blob: 7e750139de00c328f7f2618dbfed633b4d3b9657 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-utils.h"
#include "src/builtins/builtins.h"
#include "src/code-factory.h"
#include "src/code-stub-assembler.h"
namespace v8 {
namespace internal {
class NumberBuiltinsAssembler : public CodeStubAssembler {
public:
explicit NumberBuiltinsAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
protected:
template <Signedness signed_result = kSigned>
void BitwiseOp(std::function<Node*(Node* lhs, Node* rhs)> body) {
Node* left = Parameter(0);
Node* right = Parameter(1);
Node* context = Parameter(2);
Node* lhs_value = TruncateTaggedToWord32(context, left);
Node* rhs_value = TruncateTaggedToWord32(context, right);
Node* value = body(lhs_value, rhs_value);
Node* result = signed_result == kSigned ? ChangeInt32ToTagged(value)
: ChangeUint32ToTagged(value);
Return(result);
}
template <Signedness signed_result = kSigned>
void BitwiseShiftOp(std::function<Node*(Node* lhs, Node* shift_count)> body) {
BitwiseOp<signed_result>([this, body](Node* lhs, Node* rhs) {
Node* shift_count = Word32And(rhs, Int32Constant(0x1f));
return body(lhs, shift_count);
});
}
void RelationalComparisonBuiltin(RelationalComparisonMode mode) {
Node* lhs = Parameter(0);
Node* rhs = Parameter(1);
Node* context = Parameter(2);
Return(RelationalComparison(mode, lhs, rhs, context));
}
};
// -----------------------------------------------------------------------------
// ES6 section 20.1 Number Objects
// ES6 section 20.1.2.2 Number.isFinite ( number )
TF_BUILTIN(NumberIsFinite, CodeStubAssembler) {
Node* number = Parameter(1);
Label return_true(this), return_false(this);
// Check if {number} is a Smi.
GotoIf(TaggedIsSmi(number), &return_true);
// Check if {number} is a HeapNumber.
GotoUnless(IsHeapNumberMap(LoadMap(number)), &return_false);
// Check if {number} contains a finite, non-NaN value.
Node* number_value = LoadHeapNumberValue(number);
BranchIfFloat64IsNaN(Float64Sub(number_value, number_value), &return_false,
&return_true);
Bind(&return_true);
Return(BooleanConstant(true));
Bind(&return_false);
Return(BooleanConstant(false));
}
// ES6 section 20.1.2.3 Number.isInteger ( number )
TF_BUILTIN(NumberIsInteger, CodeStubAssembler) {
Node* number = Parameter(1);
Label return_true(this), return_false(this);
// Check if {number} is a Smi.
GotoIf(TaggedIsSmi(number), &return_true);
// Check if {number} is a HeapNumber.
GotoUnless(IsHeapNumberMap(LoadMap(number)), &return_false);
// Load the actual value of {number}.
Node* number_value = LoadHeapNumberValue(number);
// Truncate the value of {number} to an integer (or an infinity).
Node* integer = Float64Trunc(number_value);
// Check if {number}s value matches the integer (ruling out the infinities).
Branch(Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)),
&return_true, &return_false);
Bind(&return_true);
Return(BooleanConstant(true));
Bind(&return_false);
Return(BooleanConstant(false));
}
// ES6 section 20.1.2.4 Number.isNaN ( number )
TF_BUILTIN(NumberIsNaN, CodeStubAssembler) {
Node* number = Parameter(1);
Label return_true(this), return_false(this);
// Check if {number} is a Smi.
GotoIf(TaggedIsSmi(number), &return_false);
// Check if {number} is a HeapNumber.
GotoUnless(IsHeapNumberMap(LoadMap(number)), &return_false);
// Check if {number} contains a NaN value.
Node* number_value = LoadHeapNumberValue(number);
BranchIfFloat64IsNaN(number_value, &return_true, &return_false);
Bind(&return_true);
Return(BooleanConstant(true));
Bind(&return_false);
Return(BooleanConstant(false));
}
// ES6 section 20.1.2.5 Number.isSafeInteger ( number )
TF_BUILTIN(NumberIsSafeInteger, CodeStubAssembler) {
Node* number = Parameter(1);
Label return_true(this), return_false(this);
// Check if {number} is a Smi.
GotoIf(TaggedIsSmi(number), &return_true);
// Check if {number} is a HeapNumber.
GotoUnless(IsHeapNumberMap(LoadMap(number)), &return_false);
// Load the actual value of {number}.
Node* number_value = LoadHeapNumberValue(number);
// Truncate the value of {number} to an integer (or an infinity).
Node* integer = Float64Trunc(number_value);
// Check if {number}s value matches the integer (ruling out the infinities).
GotoUnless(
Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)),
&return_false);
// Check if the {integer} value is in safe integer range.
Branch(Float64LessThanOrEqual(Float64Abs(integer),
Float64Constant(kMaxSafeInteger)),
&return_true, &return_false);
Bind(&return_true);
Return(BooleanConstant(true));
Bind(&return_false);
Return(BooleanConstant(false));
}
// ES6 section 20.1.2.12 Number.parseFloat ( string )
TF_BUILTIN(NumberParseFloat, CodeStubAssembler) {
Node* context = Parameter(4);
// We might need to loop once for ToString conversion.
