| // Copyright 2018 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef INCLUDE_V8_INTERNAL_H_ |
| #define INCLUDE_V8_INTERNAL_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <atomic> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <optional> |
| #include <type_traits> |
| |
| #include "v8config.h" // NOLINT(build/include_directory) |
| |
| // TODO(pkasting): Use <compare>/spaceship unconditionally after dropping |
| // support for old libstdc++ versions. |
| #if __has_include(<version>) |
| #include <version> |
| #endif |
| #if defined(__cpp_lib_three_way_comparison) && \ |
| __cpp_lib_three_way_comparison >= 201711L && \ |
| defined(__cpp_lib_concepts) && __cpp_lib_concepts >= 202002L |
| #include <compare> |
| #include <concepts> |
| |
| #define V8_HAVE_SPACESHIP_OPERATOR 1 |
| #else |
| #define V8_HAVE_SPACESHIP_OPERATOR 0 |
| #endif |
| |
| namespace v8 { |
| |
| class Array; |
| class Context; |
| class Data; |
| class Isolate; |
| |
| namespace internal { |
| |
| class Heap; |
| class LocalHeap; |
| class Isolate; |
| class IsolateGroup; |
| class LocalIsolate; |
| |
| typedef uintptr_t Address; |
| static constexpr Address kNullAddress = 0; |
| |
| constexpr int KB = 1024; |
| constexpr int MB = KB * 1024; |
| constexpr int GB = MB * 1024; |
| #ifdef V8_TARGET_ARCH_X64 |
| constexpr size_t TB = size_t{GB} * 1024; |
| #endif |
| |
| /** |
| * Configuration of tagging scheme. |
| */ |
| const int kApiSystemPointerSize = sizeof(void*); |
| const int kApiDoubleSize = sizeof(double); |
| const int kApiInt32Size = sizeof(int32_t); |
| const int kApiInt64Size = sizeof(int64_t); |
| const int kApiSizetSize = sizeof(size_t); |
| |
| // Tag information for HeapObject. |
| const int kHeapObjectTag = 1; |
| const int kWeakHeapObjectTag = 3; |
| const int kHeapObjectTagSize = 2; |
| const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; |
| const intptr_t kHeapObjectReferenceTagMask = 1 << (kHeapObjectTagSize - 1); |
| |
| // Tag information for fowarding pointers stored in object headers. |
| // 0b00 at the lowest 2 bits in the header indicates that the map word is a |
| // forwarding pointer. |
| const int kForwardingTag = 0; |
| const int kForwardingTagSize = 2; |
| const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1; |
| |
| // Tag information for Smi. |
| const int kSmiTag = 0; |
| const int kSmiTagSize = 1; |
| const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; |
| |
| template <size_t tagged_ptr_size> |
| struct SmiTagging; |
| |
| constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1}; |
| constexpr uintptr_t kUintptrAllBitsSet = |
| static_cast<uintptr_t>(kIntptrAllBitsSet); |
| |
| // Smi constants for systems where tagged pointer is a 32-bit value. |
| template <> |
| struct SmiTagging<4> { |
| enum { kSmiShiftSize = 0, kSmiValueSize = 31 }; |
| |
| static constexpr intptr_t kSmiMinValue = |
| static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1)); |
| static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1); |
| |
| V8_INLINE static constexpr int SmiToInt(Address value) { |
| int shift_bits = kSmiTagSize + kSmiShiftSize; |
| // Truncate and shift down (requires >> to be sign extending). |
| return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits; |
| } |
| |
| template <class T, typename std::enable_if_t<std::is_integral_v<T> && |
| std::is_signed_v<T>>* = nullptr> |
| V8_INLINE static constexpr bool IsValidSmi(T value) { |
| // Is value in range [kSmiMinValue, kSmiMaxValue]. |
| // Use unsigned operations in order to avoid undefined behaviour in case of |
| // signed integer overflow. |
| return (static_cast<uintptr_t>(value) - |
| static_cast<uintptr_t>(kSmiMinValue)) <= |
| (static_cast<uintptr_t>(kSmiMaxValue) - |
| static_cast<uintptr_t>(kSmiMinValue)); |
| } |
| |
| template <class T, |
| typename std::enable_if_t<std::is_integral_v<T> && |
| std::is_unsigned_v<T>>* = nullptr> |
| V8_INLINE static constexpr bool IsValidSmi(T value) { |
| static_assert(kSmiMaxValue <= std::numeric_limits<uintptr_t>::max()); |
| return value <= static_cast<uintptr_t>(kSmiMaxValue); |
| } |
| |
| // Same as the `intptr_t` version but works with int64_t on 32-bit builds |
| // without slowing down anything else. |
| V8_INLINE static constexpr bool IsValidSmi(int64_t value) { |
| return (static_cast<uint64_t>(value) - |
| static_cast<uint64_t>(kSmiMinValue)) <= |
| (static_cast<uint64_t>(kSmiMaxValue) - |
| static_cast<uint64_t>(kSmiMinValue)); |
| } |
| |
| V8_INLINE static constexpr bool IsValidSmi(uint64_t value) { |
| static_assert(kSmiMaxValue <= std::numeric_limits<uint64_t>::max()); |
| return value <= static_cast<uint64_t>(kSmiMaxValue); |
| } |
| }; |
| |
| // Smi constants for systems where tagged pointer is a 64-bit value. |
| template <> |
| struct SmiTagging<8> { |
| enum { kSmiShiftSize = 31, kSmiValueSize = 32 }; |
| |
| static constexpr intptr_t kSmiMinValue = |
| static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1)); |
| static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1); |
| |
| V8_INLINE static constexpr int SmiToInt(Address value) { |
| int shift_bits = kSmiTagSize + kSmiShiftSize; |
| // Shift down and throw away top 32 bits. |
| return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits); |
| } |
| |
| template <class T, typename std::enable_if_t<std::is_integral_v<T> && |
| std::is_signed_v<T>>* = nullptr> |
| V8_INLINE static constexpr bool IsValidSmi(T value) { |
| // To be representable as a long smi, the value must be a 32-bit integer. |
| return std::numeric_limits<int32_t>::min() <= value && |
| value <= std::numeric_limits<int32_t>::max(); |
| } |
| |
| template <class T, |
| typename std::enable_if_t<std::is_integral_v<T> && |
| std::is_unsigned_v<T>>* = nullptr> |
| V8_INLINE static constexpr bool IsValidSmi(T value) { |
| return value <= std::numeric_limits<int32_t>::max(); |
| } |
| }; |
| |
| #ifdef V8_COMPRESS_POINTERS |
| // See v8:7703 or src/common/ptr-compr-inl.h for details about pointer |
| // compression. |
| constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32; |
| constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32; |
| |
| static_assert( |
| kApiSystemPointerSize == kApiInt64Size, |
| "Pointer compression can be enabled only for 64-bit architectures"); |
| const int kApiTaggedSize = kApiInt32Size; |
| #else |
| const int kApiTaggedSize = kApiSystemPointerSize; |
| #endif |
| |
| constexpr bool PointerCompressionIsEnabled() { |
| return kApiTaggedSize != kApiSystemPointerSize; |
| } |
| |
| #ifdef V8_31BIT_SMIS_ON_64BIT_ARCH |
| using PlatformSmiTagging = SmiTagging<kApiInt32Size>; |
| #else |
| using PlatformSmiTagging = SmiTagging<kApiTaggedSize>; |
| #endif |
| |
| // TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize |
| // since it's used much more often than the inividual constants. |
| const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; |
| const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; |
| const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue); |
| const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue); |
| constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; } |
| constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; } |
| constexpr bool Is64() { return kApiSystemPointerSize == sizeof(int64_t); } |
| |
| V8_INLINE static constexpr Address IntToSmi(int value) { |
| return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) | |
| kSmiTag; |
| } |
| |
| /* |
| * Sandbox related types, constants, and functions. |
| */ |
| constexpr bool SandboxIsEnabled() { |
| #ifdef V8_ENABLE_SANDBOX |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| // SandboxedPointers are guaranteed to point into the sandbox. This is achieved |
| // for example by storing them as offset rather than as raw pointers. |
| using SandboxedPointer_t = Address; |
| |
| #ifdef V8_ENABLE_SANDBOX |
| |
| // Size of the sandbox, excluding the guard regions surrounding it. |
| #if defined(V8_TARGET_OS_ANDROID) |
| // On Android, most 64-bit devices seem to be configured with only 39 bits of |
| // virtual address space for userspace. As such, limit the sandbox to 128GB (a |
| // quarter of the total available address space). |
| constexpr size_t kSandboxSizeLog2 = 37; // 128 GB |
| #else |
| // Everywhere else use a 1TB sandbox. |
| constexpr size_t kSandboxSizeLog2 = 40; // 1 TB |
| #endif // V8_TARGET_OS_ANDROID |
| constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2; |
| |
| // Required alignment of the sandbox. For simplicity, we require the |
| // size of the guard regions to be a multiple of this, so that this specifies |
| // the alignment of the sandbox including and excluding surrounding guard |
| // regions. The alignment requirement is due to the pointer compression cage |
| // being located at the start of the sandbox. |
| constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment; |
| |
| // Sandboxed pointers are stored inside the heap as offset from the sandbox |
