (map.is(kScratchRegister)) pushq(map);
cmpp(map, FieldOperand(object, HeapObject::kMapOffset));
if (map.is(kScratchRegister)) popq(map);
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// Compute the address.
leap(dst, FieldOperand(object, HeapObject::kMapOffset));
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(dst, kZapValue, Assembler::RelocInfoNone());
Move(map, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!object.is(value));
DCHECK(!object.is(address));
DCHECK(!value.is(address));
AssertNotSmi(object);
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
cmpp(value, Operand(address, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
// Skip barrier if writing a smi.
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(address, kZapValue, Assembler::RelocInfoNone());
Move(value, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
Register code_entry,
Register scratch) {
const int offset = JSFunction::kCodeEntryOffset;
// The input registers are fixed to make calling the C write barrier function
// easier.
DCHECK(js_function.is(rdi));
DCHECK(code_entry.is(rcx));
DCHECK(scratch.is(r15));
// Since a code entry (value) is always in old space, we don't need to update
// remembered set. If incremental marking is off, there is nothing for us to
// do.
if (!FLAG_incremental_marking) return;
AssertNotSmi(js_function);
if (emit_debug_code()) {
Label ok;
leap(scratch, FieldOperand(js_function, offset));
cmpp(code_entry, Operand(scratch, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
CheckPageFlag(code_entry, scratch,
MemoryChunk::kPointersToHereAreInterestingMask, zero, &done,
Label::kNear);
CheckPageFlag(js_function, scratch,
MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done,
Label::kNear);
// Save input registers.
Push(js_function);
Push(code_entry);
const Register dst = scratch;
leap(dst, FieldOperand(js_function, offset));
// Save caller-saved registers.
PushCallerSaved(kDontSaveFPRegs, js_function, code_entry);
int argument_count = 3;
PrepareCallCFunction(argument_count);
// Load the argument registers.
if (arg_reg_1.is(rcx)) {
// Windows calling convention.
DCHECK(arg_reg_2.is(rdx) && arg_reg_3.is(r8));
movp(arg_reg_1, js_function); // rcx gets rdi.
movp(arg_reg_2, dst); // rdx gets r15.
} else {
// AMD64 calling convention.
DCHECK(arg_reg_1.is(rdi) && arg_reg_2.is(rsi) && arg_reg_3.is(rdx));
// rdi is already loaded with js_function.
movp(arg_reg_2, dst); // rsi gets r15.
}
Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
{
AllowExternalCallThatCantCauseGC scope(this);
CallCFunction(
ExternalReference::incremental_marking_record_write_code_entry_function(
isolate()),
argument_count);
}
// Restore caller-saved registers.
PopCallerSaved(kDontSaveFPRegs, js_function, code_entry);
// Restore input registers.
Pop(code_entry);
Pop(js_function);
bind(&done);
}
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
if (emit_debug_code()) Check(cc, reason);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
Label ok;
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedDoubleArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedCOWArrayMapRootIndex);
j(equal, &ok, Label::kNear);
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
}
}
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
Label L;
j(cc, &L, Label::kNear);
Abort(reason);
// Control will not return here.
bind(&L);
}
void MacroAssembler::CheckStackAlignment() {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
Label alignment_as_expected;
testp(rsp, Immediate(frame_alignment_mask));
j(zero, &alignment_as_expected, Label::kNear);
// Abort if stack is not aligned.
int3();
bind(&alignment_as_expected);
}
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
testl(result, result);
j(not_zero, &ok, Label::kNear);
testl(op, op);
j(sign, then_label);
bind(&ok);
}
void MacroAssembler::Abort(BailoutReason reason) {
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
int3();
return;
}
#endif
// Check if Abort() has already been initialized.
DCHECK(isolate()->builtins()->Abort()->IsHeapObject());
Move(rdx, Smi::FromInt(static_cast<int>(reason)));
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
} else {
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
}
// Control will not return here.
int3();
}
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::StubReturn(int argc) {
DCHECK(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
LoadAddress(rbx, ExternalReference(f, isolate()));
CEntryStub ces(isolate(), f->result_size, save_doubles);
CallStub(&ces);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
Set(rax, num_arguments);
LoadAddress(rbx, ext);
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : argument num_arguments - 1
// ...
// -- rsp[8 * num_arguments] : argument 0 (receiver)
//
// For runtime functions with variable arguments:
// -- rax : number of arguments
// -----------------------------------
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
Set(rax, function->nargs);
}
JumpToExternalReference(ExternalReference(fid, isolate()));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame) {
// Set the entry point and jump to the C entry runtime stub.
