blob: 9c5dd0cd73ec7be83eecb9cf5242ead0845da11b [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <algorithm>
#include <fstream>
#include <unordered_map>
#include <utility>
#include <vector>
#ifdef ENABLE_VTUNE_JIT_INTERFACE
#include "src/third_party/vtune/v8-vtune.h"
#endif
#include "src/d8.h"
#include "src/ostreams.h"
#include "include/libplatform/libplatform.h"
#include "include/libplatform/v8-tracing.h"
#include "src/api.h"
#include "src/base/cpu.h"
#include "src/base/debug/stack_trace.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/base/sys-info.h"
#include "src/basic-block-profiler.h"
#include "src/interpreter/interpreter.h"
#include "src/msan.h"
#include "src/snapshot/natives.h"
#include "src/utils.h"
#include "src/v8.h"
#ifdef V8_INSPECTOR_ENABLED
#include "include/v8-inspector.h"
#endif // V8_INSPECTOR_ENABLED
#if !defined(_WIN32) && !defined(_WIN64)
#include <unistd.h> // NOLINT
#else
#include <windows.h> // NOLINT
#if defined(_MSC_VER)
#include <crtdbg.h> // NOLINT
#endif // defined(_MSC_VER)
#endif // !defined(_WIN32) && !defined(_WIN64)
#ifndef DCHECK
#define DCHECK(condition) assert(condition)
#endif
#ifndef CHECK
#define CHECK(condition) assert(condition)
#endif
namespace v8 {
namespace {
const int MB = 1024 * 1024;
const int kMaxWorkers = 50;
#define USE_VM 1
#define VM_THRESHOLD 65536
// TODO(titzer): allocations should fail if >= 2gb because of
// array buffers storing the lengths as a SMI internally.
#define TWO_GB (2u * 1024u * 1024u * 1024u)
class ShellArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
virtual void* Allocate(size_t length) {
#if USE_VM
if (RoundToPageSize(&length)) {
void* data = VirtualMemoryAllocate(length);
#if DEBUG
if (data) {
// In debug mode, check the memory is zero-initialized.
size_t limit = length / sizeof(uint64_t);
uint64_t* ptr = reinterpret_cast<uint64_t*>(data);
for (size_t i = 0; i < limit; i++) {
DCHECK_EQ(0u, ptr[i]);
}
}
#endif
return data;
}
#endif
void* data = AllocateUninitialized(length);
return data == NULL ? data : memset(data, 0, length);
}
virtual void* AllocateUninitialized(size_t length) {
#if USE_VM
if (RoundToPageSize(&length)) return VirtualMemoryAllocate(length);
#endif
return malloc(length);
}
virtual void Free(void* data, size_t length) {
#if USE_VM
if (RoundToPageSize(&length)) {
base::VirtualMemory::ReleaseRegion(data, length);
return;
}
#endif
free(data);
}
// If {length} is at least {VM_THRESHOLD}, round up to next page size
// and return {true}. Otherwise return {false}.
bool RoundToPageSize(size_t* length) {
const size_t kPageSize = base::OS::CommitPageSize();
if (*length >= VM_THRESHOLD && *length < TWO_GB) {
*length = ((*length + kPageSize - 1) / kPageSize) * kPageSize;
return true;
}
return false;
}
#if USE_VM
void* VirtualMemoryAllocate(size_t length) {
void* data = base::VirtualMemory::ReserveRegion(length);
if (data && !base::VirtualMemory::CommitRegion(data, length, false)) {
base::VirtualMemory::ReleaseRegion(data, length);
return nullptr;
}
MSAN_MEMORY_IS_INITIALIZED(data, length);
return data;
}
#endif
};
class MockArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
size_t actual_length = length > 10 * MB ? 1 : length;
void* data = AllocateUninitialized(actual_length);
return data == NULL ? data : memset(data, 0, actual_length);
}
void* AllocateUninitialized(size_t length) override {
return length > 10 * MB ? malloc(1) : malloc(length);
}
void Free(void* p, size_t) override { free(p); }
};
// Predictable v8::Platform implementation. All background and foreground
// tasks are run immediately, delayed tasks are not executed at all.
class PredictablePlatform : public Platform {
public:
PredictablePlatform() {}
void CallOnBackgroundThread(Task* task,
ExpectedRuntime expected_runtime) override {
task->Run();
delete task;
}
void CallOnForegroundThread(v8::Isolate* isolate, Task* task) override {
task->Run();
delete task;
}
void CallDelayedOnForegroundThread(v8::Isolate* isolate, Task* task,
double delay_in_seconds) override {
delete task;
}
void CallIdleOnForegroundThread(v8::Isolate* isolate,
IdleTask* task) override {
UNREACHABLE();
}
bool IdleTasksEnabled(v8::Isolate* isolate) override { return false; }
double MonotonicallyIncreasingTime() override {
return synthetic_time_in_sec_ += 0.00001;
}
using Platform::AddTraceEvent;
uint64_t AddTraceEvent(char phase, const uint8_t* categoryEnabledFlag,
const char* name, const char* scope, uint64_t id,
uint64_t bind_id, int numArgs, const char** argNames,
const uint8_t* argTypes, const uint64_t* argValues,
unsigned int flags) override {
return 0;
}
void UpdateTraceEventDuration(const uint8_t* categoryEnabledFlag,
const char* name, uint64_t handle) override {}
const uint8_t* GetCategoryGroupEnabled(const char* name) override {
static uint8_t no = 0;
return &no;
}
const char* GetCategoryGroupName(
const uint8_t* categoryEnabledFlag) override {
static const char* dummy = "dummy";
return dummy;
}
private:
double synthetic_time_in_sec_ = 0.0;
DISALLOW_COPY_AND_ASSIGN(PredictablePlatform);
};
v8::Platform* g_platform = NULL;
static Local<Value> Throw(Isolate* isolate, const char* message) {
return isolate->ThrowException(
String::NewFromUtf8(isolate, message, NewStringType::kNormal)
.ToLocalChecked());
}
bool FindInObjectList(Local<Object> object, const Shell::ObjectList& list) {
for (int i = 0; i < list.length(); ++i) {
if (list[i]->StrictEquals(object)) {
return true;
}
}
return false;
}
Worker* GetWorkerFromInternalField(Isolate* isolate, Local<Object> object) {
if (object->InternalFieldCount() != 1) {
Throw(isolate, "this is not a Worker");
return NULL;
}
Worker* worker =
static_cast<Worker*>(object->GetAlignedPointerFromInternalField(0));
if (worker == NULL) {
Throw(isolate, "Worker is defunct because main thread is terminating");
return NULL;
}
return worker;
}
} // namespace
namespace tracing {
namespace {
// String options that can be used to initialize TraceOptions.