| // base shifted to the left. This way, it is guaranteed that the offset is |
| // smaller than the sandbox size after shifting it to the right again. This |
| // constant specifies the shift amount. |
| constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2; |
| |
| // Size of the guard regions surrounding the sandbox. This assumes a worst-case |
| // scenario of a 32-bit unsigned index used to access an array of 64-bit values |
| // with an additional 4GB (compressed pointer) offset. In particular, accesses |
| // to TypedArrays are effectively computed as |
| // `entry_pointer = array->base + array->offset + index * array->element_size`. |
| // See also https://crbug.com/40070746 for more details. |
| constexpr size_t kSandboxGuardRegionSize = 32ULL * GB + 4ULL * GB; |
| |
| static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0, |
| "The size of the guard regions around the sandbox must be a " |
| "multiple of its required alignment."); |
| |
| // On OSes where reserving virtual memory is too expensive to reserve the |
| // entire address space backing the sandbox, notably Windows pre 8.1, we create |
| // a partially reserved sandbox that doesn't actually reserve most of the |
| // memory, and so doesn't have the desired security properties as unrelated |
| // memory allocations could end up inside of it, but which still ensures that |
| // objects that should be located inside the sandbox are allocated within |
| // kSandboxSize bytes from the start of the sandbox. The minimum size of the |
| // region that is actually reserved for such a sandbox is specified by this |
| // constant and should be big enough to contain the pointer compression cage as |
| // well as the ArrayBuffer partition. |
| constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB; |
| |
| static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize, |
| "The minimum reservation size for a sandbox must be larger than " |
| "the pointer compression cage contained within it."); |
| |
| // The maximum buffer size allowed inside the sandbox. This is mostly dependent |
| // on the size of the guard regions around the sandbox: an attacker must not be |
| // able to construct a buffer that appears larger than the guard regions and |
| // thereby "reach out of" the sandbox. |
| constexpr size_t kMaxSafeBufferSizeForSandbox = 32ULL * GB - 1; |
| static_assert(kMaxSafeBufferSizeForSandbox <= kSandboxGuardRegionSize, |
| "The maximum allowed buffer size must not be larger than the " |
| "sandbox's guard regions"); |
| |
| constexpr size_t kBoundedSizeShift = 29; |
| static_assert(1ULL << (64 - kBoundedSizeShift) == |
| kMaxSafeBufferSizeForSandbox + 1, |
| "The maximum size of a BoundedSize must be synchronized with the " |
| "kMaxSafeBufferSizeForSandbox"); |
| |
| #endif // V8_ENABLE_SANDBOX |
| |
| #ifdef V8_COMPRESS_POINTERS |
| |
| #ifdef V8_TARGET_OS_ANDROID |
| // The size of the virtual memory reservation for an external pointer table. |
| // This determines the maximum number of entries in a table. Using a maximum |
| // size allows omitting bounds checks on table accesses if the indices are |
| // guaranteed (e.g. through shifting) to be below the maximum index. This |
| // value must be a power of two. |
| constexpr size_t kExternalPointerTableReservationSize = 256 * MB; |
| |
| // The external pointer table indices stored in HeapObjects as external |
| // pointers are shifted to the left by this amount to guarantee that they are |
| // smaller than the maximum table size even after the C++ compiler multiplies |
| // them by 8 to be used as indexes into a table of 64 bit pointers. |
| constexpr uint32_t kExternalPointerIndexShift = 7; |
| #else |
| constexpr size_t kExternalPointerTableReservationSize = 512 * MB; |
| constexpr uint32_t kExternalPointerIndexShift = 6; |
| #endif // V8_TARGET_OS_ANDROID |
| |
| // The maximum number of entries in an external pointer table. |
| constexpr int kExternalPointerTableEntrySize = 8; |
| constexpr int kExternalPointerTableEntrySizeLog2 = 3; |
| constexpr size_t kMaxExternalPointers = |
| kExternalPointerTableReservationSize / kExternalPointerTableEntrySize; |
| static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxExternalPointers, |
| "kExternalPointerTableReservationSize and " |
| "kExternalPointerIndexShift don't match"); |
| |
| #else // !V8_COMPRESS_POINTERS |
| |
| // Needed for the V8.SandboxedExternalPointersCount histogram. |
| constexpr size_t kMaxExternalPointers = 0; |
| |
| #endif // V8_COMPRESS_POINTERS |
| |
| constexpr uint64_t kExternalPointerMarkBit = 1ULL << 48; |
| constexpr uint64_t kExternalPointerTagShift = 49; |
| constexpr uint64_t kExternalPointerTagMask = 0x00fe000000000000ULL; |
| constexpr uint64_t kExternalPointerShiftedTagMask = |
| kExternalPointerTagMask >> kExternalPointerTagShift; |
| static_assert(kExternalPointerShiftedTagMask << kExternalPointerTagShift == |
| kExternalPointerTagMask); |
| constexpr uint64_t kExternalPointerTagAndMarkbitMask = 0x00ff000000000000ULL; |
| constexpr uint64_t kExternalPointerPayloadMask = 0xff00ffffffffffffULL; |
| |
| // A ExternalPointerHandle represents a (opaque) reference to an external |
| // pointer that can be stored inside the sandbox. A ExternalPointerHandle has |
| // meaning only in combination with an (active) Isolate as it references an |
| // external pointer stored in the currently active Isolate's |
| // ExternalPointerTable. Internally, an ExternalPointerHandles is simply an |
| // index into an ExternalPointerTable that is shifted to the left to guarantee |
| // that it is smaller than the size of the table. |
| using ExternalPointerHandle = uint32_t; |
| |
| // ExternalPointers point to objects located outside the sandbox. When the V8 |
| // sandbox is enabled, these are stored on heap as ExternalPointerHandles, |
| // otherwise they are simply raw pointers. |
| #ifdef V8_ENABLE_SANDBOX |
| using ExternalPointer_t = ExternalPointerHandle; |
| #else |
| using ExternalPointer_t = Address; |
| #endif |
| |
| constexpr ExternalPointer_t kNullExternalPointer = 0; |
| constexpr ExternalPointerHandle kNullExternalPointerHandle = 0; |
| |
| // See `ExternalPointerHandle` for the main documentation. The difference to |
| // `ExternalPointerHandle` is that the handle does not represent an arbitrary |
| // external pointer but always refers to an object managed by `CppHeap`. The |
| // handles are using in combination with a dedicated table for `CppHeap` |
| // references. |
| using CppHeapPointerHandle = uint32_t; |
| |
| // The actual pointer to objects located on the `CppHeap`. When pointer |
| // compression is enabled these pointers are stored as `CppHeapPointerHandle`. |
| // In non-compressed configurations the pointers are simply stored as raw |
| // pointers. |
| #ifdef V8_COMPRESS_POINTERS |
| using CppHeapPointer_t = CppHeapPointerHandle; |
| #else |
| using CppHeapPointer_t = Address; |
| #endif |
| |
| constexpr CppHeapPointer_t kNullCppHeapPointer = 0; |
| constexpr CppHeapPointerHandle kNullCppHeapPointerHandle = 0; |
| |
| constexpr uint64_t kCppHeapPointerMarkBit = 1ULL; |
| constexpr uint64_t kCppHeapPointerTagShift = 1; |
| constexpr uint64_t kCppHeapPointerPayloadShift = 16; |
| |
| #ifdef V8_COMPRESS_POINTERS |
| // CppHeapPointers use a dedicated pointer table. These constants control the |
| // size and layout of the table. See the corresponding constants for the |
| // external pointer table for further details. |
| constexpr size_t kCppHeapPointerTableReservationSize = |
| kExternalPointerTableReservationSize; |
| constexpr uint32_t kCppHeapPointerIndexShift = kExternalPointerIndexShift; |
| |
| constexpr int kCppHeapPointerTableEntrySize = 8; |
| constexpr int kCppHeapPointerTableEntrySizeLog2 = 3; |
| constexpr size_t kMaxCppHeapPointers = |
| kCppHeapPointerTableReservationSize / kCppHeapPointerTableEntrySize; |
| static_assert((1 << (32 - kCppHeapPointerIndexShift)) == kMaxCppHeapPointers, |
| "kCppHeapPointerTableReservationSize and " |
| "kCppHeapPointerIndexShift don't match"); |
| |
| #else // !V8_COMPRESS_POINTERS |
| |
| // Needed for the V8.SandboxedCppHeapPointersCount histogram. |
| constexpr size_t kMaxCppHeapPointers = 0; |
| |
| #endif // V8_COMPRESS_POINTERS |
| |
| // Generic tag range struct to represent ranges of type tags. |
| // |
| // When referencing external objects via pointer tables, type tags are |
| // frequently necessary to guarantee type safety for the external objects. When |
| // support for subtyping is necessary, range-based type checks are used in |
| // which all subtypes of a given supertype use contiguous tags. This struct can |
| // then be used to represent such a type range. |
| // |
| // As an example, consider the following type hierarchy: |
| // |
| // A F |
| // / \ |
| // B E |
| // / \ |
| // C D |
| // |
| // A potential type id assignment for range-based type checks is |
| // {A: 0, B: 1, C: 2, D: 3, E: 4, F: 5}. With that, the type check for type A |
| // would check for the range [A, E], while the check for B would check range |