LoadAddress(rbx, ext);
CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
builtin_exit_frame);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
#define REG(Name) \
{ Register::kCode_##Name }
static const Register saved_regs[] = {
REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8),
REG(r9), REG(r10), REG(r11)
};
#undef REG
static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
for (int i = 0; i < kNumberOfSavedRegs; i++) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
pushq(reg);
}
}
// R12 to r15 are callee save on all platforms.
if (fp_mode == kSaveFPRegs) {
subp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
Movsd(Operand(rsp, i * kDoubleSize), reg);
}
}
}
void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) {
if (fp_mode == kSaveFPRegs) {
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
Movsd(reg, Operand(rsp, i * kDoubleSize));
}
addp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
}
for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
popq(reg);
}
}
}
void MacroAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtss2sd(dst, src, src);
} else {
cvtss2sd(dst, src);
}
}
void MacroAssembler::Cvtss2sd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtss2sd(dst, dst, src);
} else {
cvtss2sd(dst, src);
}
}
void MacroAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2ss(dst, src, src);
} else {
cvtsd2ss(dst, src);
}
}
void MacroAssembler::Cvtsd2ss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2ss(dst, dst, src);
} else {
cvtsd2ss(dst, src);
}
}
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtlsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtlsi2sd(dst, src);
}
}
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtlsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtlsi2sd(dst, src);
}
}
void MacroAssembler::Cvtlsi2ss(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtlsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtlsi2ss(dst, src);
}
}
void MacroAssembler::Cvtlsi2ss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtlsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtlsi2ss(dst, src);
}
}
void MacroAssembler::Cvtqsi2ss(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtqsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtqsi2ss(dst, src);
}
}
void MacroAssembler::Cvtqsi2ss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtqsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtqsi2ss(dst, src);
}
}
void MacroAssembler::Cvtqsi2sd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtqsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtqsi2sd(dst, src);
}
}
void MacroAssembler::Cvtqsi2sd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtqsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtqsi2sd(dst, src);
}
}
void MacroAssembler::Cvtqui2ss(XMMRegister dst, Register src, Register tmp) {
Label msb_set_src;
Label jmp_return;
testq(src, src);
j(sign, &msb_set_src, Label::kNear);
Cvtqsi2ss(dst, src);
jmp(&jmp_return, Label::kNear);
bind(&msb_set_src);
movq(tmp, src);
shrq(src, Immediate(1));
// Recover the least significant bit to avoid rounding errors.
andq(tmp, Immediate(1));
orq(src, tmp);
Cvtqsi2ss(dst, src);
addss(dst, dst);
bind(&jmp_return);
}
void MacroAssembler::Cvtqui2sd(XMMRegister dst, Register src, Register tmp) {
Label msb_set_src;
Label jmp_return;
testq(src, src);
j(sign, &msb_set_src, Label::kNear);
Cvtqsi2sd(dst, src);
jmp(&jmp_return, Label::kNear);
bind(&msb_set_src);
movq(tmp, src);
shrq(src, Immediate(1));
andq(tmp, Immediate(1));
orq(src, tmp);
Cvtqsi2sd(dst, src);
addsd(dst, dst);
bind(&jmp_return);
}
void MacroAssembler::Cvtsd2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2si(dst, src);
} else {
cvtsd2si(dst, src);
}
}
void MacroAssembler::Cvttss2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2si(dst, src);
} else {
cvttss2si(dst, src);
}
}
void MacroAssembler::Cvttss2si(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2si(dst, src);
} else {
cvttss2si(dst, src);
}
}
void MacroAssembler::Cvttsd2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2si(dst, src);
} else {
cvttsd2si(dst, src);
}
}
void MacroAssembler::Cvttsd2si(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2si(dst, src);
} else {
cvttsd2si(dst, src);
}
}
void MacroAssembler::Cvttss2siq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2siq(dst, src);
} else {
cvttss2siq(dst, src);
}
}
void MacroAssembler::Cvttss2siq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2siq(dst, src);
} else {
cvttss2siq(dst, src);
}
}
void MacroAssembler::Cvttsd2siq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2siq(dst, src);
} else {
cvttsd2siq(dst, src);
}
}
void MacroAssembler::Cvttsd2siq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2siq(dst, src);
} else {
cvttsd2siq(dst, src);
}
}
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
movsxbq(dst, src);
} else if (r.IsUInteger8()) {
movzxbl(dst, src);
} else if (r.IsInteger16()) {
movsxwq(dst, src);
} else if (r.IsUInteger16()) {
movzxwl(dst, src);
} else if (r.IsInteger32()) {
movl(dst, src);
} else {
movp(dst, src);
}
}
void MacroAssembler::Store(const Operand& dst, Register src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
movb(dst, src);
} else if (r.IsInteger16() || r.IsUInteger16()) {
movw(dst, src);
} else if (r.IsInteger32()) {
movl(dst, src);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
movp(dst, src);
}
}
void MacroAssembler::Set(Register dst, int64_t x) {
if (x == 0) {
xorl(dst, dst);
} else if (is_uint32(x)) {
movl(dst, Immediate(static_cast<uint32_t>(x)));
} else if (is_int32(x)) {
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
movq(dst, x);
}
}
void MacroAssembler::Set(const Operand& dst, intptr_t x) {
if (kPointerSize == kInt64Size) {
if (is_int32(x)) {
movp(dst, Immediate(static_cast<int32_t>(x)));
} else {
Set(kScratchRegister, x);
movp(dst, kScratchRegister);
}
} else {
movp(dst, Immediate(static_cast<int32_t>(x)));
}
}
// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.
