| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/utils/random-number-generator.h" |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #if defined(V8_OS_STARBOARD) |
| #include "starboard/system.h" |
| #endif // V8_OS_STARBOARD |
| |
| #include <algorithm> |
| #include <new> |
| |
| #include "src/base/bits.h" |
| #include "src/base/macros.h" |
| #include "src/base/platform/mutex.h" |
| #include "src/base/platform/time.h" |
| #include "src/base/platform/wrappers.h" |
| |
| namespace v8 { |
| namespace base { |
| |
| static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER; |
| static RandomNumberGenerator::EntropySource entropy_source = nullptr; |
| |
| // static |
| void RandomNumberGenerator::SetEntropySource(EntropySource source) { |
| MutexGuard lock_guard(entropy_mutex.Pointer()); |
| entropy_source = source; |
| } |
| |
| |
| RandomNumberGenerator::RandomNumberGenerator() { |
| // Check if embedder supplied an entropy source. |
| { |
| MutexGuard lock_guard(entropy_mutex.Pointer()); |
| if (entropy_source != nullptr) { |
| int64_t seed; |
| if (entropy_source(reinterpret_cast<unsigned char*>(&seed), |
| sizeof(seed))) { |
| SetSeed(seed); |
| return; |
| } |
| } |
| } |
| |
| #if V8_OS_CYGWIN || V8_OS_WIN |
| // Use rand_s() to gather entropy on Windows. See: |
| // https://code.google.com/p/v8/issues/detail?id=2905 |
| unsigned first_half, second_half; |
| errno_t result = rand_s(&first_half); |
| DCHECK_EQ(0, result); |
| result = rand_s(&second_half); |
| DCHECK_EQ(0, result); |
| USE(result); |
| SetSeed((static_cast<int64_t>(first_half) << 32) + second_half); |
| #elif V8_OS_DARWIN || V8_OS_FREEBSD || V8_OS_OPENBSD |
| // Despite its prefix suggests it is not RC4 algorithm anymore. |
| // It always succeeds while having decent performance and |
| // no file descriptor involved. |
| int64_t seed; |
| arc4random_buf(&seed, sizeof(seed)); |
| SetSeed(seed); |
| #elif V8_OS_STARBOARD |
| SetSeed(SbSystemGetRandomUInt64()); |
| #else |
| // Gather entropy from /dev/urandom if available. |
| FILE* fp = base::Fopen("/dev/urandom", "rb"); |
| if (fp != nullptr) { |
| int64_t seed; |
| size_t n = fread(&seed, sizeof(seed), 1, fp); |
| base::Fclose(fp); |
| if (n == 1) { |
| SetSeed(seed); |
| return; |
| } |
| } |
| |
| // We cannot assume that random() or rand() were seeded |
| // properly, so instead of relying on random() or rand(), |
| // we just seed our PRNG using timing data as fallback. |
| // This is weak entropy, but it's sufficient, because |
| // it is the responsibility of the embedder to install |
| // an entropy source using v8::V8::SetEntropySource(), |
| // which provides reasonable entropy, see: |
| // https://code.google.com/p/v8/issues/detail?id=2905 |
| int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24; |
| seed ^= TimeTicks::Now().ToInternalValue(); |
| SetSeed(seed); |
| #endif // V8_OS_CYGWIN || V8_OS_WIN |
| } |
| |
| |
| int RandomNumberGenerator::NextInt(int max) { |
| DCHECK_LT(0, max); |
| |
| // Fast path if max is a power of 2. |
| if (bits::IsPowerOfTwo(max)) { |
| return static_cast<int>((max * static_cast<int64_t>(Next(31))) >> 31); |
| } |
| |
| while (true) { |
| int rnd = Next(31); |
| int val = rnd % max; |
| if (std::numeric_limits<int>::max() - (rnd - val) >= (max - 1)) { |
| return val; |
| } |
| } |
| } |
| |
| |
| double RandomNumberGenerator::NextDouble() { |
| XorShift128(&state0_, &state1_); |
| return ToDouble(state0_); |
| } |
| |
| |