Variable var_input(this, MachineRepresentation::kTagged);
Label loop(this, &var_input);
var_input.Bind(Parameter(1));
Goto(&loop);
Bind(&loop);
{
// Load the current {input} value.
Node* input = var_input.value();
// Check if the {input} is a HeapObject or a Smi.
Label if_inputissmi(this), if_inputisnotsmi(this);
Branch(TaggedIsSmi(input), &if_inputissmi, &if_inputisnotsmi);
Bind(&if_inputissmi);
{
// The {input} is already a Number, no need to do anything.
Return(input);
}
Bind(&if_inputisnotsmi);
{
// The {input} is a HeapObject, check if it's already a String.
Label if_inputisstring(this), if_inputisnotstring(this);
Node* input_map = LoadMap(input);
Node* input_instance_type = LoadMapInstanceType(input_map);
Branch(IsStringInstanceType(input_instance_type), &if_inputisstring,
&if_inputisnotstring);
Bind(&if_inputisstring);
{
// The {input} is already a String, check if {input} contains
// a cached array index.
Label if_inputcached(this), if_inputnotcached(this);
Node* input_hash = LoadNameHashField(input);
Node* input_bit = Word32And(
input_hash, Int32Constant(String::kContainsCachedArrayIndexMask));
Branch(Word32Equal(input_bit, Int32Constant(0)), &if_inputcached,
&if_inputnotcached);
Bind(&if_inputcached);
{
// Just return the {input}s cached array index.
Node* input_array_index =
DecodeWordFromWord32<String::ArrayIndexValueBits>(input_hash);
Return(SmiTag(input_array_index));
}
Bind(&if_inputnotcached);
{
// Need to fall back to the runtime to convert {input} to double.
Return(CallRuntime(Runtime::kStringParseFloat, context, input));
}
}
Bind(&if_inputisnotstring);
{
// The {input} is neither a String nor a Smi, check for HeapNumber.
Label if_inputisnumber(this),
if_inputisnotnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(input_map), &if_inputisnumber,
&if_inputisnotnumber);
Bind(&if_inputisnumber);
{
// The {input} is already a Number, take care of -0.
Label if_inputiszero(this), if_inputisnotzero(this);
Node* input_value = LoadHeapNumberValue(input);
Branch(Float64Equal(input_value, Float64Constant(0.0)),
&if_inputiszero, &if_inputisnotzero);
Bind(&if_inputiszero);
Return(SmiConstant(0));
Bind(&if_inputisnotzero);
Return(input);
}
Bind(&if_inputisnotnumber);
{
// Need to convert the {input} to String first.
// TODO(bmeurer): This could be more efficient if necessary.
Callable callable = CodeFactory::ToString(isolate());
var_input.Bind(CallStub(callable, context, input));
Goto(&loop);
}
}
}
}
}
// ES6 section 20.1.2.13 Number.parseInt ( string, radix )
TF_BUILTIN(NumberParseInt, CodeStubAssembler) {
Node* input = Parameter(1);
Node* radix = Parameter(2);
Node* context = Parameter(5);
// Check if {radix} is treated as 10 (i.e. undefined, 0 or 10).
Label if_radix10(this), if_generic(this, Label::kDeferred);
GotoIf(WordEqual(radix, UndefinedConstant()), &if_radix10);
GotoIf(WordEqual(radix, SmiConstant(Smi::FromInt(10))), &if_radix10);
GotoIf(WordEqual(radix, SmiConstant(Smi::FromInt(0))), &if_radix10);
Goto(&if_generic);
Bind(&if_radix10);
{
// Check if we can avoid the ToString conversion on {input}.
Label if_inputissmi(this), if_inputisheapnumber(this),
if_inputisstring(this);
GotoIf(TaggedIsSmi(input), &if_inputissmi);
Node* input_map = LoadMap(input);
GotoIf(IsHeapNumberMap(input_map), &if_inputisheapnumber);
Node* input_instance_type = LoadMapInstanceType(input_map);
Branch(IsStringInstanceType(input_instance_type), &if_inputisstring,
&if_generic);
Bind(&if_inputissmi);
{
// Just return the {input}.
Return(input);
}
Bind(&if_inputisheapnumber);
{
// Check if the {input} value is in Signed32 range.
Label if_inputissigned32(this);
Node* input_value = LoadHeapNumberValue(input);
Node* input_value32 = TruncateFloat64ToWord32(input_value);
GotoIf(Float64Equal(input_value, ChangeInt32ToFloat64(input_value32)),
&if_inputissigned32);
// Check if the absolute {input} value is in the ]0.01,1e9[ range.
Node* input_value_abs = Float64Abs(input_value);
GotoUnless(Float64LessThan(input_value_abs, Float64Constant(1e9)),
&if_generic);
Branch(Float64LessThan(Float64Constant(0.01), input_value_abs),
&if_inputissigned32, &if_generic);
// Return the truncated int32 value, and return the tagged result.