const char kRecordUntilFull[] = "record-until-full";
const char kRecordContinuously[] = "record-continuously";
const char kRecordAsMuchAsPossible[] = "record-as-much-as-possible";
const char kRecordModeParam[] = "record_mode";
const char kEnableSystraceParam[] = "enable_systrace";
const char kEnableArgumentFilterParam[] = "enable_argument_filter";
const char kIncludedCategoriesParam[] = "included_categories";
class TraceConfigParser {
public:
static void FillTraceConfig(v8::Isolate* isolate,
platform::tracing::TraceConfig* trace_config,
const char* json_str) {
HandleScope outer_scope(isolate);
Local<Context> context = Context::New(isolate);
Context::Scope context_scope(context);
HandleScope inner_scope(isolate);
Local<String> source =
String::NewFromUtf8(isolate, json_str, NewStringType::kNormal)
.ToLocalChecked();
Local<Value> result = JSON::Parse(context, source).ToLocalChecked();
Local<v8::Object> trace_config_object = Local<v8::Object>::Cast(result);
trace_config->SetTraceRecordMode(
GetTraceRecordMode(isolate, context, trace_config_object));
if (GetBoolean(isolate, context, trace_config_object,
kEnableSystraceParam)) {
trace_config->EnableSystrace();
}
if (GetBoolean(isolate, context, trace_config_object,
kEnableArgumentFilterParam)) {
trace_config->EnableArgumentFilter();
}
UpdateIncludedCategoriesList(isolate, context, trace_config_object,
trace_config);
}
private:
static bool GetBoolean(v8::Isolate* isolate, Local<Context> context,
Local<v8::Object> object, const char* property) {
Local<Value> value = GetValue(isolate, context, object, property);
if (value->IsNumber()) {
Local<Boolean> v8_boolean = value->ToBoolean(context).ToLocalChecked();
return v8_boolean->Value();
}
return false;
}
static int UpdateIncludedCategoriesList(
v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object,
platform::tracing::TraceConfig* trace_config) {
Local<Value> value =
GetValue(isolate, context, object, kIncludedCategoriesParam);
if (value->IsArray()) {
Local<Array> v8_array = Local<Array>::Cast(value);
for (int i = 0, length = v8_array->Length(); i < length; ++i) {
Local<Value> v = v8_array->Get(context, i)
.ToLocalChecked()
->ToString(context)
.ToLocalChecked();
String::Utf8Value str(v->ToString(context).ToLocalChecked());
trace_config->AddIncludedCategory(*str);
}
return v8_array->Length();
}
return 0;
}
static platform::tracing::TraceRecordMode GetTraceRecordMode(
v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object) {
Local<Value> value = GetValue(isolate, context, object, kRecordModeParam);
if (value->IsString()) {
Local<String> v8_string = value->ToString(context).ToLocalChecked();
String::Utf8Value str(v8_string);
if (strcmp(kRecordUntilFull, *str) == 0) {
return platform::tracing::TraceRecordMode::RECORD_UNTIL_FULL;
} else if (strcmp(kRecordContinuously, *str) == 0) {
return platform::tracing::TraceRecordMode::RECORD_CONTINUOUSLY;
} else if (strcmp(kRecordAsMuchAsPossible, *str) == 0) {
return platform::tracing::TraceRecordMode::RECORD_AS_MUCH_AS_POSSIBLE;
}
}
return platform::tracing::TraceRecordMode::RECORD_UNTIL_FULL;
}
static Local<Value> GetValue(v8::Isolate* isolate, Local<Context> context,
Local<v8::Object> object, const char* property) {
Local<String> v8_str =
String::NewFromUtf8(isolate, property, NewStringType::kNormal)
.ToLocalChecked();
return object->Get(context, v8_str).ToLocalChecked();
}
};
} // namespace
static platform::tracing::TraceConfig* CreateTraceConfigFromJSON(
v8::Isolate* isolate, const char* json_str) {
platform::tracing::TraceConfig* trace_config =
new platform::tracing::TraceConfig();
TraceConfigParser::FillTraceConfig(isolate, trace_config, json_str);
return trace_config;
}
} // namespace tracing
class PerIsolateData {
public:
explicit PerIsolateData(Isolate* isolate) : isolate_(isolate), realms_(NULL) {
HandleScope scope(isolate);
isolate->SetData(0, this);
}
~PerIsolateData() {
isolate_->SetData(0, NULL); // Not really needed, just to be sure...
}
inline static PerIsolateData* Get(Isolate* isolate) {
return reinterpret_cast<PerIsolateData*>(isolate->GetData(0));
}
class RealmScope {
public:
explicit RealmScope(PerIsolateData* data);
~RealmScope();
private:
PerIsolateData* data_;
};
private:
friend class Shell;
friend class RealmScope;
Isolate* isolate_;
int realm_count_;
int realm_current_;
int realm_switch_;
Global<Context>* realms_;
Global<Value> realm_shared_;
int RealmIndexOrThrow(const v8::FunctionCallbackInfo<v8::Value>& args,
int arg_offset);
int RealmFind(Local<Context> context);
};
CounterMap* Shell::counter_map_;
base::OS::MemoryMappedFile* Shell::counters_file_ = NULL;
CounterCollection Shell::local_counters_;
CounterCollection* Shell::counters_ = &local_counters_;
base::LazyMutex Shell::context_mutex_;
const base::TimeTicks Shell::kInitialTicks =
base::TimeTicks::HighResolutionNow();
Global<Function> Shell::stringify_function_;
base::LazyMutex Shell::workers_mutex_;
bool Shell::allow_new_workers_ = true;
i::List<Worker*> Shell::workers_;
i::List<SharedArrayBuffer::Contents> Shell::externalized_shared_contents_;
Global<Context> Shell::evaluation_context_;
ArrayBuffer::Allocator* Shell::array_buffer_allocator;
ShellOptions Shell::options;
base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
bool CounterMap::Match(void* key1, void* key2) {
const char* name1 = reinterpret_cast<const char*>(key1);
const char* name2 = reinterpret_cast<const char*>(key2);
return strcmp(name1, name2) == 0;
}
ScriptCompiler::CachedData* CompileForCachedData(
Local<String> source, Local<Value> name,
ScriptCompiler::CompileOptions compile_options) {
int source_length = source->Length();
uint16_t* source_buffer = new uint16_t[source_length];
source->Write(source_buffer, 0, source_length);
int name_length = 0;
uint16_t* name_buffer = NULL;
if (name->IsString()) {
Local<String> name_string = Local<String>::Cast(name);
name_length = name_string->Length();
name_buffer = new uint16_t[name_length];
name_string->Write(name_buffer, 0, name_length);
}
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* temp_isolate = Isolate::New(create_params);
ScriptCompiler::CachedData* result = NULL;
{
Isolate::Scope isolate_scope(temp_isolate);
HandleScope handle_scope(temp_isolate);
Context::Scope context_scope(Context::New(temp_isolate));
Local<String> source_copy =
v8::String::NewFromTwoByte(temp_isolate, source_buffer,
v8::NewStringType::kNormal,
source_length).ToLocalChecked();
Local<Value> name_copy;
if (name_buffer) {
name_copy = v8::String::NewFromTwoByte(temp_isolate, name_buffer,
v8::NewStringType::kNormal,
name_length).ToLocalChecked();
} else {
name_copy = v8::Undefined(temp_isolate);
}
ScriptCompiler::Source script_source(source_copy, ScriptOrigin(name_copy));
if (!ScriptCompiler::CompileUnboundScript(temp_isolate, &script_source,
compile_options).IsEmpty() &&
script_source.GetCachedData()) {
int length = script_source.GetCachedData()->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, script_source.GetCachedData()->data, length);
result = new ScriptCompiler::CachedData(
cache, length, ScriptCompiler::CachedData::BufferOwned);
}
}
temp_isolate->Dispose();
delete[] source_buffer;
delete[] name_buffer;
return result;
}
// Compile a string within the current v8 context.
MaybeLocal<Script> Shell::CompileString(
Isolate* isolate, Local<String> source, Local<Value> name,
ScriptCompiler::CompileOptions compile_options) {
Local<Context> context(isolate->GetCurrentContext());
ScriptOrigin origin(name);
if (compile_options == ScriptCompiler::kNoCompileOptions) {
ScriptCompiler::Source script_source(source, origin);
return ScriptCompiler::Compile(context, &script_source, compile_options);
}
ScriptCompiler::CachedData* data =
CompileForCachedData(source, name, compile_options);
ScriptCompiler::Source cached_source(source, origin, data);
if (compile_options == ScriptCompiler::kProduceCodeCache) {
compile_options = ScriptCompiler::kConsumeCodeCache;
} else if (compile_options == ScriptCompiler::kProduceParserCache) {
compile_options = ScriptCompiler::kConsumeParserCache;
} else {
DCHECK(false); // A new compile option?
}
if (data == NULL) compile_options = ScriptCompiler::kNoCompileOptions;
MaybeLocal<Script> result =
ScriptCompiler::Compile(context, &cached_source, compile_options);
CHECK(data == NULL || !data->rejected);
return result;
}
// Executes a string within the current v8 context.
bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
Local<Value> name, bool print_result,
bool report_exceptions) {
HandleScope handle_scope(isolate);
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
MaybeLocal<Value> maybe_result;
{
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm =
Local<Context>::New(isolate, data->realms_[data->realm_current_]);
Context::Scope context_scope(realm);
Local<Script> script;
if (!Shell::CompileString(isolate, source, name, options.compile_options)
.ToLocal(&script)) {
// Print errors that happened during compilation.
if (report_exceptions) ReportException(isolate, &try_catch);
return false;
}
maybe_result = script->Run(realm);
EmptyMessageQueues(isolate);
data->realm_current_ = data->realm_switch_;
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
// Print errors that happened during execution.
if (report_exceptions) ReportException(isolate, &try_catch);
return false;
}
DCHECK(!try_catch.HasCaught());
if (print_result) {
if (options.test_shell) {
if (!result->IsUndefined()) {
// If all went well and the result wasn't undefined then print
// the returned value.
v8::String::Utf8Value str(result);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
} else {
v8::String::Utf8Value str(Stringify(isolate, result));
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
}
return true;
}
namespace {
std::string ToSTLString(Local<String> v8_str) {
String::Utf8Value utf8(v8_str);
// Should not be able to fail since the input is a String.