bool MacroAssembler::IsUnsafeInt(const int32_t x) {
static const int kMaxBits = 17;
return !is_intn(x, kMaxBits);
}
void MacroAssembler::SafeMove(Register dst, Smi* src) {
DCHECK(!dst.is(kScratchRegister));
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
if (SmiValuesAre32Bits()) {
// JIT cookie can be converted to Smi.
Move(dst, Smi::FromInt(src->value() ^ jit_cookie()));
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
xorp(dst, kScratchRegister);
} else {
DCHECK(SmiValuesAre31Bits());
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
movp(dst, Immediate(value ^ jit_cookie()));
xorp(dst, Immediate(jit_cookie()));
}
} else {
Move(dst, src);
}
}
void MacroAssembler::SafePush(Smi* src) {
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
if (SmiValuesAre32Bits()) {
// JIT cookie can be converted to Smi.
Push(Smi::FromInt(src->value() ^ jit_cookie()));
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
xorp(Operand(rsp, 0), kScratchRegister);
} else {
DCHECK(SmiValuesAre31Bits());
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
Push(Immediate(value ^ jit_cookie()));
xorp(Operand(rsp, 0), Immediate(jit_cookie()));
}
} else {
Push(src);
}
}
Register MacroAssembler::GetSmiConstant(Smi* source) {
STATIC_ASSERT(kSmiTag == 0);
int value = source->value();
if (value == 0) {
xorl(kScratchRegister, kScratchRegister);
return kScratchRegister;
}
LoadSmiConstant(kScratchRegister, source);
return kScratchRegister;
}
void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
STATIC_ASSERT(kSmiTag == 0);
int value = source->value();
if (value == 0) {
xorl(dst, dst);
} else {
Move(dst, source, Assembler::RelocInfoNone());
}
}
void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movl(dst, src);
}
shlp(dst, Immediate(kSmiShift));
}
void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
if (emit_debug_code()) {
testb(dst, Immediate(0x01));
Label ok;
j(zero, &ok, Label::kNear);
Abort(kInteger32ToSmiFieldWritingToNonSmiLocation);
bind(&ok);
}
if (SmiValuesAre32Bits()) {
DCHECK(kSmiShift % kBitsPerByte == 0);
movl(Operand(dst, kSmiShift / kBitsPerByte), src);
} else {
DCHECK(SmiValuesAre31Bits());
Integer32ToSmi(kScratchRegister, src);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
Register src,
int constant) {
if (dst.is(src)) {
addl(dst, Immediate(constant));
} else {
leal(dst, Operand(src, constant));
}
shlp(dst, Immediate(kSmiShift));
}
void MacroAssembler::SmiToInteger32(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movp(dst, src);
}
if (SmiValuesAre32Bits()) {
shrp(dst, Immediate(kSmiShift));
} else {
DCHECK(SmiValuesAre31Bits());
sarl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
movl(dst, src);
sarl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiToInteger64(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movp(dst, src);
}
sarp(dst, Immediate(kSmiShift));
if (kPointerSize == kInt32Size) {
// Sign extend to 64-bit.
movsxlq(dst, dst);
}
}
void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
movp(dst, src);
SmiToInteger64(dst, dst);
}
}
void MacroAssembler::SmiTest(Register src) {
AssertSmi(src);
testp(src, src);
}
void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
AssertSmi(smi1);
AssertSmi(smi2);
cmpp(smi1, smi2);
}
void MacroAssembler::SmiCompare(Register dst, Smi* src) {
AssertSmi(dst);
Cmp(dst, src);
}
void MacroAssembler::Cmp(Register dst, Smi* src) {
DCHECK(!dst.is(kScratchRegister));
if (src->value() == 0) {
testp(dst, dst);
} else {
Register constant_reg = GetSmiConstant(src);
cmpp(dst, constant_reg);
}
}
void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
AssertSmi(dst);
AssertSmi(src);
cmpp(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
AssertSmi(dst);
AssertSmi(src);
cmpp(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
AssertSmi(dst);
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(dst, Immediate(src));
}
}
void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
// The Operand cannot use the smi register.