Bind(&if_inputissigned32);
Node* result = ChangeInt32ToTagged(input_value32);
Return(result);
}
Bind(&if_inputisstring);
{
// Check if the String {input} has a cached array index.
Node* input_hash = LoadNameHashField(input);
Node* input_bit = Word32And(
input_hash, Int32Constant(String::kContainsCachedArrayIndexMask));
GotoIf(Word32NotEqual(input_bit, Int32Constant(0)), &if_generic);
// Return the cached array index as result.
Node* input_index =
DecodeWordFromWord32<String::ArrayIndexValueBits>(input_hash);
Node* result = SmiTag(input_index);
Return(result);
}
}
Bind(&if_generic);
{
Node* result = CallRuntime(Runtime::kStringParseInt, context, input, radix);
Return(result);
}
}
// ES6 section 20.1.3.2 Number.prototype.toExponential ( fractionDigits )
BUILTIN(NumberPrototypeToExponential) {
HandleScope scope(isolate);
Handle<Object> value = args.at(0);
Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toExponential")));
}
double const value_number = value->Number();
// Convert the {fraction_digits} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits));
double const fraction_digits_number = fraction_digits->Number();
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kNumberFormatRange,
isolate->factory()->NewStringFromAsciiChecked(
"toExponential()")));
}
int const f = args.atOrUndefined(isolate, 1)->IsUndefined(isolate)
? -1
: static_cast<int>(fraction_digits_number);
char* const str = DoubleToExponentialCString(value_number, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.3 Number.prototype.toFixed ( fractionDigits )
BUILTIN(NumberPrototypeToFixed) {
HandleScope scope(isolate);
Handle<Object> value = args.at(0);
Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toFixed")));
}
double const value_number = value->Number();
// Convert the {fraction_digits} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits));
double const fraction_digits_number = fraction_digits->Number();
// Check if the {fraction_digits} are in the supported range.
if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kNumberFormatRange,
isolate->factory()->NewStringFromAsciiChecked(
"toFixed() digits")));
}
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
char* const str = DoubleToFixedCString(
value_number, static_cast<int>(fraction_digits_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.4 Number.prototype.toLocaleString ( [ r1 [ , r2 ] ] )
BUILTIN(NumberPrototypeToLocaleString) {
HandleScope scope(isolate);
Handle<Object> value = args.at(0);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toLocaleString")));
}
// Turn the {value} into a String.
return *isolate->factory()->NumberToString(value);
}
// ES6 section 20.1.3.5 Number.prototype.toPrecision ( precision )
BUILTIN(NumberPrototypeToPrecision) {
HandleScope scope(isolate);
Handle<Object> value = args.at(0);
Handle<Object> precision = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toPrecision")));
}
double const value_number = value->Number();
// If no {precision} was specified, just return ToString of {value}.
if (precision->IsUndefined(isolate)) {
return *isolate->factory()->NumberToString(value);
}
// Convert the {precision} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, precision,
Object::ToInteger(isolate, precision));
double const precision_number = precision->Number();
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
if (precision_number < 1.0 || precision_number > 21.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kToPrecisionFormatRange));
}
char* const str = DoubleToPrecisionCString(
value_number, static_cast<int>(precision_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.6 Number.prototype.toString ( [ radix ] )
BUILTIN(NumberPrototypeToString) {
HandleScope scope(isolate);
Handle<Object> value = args.at(0);
Handle<Object> radix = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toString")));
}
double const value_number = value->Number();
// If no {radix} was specified, just return ToString of {value}.
if (radix->IsUndefined(isolate)) {
return *isolate->factory()->NumberToString(value);
}
// Convert the {radix} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix,
Object::ToInteger(isolate, radix));
double const radix_number = radix->Number();
// If {radix} is 10, just return ToString of {value}.
if (radix_number == 10.0) return *isolate->factory()->NumberToString(value);
// Make sure the {radix} is within the valid range.
if (radix_number < 2.0 || radix_number > 36.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kToRadixFormatRange));
}
// Fast case where the result is a one character string.
if ((IsUint32Double(value_number) && value_number < radix_number) ||
value_number == -0.0) {
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return *isolate->factory()->LookupSingleCharacterStringFromCode(
kCharTable[static_cast<uint32_t>(value_number)]);
}
// Slow case.
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
char* const str =
DoubleToRadixCString(value_number, static_cast<int>(radix_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.7 Number.prototype.valueOf ( )
TF_BUILTIN(NumberPrototypeValueOf, CodeStubAssembler) {
Node* receiver = Parameter(0);
Node* context = Parameter(3);
Node* result = ToThisValue(context, receiver, PrimitiveType::kNumber,
"Number.prototype.valueOf");
Return(result);
}
TF_BUILTIN(Add, CodeStubAssembler) {
Node* left = Parameter(0);
Node* right = Parameter(1);
Node* context = Parameter(2);
// Shared entry for floating point addition.
Label do_fadd(this);
Variable var_fadd_lhs(this, MachineRepresentation::kFloat64),
var_fadd_rhs(this, MachineRepresentation::kFloat64);
// We might need to loop several times due to ToPrimitive, ToString and/or
// ToNumber conversions.
Variable var_lhs(this, MachineRepresentation::kTagged),
var_rhs(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kTagged);
Variable* loop_vars[2] = {&var_lhs, &var_rhs};
Label loop(this, 2, loop_vars), end(this),
string_add_convert_left(this, Label::kDeferred),
string_add_convert_right(this, Label::kDeferred);
var_lhs.Bind(left);
var_rhs.Bind(right);
Goto(&loop);
Bind(&loop);
{
// Load the current {lhs} and {rhs} values.
Node* lhs = var_lhs.value();
Node* rhs = var_rhs.value();
// Check if the {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(this), if_lhsisnotsmi(this);
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
Bind(&if_lhsissmi);
{
// Check if the {rhs} is also a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
Bind(&if_rhsissmi);
{
// Try fast Smi addition first.
Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(lhs),
BitcastTaggedToWord(rhs));
Node* overflow = Projection(1, pair);
// Check if the Smi additon overflowed.
Label if_overflow(this), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_overflow);
{
var_fadd_lhs.Bind(SmiToFloat64(lhs));
var_fadd_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fadd);
}
Bind(&if_notoverflow);
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
Goto(&end);
}
Bind(&if_rhsisnotsmi);
{
// Load the map of {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
Bind(&if_rhsisnumber);
{
var_fadd_lhs.Bind(SmiToFloat64(lhs));
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fadd);
}
Bind(&if_rhsisnotnumber);
{
// Load the instance type of {rhs}.
Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
// Check if the {rhs} is a String.
Label if_rhsisstring(this, Label::kDeferred),
if_rhsisnotstring(this, Label::kDeferred);
Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
&if_rhsisnotstring);
Bind(&if_rhsisstring);
{
var_lhs.Bind(lhs);
var_rhs.Bind(rhs);
Goto(&string_add_convert_left);
}
Bind(&if_rhsisnotstring);
{
// Check if {rhs} is a JSReceiver.
Label if_rhsisreceiver(this, Label::kDeferred),
if_rhsisnotreceiver(this, Label::kDeferred);
Branch(IsJSReceiverInstanceType(rhs_instance_type),
&if_rhsisreceiver, &if_rhsisnotreceiver);
Bind(&if_rhsisreceiver);
{
// Convert {rhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
Bind(&if_rhsisnotreceiver);
{
// Convert {rhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
}
}
}
}
Bind(&if_lhsisnotsmi);
{
// Load the map and instance type of {lhs}.
Node* lhs_instance_type = LoadInstanceType(lhs);
// Check if {lhs} is a String.
Label if_lhsisstring(this), if_lhsisnotstring(this);
Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
&if_lhsisnotstring);
Bind(&if_lhsisstring);
{
var_lhs.Bind(lhs);
var_rhs.Bind(rhs);
Goto(&string_add_convert_right);
}
Bind(&if_lhsisnotstring);
{
// Check if {rhs} is a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
Bind(&if_rhsissmi);
{
// Check if {lhs} is a Number.
Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred);
Branch(
Word32Equal(lhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
&if_lhsisnumber, &if_lhsisnotnumber);
Bind(&if_lhsisnumber);
{
// The {lhs} is a HeapNumber, the {rhs} is a Smi, just add them.
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
var_fadd_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fadd);
}
Bind(&if_lhsisnotnumber);
{
// The {lhs} is neither a Number nor a String, and the {rhs} is a
// Smi.
Label if_lhsisreceiver(this, Label::kDeferred),
if_lhsisnotreceiver(this, Label::kDeferred);
Branch(IsJSReceiverInstanceType(lhs_instance_type),
&if_lhsisreceiver, &if_lhsisnotreceiver);
Bind(&if_lhsisreceiver);
{
// Convert {lhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(isolate());
var_lhs.Bind(CallStub(callable, context, lhs));
Goto(&loop);
}
Bind(&if_lhsisnotreceiver);
{
// Convert {lhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_lhs.Bind(CallStub(callable, context, lhs));
Goto(&loop);
}
}
}
Bind(&if_rhsisnotsmi);
{
// Load the instance type of {rhs}.
Node* rhs_instance_type = LoadInstanceType(rhs);
// Check if {rhs} is a String.
Label if_rhsisstring(this), if_rhsisnotstring(this);
Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
&if_rhsisnotstring);
Bind(&if_rhsisstring);
{
var_lhs.Bind(lhs);
var_rhs.Bind(rhs);
Goto(&string_add_convert_left);
}
Bind(&if_rhsisnotstring);
{
// Check if {lhs} is a HeapNumber.
Label if_lhsisnumber(this), if_lhsisnotnumber(this);
Branch(
Word32Equal(lhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
&if_lhsisnumber, &if_lhsisnotnumber);
Bind(&if_lhsisnumber);
{
// Check if {rhs} is also a HeapNumber.
Label if_rhsisnumber(this),
if_rhsisnotnumber(this, Label::kDeferred);
Branch(Word32Equal(rhs_instance_type,
Int32Constant(HEAP_NUMBER_TYPE)),
&if_rhsisnumber, &if_rhsisnotnumber);
Bind(&if_rhsisnumber);
{
// Perform a floating point addition.
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fadd);
}
Bind(&if_rhsisnotnumber);
{
// Check if {rhs} is a JSReceiver.
Label if_rhsisreceiver(this, Label::kDeferred),
if_rhsisnotreceiver(this, Label::kDeferred);
Branch(IsJSReceiverInstanceType(rhs_instance_type),
&if_rhsisreceiver, &if_rhsisnotreceiver);
Bind(&if_rhsisreceiver);
{
// Convert {rhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
Bind(&if_rhsisnotreceiver);
{
// Convert {rhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
}
}
Bind(&if_lhsisnotnumber);
{
// Check if {lhs} is a JSReceiver.
Label if_lhsisreceiver(this, Label::kDeferred),
if_lhsisnotreceiver(this);
Branch(IsJSReceiverInstanceType(lhs_instance_type),
&if_lhsisreceiver, &if_lhsisnotreceiver);
Bind(&if_lhsisreceiver);
{
// Convert {lhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(isolate());
var_lhs.Bind(CallStub(callable, context, lhs));
Goto(&loop);
}
Bind(&if_lhsisnotreceiver);
{
// Check if {rhs} is a JSReceiver.
Label if_rhsisreceiver(this, Label::kDeferred),
if_rhsisnotreceiver(this, Label::kDeferred);
Branch(IsJSReceiverInstanceType(rhs_instance_type),
&if_rhsisreceiver, &if_rhsisnotreceiver);
Bind(&if_rhsisreceiver);
{
// Convert {rhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
Bind(&if_rhsisnotreceiver);
{
// Convert {lhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_lhs.Bind(CallStub(callable, context, lhs));
Goto(&loop);
}
}
}
}
}
}
}
}
Bind(&string_add_convert_left);
{
// Convert {lhs}, which is a Smi, to a String and concatenate the
// resulting string with the String {rhs}.
Callable callable =
CodeFactory::StringAdd(isolate(), STRING_ADD_CONVERT_LEFT, NOT_TENURED);
var_result.Bind(
CallStub(callable, context, var_lhs.value(), var_rhs.value()));
Goto(&end);
}
Bind(&string_add_convert_right);
{
// Convert {lhs}, which is a Smi, to a String and concatenate the
// resulting string with the String {rhs}.
Callable callable = CodeFactory::StringAdd(
isolate(), STRING_ADD_CONVERT_RIGHT, NOT_TENURED);
var_result.Bind(
CallStub(callable, context, var_lhs.value(), var_rhs.value()));
Goto(&end);
}
Bind(&do_fadd);
{
Node* lhs_value = var_fadd_lhs.value();
Node* rhs_value = var_fadd_rhs.value();
Node* value = Float64Add(lhs_value, rhs_value);
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&end);
}
Bind(&end);
Return(var_result.value());
}
TF_BUILTIN(Subtract, CodeStubAssembler) {
Node* left = Parameter(0);
Node* right = Parameter(1);
Node* context = Parameter(2);
// Shared entry for floating point subtraction.
Label do_fsub(this), end(this);
Variable var_fsub_lhs(this, MachineRepresentation::kFloat64),
var_fsub_rhs(this, MachineRepresentation::kFloat64);
// We might need to loop several times due to ToPrimitive and/or ToNumber
// conversions.
Variable var_lhs(this, MachineRepresentation::kTagged),
var_rhs(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kTagged);
Variable* loop_vars[2] = {&var_lhs, &var_rhs};
Label loop(this, 2, loop_vars);
var_lhs.Bind(left);
var_rhs.Bind(right);
Goto(&loop);
Bind(&loop);
{
// Load the current {lhs} and {rhs} values.
Node* lhs = var_lhs.value();
Node* rhs = var_rhs.value();
// Check if the {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(this), if_lhsisnotsmi(this);
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
Bind(&if_lhsissmi);
{
// Check if the {rhs} is also a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
Bind(&if_rhsissmi);
{
// Try a fast Smi subtraction first.
Node* pair = IntPtrSubWithOverflow(BitcastTaggedToWord(lhs),
BitcastTaggedToWord(rhs));
Node* overflow = Projection(1, pair);
// Check if the Smi subtraction overflowed.
Label if_overflow(this), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_overflow);
{
// The result doesn't fit into Smi range.
var_fsub_lhs.Bind(SmiToFloat64(lhs));
var_fsub_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fsub);
}
Bind(&if_notoverflow);
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
Goto(&end);
}
Bind(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
Bind(&if_rhsisnumber);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(SmiToFloat64(lhs));
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fsub);
}
Bind(&if_rhsisnotnumber);
{
// Convert the {rhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
}
}
Bind(&if_lhsisnotsmi);
{
// Load the map of the {lhs}.
Node* lhs_map = LoadMap(lhs);
// Check if the {lhs} is a HeapNumber.
Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber);
Bind(&if_lhsisnumber);
{
// Check if the {rhs} is a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
Bind(&if_rhsissmi);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
var_fsub_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fsub);
}
Bind(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
Bind(&if_rhsisnumber);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fsub);
}
Bind(&if_rhsisnotnumber);
{
// Convert the {rhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_rhs.Bind(CallStub(callable, context, rhs));
Goto(&loop);
}
}
}
Bind(&if_lhsisnotnumber);
{
// Convert the {lhs} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_lhs.Bind(CallStub(callable, context, lhs));
Goto(&loop);
}
}
}
Bind(&do_fsub);
{
Node* lhs_value = var_fsub_lhs.value();
Node* rhs_value = var_fsub_rhs.value();
Node* value = Float64Sub(lhs_value, rhs_value);
var_result.Bind(AllocateHeapNumberWithValue(value));
Goto(&end);
}
Bind(&end);
Return(var_result.value());
}
TF_BUILTIN(Multiply, CodeStubAssembler) {
Node* left = Parameter(0);
Node* right = Parameter(1);
Node* context = Parameter(2);
// Shared entry point for floating point multiplication.
Label do_fmul(this), return_result(this);
Variable var_lhs_float64(this, MachineRepresentation::kFloat64),
var_rhs_float64(this, MachineRepresentation::kFloat64);
// We might need to loop one or two times due to ToNumber conversions.
Variable var_lhs(this, MachineRepresentation::kTagged),
var_rhs(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kTagged);
Variable* loop_variables[] = {&var_lhs, &var_rhs};
Label loop(this, 2, loop_variables);
var_lhs.Bind(left);
var_rhs.Bind(right);
Goto(&loop);
Bind(&loop);
{
Node* lhs = var_lhs.value();
Node* rhs = var_rhs.value();
Label lhs_is_smi(this), lhs_is_not_smi(this);
Branch(TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi);
Bind(&lhs_is_smi);
{
Label rhs_is_smi(this), rhs_is_not_smi(this);
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
Bind(&rhs_is_smi);
{
// Both {lhs} and {rhs} are Smis. The result is not necessarily a smi,
// in case of overflow.
var_result.Bind(SmiMul(lhs, rhs));
Goto(&return_result);
}
Bind(&rhs_is_not_smi);
{
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Label rhs_is_number(this), rhs_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(rhs_map), &rhs_is_number, &rhs_is_not_number);
Bind(&rhs_is_number);
{
// Convert {lhs} to a double and multiply it with the value of {rhs}.
var_lhs_float64.Bind(SmiToFloat64(lhs));
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fmul);
}
Bind(&rhs_is_not_number);
{
// Multiplication is commutative, swap {lhs} with {rhs} and loop.
var_lhs.Bind(rhs);
var_rhs.Bind(lhs);
Goto(&loop);
}
}
}
Bind(&lhs_is_not_smi);
{
Node* lhs_map = LoadMap(lhs);
// Check if {lhs} is a HeapNumber.
Label lhs_is_number(this), lhs_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(lhs_map), &lhs_is_number, &lhs_is_not_number);
Bind(&lhs_is_number);
{
// Check if {rhs} is a Smi.
Label rhs_is_smi(this), rhs_is_not_smi(this);
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
Bind(&rhs_is_smi);
{
// Convert {rhs} to a double and multiply it with the value of {lhs}.
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
var_rhs_float64.Bind(SmiToFloat64(rhs));
Goto(&do_fmul);
}
Bind(&rhs_is_not_smi);
{
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Label rhs_is_number(this), rhs_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(rhs_map), &rhs_is_number, &rhs_is_not_number);
Bind(&rhs_is_number);
{
// Both {lhs} and {rhs} are HeapNumbers. Load their values and
// multiply them.
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fmul);
}
Bind(&rhs_is_not_number);
{
// Multiplication is commutative, swap {lhs} with {rhs} and loop.
var_lhs.Bind(rhs);
var_rhs.Bind(lhs);
Goto(&loop);
}
}
}
Bind(&lhs_is_not_number);
{
// Convert {lhs} to a Number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_lhs.Bind(CallStub(callable, context, lhs));
Goto(&loop);
}
}
}
Bind(&do_fmul);
{
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&return_result);
}
Bind(&return_result);
Return(var_result.value());
}
TF_BUILTIN(Divide, CodeStubAssembler) {
Node* left = Parameter(0);
Node* right = Parameter(1);
Node* context = Parameter(2);
// Shared entry point for floating point division.
Label do_fdiv(this), end(this);
Variable var_dividend_float64(this, MachineRepresentation::kFloat64),
var_divisor_float64(this, MachineRepresentation::kFloat64);
// We might need to loop one or two times due to ToNumber conversions.
Variable var_dividend(this, MachineRepresentation::kTagged),
var_divisor(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kTagged);
Variable* loop_variables[] = {&var_dividend, &var_divisor};
Label loop(this, 2, loop_variables);
var_dividend.Bind(left);
var_divisor.Bind(right);
Goto(&loop);
Bind(&loop);
{
Node* dividend = var_dividend.value();
Node* divisor = var_divisor.value();
Label dividend_is_smi(this), dividend_is_not_smi(this);
Branch(TaggedIsSmi(dividend), &dividend_is_smi, &dividend_is_not_smi);
Bind(&dividend_is_smi);
{
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
Bind(&divisor_is_smi);
{
Label bailout(this);
// Do floating point division if {divisor} is zero.