CHECK(*utf8);
return *utf8;
}
bool IsAbsolutePath(const std::string& path) {
#if defined(_WIN32) || defined(_WIN64)
// TODO(adamk): This is an incorrect approximation, but should
// work for all our test-running cases.
return path.find(':') != std::string::npos;
#else
return path[0] == '/';
#endif
}
std::string GetWorkingDirectory() {
#if defined(_WIN32) || defined(_WIN64)
char system_buffer[MAX_PATH];
// TODO(adamk): Support Unicode paths.
DWORD len = GetCurrentDirectoryA(MAX_PATH, system_buffer);
CHECK(len > 0);
return system_buffer;
#else
char curdir[PATH_MAX];
CHECK_NOT_NULL(getcwd(curdir, PATH_MAX));
return curdir;
#endif
}
// Returns the directory part of path, without the trailing '/'.
std::string DirName(const std::string& path) {
DCHECK(IsAbsolutePath(path));
size_t last_slash = path.find_last_of('/');
DCHECK(last_slash != std::string::npos);
return path.substr(0, last_slash);
}
// Resolves path to an absolute path if necessary, and does some
// normalization (eliding references to the current directory
// and replacing backslashes with slashes).
std::string NormalizePath(const std::string& path,
const std::string& dir_name) {
std::string result;
if (IsAbsolutePath(path)) {
result = path;
} else {
result = dir_name + '/' + path;
}
std::replace(result.begin(), result.end(), '\\', '/');
size_t i;
while ((i = result.find("/./")) != std::string::npos) {
result.erase(i, 2);
}
return result;
}
// Per-context Module data, allowing sharing of module maps
// across top-level module loads.
class ModuleEmbedderData {
private:
class ModuleGlobalHash {
public:
explicit ModuleGlobalHash(Isolate* isolate) : isolate_(isolate) {}
size_t operator()(const Global<Module>& module) const {
return module.Get(isolate_)->GetIdentityHash();
}
private:
Isolate* isolate_;
};
public:
explicit ModuleEmbedderData(Isolate* isolate)
: module_to_directory_map(10, ModuleGlobalHash(isolate)) {}
// Map from normalized module specifier to Module.
std::unordered_map<std::string, Global<Module>> specifier_to_module_map;
// Map from Module to the directory that Module was loaded from.
std::unordered_map<Global<Module>, std::string, ModuleGlobalHash>
module_to_directory_map;
};
enum {
// The debugger reserves the first slot in the Context embedder data.
kDebugIdIndex = Context::kDebugIdIndex,
kModuleEmbedderDataIndex,
kInspectorClientIndex
};
void InitializeModuleEmbedderData(Local<Context> context) {
context->SetAlignedPointerInEmbedderData(
kModuleEmbedderDataIndex, new ModuleEmbedderData(context->GetIsolate()));
}
ModuleEmbedderData* GetModuleDataFromContext(Local<Context> context) {
return static_cast<ModuleEmbedderData*>(
context->GetAlignedPointerFromEmbedderData(kModuleEmbedderDataIndex));
}
void DisposeModuleEmbedderData(Local<Context> context) {
delete GetModuleDataFromContext(context);
context->SetAlignedPointerInEmbedderData(kModuleEmbedderDataIndex, nullptr);
}
MaybeLocal<Module> ResolveModuleCallback(Local<Context> context,
Local<String> specifier,
Local<Module> referrer) {
Isolate* isolate = context->GetIsolate();
ModuleEmbedderData* d = GetModuleDataFromContext(context);
auto dir_name_it =
d->module_to_directory_map.find(Global<Module>(isolate, referrer));
CHECK(dir_name_it != d->module_to_directory_map.end());
std::string absolute_path =
NormalizePath(ToSTLString(specifier), dir_name_it->second);
auto module_it = d->specifier_to_module_map.find(absolute_path);
CHECK(module_it != d->specifier_to_module_map.end());
return module_it->second.Get(isolate);
}
} // anonymous namespace
MaybeLocal<Module> Shell::FetchModuleTree(Local<Context> context,
const std::string& file_name) {
DCHECK(IsAbsolutePath(file_name));
Isolate* isolate = context->GetIsolate();
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
Local<String> source_text = ReadFile(isolate, file_name.c_str());
if (source_text.IsEmpty()) {
printf("Error reading '%s'\n", file_name.c_str());
Shell::Exit(1);
}
ScriptOrigin origin(
String::NewFromUtf8(isolate, file_name.c_str(), NewStringType::kNormal)
.ToLocalChecked());
ScriptCompiler::Source source(source_text, origin);
Local<Module> module;
if (!ScriptCompiler::CompileModule(isolate, &source).ToLocal(&module)) {
ReportException(isolate, &try_catch);
return MaybeLocal<Module>();
}
ModuleEmbedderData* d = GetModuleDataFromContext(context);
CHECK(d->specifier_to_module_map
.insert(std::make_pair(file_name, Global<Module>(isolate, module)))
.second);
std::string dir_name = DirName(file_name);
CHECK(d->module_to_directory_map
.insert(std::make_pair(Global<Module>(isolate, module), dir_name))
.second);
for (int i = 0, length = module->GetModuleRequestsLength(); i < length; ++i) {
Local<String> name = module->GetModuleRequest(i);
std::string absolute_path = NormalizePath(ToSTLString(name), dir_name);
if (!d->specifier_to_module_map.count(absolute_path)) {
if (FetchModuleTree(context, absolute_path).IsEmpty()) {
return MaybeLocal<Module>();
}
}
}
return module;
}
bool Shell::ExecuteModule(Isolate* isolate, const char* file_name) {
HandleScope handle_scope(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
Local<Module> root_module;
if (!FetchModuleTree(realm, absolute_path).ToLocal(&root_module)) {
return false;
}
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
MaybeLocal<Value> maybe_result;
if (root_module->Instantiate(realm, ResolveModuleCallback)) {
maybe_result = root_module->Evaluate(realm);
EmptyMessageQueues(isolate);
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
// Print errors that happened during execution.
ReportException(isolate, &try_catch);
return false;
}
DCHECK(!try_catch.HasCaught());
return true;
}
PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
data_->realm_count_ = 1;
data_->realm_current_ = 0;
data_->realm_switch_ = 0;
data_->realms_ = new Global<Context>[1];
data_->realms_[0].Reset(data_->isolate_,
data_->isolate_->GetEnteredContext());
}
PerIsolateData::RealmScope::~RealmScope() {
// Drop realms to avoid keeping them alive.
for (int i = 0; i < data_->realm_count_; ++i) {
Global<Context>& realm = data_->realms_[i];
if (realm.IsEmpty()) continue;
DisposeModuleEmbedderData(realm.Get(data_->isolate_));
// TODO(adamk): No need to reset manually, Globals reset when destructed.
realm.Reset();
}
delete[] data_->realms_;
// TODO(adamk): No need to reset manually, Globals reset when destructed.
if (!data_->realm_shared_.IsEmpty())
data_->realm_shared_.Reset();
}
int PerIsolateData::RealmFind(Local<Context> context) {
for (int i = 0; i < realm_count_; ++i) {
if (realms_[i] == context) return i;
}
return -1;
}
int PerIsolateData::RealmIndexOrThrow(
const v8::FunctionCallbackInfo<v8::Value>& args,
int arg_offset) {
if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
Throw(args.GetIsolate(), "Invalid argument");
return -1;
}
int index = args[arg_offset]
->Int32Value(args.GetIsolate()->GetCurrentContext())
.FromMaybe(-1);
if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
Throw(args.GetIsolate(), "Invalid realm index");
return -1;
}
return index;
}
// performance.now() returns a time stamp as double, measured in milliseconds.