Register smi_reg = GetSmiConstant(src);
DCHECK(!dst.AddressUsesRegister(smi_reg));
cmpp(dst, smi_reg);
}
void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(kScratchRegister, dst);
cmpl(kScratchRegister, src);
}
}
void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power) {
DCHECK(power >= 0);
DCHECK(power < 64);
if (power == 0) {
SmiToInteger64(dst, src);
return;
}
if (!dst.is(src)) {
movp(dst, src);
}
if (power < kSmiShift) {
sarp(dst, Immediate(kSmiShift - power));
} else if (power > kSmiShift) {
shlp(dst, Immediate(power - kSmiShift));
}
}
void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power) {
DCHECK((0 <= power) && (power < 32));
if (dst.is(src)) {
shrp(dst, Immediate(power + kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
if (dst.is(src1) || dst.is(src2)) {
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
movp(kScratchRegister, src1);
orp(kScratchRegister, src2);
JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
movp(dst, kScratchRegister);
} else {
movp(dst, src1);
orp(dst, src2);
JumpIfNotSmi(dst, on_not_smis, near_jump);
}
}
Condition MacroAssembler::CheckSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckSmi(const Operand& src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
// Test that both bits of the mask 0x8000000000000001 are zero.
movp(kScratchRegister, src);
rolp(kScratchRegister, Immediate(1));
testb(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
if (first.is(second)) {
return CheckSmi(first);
}
STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
if (SmiValuesAre32Bits()) {
leal(kScratchRegister, Operand(first, second, times_1, 0));
testb(kScratchRegister, Immediate(0x03));
} else {
DCHECK(SmiValuesAre31Bits());
movl(kScratchRegister, first);
orl(kScratchRegister, second);
testb(kScratchRegister, Immediate(kSmiTagMask));
}
return zero;
}
Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
Register second) {
if (first.is(second)) {
return CheckNonNegativeSmi(first);
}
movp(kScratchRegister, first);
orp(kScratchRegister, second);
rolp(kScratchRegister, Immediate(1));
testl(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckEitherSmi(Register first,
Register second,
Register scratch) {
if (first.is(second)) {
return CheckSmi(first);
}
if (scratch.is(second)) {
andl(scratch, first);
} else {
if (!scratch.is(first)) {
movl(scratch, first);
}
andl(scratch, second);
}
testb(scratch, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
if (SmiValuesAre32Bits()) {
// A 32-bit integer value can always be converted to a smi.
return always;
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(src, Immediate(0xc0000000));
return positive;
}
}
Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
if (SmiValuesAre32Bits()) {
// An unsigned 32-bit integer value is valid as long as the high bit
// is not set.
testl(src, src);
return positive;
} else {
DCHECK(SmiValuesAre31Bits());
testl(src, Immediate(0xc0000000));
return zero;
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
if (dst.is(src)) {
andl(dst, Immediate(kSmiTagMask));
} else {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
if (!(src.AddressUsesRegister(dst))) {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
} else {
movl(dst, src);
andl(dst, Immediate(kSmiTagMask));
}
}
void MacroAssembler::JumpIfValidSmiValue(Register src,
Label* on_valid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(is_valid, on_valid, near_jump);
}
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfUIntValidSmiValue(Register src,
Label* on_valid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(is_valid, on_valid, near_jump);
}
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfSmi(Register src,
Label* on_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(smi, on_smi, near_jump);
}
void MacroAssembler::JumpIfNotSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi, near_jump);
}
void MacroAssembler::JumpUnlessNonNegativeSmi(
Register src, Label* on_not_smi_or_negative,
Label::Distance near_jump) {
Condition non_negative_smi = CheckNonNegativeSmi(src);
j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
}
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
Smi* constant,
Label* on_equals,
Label::Distance near_jump) {
SmiCompare(src, constant);
j(equal, on_equals, near_jump);
}
void MacroAssembler::JumpIfNotBothSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
return;
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
addp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
addp(dst, src);
}
}
void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
if (constant->value() != 0) {
if (SmiValuesAre32Bits()) {
addl(Operand(dst, kSmiShift / kBitsPerByte),
Immediate(constant->value()));
} else {
DCHECK(SmiValuesAre31Bits());
addp(dst, Immediate(constant));
}
}
}
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant,
SmiOperationConstraints constraints,
Label* bailout_label,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
addp(dst, kScratchRegister);
if (constraints & SmiOperationConstraint::kBailoutOnNoOverflow) {
j(no_overflow, bailout_label, near_jump);
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
subp(dst, kScratchRegister);
} else if (constraints & SmiOperationConstraint::kBailoutOnOverflow) {
if (constraints & SmiOperationConstraint::kPreserveSourceRegister) {
Label done;
j(no_overflow, &done, Label::kNear);
subp(dst, kScratchRegister);
jmp(bailout_label, near_jump);
bind(&done);
} else {
// Bailout if overflow without reserving src.