| // [B, D], and for F it would simply check [F, F]. |
| // |
| // In addition, there is an option for performance tweaks: if the size of the |
| // type range corresponding to a supertype is a power of two and starts at a |
| // power of two (e.g. [0x100, 0x13f]), then the compiler can often optimize |
| // the type check to use even fewer instructions (essentially replace a AND + |
| // SUB with a single AND). |
| // |
| template <typename Tag> |
| struct TagRange { |
| static_assert(std::is_enum_v<Tag> && |
| std::is_same_v<std::underlying_type_t<Tag>, uint16_t>, |
| "Tag parameter must be an enum with base type uint16_t"); |
| |
| // Construct the inclusive tag range [first, last]. |
| constexpr TagRange(Tag first, Tag last) : first(first), last(last) {} |
| |
| // Construct a tag range consisting of a single tag. |
| // |
| // A single tag is always implicitly convertible to a tag range. This greatly |
| // increases readability as most of the time, the exact tag of a field is |
| // known and so no tag range needs to explicitly be created for it. |
| constexpr TagRange(Tag tag) // NOLINT(runtime/explicit) |
| : first(tag), last(tag) {} |
| |
| // Construct an empty tag range. |
| constexpr TagRange() : TagRange(static_cast<Tag>(0)) {} |
| |
| // A tag range is considered empty if it only contains the null tag. |
| constexpr bool IsEmpty() const { return first == 0 && last == 0; } |
| |
| constexpr size_t Size() const { |
| if (IsEmpty()) { |
| return 0; |
| } else { |
| return last - first + 1; |
| } |
| } |
| |
| constexpr bool Contains(Tag tag) const { |
| // Need to perform the math with uint32_t. Otherwise, the uint16_ts would |
| // be promoted to (signed) int, allowing the compiler to (wrongly) assume |
| // that an underflow cannot happen as that would be undefined behavior. |
| return static_cast<uint32_t>(tag) - first <= |
| static_cast<uint32_t>(last) - first; |
| } |
| |
| constexpr bool Contains(TagRange tag_range) const { |
| return tag_range.first >= first && tag_range.last <= last; |
| } |
| |
| constexpr bool operator==(const TagRange other) const { |
| return first == other.first && last == other.last; |
| } |
| |
| constexpr size_t hash_value() const { |
| static_assert(std::is_same_v<std::underlying_type_t<Tag>, uint16_t>); |
| return (static_cast<size_t>(first) << 16) | last; |
| } |
| |
| // Internally we represent tag ranges as half-open ranges [first, last). |
| const Tag first; |
| const Tag last; |
| }; |
| |
| // |
| // External Pointers. |
| // |
| // When the sandbox is enabled, external pointers are stored in an external |
| // pointer table and are referenced from HeapObjects through an index (a |
| // "handle"). When stored in the table, the pointers are tagged with per-type |
| // tags to prevent type confusion attacks between different external objects. |
| // |
| // When loading an external pointer, a range of allowed tags can be specified. |
| // This way, type hierarchies can be supported. The main requirement for that |
| // is that all (transitive) child classes of a given parent class have type ids |
| // in the same range, and that there are no unrelated types in that range. For |
| // more details about how to assign type tags to types, see the TagRange class. |
| // |
| // The external pointer sandboxing mechanism ensures that every access to an |
| // external pointer field will result in a valid pointer of the expected type |
| // even in the presence of an attacker able to corrupt memory inside the |
| // sandbox. However, if any data related to the external object is stored |
| // inside the sandbox it may still be corrupted and so must be validated before |
| // use or moved into the external object. Further, an attacker will always be |
| // able to substitute different external pointers of the same type for each |
| // other. Therefore, code using external pointers must be written in a |
| // "substitution-safe" way, i.e. it must always be possible to substitute |
| // external pointers of the same type without causing memory corruption outside |
| // of the sandbox. Generally this is achieved by referencing any group of |
| // related external objects through a single external pointer. |
| // |
| // Currently we use bit 62 for the marking bit which should always be unused as |
| // it's part of the non-canonical address range. When Arm's top-byte ignore |
| // (TBI) is enabled, this bit will be part of the ignored byte, and we assume |
| // that the Embedder is not using this byte (really only this one bit) for any |
| // other purpose. This bit also does not collide with the memory tagging |
| // extension (MTE) which would use bits [56, 60). |
| // |
| // External pointer tables are also available even when the sandbox is off but |
| // pointer compression is on. In that case, the mechanism can be used to ease |
| // alignment requirements as it turns unaligned 64-bit raw pointers into |
| // aligned 32-bit indices. To "opt-in" to the external pointer table mechanism |
| // for this purpose, instead of using the ExternalPointer accessors one needs to |
| // use ExternalPointerHandles directly and use them to access the pointers in an |
| // ExternalPointerTable. |
| // |
| // The tag is currently in practice limited to 15 bits since it needs to fit |
| // together with a marking bit into the unused parts of a pointer. |
| enum ExternalPointerTag : uint16_t { |
| kFirstExternalPointerTag = 0, |
| kExternalPointerNullTag = 0, |
| |
| // When adding new tags, please ensure that the code using these tags is |
| // "substitution-safe", i.e. still operate safely if external pointers of the |
| // same type are swapped by an attacker. See comment above for more details. |
| |
| // Shared external pointers are owned by the shared Isolate and stored in the |
| // shared external pointer table associated with that Isolate, where they can |
| // be accessed from multiple threads at the same time. The objects referenced |
| // in this way must therefore always be thread-safe. |
| kFirstSharedExternalPointerTag, |
| kWaiterQueueNodeTag = kFirstSharedExternalPointerTag, |
| kExternalStringResourceTag, |
| kExternalStringResourceDataTag, |
| kLastSharedExternalPointerTag = kExternalStringResourceDataTag, |
| |
| // External pointers using these tags are kept in a per-Isolate external |
| // pointer table and can only be accessed when this Isolate is active. |
| kNativeContextMicrotaskQueueTag, |
| kEmbedderDataSlotPayloadTag, |
| // This tag essentially stands for a `void*` pointer in the V8 API, and it is |
| // the Embedder's responsibility to ensure type safety (against substitution) |
| // and lifetime validity of these objects. |
| kExternalObjectValueTag, |
| kFirstMaybeReadOnlyExternalPointerTag, |
| kFunctionTemplateInfoCallbackTag = kFirstMaybeReadOnlyExternalPointerTag, |
| kAccessorInfoGetterTag, |
| kAccessorInfoSetterTag, |
| kLastMaybeReadOnlyExternalPointerTag = kAccessorInfoSetterTag, |
| kWasmInternalFunctionCallTargetTag, |
| kWasmTypeInfoNativeTypeTag, |
| kWasmExportedFunctionDataSignatureTag, |
| kWasmStackMemoryTag, |
| kWasmIndirectFunctionTargetTag, |
| |
| // Foreigns |
| kFirstForeignExternalPointerTag, |
| kGenericForeignTag = kFirstForeignExternalPointerTag, |
| kApiNamedPropertyQueryCallbackTag, |
| kApiNamedPropertyGetterCallbackTag, |
| kApiNamedPropertySetterCallbackTag, |
| kApiNamedPropertyDescriptorCallbackTag, |
| kApiNamedPropertyDefinerCallbackTag, |
| kApiNamedPropertyDeleterCallbackTag, |
| kApiIndexedPropertyQueryCallbackTag, |
| kApiIndexedPropertyGetterCallbackTag, |
| kApiIndexedPropertySetterCallbackTag, |
| kApiIndexedPropertyDescriptorCallbackTag, |
| kApiIndexedPropertyDefinerCallbackTag, |
| kApiIndexedPropertyDeleterCallbackTag, |
| kApiIndexedPropertyEnumeratorCallbackTag, |
| kApiAccessCheckCallbackTag, |
| kApiAbortScriptExecutionCallbackTag, |
| kSyntheticModuleTag, |
| kMicrotaskCallbackTag, |
| kMicrotaskCallbackDataTag, |
| kCFunctionTag, |
| kCFunctionInfoTag, |
| kMessageListenerTag, |
| kWaiterQueueForeignTag, |
| |
| // Managed |
| kFirstManagedResourceTag, |
| kFirstManagedExternalPointerTag = kFirstManagedResourceTag, |
| kGenericManagedTag = kFirstManagedExternalPointerTag, |
| kWasmWasmStreamingTag, |
| kWasmFuncDataTag, |
| kWasmManagedDataTag, |
| kWasmNativeModuleTag, |
| kIcuBreakIteratorTag, |
| kIcuUnicodeStringTag, |
| kIcuListFormatterTag, |
| kIcuLocaleTag, |
| kIcuSimpleDateFormatTag, |
| kIcuDateIntervalFormatTag, |
| kIcuRelativeDateTimeFormatterTag, |
| kIcuLocalizedNumberFormatterTag, |
| kIcuPluralRulesTag, |
| kIcuCollatorTag, |
| kDisplayNamesInternalTag, |
| kD8WorkerTag, |
| kD8ModuleEmbedderDataTag, |
| kLastForeignExternalPointerTag = kD8ModuleEmbedderDataTag, |
| kLastManagedExternalPointerTag = kLastForeignExternalPointerTag, |
| // External resources whose lifetime is tied to their entry in the external |
| // pointer table but which are not referenced via a Managed |
| kArrayBufferExtensionTag, |