// When FLAG_verify_predictable mode is enabled it returns result of
// v8::Platform::MonotonicallyIncreasingTime().
void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
if (i::FLAG_verify_predictable) {
args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime());
} else {
base::TimeDelta delta =
base::TimeTicks::HighResolutionNow() - kInitialTicks;
args.GetReturnValue().Set(delta.InMillisecondsF());
}
}
// Realm.current() returns the index of the currently active realm.
void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmFind(isolate->GetEnteredContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.owner(o) returns the index of the realm that created o.
void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (args.Length() < 1 || !args[0]->IsObject()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
int index = data->RealmFind(args[0]
->ToObject(isolate->GetCurrentContext())
.ToLocalChecked()
->CreationContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.global(i) returns the global object of realm i.
// (Note that properties of global objects cannot be read/written cross-realm.)
void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
args.GetReturnValue().Set(
Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global());
}
MaybeLocal<Context> Shell::CreateRealm(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
TryCatch try_catch(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
Global<Context>* old_realms = data->realms_;
int index = data->realm_count_;
data->realms_ = new Global<Context>[++data->realm_count_];
for (int i = 0; i < index; ++i) {
data->realms_[i].Reset(isolate, old_realms[i]);
old_realms[i].Reset();
}
delete[] old_realms;
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
Local<Context> context = Context::New(isolate, NULL, global_template);
if (context.IsEmpty()) {
DCHECK(try_catch.HasCaught());
try_catch.ReThrow();
return MaybeLocal<Context>();
}
InitializeModuleEmbedderData(context);
data->realms_[index].Reset(isolate, context);
args.GetReturnValue().Set(index);
return context;
}
// Realm.create() creates a new realm with a distinct security token
// and returns its index.
void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
CreateRealm(args);
}
// Realm.createAllowCrossRealmAccess() creates a new realm with the same
// security token as the current realm.
void Shell::RealmCreateAllowCrossRealmAccess(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Local<Context> context;
if (CreateRealm(args).ToLocal(&context)) {
context->SetSecurityToken(
args.GetIsolate()->GetEnteredContext()->GetSecurityToken());
}
}
// Realm.dispose(i) disposes the reference to the realm i.
void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (index == 0 ||
index == data->realm_current_ || index == data->realm_switch_) {
Throw(args.GetIsolate(), "Invalid realm index");
return;
}
DisposeModuleEmbedderData(data->realms_[index].Get(isolate));
data->realms_[index].Reset();
isolate->ContextDisposedNotification();
isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
}
// Realm.switch(i) switches to the realm i for consecutive interactive inputs.
void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
data->realm_switch_ = index;
}
// Realm.eval(i, s) evaluates s in realm i and returns the result.
void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (args.Length() < 2 || !args[1]->IsString()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
ScriptCompiler::Source script_source(
args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked());
Local<UnboundScript> script;
if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
.ToLocal(&script)) {
return;
}
Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
realm->Enter();
Local<Value> result;
if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) {
realm->Exit();
return;
}
realm->Exit();
args.GetReturnValue().Set(result);
}
// Realm.shared is an accessor for a single shared value across realms.
void Shell::RealmSharedGet(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (data->realm_shared_.IsEmpty()) return;
info.GetReturnValue().Set(data->realm_shared_);
}
void Shell::RealmSharedSet(Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<void>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
data->realm_shared_.Reset(isolate, value);
}
void WriteToFile(FILE* file, const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
if (i != 0) {
fprintf(file, " ");
}
// Explicitly catch potential exceptions in toString().
v8::TryCatch try_catch(args.GetIsolate());
Local<Value> arg = args[i];
Local<String> str_obj;
if (arg->IsSymbol()) {
arg = Local<Symbol>::Cast(arg)->Name();
}
if (!arg->ToString(args.GetIsolate()->GetCurrentContext())
.ToLocal(&str_obj)) {
try_catch.ReThrow();
return;
}
v8::String::Utf8Value str(str_obj);
int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), file));
if (n != str.length()) {
printf("Error in fwrite\n");
Shell::Exit(1);
}
}
}
void WriteAndFlush(FILE* file,
const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteToFile(file, args);
fprintf(file, "\n");
fflush(file);
}
void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteAndFlush(stdout, args);
}
void Shell::PrintErr(const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteAndFlush(stderr, args);
}
void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteToFile(stdout, args);
}
void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) {
String::Utf8Value file(args[0]);
if (*file == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
args.GetReturnValue().Set(source);
}
Local<String> Shell::ReadFromStdin(Isolate* isolate) {
static const int kBufferSize = 256;
char buffer[kBufferSize];
Local<String> accumulator =
String::NewFromUtf8(isolate, "", NewStringType::kNormal).ToLocalChecked();
int length;
while (true) {
// Continue reading if the line ends with an escape '\\' or the line has
// not been fully read into the buffer yet (does not end with '\n').
// If fgets gets an error, just give up.
char* input = NULL;
input = fgets(buffer, kBufferSize, stdin);
if (input == NULL) return Local<String>();
length = static_cast<int>(strlen(buffer));
if (length == 0) {
return accumulator;
} else if (buffer[length-1] != '\n') {
accumulator = String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
.ToLocalChecked());
} else if (length > 1 && buffer[length-2] == '\\') {
buffer[length-2] = '\n';
accumulator = String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1).ToLocalChecked());
} else {
return String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1).ToLocalChecked());
}
}
}
void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
String::Utf8Value file(args[i]);
if (*file == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
if (!ExecuteString(
args.GetIsolate(), source,
String::NewFromUtf8(args.GetIsolate(), *file,
NewStringType::kNormal).ToLocalChecked(),
false, true)) {
Throw(args.GetIsolate(), "Error executing file");
return;
}
}
}
void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1 || !args[0]->IsString()) {
Throw(args.GetIsolate(), "1st argument must be string");
return;
}
if (!args.IsConstructCall()) {
Throw(args.GetIsolate(), "Worker must be constructed with new");
return;
}
{
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
if (workers_.length() >= kMaxWorkers) {
Throw(args.GetIsolate(), "Too many workers, I won't let you create more");
return;
}
// Initialize the internal field to NULL; if we return early without
// creating a new Worker (because the main thread is terminating) we can
// early-out from the instance calls.
args.Holder()->SetAlignedPointerInInternalField(0, NULL);
if (!allow_new_workers_) return;
Worker* worker = new Worker;
args.Holder()->SetAlignedPointerInInternalField(0, worker);
workers_.Add(worker);
String::Utf8Value script(args[0]);
if (!*script) {
Throw(args.GetIsolate(), "Can't get worker script");
return;
}
worker->StartExecuteInThread(*script);
}
}
void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
Local<Value> message = args[0];
ObjectList to_transfer;
if (args.Length() >= 2) {
if (!args[1]->IsArray()) {
Throw(isolate, "Transfer list must be an Array");
return;
}
Local<Array> transfer = Local<Array>::Cast(args[1]);
uint32_t length = transfer->Length();
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element;
if (transfer->Get(context, i).ToLocal(&element)) {
if (!element->IsArrayBuffer() && !element->IsSharedArrayBuffer()) {
Throw(isolate,
"Transfer array elements must be an ArrayBuffer or "
"SharedArrayBuffer.");
break;
}
to_transfer.Add(Local<Object>::Cast(element));
}
}
}
ObjectList seen_objects;
SerializationData* data = new SerializationData;
if (SerializeValue(isolate, message, to_transfer, &seen_objects, data)) {
worker->PostMessage(data);
} else {
delete data;
}
}
void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
SerializationData* data = worker->GetMessage();
if (data) {
int offset = 0;
Local<Value> data_value;
if (Shell::DeserializeValue(isolate, *data, &offset).ToLocal(&data_value)) {
args.GetReturnValue().Set(data_value);
}
delete data;
}
}
void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
worker->Terminate();
}
void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
int exit_code = (*args)[0]
->Int32Value(args->GetIsolate()->GetCurrentContext())
.FromMaybe(0);
CleanupWorkers();
OnExit(args->GetIsolate());
Exit(exit_code);
}
void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
base::CallOnce(&quit_once_, &QuitOnce,
const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
}
void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
args.GetReturnValue().Set(
String::NewFromUtf8(args.GetIsolate(), V8::GetVersion(),
NewStringType::kNormal).ToLocalChecked());
}
void Shell::ReportException(Isolate* isolate, v8::TryCatch* try_catch) {
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
bool enter_context = context.IsEmpty();
if (enter_context) {
context = Local<Context>::New(isolate, evaluation_context_);
context->Enter();
}
// Converts a V8 value to a C string.