j(overflow, bailout_label, near_jump);
}
} else {
UNREACHABLE();
}
} else {
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
DCHECK(constraints & SmiOperationConstraint::kBailoutOnOverflow);
LoadSmiConstant(dst, constant);
addp(dst, src);
j(overflow, bailout_label, near_jump);
}
}
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
subp(dst, constant_reg);
} else {
if (constant->value() == Smi::kMinValue) {
LoadSmiConstant(dst, constant);
// Adding and subtracting the min-value gives the same result, it only
// differs on the overflow bit, which we don't check here.
addp(dst, src);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
addp(dst, src);
}
}
}
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant,
SmiOperationConstraints constraints,
Label* bailout_label,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
subp(dst, kScratchRegister);
if (constraints & SmiOperationConstraint::kBailoutOnNoOverflow) {
j(no_overflow, bailout_label, near_jump);
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
addp(dst, kScratchRegister);
} else if (constraints & SmiOperationConstraint::kBailoutOnOverflow) {
if (constraints & SmiOperationConstraint::kPreserveSourceRegister) {
Label done;
j(no_overflow, &done, Label::kNear);
addp(dst, kScratchRegister);
jmp(bailout_label, near_jump);
bind(&done);
} else {
// Bailout if overflow without reserving src.
j(overflow, bailout_label, near_jump);
}
} else {
UNREACHABLE();
}
} else {
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
DCHECK(constraints & SmiOperationConstraint::kBailoutOnOverflow);
if (constant->value() == Smi::kMinValue) {
DCHECK(!dst.is(kScratchRegister));
movp(dst, src);
LoadSmiConstant(kScratchRegister, constant);
subp(dst, kScratchRegister);
j(overflow, bailout_label, near_jump);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
addp(dst, src);
j(overflow, bailout_label, near_jump);
}
}
}
void MacroAssembler::SmiNeg(Register dst,
Register src,
Label* on_smi_result,
Label::Distance near_jump) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
movp(kScratchRegister, src);
negp(dst); // Low 32 bits are retained as zero by negation.
// Test if result is zero or Smi::kMinValue.
cmpp(dst, kScratchRegister);
j(not_equal, on_smi_result, near_jump);
movp(src, kScratchRegister);
} else {
movp(dst, src);
negp(dst);
cmpp(dst, src);
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
j(not_equal, on_smi_result, near_jump);
}
}
template<class T>
static void SmiAddHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (dst.is(src1)) {
Label done;
masm->addp(dst, src2);
masm->j(no_overflow, &done, Label::kNear);
// Restore src1.
masm->subp(dst, src2);
masm->jmp(on_not_smi_result, near_jump);
masm->bind(&done);
} else {
masm->movp(dst, src1);
masm->addp(dst, src2);
masm->j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!dst.is(src2));
SmiAddHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!src2.AddressUsesRegister(dst));
SmiAddHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible.
if (!dst.is(src1)) {
if (emit_debug_code()) {
movp(kScratchRegister, src1);
addp(kScratchRegister, src2);
Check(no_overflow, kSmiAdditionOverflow);
}
leap(dst, Operand(src1, src2, times_1, 0));
} else {
addp(dst, src2);
Assert(no_overflow, kSmiAdditionOverflow);
}
}
template<class T>
static void SmiSubHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (dst.is(src1)) {
Label done;
masm->subp(dst, src2);
masm->j(no_overflow, &done, Label::kNear);
// Restore src1.
masm->addp(dst, src2);
masm->jmp(on_not_smi_result, near_jump);
masm->bind(&done);
} else {
masm->movp(dst, src1);
masm->subp(dst, src2);
masm->j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!dst.is(src2));
SmiSubHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!src2.AddressUsesRegister(dst));
SmiSubHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
template<class T>
static void SmiSubNoOverflowHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible (e.g., subtracting two positive smis).
if (!dst.is(src1)) {
masm->movp(dst, src1);
}
masm->subp(dst, src2);
masm->Assert(no_overflow, kSmiSubtractionOverflow);
}
void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
DCHECK(!dst.is(src2));
SmiSubNoOverflowHelper<Register>(this, dst, src1, src2);
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2) {
SmiSubNoOverflowHelper<Operand>(this, dst, src1, src2);
}
void MacroAssembler::SmiMul(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(src2));
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
if (dst.is(src1)) {
Label failure, zero_correct_result;
movp(kScratchRegister, src1); // Create backup for later testing.