| int64_t RandomNumberGenerator::NextInt64() { |
| XorShift128(&state0_, &state1_); |
| return base::bit_cast<int64_t>(state0_ + state1_); |
| } |
| |
| |
| void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) { |
| for (size_t n = 0; n < buflen; ++n) { |
| static_cast<uint8_t*>(buffer)[n] = static_cast<uint8_t>(Next(8)); |
| } |
| } |
| |
| static std::vector<uint64_t> ComplementSample( |
| const std::unordered_set<uint64_t>& set, uint64_t max) { |
| std::vector<uint64_t> result; |
| result.reserve(max - set.size()); |
| for (uint64_t i = 0; i < max; i++) { |
| if (!set.count(i)) { |
| result.push_back(i); |
| } |
| } |
| return result; |
| } |
| |
| std::vector<uint64_t> RandomNumberGenerator::NextSample(uint64_t max, |
| size_t n) { |
| CHECK_LE(n, max); |
| |
| if (n == 0) { |
| return std::vector<uint64_t>(); |
| } |
| |
| // Choose to select or exclude, whatever needs fewer generator calls. |
| size_t smaller_part = static_cast<size_t>( |
| std::min(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n))); |
| std::unordered_set<uint64_t> selected; |
| |
| size_t counter = 0; |
| while (selected.size() != smaller_part && counter / 3 < smaller_part) { |
| uint64_t x = static_cast<uint64_t>(NextDouble() * max); |
| CHECK_LT(x, max); |
| |
| selected.insert(x); |
| counter++; |
| } |
| |
| if (selected.size() == smaller_part) { |
| if (smaller_part != n) { |
| return ComplementSample(selected, max); |
| } |
| return std::vector<uint64_t>(selected.begin(), selected.end()); |
| } |
| |
| // Failed to select numbers in smaller_part * 3 steps, try different approach. |
| return NextSampleSlow(max, n, selected); |
| } |
| |
| std::vector<uint64_t> RandomNumberGenerator::NextSampleSlow( |
| uint64_t max, size_t n, const std::unordered_set<uint64_t>& excluded) { |
| CHECK_GE(max - excluded.size(), n); |
| |
| std::vector<uint64_t> result; |
| result.reserve(max - excluded.size()); |
| |
| for (uint64_t i = 0; i < max; i++) { |
| if (!excluded.count(i)) { |
| result.push_back(i); |
| } |
| } |
| |
| // Decrease result vector until it contains values to select or exclude, |
| // whatever needs fewer generator calls. |
| size_t larger_part = static_cast<size_t>( |
| std::max(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n))); |
| |
| // Excluded set may cause that initial result is already smaller than |
| // larget_part. |
| while (result.size() != larger_part && result.size() > n) { |
| size_t x = static_cast<size_t>(NextDouble() * result.size()); |
| CHECK_LT(x, result.size()); |
| |
| std::swap(result[x], result.back()); |
| result.pop_back(); |
| } |
| |
| if (result.size() != n) { |
| return ComplementSample( |
| std::unordered_set<uint64_t>(result.begin(), result.end()), max); |
| } |
| return result; |
| } |
| |
| int RandomNumberGenerator::Next(int bits) { |
| DCHECK_LT(0, bits); |
| DCHECK_GE(32, bits); |
| XorShift128(&state0_, &state1_); |
| return static_cast<int>((state0_ + state1_) >> (64 - bits)); |
| } |
| |
| |
| void RandomNumberGenerator::SetSeed(int64_t seed) { |
| initial_seed_ = seed; |
| state0_ = MurmurHash3(base::bit_cast<uint64_t>(seed)); |
| state1_ = MurmurHash3(~state0_); |
| CHECK(state0_ != 0 || state1_ != 0); |
| } |
| |
| |
| uint64_t RandomNumberGenerator::MurmurHash3(uint64_t h) { |
| h ^= h >> 33; |
| h *= uint64_t{0xFF51AFD7ED558CCD}; |
| h ^= h >> 33; |
| h *= uint64_t{0xC4CEB9FE1A85EC53}; |
| h ^= h >> 33; |
| return h; |
| } |
| |
| } // namespace base |
| } // namespace v8 |