auto ToCString = [](const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
};
v8::String::Utf8Value exception(try_catch->Exception());
const char* exception_string = ToCString(exception);
Local<Message> message = try_catch->Message();
if (message.IsEmpty()) {
// V8 didn't provide any extra information about this error; just
// print the exception.
printf("%s\n", exception_string);
} else if (message->GetScriptOrigin().Options().IsWasm()) {
// Print <WASM>[(function index)]((function name))+(offset): (message).
int function_index = message->GetLineNumber(context).FromJust() - 1;
int offset = message->GetStartColumn(context).FromJust();
printf("<WASM>[%d]+%d: %s\n", function_index, offset, exception_string);
} else {
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
int linenum = message->GetLineNumber(context).FromMaybe(-1);
printf("%s:%i: %s\n", filename_string, linenum, exception_string);
Local<String> sourceline;
if (message->GetSourceLine(context).ToLocal(&sourceline)) {
// Print line of source code.
v8::String::Utf8Value sourcelinevalue(sourceline);
const char* sourceline_string = ToCString(sourcelinevalue);
printf("%s\n", sourceline_string);
// Print wavy underline (GetUnderline is deprecated).
int start = message->GetStartColumn(context).FromJust();
for (int i = 0; i < start; i++) {
printf(" ");
}
int end = message->GetEndColumn(context).FromJust();
for (int i = start; i < end; i++) {
printf("^");
}
printf("\n");
}
}
Local<Value> stack_trace_string;
if (try_catch->StackTrace(context).ToLocal(&stack_trace_string) &&
stack_trace_string->IsString()) {
v8::String::Utf8Value stack_trace(Local<String>::Cast(stack_trace_string));
printf("%s\n", ToCString(stack_trace));
}
printf("\n");
if (enter_context) context->Exit();
}
int32_t* Counter::Bind(const char* name, bool is_histogram) {
int i;
for (i = 0; i < kMaxNameSize - 1 && name[i]; i++)
name_[i] = static_cast<char>(name[i]);
name_[i] = '\0';
is_histogram_ = is_histogram;
return ptr();
}
void Counter::AddSample(int32_t sample) {
count_++;
sample_total_ += sample;
}
CounterCollection::CounterCollection() {
magic_number_ = 0xDEADFACE;
max_counters_ = kMaxCounters;
max_name_size_ = Counter::kMaxNameSize;
counters_in_use_ = 0;
}
Counter* CounterCollection::GetNextCounter() {
if (counters_in_use_ == kMaxCounters) return NULL;
return &counters_[counters_in_use_++];
}
void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
counters_file_ = base::OS::MemoryMappedFile::create(
name, sizeof(CounterCollection), &local_counters_);
void* memory = (counters_file_ == NULL) ?
NULL : counters_file_->memory();
if (memory == NULL) {
printf("Could not map counters file %s\n", name);
Exit(1);
}
counters_ = static_cast<CounterCollection*>(memory);
isolate->SetCounterFunction(LookupCounter);
isolate->SetCreateHistogramFunction(CreateHistogram);
isolate->SetAddHistogramSampleFunction(AddHistogramSample);
}
int CounterMap::Hash(const char* name) {
int h = 0;
int c;
while ((c = *name++) != 0) {
h += h << 5;
h += c;
}
return h;
}
Counter* Shell::GetCounter(const char* name, bool is_histogram) {
Counter* counter = counter_map_->Lookup(name);
if (counter == NULL) {
counter = counters_->GetNextCounter();
if (counter != NULL) {
counter_map_->Set(name, counter);
counter->Bind(name, is_histogram);
}
} else {
DCHECK(counter->is_histogram() == is_histogram);
}
return counter;
}
int* Shell::LookupCounter(const char* name) {
Counter* counter = GetCounter(name, false);
if (counter != NULL) {
return counter->ptr();
} else {
return NULL;
}
}
void* Shell::CreateHistogram(const char* name,
int min,
int max,
size_t buckets) {
return GetCounter(name, true);
}
void Shell::AddHistogramSample(void* histogram, int sample) {
Counter* counter = reinterpret_cast<Counter*>(histogram);
counter->AddSample(sample);
}
// Turn a value into a human-readable string.
Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) {
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
if (stringify_function_.IsEmpty()) {
int source_index = i::NativesCollection<i::D8>::GetIndex("d8");
i::Vector<const char> source_string =
i::NativesCollection<i::D8>::GetScriptSource(source_index);
i::Vector<const char> source_name =
i::NativesCollection<i::D8>::GetScriptName(source_index);
Local<String> source =
String::NewFromUtf8(isolate, source_string.start(),
NewStringType::kNormal, source_string.length())
.ToLocalChecked();
Local<String> name =
String::NewFromUtf8(isolate, source_name.start(),
NewStringType::kNormal, source_name.length())
.ToLocalChecked();
ScriptOrigin origin(name);
Local<Script> script =
Script::Compile(context, source, &origin).ToLocalChecked();
stringify_function_.Reset(
isolate, script->Run(context).ToLocalChecked().As<Function>());
}
Local<Function> fun = Local<Function>::New(isolate, stringify_function_);
Local<Value> argv[1] = {value};
v8::TryCatch try_catch(isolate);
MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv);
if (result.IsEmpty()) return String::Empty(isolate);
return result.ToLocalChecked().As<String>();
}
Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
global_template->Set(
String::NewFromUtf8(isolate, "print", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Print));
global_template->Set(
String::NewFromUtf8(isolate, "printErr", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, PrintErr));
global_template->Set(
String::NewFromUtf8(isolate, "write", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Write));
global_template->Set(
String::NewFromUtf8(isolate, "read", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Read));
global_template->Set(
String::NewFromUtf8(isolate, "readbuffer", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, ReadBuffer));
global_template->Set(
String::NewFromUtf8(isolate, "readline", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, ReadLine));
global_template->Set(
String::NewFromUtf8(isolate, "load", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Load));
// Some Emscripten-generated code tries to call 'quit', which in turn would
// call C's exit(). This would lead to memory leaks, because there is no way
// we can terminate cleanly then, so we need a way to hide 'quit'.
if (!options.omit_quit) {
global_template->Set(
String::NewFromUtf8(isolate, "quit", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Quit));
}
global_template->Set(
String::NewFromUtf8(isolate, "version", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Version));
global_template->Set(
Symbol::GetToStringTag(isolate),
String::NewFromUtf8(isolate, "global", NewStringType::kNormal)
.ToLocalChecked());
// Bind the Realm object.
Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
realm_template->Set(
String::NewFromUtf8(isolate, "current", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCurrent));
realm_template->Set(
String::NewFromUtf8(isolate, "owner", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmOwner));
realm_template->Set(
String::NewFromUtf8(isolate, "global", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmGlobal));
realm_template->Set(
String::NewFromUtf8(isolate, "create", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCreate));
realm_template->Set(
String::NewFromUtf8(isolate, "createAllowCrossRealmAccess",
NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess));
realm_template->Set(
String::NewFromUtf8(isolate, "dispose", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmDispose));
realm_template->Set(
String::NewFromUtf8(isolate, "switch", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmSwitch));
realm_template->Set(
String::NewFromUtf8(isolate, "eval", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmEval));
realm_template->SetAccessor(
String::NewFromUtf8(isolate, "shared", NewStringType::kNormal)
.ToLocalChecked(),
RealmSharedGet, RealmSharedSet);
global_template->Set(
String::NewFromUtf8(isolate, "Realm", NewStringType::kNormal)
.ToLocalChecked(),
realm_template);
Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
performance_template->Set(
String::NewFromUtf8(isolate, "now", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, PerformanceNow));
global_template->Set(
String::NewFromUtf8(isolate, "performance", NewStringType::kNormal)
.ToLocalChecked(),
performance_template);
Local<FunctionTemplate> worker_fun_template =
FunctionTemplate::New(isolate, WorkerNew);
Local<Signature> worker_signature =
Signature::New(isolate, worker_fun_template);
worker_fun_template->SetClassName(
String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal)
.ToLocalChecked());
worker_fun_template->ReadOnlyPrototype();
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "terminate", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "postMessage", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "getMessage", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
worker_signature));
worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
global_template->Set(
String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal)
.ToLocalChecked(),
worker_fun_template);
Local<ObjectTemplate> os_templ = ObjectTemplate::New(isolate);
AddOSMethods(isolate, os_templ);
global_template->Set(
String::NewFromUtf8(isolate, "os", NewStringType::kNormal)
.ToLocalChecked(),
os_templ);
return global_template;
}
static void PrintNonErrorsMessageCallback(Local<Message> message,
Local<Value> error) {
// Nothing to do here for errors, exceptions thrown up to the shell will be
// reported
// separately by {Shell::ReportException} after they are caught.