| kLastManagedResourceTag = kArrayBufferExtensionTag, |
| |
| kExternalPointerZappedEntryTag = 0x7d, |
| kExternalPointerEvacuationEntryTag = 0x7e, |
| kExternalPointerFreeEntryTag = 0x7f, |
| // The tags are limited to 7 bits, so the last tag is 0x7f. |
| kLastExternalPointerTag = 0x7f, |
| }; |
| |
| using ExternalPointerTagRange = TagRange<ExternalPointerTag>; |
| |
| constexpr ExternalPointerTagRange kAnyExternalPointerTagRange( |
| kFirstExternalPointerTag, kLastExternalPointerTag); |
| constexpr ExternalPointerTagRange kAnySharedExternalPointerTagRange( |
| kFirstSharedExternalPointerTag, kLastSharedExternalPointerTag); |
| constexpr ExternalPointerTagRange kAnyForeignExternalPointerTagRange( |
| kFirstForeignExternalPointerTag, kLastForeignExternalPointerTag); |
| constexpr ExternalPointerTagRange kAnyManagedExternalPointerTagRange( |
| kFirstManagedExternalPointerTag, kLastManagedExternalPointerTag); |
| constexpr ExternalPointerTagRange kAnyMaybeReadOnlyExternalPointerTagRange( |
| kFirstMaybeReadOnlyExternalPointerTag, |
| kLastMaybeReadOnlyExternalPointerTag); |
| constexpr ExternalPointerTagRange kAnyManagedResourceExternalPointerTag( |
| kFirstManagedResourceTag, kLastManagedResourceTag); |
| |
| // True if the external pointer must be accessed from the shared isolate's |
| // external pointer table. |
| V8_INLINE static constexpr bool IsSharedExternalPointerType( |
| ExternalPointerTagRange tag_range) { |
| return kAnySharedExternalPointerTagRange.Contains(tag_range); |
| } |
| |
| // True if the external pointer may live in a read-only object, in which case |
| // the table entry will be in the shared read-only segment of the external |
| // pointer table. |
| V8_INLINE static constexpr bool IsMaybeReadOnlyExternalPointerType( |
| ExternalPointerTagRange tag_range) { |
| return kAnyMaybeReadOnlyExternalPointerTagRange.Contains(tag_range); |
| } |
| |
| // True if the external pointer references an external object whose lifetime is |
| // tied to the entry in the external pointer table. |
| // In this case, the entry in the ExternalPointerTable always points to an |
| // object derived from ExternalPointerTable::ManagedResource. |
| V8_INLINE static constexpr bool IsManagedExternalPointerType( |
| ExternalPointerTagRange tag_range) { |
| return kAnyManagedResourceExternalPointerTag.Contains(tag_range); |
| } |
| |
| // When an external poiner field can contain the null external pointer handle, |
| // the type checking mechanism needs to also check for null. |
| // TODO(saelo): this is mostly a temporary workaround to introduce range-based |
| // type checks. In the future, we should either (a) change the type tagging |
| // scheme so that null always passes or (b) (more likely) introduce dedicated |
| // null entries for those tags that need them (similar to other well-known |
| // empty value constants such as the empty fixed array). |
| V8_INLINE static constexpr bool ExternalPointerCanBeEmpty( |
| ExternalPointerTagRange tag_range) { |
| return tag_range.Contains(kArrayBufferExtensionTag) || |
| tag_range.Contains(kEmbedderDataSlotPayloadTag); |
| } |
| |
| // Indirect Pointers. |
| // |
| // When the sandbox is enabled, indirect pointers are used to reference |
| // HeapObjects that live outside of the sandbox (but are still managed by V8's |
| // garbage collector). When object A references an object B through an indirect |
| // pointer, object A will contain a IndirectPointerHandle, i.e. a shifted |
| // 32-bit index, which identifies an entry in a pointer table (either the |
| // trusted pointer table for TrustedObjects, or the code pointer table if it is |
| // a Code object). This table entry then contains the actual pointer to object |
| // B. Further, object B owns this pointer table entry, and it is responsible |
| // for updating the "self-pointer" in the entry when it is relocated in memory. |
| // This way, in contrast to "normal" pointers, indirect pointers never need to |
| // be tracked by the GC (i.e. there is no remembered set for them). |
| // These pointers do not exist when the sandbox is disabled. |
| |
| // An IndirectPointerHandle represents a 32-bit index into a pointer table. |
| using IndirectPointerHandle = uint32_t; |
| |
| // A null handle always references an entry that contains nullptr. |
| constexpr IndirectPointerHandle kNullIndirectPointerHandle = 0; |
| |
| // When the sandbox is enabled, indirect pointers are used to implement: |
| // - TrustedPointers: an indirect pointer using the trusted pointer table (TPT) |
| // and referencing a TrustedObject in one of the trusted heap spaces. |
| // - CodePointers, an indirect pointer using the code pointer table (CPT) and |
| // referencing a Code object together with its instruction stream. |
| |
| // |
| // Trusted Pointers. |
| // |
| // A pointer to a TrustedObject. |
| // When the sandbox is enabled, these are indirect pointers using the trusted |
| // pointer table (TPT). They are used to reference trusted objects (located in |
| // one of V8's trusted heap spaces, outside of the sandbox) from inside the |
| // sandbox in a memory-safe way. When the sandbox is disabled, these are |
| // regular tagged pointers. |
| using TrustedPointerHandle = IndirectPointerHandle; |
| |
| // The size of the virtual memory reservation for the trusted pointer table. |
| // As with the external pointer table, a maximum table size in combination with |
| // shifted indices allows omitting bounds checks. |
| constexpr size_t kTrustedPointerTableReservationSize = 64 * MB; |
| |
| // The trusted pointer handles are stored shifted to the left by this amount |
| // to guarantee that they are smaller than the maximum table size. |
| constexpr uint32_t kTrustedPointerHandleShift = 9; |
| |
| // A null handle always references an entry that contains nullptr. |
| constexpr TrustedPointerHandle kNullTrustedPointerHandle = |
| kNullIndirectPointerHandle; |
| |
| // The maximum number of entries in an trusted pointer table. |
| constexpr int kTrustedPointerTableEntrySize = 8; |
| constexpr int kTrustedPointerTableEntrySizeLog2 = 3; |
| constexpr size_t kMaxTrustedPointers = |
| kTrustedPointerTableReservationSize / kTrustedPointerTableEntrySize; |
| static_assert((1 << (32 - kTrustedPointerHandleShift)) == kMaxTrustedPointers, |
| "kTrustedPointerTableReservationSize and " |
| "kTrustedPointerHandleShift don't match"); |
| |
| // |
| // Code Pointers. |
| // |
| // A pointer to a Code object. |
| // Essentially a specialized version of a trusted pointer that (when the |
| // sandbox is enabled) uses the code pointer table (CPT) instead of the TPT. |
| // Each entry in the CPT contains both a pointer to a Code object as well as a |
| // pointer to the Code's entrypoint. This allows calling/jumping into Code with |
| // one fewer memory access (compared to the case where the entrypoint pointer |
| // first needs to be loaded from the Code object). As such, a CodePointerHandle |
| // can be used both to obtain the referenced Code object and to directly load |
| // its entrypoint. |
| // |
| // When the sandbox is disabled, these are regular tagged pointers. |
| using CodePointerHandle = IndirectPointerHandle; |
| |
| // The size of the virtual memory reservation for the code pointer table. |
| // As with the other tables, a maximum table size in combination with shifted |
| // indices allows omitting bounds checks. |
| constexpr size_t kCodePointerTableReservationSize = 128 * MB; |
| |
| // Code pointer handles are shifted by a different amount than indirect pointer |
| // handles as the tables have a different maximum size. |
| constexpr uint32_t kCodePointerHandleShift = 9; |
| |
| // A null handle always references an entry that contains nullptr. |
| constexpr CodePointerHandle kNullCodePointerHandle = kNullIndirectPointerHandle; |
| |
| // It can sometimes be necessary to distinguish a code pointer handle from a |
| // trusted pointer handle. A typical example would be a union trusted pointer |
| // field that can refer to both Code objects and other trusted objects. To |
| // support these use-cases, we use a simple marking scheme where some of the |
| // low bits of a code pointer handle are set, while they will be unset on a |
| // trusted pointer handle. This way, the correct table to resolve the handle |
| // can be determined even in the absence of a type tag. |
| constexpr uint32_t kCodePointerHandleMarker = 0x1; |
| static_assert(kCodePointerHandleShift > 0); |
| static_assert(kTrustedPointerHandleShift > 0); |
| |
| // The maximum number of entries in a code pointer table. |
| constexpr int kCodePointerTableEntrySize = 16; |
| constexpr int kCodePointerTableEntrySizeLog2 = 4; |
| constexpr size_t kMaxCodePointers = |
| kCodePointerTableReservationSize / kCodePointerTableEntrySize; |
| static_assert( |
| (1 << (32 - kCodePointerHandleShift)) == kMaxCodePointers, |
| "kCodePointerTableReservationSize and kCodePointerHandleShift don't match"); |
| |
| constexpr int kCodePointerTableEntryEntrypointOffset = 0; |
| constexpr int kCodePointerTableEntryCodeObjectOffset = 8; |
| |
| // Constants that can be used to mark places that should be modified once |
| // certain types of objects are moved out of the sandbox and into trusted space. |
| constexpr bool kRuntimeGeneratedCodeObjectsLiveInTrustedSpace = true; |
| constexpr bool kBuiltinCodeObjectsLiveInTrustedSpace = false; |
| constexpr bool kAllCodeObjectsLiveInTrustedSpace = |
| kRuntimeGeneratedCodeObjectsLiveInTrustedSpace && |
| kBuiltinCodeObjectsLiveInTrustedSpace; |
| |
| // {obj} must be the raw tagged pointer representation of a HeapObject |
| // that's guaranteed to never be in ReadOnlySpace. |
| V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj); |
| |
| // Returns if we need to throw when an error occurs. This infers the language |
| // mode based on the current context and the closure. This returns true if the |
| // language mode is strict. |
| V8_EXPORT bool ShouldThrowOnError(internal::Isolate* isolate); |
| /** |
| * This class exports constants and functionality from within v8 that |
| * is necessary to implement inline functions in the v8 api. Don't |
| * depend on functions and constants defined here. |
| */ |
| class Internals { |
| #ifdef V8_MAP_PACKING |
| V8_INLINE static constexpr Address UnpackMapWord(Address mapword) { |
| // TODO(wenyuzhao): Clear header metadata. |
| return mapword ^ kMapWordXorMask; |
| } |
| #endif |
| |
| public: |
| // These values match non-compiler-dependent values defined within |
| // the implementation of v8. |
| static const int kHeapObjectMapOffset = 0; |
| static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size; |
| static const int kStringResourceOffset = |
| 1 * kApiTaggedSize + 2 * kApiInt32Size; |
| |
| static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize; |
| static const int kJSObjectHeaderSize = 3 * kApiTaggedSize; |
| #ifdef V8_COMPRESS_POINTERS |
| static const int kJSAPIObjectWithEmbedderSlotsHeaderSize = |
| kJSObjectHeaderSize + kApiInt32Size; |
| #else // !V8_COMPRESS_POINTERS |
| static const int kJSAPIObjectWithEmbedderSlotsHeaderSize = |
| kJSObjectHeaderSize + kApiTaggedSize; |
| #endif // !V8_COMPRESS_POINTERS |
| static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize; |
| static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize; |
| static const int kEmbedderDataSlotSize = kApiSystemPointerSize; |
| #ifdef V8_ENABLE_SANDBOX |
| static const int kEmbedderDataSlotExternalPointerOffset = kApiTaggedSize; |
| #else |
| static const int kEmbedderDataSlotExternalPointerOffset = 0; |
| #endif |
| static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize; |
| static const int kStringRepresentationAndEncodingMask = 0x0f; |
| static const int kStringEncodingMask = 0x8; |
| static const int kExternalTwoByteRepresentationTag = 0x02; |
| static const int kExternalOneByteRepresentationTag = 0x0a; |
| |
| static const uint32_t kNumIsolateDataSlots = 4; |
| static const int kStackGuardSize = 8 * kApiSystemPointerSize; |
| static const int kNumberOfBooleanFlags = 6; |
| static const int kErrorMessageParamSize = 1; |
| static const int kTablesAlignmentPaddingSize = 1; |
| static const int kRegExpStaticResultOffsetsVectorSize = kApiSystemPointerSize; |
| static const int kBuiltinTier0EntryTableSize = 7 * kApiSystemPointerSize; |
| static const int kBuiltinTier0TableSize = 7 * kApiSystemPointerSize; |
| static const int kLinearAllocationAreaSize = 3 * kApiSystemPointerSize; |
| static const int kThreadLocalTopSize = 30 * kApiSystemPointerSize; |
| static const int kHandleScopeDataSize = |
| 2 * kApiSystemPointerSize + 2 * kApiInt32Size; |
| |
| // ExternalPointerTable and TrustedPointerTable layout guarantees. |
| static const int kExternalPointerTableBasePointerOffset = 0; |
| static const int kExternalPointerTableSize = 2 * kApiSystemPointerSize; |
| static const int kTrustedPointerTableSize = 2 * kApiSystemPointerSize; |
| static const int kTrustedPointerTableBasePointerOffset = 0; |
| |
| // IsolateData layout guarantees. |
| static const int kIsolateCageBaseOffset = 0; |
| static const int kIsolateStackGuardOffset = |
| kIsolateCageBaseOffset + kApiSystemPointerSize; |
| static const int kVariousBooleanFlagsOffset = |
| kIsolateStackGuardOffset + kStackGuardSize; |
| static const int kErrorMessageParamOffset = |
| kVariousBooleanFlagsOffset + kNumberOfBooleanFlags; |
| static const int kBuiltinTier0EntryTableOffset = |
| kErrorMessageParamOffset + kErrorMessageParamSize + |
| kTablesAlignmentPaddingSize + kRegExpStaticResultOffsetsVectorSize; |
| static const int kBuiltinTier0TableOffset = |
| kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize; |
| static const int kNewAllocationInfoOffset = |
| kBuiltinTier0TableOffset + kBuiltinTier0TableSize; |
| static const int kOldAllocationInfoOffset = |
| kNewAllocationInfoOffset + kLinearAllocationAreaSize; |
| |
| static const int kFastCCallAlignmentPaddingSize = |
| kApiSystemPointerSize == 8 ? 5 * kApiSystemPointerSize |
| : 1 * kApiSystemPointerSize; |
| static const int kIsolateFastCCallCallerPcOffset = |
| kOldAllocationInfoOffset + kLinearAllocationAreaSize + |
| kFastCCallAlignmentPaddingSize; |
| static const int kIsolateFastCCallCallerFpOffset = |
| kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize; |
| static const int kIsolateFastApiCallTargetOffset = |
| kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize; |
| static const int kIsolateLongTaskStatsCounterOffset = |
| kIsolateFastApiCallTargetOffset + kApiSystemPointerSize; |
| static const int kIsolateThreadLocalTopOffset = |
| kIsolateLongTaskStatsCounterOffset + kApiSizetSize; |
| static const int kIsolateHandleScopeDataOffset = |
| kIsolateThreadLocalTopOffset + kThreadLocalTopSize; |
| static const int kIsolateEmbedderDataOffset = |
| kIsolateHandleScopeDataOffset + kHandleScopeDataSize; |
| #ifdef V8_COMPRESS_POINTERS |
| static const int kIsolateExternalPointerTableOffset = |
| kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize; |
| static const int kIsolateSharedExternalPointerTableAddressOffset = |
| kIsolateExternalPointerTableOffset + kExternalPointerTableSize; |
| static const int kIsolateCppHeapPointerTableOffset = |
| kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize; |
| #ifdef V8_ENABLE_SANDBOX |
| static const int kIsolateTrustedCageBaseOffset = |
| kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize; |
| static const int kIsolateTrustedPointerTableOffset = |
| kIsolateTrustedCageBaseOffset + kApiSystemPointerSize; |
| static const int kIsolateSharedTrustedPointerTableAddressOffset = |
| kIsolateTrustedPointerTableOffset + kTrustedPointerTableSize; |
| static const int kIsolateTrustedPointerPublishingScopeOffset = |
| kIsolateSharedTrustedPointerTableAddressOffset + kApiSystemPointerSize; |
| static const int kIsolateCodePointerTableBaseAddressOffset = |
| kIsolateTrustedPointerPublishingScopeOffset + kApiSystemPointerSize; |
| static const int kIsolateApiCallbackThunkArgumentOffset = |
| kIsolateCodePointerTableBaseAddressOffset + kApiSystemPointerSize; |
| #else |
| static const int kIsolateApiCallbackThunkArgumentOffset = |
| kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize; |
| #endif // V8_ENABLE_SANDBOX |
| #else |
| static const int kIsolateApiCallbackThunkArgumentOffset = |
| kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize; |
| #endif // V8_COMPRESS_POINTERS |
| static const int kIsolateRegexpExecVectorArgumentOffset = |
| kIsolateApiCallbackThunkArgumentOffset + kApiSystemPointerSize; |
| static const int kContinuationPreservedEmbedderDataOffset = |
| kIsolateRegexpExecVectorArgumentOffset + kApiSystemPointerSize; |
| static const int kIsolateRootsOffset = |
| kContinuationPreservedEmbedderDataOffset + kApiSystemPointerSize; |
| |
| // Assert scopes |
| static const int kDisallowGarbageCollectionAlign = alignof(uint32_t); |
| static const int kDisallowGarbageCollectionSize = sizeof(uint32_t); |
| |
| #if V8_STATIC_ROOTS_BOOL |
| |
| // These constants are copied from static-roots.h and guarded by static asserts. |
| #define EXPORTED_STATIC_ROOTS_PTR_LIST(V) \ |
| V(UndefinedValue, 0x11) \ |
| V(NullValue, 0x2d) \ |
| V(TrueValue, 0x71) \ |
| V(FalseValue, 0x55) \ |
| V(EmptyString, 0x49) \ |
| V(TheHoleValue, 0x761) |
| |
| using Tagged_t = uint32_t; |
| struct StaticReadOnlyRoot { |
| #define DEF_ROOT(name, value) static constexpr Tagged_t k##name = value; |
| EXPORTED_STATIC_ROOTS_PTR_LIST(DEF_ROOT) |
| #undef DEF_ROOT |
| |
| // Use 0 for kStringMapLowerBound since string maps are the first maps. |
| static constexpr Tagged_t kStringMapLowerBound = 0; |
| static constexpr Tagged_t kStringMapUpperBound = 0x425; |
| |
| #define PLUSONE(...) +1 |
| static constexpr size_t kNumberOfExportedStaticRoots = |
| 2 + EXPORTED_STATIC_ROOTS_PTR_LIST(PLUSONE); |
| #undef PLUSONE |
| }; |
| |
| #endif // V8_STATIC_ROOTS_BOOL |
| |
| static const int kUndefinedValueRootIndex = 4; |
| static const int kTheHoleValueRootIndex = 5; |