SmiToInteger64(dst, src1);
imulp(dst, src2);
j(overflow, &failure, Label::kNear);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testp(dst, dst);
j(not_zero, &correct_result, Label::kNear);
movp(dst, kScratchRegister);
xorp(dst, src2);
// Result was positive zero.
j(positive, &zero_correct_result, Label::kNear);
bind(&failure); // Reused failure exit, restores src1.
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&zero_correct_result);
Set(dst, 0);
bind(&correct_result);
} else {
SmiToInteger64(dst, src1);
imulp(dst, src2);
j(overflow, on_not_smi_result, near_jump);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testp(dst, dst);
j(not_zero, &correct_result, Label::kNear);
// One of src1 and src2 is zero, the check whether the other is
// negative.
movp(kScratchRegister, src1);
xorp(kScratchRegister, src2);
j(negative, on_not_smi_result, near_jump);
bind(&correct_result);
}
}
void MacroAssembler::SmiDiv(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src2.is(rax));
DCHECK(!src2.is(rdx));
DCHECK(!src1.is(rdx));
// Check for 0 divisor (result is +/-Infinity).
testp(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movp(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
// We need to rule out dividing Smi::kMinValue by -1, since that would
// overflow in idiv and raise an exception.
// We combine this with negative zero test (negative zero only happens
// when dividing zero by a negative number).
// We overshoot a little and go to slow case if we divide min-value
// by any negative value, not just -1.
Label safe_div;
testl(rax, Immediate(~Smi::kMinValue));
j(not_zero, &safe_div, Label::kNear);
testp(src2, src2);
if (src1.is(rax)) {
j(positive, &safe_div, Label::kNear);
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
} else {
j(negative, on_not_smi_result, near_jump);
}
bind(&safe_div);
SmiToInteger32(src2, src2);
// Sign extend src1 into edx:eax.
cdq();
idivl(src2);
Integer32ToSmi(src2, src2);
// Check that the remainder is zero.
testl(rdx, rdx);
if (src1.is(rax)) {
Label smi_result;
j(zero, &smi_result, Label::kNear);
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&smi_result);
} else {
j(not_zero, on_not_smi_result, near_jump);
}
if (!dst.is(src1) && src1.is(rax)) {
movp(src1, kScratchRegister);
}
Integer32ToSmi(dst, rax);
}
void MacroAssembler::SmiMod(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!src2.is(rax));
DCHECK(!src2.is(rdx));
DCHECK(!src1.is(rdx));
DCHECK(!src1.is(src2));
testp(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movp(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
SmiToInteger32(src2, src2);
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
Label safe_div;
cmpl(rax, Immediate(Smi::kMinValue));
j(not_equal, &safe_div, Label::kNear);
cmpl(src2, Immediate(-1));
j(not_equal, &safe_div, Label::kNear);
// Retag inputs and go slow case.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movp(src1, kScratchRegister);
}
jmp(on_not_smi_result, near_jump);
bind(&safe_div);
// Sign extend eax into edx:eax.
cdq();
idivl(src2);
// Restore smi tags on inputs.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movp(src1, kScratchRegister);
}
// Check for a negative zero result. If the result is zero, and the
// dividend is negative, go slow to return a floating point negative zero.
Label smi_result;
testl(rdx, rdx);
j(not_zero, &smi_result, Label::kNear);
testp(src1, src1);
j(negative, on_not_smi_result, near_jump);
bind(&smi_result);
Integer32ToSmi(dst, rdx);
}
void MacroAssembler::SmiNot(Register dst, Register src) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src.is(kScratchRegister));
if (SmiValuesAre32Bits()) {
// Set tag and padding bits before negating, so that they are zero
// afterwards.