// Do print other kinds of messages.
switch (message->ErrorLevel()) {
case v8::Isolate::kMessageWarning:
case v8::Isolate::kMessageLog:
case v8::Isolate::kMessageInfo:
case v8::Isolate::kMessageDebug: {
break;
}
case v8::Isolate::kMessageError: {
// Ignore errors, printed elsewhere.
return;
}
default: {
UNREACHABLE();
break;
}
}
// Converts a V8 value to a C string.
auto ToCString = [](const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
};
Isolate* isolate = Isolate::GetCurrent();
v8::String::Utf8Value msg(message->Get());
const char* msg_string = ToCString(msg);
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext());
int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1;
printf("%s:%i: %s\n", filename_string, linenum, msg_string);
}
void Shell::Initialize(Isolate* isolate) {
// Set up counters
if (i::StrLength(i::FLAG_map_counters) != 0)
MapCounters(isolate, i::FLAG_map_counters);
// Disable default message reporting.
isolate->AddMessageListenerWithErrorLevel(
PrintNonErrorsMessageCallback,
v8::Isolate::kMessageError | v8::Isolate::kMessageWarning |
v8::Isolate::kMessageInfo | v8::Isolate::kMessageDebug |
v8::Isolate::kMessageLog);
}
Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
// This needs to be a critical section since this is not thread-safe
base::LockGuard<base::Mutex> lock_guard(context_mutex_.Pointer());
// Initialize the global objects
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
EscapableHandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate, NULL, global_template);
DCHECK(!context.IsEmpty());
InitializeModuleEmbedderData(context);
Context::Scope scope(context);
i::Factory* factory = reinterpret_cast<i::Isolate*>(isolate)->factory();
i::JSArguments js_args = i::FLAG_js_arguments;
i::Handle<i::FixedArray> arguments_array =
factory->NewFixedArray(js_args.argc);
for (int j = 0; j < js_args.argc; j++) {
i::Handle<i::String> arg =
factory->NewStringFromUtf8(i::CStrVector(js_args[j])).ToHandleChecked();
arguments_array->set(j, *arg);
}
i::Handle<i::JSArray> arguments_jsarray =
factory->NewJSArrayWithElements(arguments_array);
context->Global()
->Set(context,
String::NewFromUtf8(isolate, "arguments", NewStringType::kNormal)
.ToLocalChecked(),
Utils::ToLocal(arguments_jsarray))
.FromJust();
return handle_scope.Escape(context);
}
struct CounterAndKey {
Counter* counter;
const char* key;
};
inline bool operator<(const CounterAndKey& lhs, const CounterAndKey& rhs) {
return strcmp(lhs.key, rhs.key) < 0;
}
void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) {
HandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate);
Context::Scope context_scope(context);
Local<Object> dispatch_counters = reinterpret_cast<i::Isolate*>(isolate)
->interpreter()
->GetDispatchCountersObject();
std::ofstream dispatch_counters_stream(
i::FLAG_trace_ignition_dispatches_output_file);
dispatch_counters_stream << *String::Utf8Value(
JSON::Stringify(context, dispatch_counters).ToLocalChecked());
}
void Shell::OnExit(v8::Isolate* isolate) {
if (i::FLAG_dump_counters || i::FLAG_dump_counters_nvp) {
int number_of_counters = 0;
for (CounterMap::Iterator i(counter_map_); i.More(); i.Next()) {
number_of_counters++;
}
CounterAndKey* counters = new CounterAndKey[number_of_counters];
int j = 0;
for (CounterMap::Iterator i(counter_map_); i.More(); i.Next(), j++) {
counters[j].counter = i.CurrentValue();
counters[j].key = i.CurrentKey();
}
std::sort(counters, counters + number_of_counters);
if (i::FLAG_dump_counters_nvp) {
// Dump counters as name-value pairs.
for (j = 0; j < number_of_counters; j++) {
Counter* counter = counters[j].counter;
const char* key = counters[j].key;
if (counter->is_histogram()) {
printf("\"c:%s\"=%i\n", key, counter->count());
printf("\"t:%s\"=%i\n", key, counter->sample_total());
} else {
printf("\"%s\"=%i\n", key, counter->count());
}
}
} else {
// Dump counters in formatted boxes.
printf(
"+----------------------------------------------------------------+"
"-------------+\n");
printf(
"| Name |"
" Value |\n");
printf(
"+----------------------------------------------------------------+"
"-------------+\n");
for (j = 0; j < number_of_counters; j++) {
Counter* counter = counters[j].counter;
const char* key = counters[j].key;
if (counter->is_histogram()) {
printf("| c:%-60s | %11i |\n", key, counter->count());
printf("| t:%-60s | %11i |\n", key, counter->sample_total());
} else {
printf("| %-62s | %11i |\n", key, counter->count());
}
}
printf(
"+----------------------------------------------------------------+"
"-------------+\n");
}
delete [] counters;
}
delete counters_file_;
delete counter_map_;
}
static FILE* FOpen(const char* path, const char* mode) {
#if defined(_MSC_VER) && (defined(_WIN32) || defined(_WIN64))
FILE* result;
if (fopen_s(&result, path, mode) == 0) {
return result;
} else {
return NULL;
}
#else
FILE* file = fopen(path, mode);
if (file == NULL) return NULL;
struct stat file_stat;
if (fstat(fileno(file), &file_stat) != 0) return NULL;
bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
if (is_regular_file) return file;
fclose(file);
return NULL;
#endif
}
static char* ReadChars(Isolate* isolate, const char* name, int* size_out) {
FILE* file = FOpen(name, "rb");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
size_t size = ftell(file);
rewind(file);
char* chars = new char[size + 1];
chars[size] = '\0';
for (size_t i = 0; i < size;) {
i += fread(&chars[i], 1, size - i, file);
if (ferror(file)) {
fclose(file);
delete[] chars;
return nullptr;
}
}
fclose(file);
*size_out = static_cast<int>(size);
return chars;
}
struct DataAndPersistent {
uint8_t* data;
int byte_length;
Global<ArrayBuffer> handle;
};
static void ReadBufferWeakCallback(
const v8::WeakCallbackInfo<DataAndPersistent>& data) {
int byte_length = data.GetParameter()->byte_length;
data.GetIsolate()->AdjustAmountOfExternalAllocatedMemory(
-static_cast<intptr_t>(byte_length));
delete[] data.GetParameter()->data;
data.GetParameter()->handle.Reset();
delete data.GetParameter();
}
void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) {
DCHECK(sizeof(char) == sizeof(uint8_t)); // NOLINT
String::Utf8Value filename(args[0]);
int length;
if (*filename == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Isolate* isolate = args.GetIsolate();
DataAndPersistent* data = new DataAndPersistent;
data->data = reinterpret_cast<uint8_t*>(
ReadChars(args.GetIsolate(), *filename, &length));
if (data->data == NULL) {
delete data;
Throw(args.GetIsolate(), "Error reading file");
return;
}
data->byte_length = length;
Local<v8::ArrayBuffer> buffer = ArrayBuffer::New(isolate, data->data, length);
data->handle.Reset(isolate, buffer);
data->handle.SetWeak(data, ReadBufferWeakCallback,
v8::WeakCallbackType::kParameter);
data->handle.MarkIndependent();
isolate->AdjustAmountOfExternalAllocatedMemory(length);
args.GetReturnValue().Set(buffer);
}
// Reads a file into a v8 string.