| static const int kNullValueRootIndex = 6; |
| static const int kTrueValueRootIndex = 7; |
| static const int kFalseValueRootIndex = 8; |
| static const int kEmptyStringRootIndex = 9; |
| |
| static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize; |
| static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3; |
| static const int kNodeStateMask = 0x3; |
| static const int kNodeStateIsWeakValue = 2; |
| |
| static const int kFirstNonstringType = 0x80; |
| static const int kOddballType = 0x83; |
| static const int kForeignType = 0xcc; |
| static const int kJSSpecialApiObjectType = 0x410; |
| static const int kJSObjectType = 0x421; |
| static const int kFirstJSApiObjectType = 0x422; |
| static const int kLastJSApiObjectType = 0x80A; |
| // Defines a range [kFirstEmbedderJSApiObjectType, kJSApiObjectTypesCount] |
| // of JSApiObject instance type values that an embedder can use. |
| static const int kFirstEmbedderJSApiObjectType = 0; |
| static const int kLastEmbedderJSApiObjectType = |
| kLastJSApiObjectType - kFirstJSApiObjectType; |
| |
| static const int kUndefinedOddballKind = 4; |
| static const int kNullOddballKind = 3; |
| |
| // Constants used by PropertyCallbackInfo to check if we should throw when an |
| // error occurs. |
| static const int kDontThrow = 0; |
| static const int kThrowOnError = 1; |
| static const int kInferShouldThrowMode = 2; |
| |
| // Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an |
| // incremental GC once the external memory reaches this limit. |
| static constexpr size_t kExternalAllocationSoftLimit = 64 * 1024 * 1024; |
| |
| #ifdef V8_MAP_PACKING |
| static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48; |
| // The lowest two bits of mapwords are always `0b10` |
| static const uintptr_t kMapWordSignature = 0b10; |
| // XORing a (non-compressed) map with this mask ensures that the two |
| // low-order bits are 0b10. The 0 at the end makes this look like a Smi, |
| // although real Smis have all lower 32 bits unset. We only rely on these |
| // values passing as Smis in very few places. |
| static const int kMapWordXorMask = 0b11; |
| #endif |
| |
| V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate); |
| V8_INLINE static void CheckInitialized(v8::Isolate* isolate) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckInitializedImpl(isolate); |
| #endif |
| } |
| |
| V8_INLINE static constexpr bool HasHeapObjectTag(Address value) { |
| return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag); |
| } |
| |
| V8_INLINE static constexpr int SmiValue(Address value) { |
| return PlatformSmiTagging::SmiToInt(value); |
| } |
| |
| V8_INLINE static constexpr Address AddressToSmi(Address value) { |
| return (value << (kSmiTagSize + PlatformSmiTagging::kSmiShiftSize)) | |
| kSmiTag; |
| } |
| |
| V8_INLINE static constexpr Address IntToSmi(int value) { |
| return AddressToSmi(static_cast<Address>(value)); |
| } |
| |
| template <typename T, |
| typename std::enable_if_t<std::is_integral_v<T>>* = nullptr> |
| V8_INLINE static constexpr Address IntegralToSmi(T value) { |
| return AddressToSmi(static_cast<Address>(value)); |
| } |
| |
| template <typename T, |
| typename std::enable_if_t<std::is_integral_v<T>>* = nullptr> |
| V8_INLINE static constexpr bool IsValidSmi(T value) { |
| return PlatformSmiTagging::IsValidSmi(value); |
| } |
| |
| template <typename T, |
| typename std::enable_if_t<std::is_integral_v<T>>* = nullptr> |
| static constexpr std::optional<Address> TryIntegralToSmi(T value) { |
| if (V8_LIKELY(PlatformSmiTagging::IsValidSmi(value))) { |
| return {AddressToSmi(static_cast<Address>(value))}; |
| } |
| return {}; |
| } |
| |
| #if V8_STATIC_ROOTS_BOOL |
| V8_INLINE static bool is_identical(Address obj, Tagged_t constant) { |
| return static_cast<Tagged_t>(obj) == constant; |
| } |
| |
| V8_INLINE static bool CheckInstanceMapRange(Address obj, Tagged_t first_map, |
| Tagged_t last_map) { |
| auto map = ReadRawField<Tagged_t>(obj, kHeapObjectMapOffset); |
| #ifdef V8_MAP_PACKING |
| map = UnpackMapWord(map); |
| #endif |
| return map >= first_map && map <= last_map; |
| } |
| #endif |
| |
| V8_INLINE static int GetInstanceType(Address obj) { |
| Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset); |
| #ifdef V8_MAP_PACKING |
| map = UnpackMapWord(map); |
| #endif |
| return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset); |
| } |
| |
| V8_INLINE static Address LoadMap(Address obj) { |
| if (!HasHeapObjectTag(obj)) return kNullAddress; |
| Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset); |
| #ifdef V8_MAP_PACKING |
| map = UnpackMapWord(map); |
| #endif |
| return map; |
| } |
| |
| V8_INLINE static int GetOddballKind(Address obj) { |
| return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset)); |
| } |
| |
| V8_INLINE static bool IsExternalTwoByteString(int instance_type) { |
| int representation = (instance_type & kStringRepresentationAndEncodingMask); |
| return representation == kExternalTwoByteRepresentationTag; |
| } |
| |
| V8_INLINE static constexpr bool CanHaveInternalField(int instance_type) { |
| static_assert(kJSObjectType + 1 == kFirstJSApiObjectType); |
| static_assert(kJSObjectType < kLastJSApiObjectType); |
| static_assert(kFirstJSApiObjectType < kLastJSApiObjectType); |
| // Check for IsJSObject() || IsJSSpecialApiObject() || IsJSApiObject() |
| return instance_type == kJSSpecialApiObjectType || |
| // inlined version of base::IsInRange |
| (static_cast<unsigned>(static_cast<unsigned>(instance_type) - |
| static_cast<unsigned>(kJSObjectType)) <= |
| static_cast<unsigned>(kLastJSApiObjectType - kJSObjectType)); |
| } |
| |
| V8_INLINE static uint8_t GetNodeFlag(Address* obj, int shift) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; |
| return *addr & static_cast<uint8_t>(1U << shift); |
| } |
| |
| V8_INLINE static void UpdateNodeFlag(Address* obj, bool value, int shift) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; |
| uint8_t mask = static_cast<uint8_t>(1U << shift); |
| *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift)); |
| } |
| |
| V8_INLINE static uint8_t GetNodeState(Address* obj) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; |
| return *addr & kNodeStateMask; |
| } |
| |
| V8_INLINE static void UpdateNodeState(Address* obj, uint8_t value) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; |
| *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value); |
| } |
| |
| V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot, |
| void* data) { |
| Address addr = reinterpret_cast<Address>(isolate) + |
| kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize; |
| *reinterpret_cast<void**>(addr) = data; |
| } |
| |
| V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate, |
| uint32_t slot) { |
| Address addr = reinterpret_cast<Address>(isolate) + |
| kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize; |
| return *reinterpret_cast<void* const*>(addr); |
| } |
| |
| V8_INLINE static void IncrementLongTasksStatsCounter(v8::Isolate* isolate) { |
| Address addr = |
| reinterpret_cast<Address>(isolate) + kIsolateLongTaskStatsCounterOffset; |
| ++(*reinterpret_cast<size_t*>(addr)); |
| } |
| |
| V8_INLINE static Address* GetRootSlot(v8::Isolate* isolate, int index) { |
| Address addr = reinterpret_cast<Address>(isolate) + kIsolateRootsOffset + |
| index * kApiSystemPointerSize; |
| return reinterpret_cast<Address*>(addr); |
| } |
| |
| V8_INLINE static Address GetRoot(v8::Isolate* isolate, int index) { |
| #if V8_STATIC_ROOTS_BOOL |
| Address base = *reinterpret_cast<Address*>( |
| reinterpret_cast<uintptr_t>(isolate) + kIsolateCageBaseOffset); |
| switch (index) { |
| #define DECOMPRESS_ROOT(name, ...) \ |
| case k##name##RootIndex: \ |
| return base + StaticReadOnlyRoot::k##name; |
| EXPORTED_STATIC_ROOTS_PTR_LIST(DECOMPRESS_ROOT) |
| #undef DECOMPRESS_ROOT |
| #undef EXPORTED_STATIC_ROOTS_PTR_LIST |
| default: |
| break; |
| } |
| #endif // V8_STATIC_ROOTS_BOOL |
| return *GetRootSlot(isolate, index); |
| } |
| |
| #ifdef V8_ENABLE_SANDBOX |
| V8_INLINE static Address* GetExternalPointerTableBase(v8::Isolate* isolate) { |
| Address addr = reinterpret_cast<Address>(isolate) + |
| kIsolateExternalPointerTableOffset + |
| kExternalPointerTableBasePointerOffset; |
| return *reinterpret_cast<Address**>(addr); |
| } |
| |
| V8_INLINE static Address* GetSharedExternalPointerTableBase( |
| v8::Isolate* isolate) { |
| Address addr = reinterpret_cast<Address>(isolate) + |
| kIsolateSharedExternalPointerTableAddressOffset; |
| addr = *reinterpret_cast<Address*>(addr); |
| addr += kExternalPointerTableBasePointerOffset; |
| return *reinterpret_cast<Address**>(addr); |
| } |
| #endif |
| |
| template <typename T> |
| V8_INLINE static T ReadRawField(Address heap_object_ptr, int offset) { |
| Address addr = heap_object_ptr + offset - kHeapObjectTag; |
| #ifdef V8_COMPRESS_POINTERS |
| if (sizeof(T) > kApiTaggedSize) { |
| // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size |
| // fields (external pointers, doubles and BigInt data) are only |
| // kTaggedSize aligned so we have to use unaligned pointer friendly way of |
| // accessing them in order to avoid undefined behavior in C++ code. |
| T r; |
| memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T)); |
| return r; |
| } |
| #endif |
| return *reinterpret_cast<const T*>(addr); |
| } |
| |
| V8_INLINE static Address ReadTaggedPointerField(Address heap_object_ptr, |
| int offset) { |
| #ifdef V8_COMPRESS_POINTERS |
| uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset); |
| Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr); |
| return base + static_cast<Address>(static_cast<uintptr_t>(value)); |
| #else |
| return ReadRawField<Address>(heap_object_ptr, offset); |
| #endif |
| } |
| |
| V8_INLINE static Address ReadTaggedSignedField(Address heap_object_ptr, |
| int offset) { |
| #ifdef V8_COMPRESS_POINTERS |
| uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset); |
| return static_cast<Address>(static_cast<uintptr_t>(value)); |
| #else |
| return ReadRawField<Address>(heap_object_ptr, offset); |
| #endif |
| } |
| |
| V8_INLINE static v8::Isolate* GetIsolateForSandbox(Address obj) { |
| #ifdef V8_ENABLE_SANDBOX |
| return reinterpret_cast<v8::Isolate*>( |
| internal::IsolateFromNeverReadOnlySpaceObject(obj)); |
| #else |
| // Not used in non-sandbox mode. |
| return nullptr; |
| #endif |
| } |
| |
| template <ExternalPointerTagRange tag_range> |
| V8_INLINE static Address ReadExternalPointerField(v8::Isolate* isolate, |
| Address heap_object_ptr, |
| int offset) { |
| #ifdef V8_ENABLE_SANDBOX |
| static_assert(!tag_range.IsEmpty()); |
| // See src/sandbox/external-pointer-table.h. Logic duplicated here so |
| // it can be inlined and doesn't require an additional call. |
| Address* table = IsSharedExternalPointerType(tag_range) |
| ? GetSharedExternalPointerTableBase(isolate) |
| : GetExternalPointerTableBase(isolate); |
| internal::ExternalPointerHandle handle = |
| ReadRawField<ExternalPointerHandle>(heap_object_ptr, offset); |
| uint32_t index = handle >> kExternalPointerIndexShift; |
| std::atomic<Address>* ptr = |
| reinterpret_cast<std::atomic<Address>*>(&table[index]); |
| Address entry = std::atomic_load_explicit(ptr, std::memory_order_relaxed); |
| ExternalPointerTag actual_tag = static_cast<ExternalPointerTag>( |
| (entry & kExternalPointerTagMask) >> kExternalPointerTagShift); |
| if (V8_LIKELY(tag_range.Contains(actual_tag))) { |
| return entry & kExternalPointerPayloadMask; |
| } else { |
| return 0; |
| } |
| return entry; |
| #else |
| return ReadRawField<Address>(heap_object_ptr, offset); |
| #endif // V8_ENABLE_SANDBOX |
| } |
| |
| #ifdef V8_COMPRESS_POINTERS |
| V8_INLINE static Address GetPtrComprCageBaseFromOnHeapAddress(Address addr) { |
| return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment); |
| } |
| |
| V8_INLINE static uint32_t CompressTagged(Address value) { |
| return static_cast<uint32_t>(value); |
| } |
| |
| V8_INLINE static Address DecompressTaggedField(Address heap_object_ptr, |
| uint32_t value) { |
| Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr); |
| return base + static_cast<Address>(static_cast<uintptr_t>(value)); |
| } |
| |
| #endif // V8_COMPRESS_POINTERS |
| }; |
| |
| // Only perform cast check for types derived from v8::Data since |
| // other types do not implement the Cast method. |
| template <bool PerformCheck> |
| struct CastCheck { |
| template <class T> |
| static void Perform(T* data); |
| }; |
| |
| template <> |
| template <class T> |
| void CastCheck<true>::Perform(T* data) { |
| T::Cast(data); |
| } |
| |
| template <> |
| template <class T> |
| void CastCheck<false>::Perform(T* data) {} |
| |
| template <class T> |
| V8_INLINE void PerformCastCheck(T* data) { |
| CastCheck<std::is_base_of<Data, T>::value && |
| !std::is_same<Data, std::remove_cv_t<T>>::value>::Perform(data); |
| } |
| |
| // A base class for backing stores, which is needed due to vagaries of |
| // how static casts work with std::shared_ptr. |
| class BackingStoreBase {}; |
| |
| // The maximum value in enum GarbageCollectionReason, defined in heap.h. |
| // This is needed for histograms sampling garbage collection reasons. |
| constexpr int kGarbageCollectionReasonMaxValue = 29; |
| |
| // Base class for the address block allocator compatible with standard |
| // containers, which registers its allocated range as strong roots. |
| class V8_EXPORT StrongRootAllocatorBase { |
| public: |
| Heap* heap() const { return heap_; } |
| |
| friend bool operator==(const StrongRootAllocatorBase& a, |
| const StrongRootAllocatorBase& b) { |
| // TODO(pkasting): Replace this body with `= default` after dropping support |
| // for old gcc versions. |
| return a.heap_ == b.heap_; |
| } |
| |
| protected: |
| explicit StrongRootAllocatorBase(Heap* heap) : heap_(heap) {} |
| explicit StrongRootAllocatorBase(LocalHeap* heap); |
| explicit StrongRootAllocatorBase(Isolate* isolate); |
| explicit StrongRootAllocatorBase(v8::Isolate* isolate); |
| explicit StrongRootAllocatorBase(LocalIsolate* isolate); |
| |
| // Allocate/deallocate a range of n elements of type internal::Address. |
| Address* allocate_impl(size_t n); |
| void deallocate_impl(Address* p, size_t n) noexcept; |
| |
| private: |
| Heap* heap_; |
| }; |
| |
| // The general version of this template behaves just as std::allocator, with |
| // the exception that the constructor takes the isolate as parameter. Only |
| // specialized versions, e.g., internal::StrongRootAllocator<internal::Address> |
| // and internal::StrongRootAllocator<v8::Local<T>> register the allocated range |
| // as strong roots. |
| template <typename T> |
| class StrongRootAllocator : private std::allocator<T> { |
| public: |
| using value_type = T; |
| |
| template <typename HeapOrIsolateT> |
| explicit StrongRootAllocator(HeapOrIsolateT*) {} |
| template <typename U> |
| StrongRootAllocator(const StrongRootAllocator<U>& other) noexcept {} |
| |
| using std::allocator<T>::allocate; |
| using std::allocator<T>::deallocate; |
| }; |
| |
| // TODO(pkasting): Replace with `requires` clauses after dropping support for |
| // old gcc versions. |
| template <typename Iterator, typename = void> |
| inline constexpr bool kHaveIteratorConcept = false; |
| template <typename Iterator> |
| inline constexpr bool kHaveIteratorConcept< |
| Iterator, std::void_t<typename Iterator::iterator_concept>> = true; |
| |
| template <typename Iterator, typename = void> |
| inline constexpr bool kHaveIteratorCategory = false; |
| template <typename Iterator> |
| inline constexpr bool kHaveIteratorCategory< |
| Iterator, std::void_t<typename Iterator::iterator_category>> = true; |
| |
| // Helper struct that contains an `iterator_concept` type alias only when either |
| // `Iterator` or `std::iterator_traits<Iterator>` do. |
| // Default: no alias. |
| template <typename Iterator, typename = void> |
| struct MaybeDefineIteratorConcept {}; |
| // Use `Iterator::iterator_concept` if available. |
| template <typename Iterator> |
| struct MaybeDefineIteratorConcept< |
| Iterator, std::enable_if_t<kHaveIteratorConcept<Iterator>>> { |
| using iterator_concept = typename Iterator::iterator_concept; |
| }; |
| // Otherwise fall back to `std::iterator_traits<Iterator>` if possible. |
| template <typename Iterator> |
| struct MaybeDefineIteratorConcept< |
| Iterator, std::enable_if_t<kHaveIteratorCategory<Iterator> && |
| !kHaveIteratorConcept<Iterator>>> { |
| // There seems to be no feature-test macro covering this, so use the |
| // presence of `<ranges>` as a crude proxy, since it was added to the |
| // standard as part of the Ranges papers. |
| // TODO(pkasting): Add this unconditionally after dropping support for old |
| // libstdc++ versions. |
| #if __has_include(<ranges>) |
| using iterator_concept = |
| typename std::iterator_traits<Iterator>::iterator_concept; |
| #endif |
| }; |
| |
| // A class of iterators that wrap some different iterator type. |
| // If specified, ElementType is the type of element accessed by the wrapper |
| // iterator; in this case, the actual reference and pointer types of Iterator |
| // must be convertible to ElementType& and ElementType*, respectively. |
| template <typename Iterator, typename ElementType = void> |
| class WrappedIterator : public MaybeDefineIteratorConcept<Iterator> { |
| public: |
| static_assert( |
| std::is_void_v<ElementType> || |
| (std::is_convertible_v<typename std::iterator_traits<Iterator>::pointer, |
| std::add_pointer_t<ElementType>> && |
| std::is_convertible_v<typename std::iterator_traits<Iterator>::reference, |
| std::add_lvalue_reference_t<ElementType>>)); |
| |
| using difference_type = |
| typename std::iterator_traits<Iterator>::difference_type; |
| using value_type = |
| std::conditional_t<std::is_void_v<ElementType>, |
| typename std::iterator_traits<Iterator>::value_type, |
| ElementType>; |
| using pointer = |
| std::conditional_t<std::is_void_v<ElementType>, |
| typename std::iterator_traits<Iterator>::pointer, |
| std::add_pointer_t<ElementType>>; |
| using reference = |
| std::conditional_t<std::is_void_v<ElementType>, |
| typename std::iterator_traits<Iterator>::reference, |
| std::add_lvalue_reference_t<ElementType>>; |
| using iterator_category = |
| typename std::iterator_traits<Iterator>::iterator_category; |
| |
| constexpr WrappedIterator() noexcept = default; |
| constexpr explicit WrappedIterator(Iterator it) noexcept : it_(it) {} |
| |
| // TODO(pkasting): Switch to `requires` and concepts after dropping support |
| // for old gcc and libstdc++ versions. |
| template <typename OtherIterator, typename OtherElementType, |
| typename = std::enable_if_t< |
| std::is_convertible_v<OtherIterator, Iterator>>> |
| constexpr WrappedIterator( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) noexcept |
| : it_(other.base()) {} |
| |
| [[nodiscard]] constexpr reference operator*() const noexcept { return *it_; } |
| [[nodiscard]] constexpr pointer operator->() const noexcept { |
| if constexpr (std::is_pointer_v<Iterator>) { |
| return it_; |
| } else { |
| return it_.operator->(); |
| } |
| } |
| |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr bool operator==( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ == other.base(); |
| } |
| #if V8_HAVE_SPACESHIP_OPERATOR |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr auto operator<=>( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| if constexpr (std::three_way_comparable_with<Iterator, OtherIterator>) { |
| return it_ <=> other.base(); |
| } else if constexpr (std::totally_ordered_with<Iterator, OtherIterator>) { |
| if (it_ < other.base()) { |
| return std::strong_ordering::less; |
| } |
| return (it_ > other.base()) ? std::strong_ordering::greater |
| : std::strong_ordering::equal; |
| } else { |
| if (it_ < other.base()) { |
| return std::partial_ordering::less; |
| } |
| if (other.base() < it_) { |
| return std::partial_ordering::greater; |
| } |
| return (it_ == other.base()) ? std::partial_ordering::equivalent |
| : std::partial_ordering::unordered; |
| } |
| } |
| #else |
| // Assume that if spaceship isn't present, operator rewriting might not be |
| // either. |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr bool operator!=( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ != other.base(); |
| } |
| |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr bool operator<( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ < other.base(); |
| } |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr bool operator<=( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ <= other.base(); |
| } |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr bool operator>( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ > other.base(); |
| } |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr bool operator>=( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ >= other.base(); |
| } |
| #endif |
| |
| constexpr WrappedIterator& operator++() noexcept { |
| ++it_; |
| return *this; |
| } |
| constexpr WrappedIterator operator++(int) noexcept { |
| WrappedIterator result(*this); |
| ++(*this); |
| return result; |
| } |
| |
| constexpr WrappedIterator& operator--() noexcept { |
| --it_; |
| return *this; |
| } |
| constexpr WrappedIterator operator--(int) noexcept { |
| WrappedIterator result(*this); |
| --(*this); |
| return result; |
| } |
| [[nodiscard]] constexpr WrappedIterator operator+( |
| difference_type n) const noexcept { |
| WrappedIterator result(*this); |
| result += n; |
| return result; |
| } |
| [[nodiscard]] friend constexpr WrappedIterator operator+( |
| difference_type n, const WrappedIterator& x) noexcept { |
| return x + n; |
| } |
| constexpr WrappedIterator& operator+=(difference_type n) noexcept { |
| it_ += n; |
| return *this; |
| } |
| [[nodiscard]] constexpr WrappedIterator operator-( |
| difference_type n) const noexcept { |
| return *this + -n; |
| } |
| constexpr WrappedIterator& operator-=(difference_type n) noexcept { |
| return *this += -n; |
| } |
| template <typename OtherIterator, typename OtherElementType> |
| [[nodiscard]] constexpr auto operator-( |
| const WrappedIterator<OtherIterator, OtherElementType>& other) |
| const noexcept { |
| return it_ - other.base(); |
| } |
| [[nodiscard]] constexpr reference operator[]( |
| difference_type n) const noexcept { |
| return it_[n]; |
| } |
| |
| [[nodiscard]] constexpr const Iterator& base() const noexcept { return it_; } |
| |
| private: |
| Iterator it_; |
| }; |
| |
| // Helper functions about values contained in handles. |
| // A value is either an indirect pointer or a direct pointer, depending on |
| // whether direct local support is enabled. |
| class ValueHelper final { |
| public: |
| // ValueHelper::InternalRepresentationType is an abstract type that |
| // corresponds to the internal representation of v8::Local and essentially |
| // to what T* really is (these two are always in sync). This type is used in |
| // methods like GetDataFromSnapshotOnce that need access to a handle's |
| // internal representation. In particular, if `x` is a `v8::Local<T>`, then |
| // `v8::Local<T>::FromRepr(x.repr())` gives exactly the same handle as `x`. |
| #ifdef V8_ENABLE_DIRECT_HANDLE |
| static constexpr Address kTaggedNullAddress = 1; |
| |
| using InternalRepresentationType = internal::Address; |
| static constexpr InternalRepresentationType kEmpty = kTaggedNullAddress; |
| #else |
| using InternalRepresentationType = internal::Address*; |
| static constexpr InternalRepresentationType kEmpty = nullptr; |
| #endif // V8_ENABLE_DIRECT_HANDLE |
| |
| template <typename T> |
| V8_INLINE static bool IsEmpty(T* value) { |
| return ValueAsRepr(value) == kEmpty; |
| } |
| |
| // Returns a handle's "value" for all kinds of abstract handles. For Local, |
| // it is equivalent to `*handle`. The variadic parameters support handle |
| // types with extra type parameters, like `Persistent<T, M>`. |
| template <template <typename T, typename... Ms> typename H, typename T, |
| typename... Ms> |
| V8_INLINE static T* HandleAsValue(const H<T, Ms...>& handle) { |
| return handle.template value<T>(); |
| } |
| |
| #ifdef V8_ENABLE_DIRECT_HANDLE |
| |
| template <typename T> |
| V8_INLINE static Address ValueAsAddress(const T* value) { |
| return reinterpret_cast<Address>(value); |
| } |
| |
| template <typename T, bool check_null = true, typename S> |
| V8_INLINE static T* SlotAsValue(S* slot) { |
| if (check_null && slot == nullptr) { |
| return reinterpret_cast<T*>(kTaggedNullAddress); |
| } |
| return *reinterpret_cast<T**>(slot); |
| } |
| |
| template <typename T> |
| V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) { |
| return reinterpret_cast<InternalRepresentationType>(value); |
| } |
| |
| template <typename T> |
| V8_INLINE static T* ReprAsValue(InternalRepresentationType repr) { |
| return reinterpret_cast<T*>(repr); |
| } |
| |
| #else // !V8_ENABLE_DIRECT_HANDLE |
| |
| template <typename T> |
| V8_INLINE static Address ValueAsAddress(const T* value) { |
| return *reinterpret_cast<const Address*>(value); |
| } |
| |
| template <typename T, bool check_null = true, typename S> |
| V8_INLINE static T* SlotAsValue(S* slot) { |
| return reinterpret_cast<T*>(slot); |
| } |
| |
| template <typename T> |
| V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) { |
| return const_cast<InternalRepresentationType>( |
| reinterpret_cast<const Address*>(value)); |
| } |
| |
| template <typename T> |
| V8_INLINE static T* ReprAsValue(InternalRepresentationType repr) { |
| return reinterpret_cast<T*>(repr); |
| } |
| |
| #endif // V8_ENABLE_DIRECT_HANDLE |
| }; |
| |
| /** |
| * Helper functions about handles. |
| */ |
| class HandleHelper final { |
| public: |
| /** |
| * Checks whether two handles are equal. |
| * They are equal iff they are both empty or they are both non-empty and the |
| * objects to which they refer are physically equal. |
| * |
| * If both handles refer to JS objects, this is the same as strict equality. |
| * For primitives, such as numbers or strings, a `false` return value does not |
| * indicate that the values aren't equal in the JavaScript sense. |
| * Use `Value::StrictEquals()` to check primitives for equality. |
| */ |
| template <typename T1, typename T2> |
| V8_INLINE static bool EqualHandles(const T1& lhs, const T2& rhs) { |
| if (lhs.IsEmpty()) return rhs.IsEmpty(); |
| if (rhs.IsEmpty()) return false; |
| return lhs.ptr() == rhs.ptr(); |
| } |
| }; |
| |
| V8_EXPORT void VerifyHandleIsNonEmpty(bool is_empty); |
| |
| // These functions are here just to match friend declarations in |
| // XxxCallbackInfo classes allowing these functions to access the internals |
| // of the info objects. These functions are supposed to be called by debugger |
| // macros. |
| void PrintFunctionCallbackInfo(void* function_callback_info); |
| void PrintPropertyCallbackInfo(void* property_callback_info); |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // INCLUDE_V8_INTERNAL_H_ |