movl(kScratchRegister, Immediate(~0));
} else {
DCHECK(SmiValuesAre31Bits());
movl(kScratchRegister, Immediate(1));
}
if (dst.is(src)) {
xorp(dst, kScratchRegister);
} else {
leap(dst, Operand(src, kScratchRegister, times_1, 0));
}
notp(dst);
}
void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
DCHECK(!dst.is(src2));
if (!dst.is(src1)) {
movp(dst, src1);
}
andp(dst, src2);
}
void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
Set(dst, 0);
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
andp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
andp(dst, src);
}
}
void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
DCHECK(!src1.is(src2));
movp(dst, src1);
}
orp(dst, src2);
}
void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
orp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
orp(dst, src);
}
}
void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
DCHECK(!src1.is(src2));
movp(dst, src1);
}
xorp(dst, src2);
}
void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
xorp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
xorp(dst, src);
}
}
void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value) {
DCHECK(is_uint5(shift_value));
if (shift_value > 0) {
if (dst.is(src)) {
sarp(dst, Immediate(shift_value + kSmiShift));
shlp(dst, Immediate(kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
}
void MacroAssembler::SmiShiftLeftConstant(Register dst,
Register src,
int shift_value,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (SmiValuesAre32Bits()) {
if (!dst.is(src)) {
movp(dst, src);
}
if (shift_value > 0) {
// Shift amount specified by lower 5 bits, not six as the shl opcode.
shlq(dst, Immediate(shift_value & 0x1f));
}
} else {
DCHECK(SmiValuesAre31Bits());
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
SmiToInteger32(dst, src);
shll(dst, Immediate(shift_value));
JumpIfNotValidSmiValue(dst, on_not_smi_result, near_jump);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLogicalRightConstant(
Register dst, Register src, int shift_value,
Label* on_not_smi_result, Label::Distance near_jump) {
// Logic right shift interprets its result as an *unsigned* number.
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
if (shift_value == 0) {
testp(src, src);
j(negative, on_not_smi_result, near_jump);
}
if (SmiValuesAre32Bits()) {
movp(dst, src);
shrp(dst, Immediate(shift_value + kSmiShift));
shlp(dst, Immediate(kSmiShift));
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(dst, src);
shrp(dst, Immediate(shift_value));
JumpIfUIntNotValidSmiValue(dst, on_not_smi_result, near_jump);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLeft(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (SmiValuesAre32Bits()) {
DCHECK(!dst.is(rcx));
if (!dst.is(src1)) {
movp(dst, src1);
}
// Untag shift amount.
SmiToInteger32(rcx, src2);
// Shift amount specified by lower 5 bits, not six as the shl opcode.
andp(rcx, Immediate(0x1f));
shlq_cl(dst);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src2));
DCHECK(!dst.is(rcx));
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (dst.is(src1)) {
UNIMPLEMENTED(); // Not used.
} else {
Label valid_result;
SmiToInteger32(dst, src1);
SmiToInteger32(rcx, src2);
shll_cl(dst);
JumpIfValidSmiValue(dst, &valid_result, Label::kNear);
// As src1 or src2 could not be dst, we do not need to restore them for
// clobbering dst.
if (src1.is(rcx) || src2.is(rcx)) {
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
}
jmp(on_not_smi_result, near_jump);
bind(&valid_result);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src2));
DCHECK(!dst.is(rcx));
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (dst.is(src1)) {
UNIMPLEMENTED(); // Not used.
} else {
Label valid_result;
SmiToInteger32(dst, src1);
SmiToInteger32(rcx, src2);
shrl_cl(dst);
JumpIfUIntValidSmiValue(dst, &valid_result, Label::kNear);
// As src1 or src2 could not be dst, we do not need to restore them for
// clobbering dst.
if (src1.is(rcx) || src2.is(rcx)) {
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
}
jmp(on_not_smi_result, near_jump);
bind(&valid_result);
Integer32ToSmi(dst, dst);
}
}
void MacroAssembler::SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(rcx));
SmiToInteger32(rcx, src2);
if (!dst.is(src1)) {
movp(dst, src1);
}
SmiToInteger32(dst, dst);
sarl_cl(dst);
Integer32ToSmi(dst, dst);
}
void MacroAssembler::SelectNonSmi(Register dst,
Register src1,
Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src1));
DCHECK(!dst.is(src2));
// Both operands must not be smis.
#ifdef DEBUG
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
Check(not_both_smis, kBothRegistersWereSmisInSelectNonSmi);
#endif
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
movl(kScratchRegister, Immediate(kSmiTagMask));
andp(kScratchRegister, src1);
testl(kScratchRegister, src2);
// If non-zero then both are smis.
j(not_zero, on_not_smis, near_jump);
// Exactly one operand is a smi.