GotoIf(SmiEqual(divisor, SmiConstant(0)), &bailout);
// Do floating point division {dividend} is zero and {divisor} is
// negative.
Label dividend_is_zero(this), dividend_is_not_zero(this);
Branch(SmiEqual(dividend, SmiConstant(0)), &dividend_is_zero,
&dividend_is_not_zero);
Bind(&dividend_is_zero);
{
GotoIf(SmiLessThan(divisor, SmiConstant(0)), &bailout);
Goto(&dividend_is_not_zero);
}
Bind(&dividend_is_not_zero);
Node* untagged_divisor = SmiToWord32(divisor);
Node* untagged_dividend = SmiToWord32(dividend);
// Do floating point division if {dividend} is kMinInt (or kMinInt - 1
// if the Smi size is 31) and {divisor} is -1.
Label divisor_is_minus_one(this), divisor_is_not_minus_one(this);
Branch(Word32Equal(untagged_divisor, Int32Constant(-1)),
&divisor_is_minus_one, &divisor_is_not_minus_one);
Bind(&divisor_is_minus_one);
{
GotoIf(
Word32Equal(untagged_dividend,
Int32Constant(kSmiValueSize == 32 ? kMinInt
: (kMinInt >> 1))),
&bailout);
Goto(&divisor_is_not_minus_one);
}
Bind(&divisor_is_not_minus_one);
// TODO(epertoso): consider adding a machine instruction that returns
// both the result and the remainder.
Node* untagged_result = Int32Div(untagged_dividend, untagged_divisor);
Node* truncated = Int32Mul(untagged_result, untagged_divisor);
// Do floating point division if the remainder is not 0.
GotoIf(Word32NotEqual(untagged_dividend, truncated), &bailout);
var_result.Bind(SmiFromWord32(untagged_result));
Goto(&end);
// Bailout: convert {dividend} and {divisor} to double and do double
// division.
Bind(&bailout);
{
var_dividend_float64.Bind(SmiToFloat64(dividend));
var_divisor_float64.Bind(SmiToFloat64(divisor));
Goto(&do_fdiv);
}
}
Bind(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(this),
divisor_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(divisor_map), &divisor_is_number,
&divisor_is_not_number);
Bind(&divisor_is_number);
{
// Convert {dividend} to a double and divide it with the value of
// {divisor}.
var_dividend_float64.Bind(SmiToFloat64(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fdiv);
}
Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_divisor.Bind(CallStub(callable, context, divisor));
Goto(&loop);
}
}
}
Bind(&dividend_is_not_smi);
{
Node* dividend_map = LoadMap(dividend);
// Check if {dividend} is a HeapNumber.
Label dividend_is_number(this),
dividend_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(dividend_map), &dividend_is_number,
&dividend_is_not_number);
Bind(&dividend_is_number);
{
// Check if {divisor} is a Smi.
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
Bind(&divisor_is_smi);
{
// Convert {divisor} to a double and use it for a floating point
// division.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(SmiToFloat64(divisor));
Goto(&do_fdiv);
}
Bind(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(this),
divisor_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(divisor_map), &divisor_is_number,
&divisor_is_not_number);
Bind(&divisor_is_number);
{
// Both {dividend} and {divisor} are HeapNumbers. Load their values
// and divide them.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fdiv);
}
Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_divisor.Bind(CallStub(callable, context, divisor));
Goto(&loop);
}
}
}
Bind(&dividend_is_not_number);
{
// Convert {dividend} to a Number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_dividend.Bind(CallStub(callable, context, dividend));
Goto(&loop);
}
}
}
Bind(&do_fdiv);
{
Node* value =
Float64Div(var_dividend_float64.value(), var_divisor_float64.value());
var_result.Bind(AllocateHeapNumberWithValue(value));
Goto(&end);
}
Bind(&end);
Return(var_result.value());
}
TF_BUILTIN(Modulus, CodeStubAssembler) {
Node* left = Parameter(0);
Node* right = Parameter(1);
Node* context = Parameter(2);
Variable var_result(this, MachineRepresentation::kTagged);
Label return_result(this, &var_result);
// Shared entry point for floating point modulus.
Label do_fmod(this);
Variable var_dividend_float64(this, MachineRepresentation::kFloat64),
var_divisor_float64(this, MachineRepresentation::kFloat64);
// We might need to loop one or two times due to ToNumber conversions.
Variable var_dividend(this, MachineRepresentation::kTagged),
var_divisor(this, MachineRepresentation::kTagged);
Variable* loop_variables[] = {&var_dividend, &var_divisor};
Label loop(this, 2, loop_variables);
var_dividend.Bind(left);
var_divisor.Bind(right);
Goto(&loop);
Bind(&loop);
{
Node* dividend = var_dividend.value();
Node* divisor = var_divisor.value();
Label dividend_is_smi(this), dividend_is_not_smi(this);
Branch(TaggedIsSmi(dividend), &dividend_is_smi, &dividend_is_not_smi);
Bind(&dividend_is_smi);
{
Label dividend_is_not_zero(this);
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
Bind(&divisor_is_smi);
{
// Compute the modulus of two Smis.
var_result.Bind(SmiMod(dividend, divisor));
Goto(&return_result);
}
Bind(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(this),
divisor_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(divisor_map), &divisor_is_number,
&divisor_is_not_number);
Bind(&divisor_is_number);
{
// Convert {dividend} to a double and compute its modulus with the
// value of {dividend}.
var_dividend_float64.Bind(SmiToFloat64(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fmod);
}
Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_divisor.Bind(CallStub(callable, context, divisor));
Goto(&loop);
}
}
}
Bind(&dividend_is_not_smi);
{
Node* dividend_map = LoadMap(dividend);
// Check if {dividend} is a HeapNumber.
Label dividend_is_number(this),
dividend_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(dividend_map), &dividend_is_number,
&dividend_is_not_number);
Bind(&dividend_is_number);
{
// Check if {divisor} is a Smi.
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
Bind(&divisor_is_smi);
{
// Convert {divisor} to a double and compute {dividend}'s modulus with
// it.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(SmiToFloat64(divisor));
Goto(&do_fmod);
}
Bind(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(this),
divisor_is_not_number(this, Label::kDeferred);
Branch(IsHeapNumberMap(divisor_map), &divisor_is_number,
&divisor_is_not_number);
Bind(&divisor_is_number);
{
// Both {dividend} and {divisor} are HeapNumbers. Load their values
// and compute their modulus.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fmod);
}
Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_divisor.Bind(CallStub(callable, context, divisor));
Goto(&loop);
}
}
}
Bind(&dividend_is_not_number);
{
// Convert {dividend} to a Number and loop.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_dividend.Bind(CallStub(callable, context, dividend));
Goto(&loop);
}
}
}
Bind(&do_fmod);
{
Node* value =
Float64Mod(var_dividend_float64.value(), var_divisor_float64.value());
var_result.Bind(AllocateHeapNumberWithValue(value));
Goto(&return_result);
}
Bind(&return_result);
Return(var_result.value());
}
TF_BUILTIN(ShiftLeft, NumberBuiltinsAssembler) {
BitwiseShiftOp([this](Node* lhs, Node* shift_count) {
return Word32Shl(lhs, shift_count);
});
}
TF_BUILTIN(ShiftRight, NumberBuiltinsAssembler) {
BitwiseShiftOp([this](Node* lhs, Node* shift_count) {
return Word32Sar(lhs, shift_count);
});
}
TF_BUILTIN(ShiftRightLogical, NumberBuiltinsAssembler) {
BitwiseShiftOp<kUnsigned>([this](Node* lhs, Node* shift_count) {
return Word32Shr(lhs, shift_count);
});
}
TF_BUILTIN(BitwiseAnd, NumberBuiltinsAssembler) {
BitwiseOp([this](Node* lhs, Node* rhs) { return Word32And(lhs, rhs); });
}
TF_BUILTIN(BitwiseOr, NumberBuiltinsAssembler) {
BitwiseOp([this](Node* lhs, Node* rhs) { return Word32Or(lhs, rhs); });
}
TF_BUILTIN(BitwiseXor, NumberBuiltinsAssembler) {
BitwiseOp([this](Node* lhs, Node* rhs) { return Word32Xor(lhs, rhs); });
}
TF_BUILTIN(LessThan, NumberBuiltinsAssembler) {
RelationalComparisonBuiltin(kLessThan);
}
TF_BUILTIN(LessThanOrEqual, NumberBuiltinsAssembler) {
RelationalComparisonBuiltin(kLessThanOrEqual);
}
TF_BUILTIN(GreaterThan, NumberBuiltinsAssembler) {
RelationalComparisonBuiltin(kGreaterThan);
}
TF_BUILTIN(GreaterThanOrEqual, NumberBuiltinsAssembler) {
RelationalComparisonBuiltin(kGreaterThanOrEqual);
}
TF_BUILTIN(Equal, CodeStubAssembler) {
Node* lhs = Parameter(0);
Node* rhs = Parameter(1);
Node* context = Parameter(2);
Return(Equal(kDontNegateResult, lhs, rhs, context));
}
TF_BUILTIN(NotEqual, CodeStubAssembler) {
Node* lhs = Parameter(0);
Node* rhs = Parameter(1);
Node* context = Parameter(2);
Return(Equal(kNegateResult, lhs, rhs, context));
}
TF_BUILTIN(StrictEqual, CodeStubAssembler) {
Node* lhs = Parameter(0);
Node* rhs = Parameter(1);
Node* context = Parameter(2);
Return(StrictEqual(kDontNegateResult, lhs, rhs, context));
}
TF_BUILTIN(StrictNotEqual, CodeStubAssembler) {
Node* lhs = Parameter(0);
Node* rhs = Parameter(1);
Node* context = Parameter(2);
Return(StrictEqual(kNegateResult, lhs, rhs, context));
}
} // namespace internal
} // namespace v8