Local<String> Shell::ReadFile(Isolate* isolate, const char* name) {
int size = 0;
char* chars = ReadChars(isolate, name, &size);
if (chars == NULL) return Local<String>();
Local<String> result =
String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
.ToLocalChecked();
delete[] chars;
return result;
}
void Shell::RunShell(Isolate* isolate) {
HandleScope outer_scope(isolate);
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
v8::Context::Scope context_scope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<String> name =
String::NewFromUtf8(isolate, "(d8)", NewStringType::kNormal)
.ToLocalChecked();
printf("V8 version %s\n", V8::GetVersion());
while (true) {
HandleScope inner_scope(isolate);
printf("d8> ");
Local<String> input = Shell::ReadFromStdin(isolate);
if (input.IsEmpty()) break;
ExecuteString(isolate, input, name, true, true);
}
printf("\n");
}
#ifdef V8_INSPECTOR_ENABLED
class InspectorFrontend final : public v8_inspector::V8Inspector::Channel {
public:
explicit InspectorFrontend(Local<Context> context) {
isolate_ = context->GetIsolate();
context_.Reset(isolate_, context);
}
virtual ~InspectorFrontend() = default;
private:
void sendResponse(
int callId,
std::unique_ptr<v8_inspector::StringBuffer> message) override {
Send(message->string());
}
void sendNotification(
std::unique_ptr<v8_inspector::StringBuffer> message) override {
Send(message->string());
}
void flushProtocolNotifications() override {}
void Send(const v8_inspector::StringView& string) {
int length = static_cast<int>(string.length());
DCHECK(length < v8::String::kMaxLength);
Local<String> message =
(string.is8Bit()
? v8::String::NewFromOneByte(
isolate_,
reinterpret_cast<const uint8_t*>(string.characters8()),
v8::NewStringType::kNormal, length)
: v8::String::NewFromTwoByte(
isolate_,
reinterpret_cast<const uint16_t*>(string.characters16()),
v8::NewStringType::kNormal, length))
.ToLocalChecked();
Local<String> callback_name =
v8::String::NewFromUtf8(isolate_, "receive", v8::NewStringType::kNormal)
.ToLocalChecked();
Local<Context> context = context_.Get(isolate_);
Local<Value> callback =
context->Global()->Get(context, callback_name).ToLocalChecked();
if (callback->IsFunction()) {
v8::TryCatch try_catch(isolate_);
Local<Value> args[] = {message};
MaybeLocal<Value> result = Local<Function>::Cast(callback)->Call(
context, Undefined(isolate_), 1, args);
#ifdef DEBUG
if (try_catch.HasCaught()) {
Local<Object> exception = Local<Object>::Cast(try_catch.Exception());
Local<String> key = v8::String::NewFromUtf8(isolate_, "message",
v8::NewStringType::kNormal)
.ToLocalChecked();
Local<String> expected =
v8::String::NewFromUtf8(isolate_,
"Maximum call stack size exceeded",
v8::NewStringType::kNormal)
.ToLocalChecked();
Local<Value> value = exception->Get(context, key).ToLocalChecked();
CHECK(value->StrictEquals(expected));
}
#endif
}
}
Isolate* isolate_;
Global<Context> context_;
};
class InspectorClient : public v8_inspector::V8InspectorClient {
public:
InspectorClient(Local<Context> context, bool connect) {
if (!connect) return;
isolate_ = context->GetIsolate();
channel_.reset(new InspectorFrontend(context));
inspector_ = v8_inspector::V8Inspector::create(isolate_, this);
session_ =
inspector_->connect(1, channel_.get(), v8_inspector::StringView());
context->SetAlignedPointerInEmbedderData(kInspectorClientIndex, this);
inspector_->contextCreated(v8_inspector::V8ContextInfo(
context, kContextGroupId, v8_inspector::StringView()));
Local<Value> function =
FunctionTemplate::New(isolate_, SendInspectorMessage)
->GetFunction(context)
.ToLocalChecked();
Local<String> function_name =
String::NewFromUtf8(isolate_, "send", NewStringType::kNormal)
.ToLocalChecked();
CHECK(context->Global()->Set(context, function_name, function).FromJust());
context_.Reset(isolate_, context);
}
private:
static v8_inspector::V8InspectorSession* GetSession(Local<Context> context) {
InspectorClient* inspector_client = static_cast<InspectorClient*>(
context->GetAlignedPointerFromEmbedderData(kInspectorClientIndex));
return inspector_client->session_.get();
}
Local<Context> ensureDefaultContextInGroup(int group_id) override {
DCHECK(isolate_);
DCHECK_EQ(kContextGroupId, group_id);
return context_.Get(isolate_);
}
static void SendInspectorMessage(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
v8::HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
args.GetReturnValue().Set(Undefined(isolate));
Local<String> message = args[0]->ToString(context).ToLocalChecked();
v8_inspector::V8InspectorSession* session =
InspectorClient::GetSession(context);
int length = message->Length();
std::unique_ptr<uint16_t[]> buffer(new uint16_t[length]);
message->Write(buffer.get(), 0, length);
v8_inspector::StringView message_view(buffer.get(), length);
session->dispatchProtocolMessage(message_view);
args.GetReturnValue().Set(True(isolate));
}
static const int kContextGroupId = 1;
std::unique_ptr<v8_inspector::V8Inspector> inspector_;
std::unique_ptr<v8_inspector::V8InspectorSession> session_;
std::unique_ptr<v8_inspector::V8Inspector::Channel> channel_;
Global<Context> context_;
Isolate* isolate_;
};
#else // V8_INSPECTOR_ENABLED
class InspectorClient {
public:
InspectorClient(Local<Context> context, bool connect) { CHECK(!connect); }
};
#endif // V8_INSPECTOR_ENABLED
SourceGroup::~SourceGroup() {
delete thread_;
thread_ = NULL;
}
void SourceGroup::Execute(Isolate* isolate) {
bool exception_was_thrown = false;
for (int i = begin_offset_; i < end_offset_; ++i) {
const char* arg = argv_[i];
if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
// Execute argument given to -e option directly.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal)
.ToLocalChecked();
Local<String> source =
String::NewFromUtf8(isolate, argv_[i + 1], NewStringType::kNormal)
.ToLocalChecked();
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true)) {
exception_was_thrown = true;
break;
}
++i;
continue;
} else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
// Treat the next file as a module.
arg = argv_[++i];
Shell::options.script_executed = true;
if (!Shell::ExecuteModule(isolate, arg)) {
exception_was_thrown = true;
break;
}
continue;
} else if (arg[0] == '-') {
// Ignore other options. They have been parsed already.
continue;
}
// Use all other arguments as names of files to load and run.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, arg, NewStringType::kNormal)
.ToLocalChecked();
Local<String> source = ReadFile(isolate, arg);
if (source.IsEmpty()) {
printf("Error reading '%s'\n", arg);
Shell::Exit(1);
}
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true)) {
exception_was_thrown = true;
break;
}
}
if (exception_was_thrown != Shell::options.expected_to_throw) {
Shell::Exit(1);
}
}
Local<String> SourceGroup::ReadFile(Isolate* isolate, const char* name) {
int size;
char* chars = ReadChars(isolate, name, &size);
if (chars == NULL) return Local<String>();
Local<String> result =
String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
.ToLocalChecked();
delete[] chars;
return result;
}
base::Thread::Options SourceGroup::GetThreadOptions() {
// On some systems (OSX 10.6) the stack size default is 0.5Mb or less
// which is not enough to parse the big literal expressions used in tests.
// The stack size should be at least StackGuard::kLimitSize + some
// OS-specific padding for thread startup code. 2Mbytes seems to be enough.
return base::Thread::Options("IsolateThread", 2 * MB);
}
void SourceGroup::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
for (int i = 0; i < Shell::options.stress_runs; ++i) {
next_semaphore_.Wait();
{
Isolate::Scope iscope(isolate);
{
HandleScope scope(isolate);
PerIsolateData data(isolate);
Local<Context> context = Shell::CreateEvaluationContext(isolate);
{
Context::Scope cscope(context);
InspectorClient inspector_client(context,
Shell::options.enable_inspector);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Execute(isolate);
}
DisposeModuleEmbedderData(context);
}
Shell::CollectGarbage(isolate);
}
done_semaphore_.Signal();
}
isolate->Dispose();
}
void SourceGroup::StartExecuteInThread() {
if (thread_ == NULL) {
thread_ = new IsolateThread(this);
thread_->Start();
}
next_semaphore_.Signal();
}
void SourceGroup::WaitForThread() {
if (thread_ == NULL) return;
done_semaphore_.Wait();
}
void SourceGroup::JoinThread() {
if (thread_ == NULL) return;
thread_->Join();
}
SerializationData::~SerializationData() {
// Any ArrayBuffer::Contents are owned by this SerializationData object if
// ownership hasn't been transferred out via ReadArrayBufferContents.
// SharedArrayBuffer::Contents may be used by multiple threads, so must be
// cleaned up by the main thread in Shell::CleanupWorkers().
for (int i = 0; i < array_buffer_contents_.length(); ++i) {
ArrayBuffer::Contents& contents = array_buffer_contents_[i];
if (contents.Data()) {
Shell::array_buffer_allocator->Free(contents.Data(),
contents.ByteLength());
}
}
}
void SerializationData::WriteTag(SerializationTag tag) { data_.Add(tag); }
void SerializationData::WriteMemory(const void* p, int length) {
if (length > 0) {
i::Vector<uint8_t> block = data_.AddBlock(0, length);
memcpy(&block[0], p, length);
}
}
void SerializationData::WriteArrayBufferContents(
const ArrayBuffer::Contents& contents) {
array_buffer_contents_.Add(contents);
WriteTag(kSerializationTagTransferredArrayBuffer);
int index = array_buffer_contents_.length() - 1;
Write(index);
}
void SerializationData::WriteSharedArrayBufferContents(
const SharedArrayBuffer::Contents& contents) {
shared_array_buffer_contents_.Add(contents);
WriteTag(kSerializationTagTransferredSharedArrayBuffer);
int index = shared_array_buffer_contents_.length() - 1;
Write(index);
}
SerializationTag SerializationData::ReadTag(int* offset) const {
return static_cast<SerializationTag>(Read<uint8_t>(offset));
}
void SerializationData::ReadMemory(void* p, int length, int* offset) const {
if (length > 0) {
memcpy(p, &data_[*offset], length);
(*offset) += length;
}
}
void SerializationData::ReadArrayBufferContents(ArrayBuffer::Contents* contents,
int* offset) const {
int index = Read<int>(offset);
DCHECK(index < array_buffer_contents_.length());
*contents = array_buffer_contents_[index];
// Ownership of this ArrayBuffer::Contents is passed to the caller. Neuter
// our copy so it won't be double-free'd when this SerializationData is
// destroyed.
array_buffer_contents_[index] = ArrayBuffer::Contents();
}
void SerializationData::ReadSharedArrayBufferContents(
SharedArrayBuffer::Contents* contents, int* offset) const {
int index = Read<int>(offset);
DCHECK(index < shared_array_buffer_contents_.length());
*contents = shared_array_buffer_contents_[index];
}
void SerializationDataQueue::Enqueue(SerializationData* data) {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
data_.Add(data);
}
bool SerializationDataQueue::Dequeue(SerializationData** data) {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
*data = NULL;
if (data_.is_empty()) return false;
*data = data_.Remove(0);
return true;
}
bool SerializationDataQueue::IsEmpty() {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
return data_.is_empty();
}
void SerializationDataQueue::Clear() {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
for (int i = 0; i < data_.length(); ++i) {
delete data_[i];
}
data_.Clear();
}
Worker::Worker()
: in_semaphore_(0),
out_semaphore_(0),
thread_(NULL),
script_(NULL),
running_(false) {}
Worker::~Worker() {
delete thread_;
thread_ = NULL;
delete[] script_;
script_ = NULL;
in_queue_.Clear();
out_queue_.Clear();
}
void Worker::StartExecuteInThread(const char* script) {
running_ = true;
script_ = i::StrDup(script);
thread_ = new WorkerThread(this);
thread_->Start();
}
void Worker::PostMessage(SerializationData* data) {
in_queue_.Enqueue(data);
in_semaphore_.Signal();
}
SerializationData* Worker::GetMessage() {
SerializationData* data = NULL;
while (!out_queue_.Dequeue(&data)) {
// If the worker is no longer running, and there are no messages in the
// queue, don't expect any more messages from it.
if (!base::NoBarrier_Load(&running_)) break;
out_semaphore_.Wait();
}
return data;
}
void Worker::Terminate() {
base::NoBarrier_Store(&running_, false);
// Post NULL to wake the Worker thread message loop, and tell it to stop
// running.
PostMessage(NULL);
}
void Worker::WaitForThread() {
Terminate();
thread_->Join();
}
void Worker::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
{
Isolate::Scope iscope(isolate);
{
HandleScope scope(isolate);
PerIsolateData data(isolate);
Local<Context> context = Shell::CreateEvaluationContext(isolate);
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<Object> global = context->Global();
Local<Value> this_value = External::New(isolate, this);
Local<FunctionTemplate> postmessage_fun_template =
FunctionTemplate::New(isolate, PostMessageOut, this_value);
Local<Function> postmessage_fun;
if (postmessage_fun_template->GetFunction(context)
.ToLocal(&postmessage_fun)) {
global->Set(context, String::NewFromUtf8(isolate, "postMessage",
NewStringType::kNormal)
.ToLocalChecked(),
postmessage_fun).FromJust();
}
// First run the script
Local<String> file_name =
String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal)
.ToLocalChecked();
Local<String> source =
String::NewFromUtf8(isolate, script_, NewStringType::kNormal)
.ToLocalChecked();
if (Shell::ExecuteString(isolate, source, file_name, false, true)) {
// Get the message handler
Local<Value> onmessage =
global->Get(context, String::NewFromUtf8(isolate, "onmessage",
NewStringType::kNormal)
.ToLocalChecked()).ToLocalChecked();
if (onmessage->IsFunction()) {
Local<Function> onmessage_fun = Local<Function>::Cast(onmessage);
// Now wait for messages
while (true) {
in_semaphore_.Wait();
SerializationData* data;
if (!in_queue_.Dequeue(&data)) continue;
if (data == NULL) {
break;
}
int offset = 0;
Local<Value> data_value;
if (Shell::DeserializeValue(isolate, *data, &offset)
.ToLocal(&data_value)) {
Local<Value> argv[] = {data_value};
(void)onmessage_fun->Call(context, global, 1, argv);
}
delete data;
}
}
}
}
DisposeModuleEmbedderData(context);
}
Shell::CollectGarbage(isolate);
}
isolate->Dispose();
// Post NULL to wake the thread waiting on GetMessage() if there is one.
out_queue_.Enqueue(NULL);
out_semaphore_.Signal();
}
void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
Local<Value> message = args[0];
// TODO(binji): Allow transferring from worker to main thread?
Shell::ObjectList to_transfer;
Shell::ObjectList seen_objects;
SerializationData* data = new SerializationData;
if (Shell::SerializeValue(isolate, message, to_transfer, &seen_objects,
data)) {
DCHECK(args.Data()->IsExternal());
Local<External> this_value = Local<External>::Cast(args.Data());
Worker* worker = static_cast<Worker*>(this_value->Value());
worker->out_queue_.Enqueue(data);
worker->out_semaphore_.Signal();
} else {
delete data;
}
}
void SetFlagsFromString(const char* flags) {
v8::V8::SetFlagsFromString(flags, static_cast<int>(strlen(flags)));
}
bool Shell::SetOptions(int argc, char* argv[]) {
bool logfile_per_isolate = false;
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "--stress-opt") == 0) {
options.stress_opt = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--nostress-opt") == 0) {
options.stress_opt = false;
argv[i] = NULL;
} else if (strcmp(argv[i], "--stress-deopt") == 0) {
options.stress_deopt = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--mock-arraybuffer-allocator") == 0) {
options.mock_arraybuffer_allocator = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--noalways-opt") == 0) {
// No support for stressing if we can't use --always-opt.
options.stress_opt = false;
options.stress_deopt = false;
} else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
logfile_per_isolate = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--shell") == 0) {
options.interactive_shell = true;
argv[i] = NULL;