DCHECK_EQ(1, static_cast<int>(kSmiTagMask));
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
subp(kScratchRegister, Immediate(1));
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
movp(dst, src1);
xorp(dst, src2);
andp(dst, kScratchRegister);
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
xorp(dst, src1);
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
}
SmiIndex MacroAssembler::SmiToIndex(Register dst,
Register src,
int shift) {
if (SmiValuesAre32Bits()) {
DCHECK(is_uint6(shift));
// There is a possible optimization if shift is in the range 60-63, but that
// will (and must) never happen.
if (!dst.is(src)) {
movp(dst, src);
}
if (shift < kSmiShift) {
sarp(dst, Immediate(kSmiShift - shift));
} else {
shlp(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
if (!dst.is(src)) {
movp(dst, src);
}
// We have to sign extend the index register to 64-bit as the SMI might
// be negative.
movsxlq(dst, dst);
if (shift == times_1) {
sarq(dst, Immediate(kSmiShift));
return SmiIndex(dst, times_1);
}
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
}
}
SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
Register src,
int shift) {
if (SmiValuesAre32Bits()) {
// Register src holds a positive smi.
DCHECK(is_uint6(shift));
if (!dst.is(src)) {
movp(dst, src);
}
negp(dst);
if (shift < kSmiShift) {
sarp(dst, Immediate(kSmiShift - shift));
} else {
shlp(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
if (!dst.is(src)) {
movp(dst, src);
}
negq(dst);
if (shift == times_1) {
sarq(dst, Immediate(kSmiShift));
return SmiIndex(dst, times_1);
}
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
}
}
void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
DCHECK_EQ(0, kSmiShift % kBitsPerByte);
addl(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(kScratchRegister, src);
addl(dst, kScratchRegister);
}
}
void MacroAssembler::Push(Smi* source) {
intptr_t smi = reinterpret_cast<intptr_t>(source);
if (is_int32(smi)) {
Push(Immediate(static_cast<int32_t>(smi)));
} else {
Register constant = GetSmiConstant(source);
Push(constant);
}
}
void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
DCHECK(!src.is(scratch));
movp(scratch, src);
// High bits.
shrp(src, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
shlp(src, Immediate(kSmiShift));
Push(src);
// Low bits.
shlp(scratch, Immediate(kSmiShift));
Push(scratch);
}
void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
DCHECK(!dst.is(scratch));
Pop(scratch);
// Low bits.
shrp(scratch, Immediate(kSmiShift));
Pop(dst);
shrp(dst, Immediate(kSmiShift));
// High bits.
shlp(dst, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
orp(dst, scratch);
}
void MacroAssembler::Test(const Operand& src, Smi* source) {
if (SmiValuesAre32Bits()) {
testl(Operand(src, kIntSize), Immediate(source->value()));
} else {
DCHECK(SmiValuesAre31Bits());
testl(src, Immediate(source));
}
}
// ----------------------------------------------------------------------------
void MacroAssembler::JumpIfNotString(Register object,
Register object_map,
Label* not_string,
Label::Distance near_jump) {
Condition is_smi = CheckSmi(object);
j(is_smi, not_string, near_jump);
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
j(above_equal, not_string, near_jump);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(
Register first_object, Register second_object, Register scratch1,
Register scratch2, Label* on_fail, Label::Distance near_jump) {
// Check that both objects are not smis.
Condition either_smi = CheckEitherSmi(first_object, second_object);
j(either_smi, on_fail, near_jump);
// Load instance type for both strings.
movp(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
movp(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat one-byte strings.
DCHECK(kNotStringTag != 0);
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
andl(scratch1, Immediate(kFlatOneByteStringMask));
andl(scratch2, Immediate(kFlatOneByteStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
Register instance_type, Register scratch, Label* failure,
Label::Distance near_jump) {
if (!scratch.is(instance_type)) {
movl(scratch, instance_type);
}
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
andl(scratch, Immediate(kFlatOneByteStringMask));
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kOneByteStringTag));
j(not_equal, failure, near_jump);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* on_fail,
Label::Distance near_jump) {
// Load instance type for both strings.
movp(scratch1, first_object_instance_type);
movp(scratch2, second_object_instance_type);
// Check that both are flat one-byte strings.
DCHECK(kNotStringTag != 0);
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
andl(scratch1, Immediate(kFlatOneByteStringMask));
andl(scratch2, Immediate(kFlatOneByteStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
template<class T>
static void JumpIfNotUniqueNameHelper(MacroAssembler* masm,
T operand_or_register,
Label* not_unique_name,
Label::Distance distance) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
masm->testb(operand_or_register,
Immediate(kIsNotStringMask | kIsNotInternalizedMask));
masm->j(zero, &succeed, Label::kNear);
masm->cmpb(operand_or_register, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
masm->j(not_equal, not_unique_name, distance);
masm->bind(&succeed);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
Label* not_unique_name,
Label::Distance distance) {
JumpIfNotUniqueNameHelper<Operand>(this, operand, not_unique_name, distance);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceT