blob: a2e59caf15a82a62eb033cf6acff50985e8f966b [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/deoptimizer.h"
#include <memory>
#include "src/accessors.h"
#include "src/assembler-inl.h"
#include "src/ast/prettyprinter.h"
#include "src/callable.h"
#include "src/disasm.h"
#include "src/frames-inl.h"
#include "src/global-handles.h"
#include "src/interpreter/interpreter.h"
#include "src/macro-assembler.h"
#include "src/objects/debug-objects-inl.h"
#include "src/tracing/trace-event.h"
#include "src/v8.h"
// Has to be the last include (doesn't have include guards)
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
// {FrameWriter} offers a stack writer abstraction for writing
// FrameDescriptions. The main service the class provides is managing
// {top_offset_}, i.e. the offset of the next slot to write to.
class FrameWriter {
public:
static const int NO_INPUT_INDEX = -1;
FrameWriter(Deoptimizer* deoptimizer, FrameDescription* frame,
CodeTracer::Scope* trace_scope)
: deoptimizer_(deoptimizer),
frame_(frame),
trace_scope_(trace_scope),
top_offset_(frame->GetFrameSize()) {}
void PushRawValue(intptr_t value, const char* debug_hint) {
PushValue(value);
if (trace_scope_ != nullptr) {
DebugPrintOutputValue(value, debug_hint);
}
}
void PushRawObject(Object* obj, const char* debug_hint) {
intptr_t value = reinterpret_cast<intptr_t>(obj);
PushValue(value);
if (trace_scope_ != nullptr) {
DebugPrintOutputObject(obj, top_offset_, debug_hint);
}
}
void PushCallerPc(intptr_t pc) {
top_offset_ -= kPCOnStackSize;
frame_->SetCallerPc(top_offset_, pc);
DebugPrintOutputValue(pc, "caller's pc\n");
}
void PushCallerFp(intptr_t fp) {
top_offset_ -= kFPOnStackSize;
frame_->SetCallerFp(top_offset_, fp);
DebugPrintOutputValue(fp, "caller's fp\n");
}
void PushCallerConstantPool(intptr_t cp) {
top_offset_ -= kPointerSize;
frame_->SetCallerConstantPool(top_offset_, cp);
DebugPrintOutputValue(cp, "caller's constant_pool\n");
}
void PushTranslatedValue(const TranslatedFrame::iterator& iterator,
const char* debug_hint = "") {
Object* obj = iterator->GetRawValue();
PushRawObject(obj, debug_hint);
if (trace_scope_) {
PrintF(trace_scope_->file(), " (input #%d)\n", iterator.input_index());
}
deoptimizer_->QueueValueForMaterialization(output_address(top_offset_), obj,
iterator);
}
unsigned top_offset() const { return top_offset_; }
private:
void PushValue(intptr_t value) {
CHECK_GE(top_offset_, 0);
top_offset_ -= kPointerSize;
frame_->SetFrameSlot(top_offset_, value);
}
Address output_address(unsigned output_offset) {
Address output_address =
static_cast<Address>(frame_->GetTop()) + output_offset;
return output_address;
}
void DebugPrintOutputValue(intptr_t value, const char* debug_hint = "") {
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" " V8PRIxPTR_FMT ": [top + %3d] <- " V8PRIxPTR_FMT " ; %s",
output_address(top_offset_), top_offset_, value, debug_hint);
}
}
void DebugPrintOutputObject(Object* obj, unsigned output_offset,
const char* debug_hint = "") {
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " " V8PRIxPTR_FMT ": [top + %3d] <- ",
output_address(output_offset), output_offset);
if (obj->IsSmi()) {
PrintF(V8PRIxPTR_FMT " <Smi %d>", reinterpret_cast<Address>(obj),
Smi::cast(obj)->value());
} else {
obj->ShortPrint(trace_scope_->file());
}
PrintF(trace_scope_->file(), " ; %s", debug_hint);
}
}
Deoptimizer* deoptimizer_;
FrameDescription* frame_;
CodeTracer::Scope* trace_scope_;
unsigned top_offset_;
};
DeoptimizerData::DeoptimizerData(Heap* heap) : heap_(heap), current_(nullptr) {
for (int i = 0; i <= DeoptimizerData::kLastDeoptimizeKind; ++i) {
deopt_entry_code_[i] = nullptr;
}
Code** start = &deopt_entry_code_[0];
Code** end = &deopt_entry_code_[DeoptimizerData::kLastDeoptimizeKind + 1];
heap_->RegisterStrongRoots(reinterpret_cast<Object**>(start),
reinterpret_cast<Object**>(end));
}
DeoptimizerData::~DeoptimizerData() {
for (int i = 0; i <= DeoptimizerData::kLastDeoptimizeKind; ++i) {
deopt_entry_code_[i] = nullptr;
}
Code** start = &deopt_entry_code_[0];
heap_->UnregisterStrongRoots(reinterpret_cast<Object**>(start));
}
Code* DeoptimizerData::deopt_entry_code(DeoptimizeKind kind) {
return deopt_entry_code_[static_cast<int>(kind)];
}
void DeoptimizerData::set_deopt_entry_code(DeoptimizeKind kind, Code* code) {
deopt_entry_code_[static_cast<int>(kind)] = code;
}
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
if (function_->IsHeapObject()) {
// Search all deoptimizing code in the native context of the function.
Isolate* isolate = isolate_;
Context* native_context = function_->context()->native_context();
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (code->contains(addr)) return code;
element = code->next_code_link();
}
}
return nullptr;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function, DeoptimizeKind kind,
unsigned bailout_id, Address from,
int fp_to_sp_delta, Isolate* isolate) {
Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, kind,
bailout_id, from, fp_to_sp_delta);
CHECK_NULL(isolate->deoptimizer_data()->current_);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->deoptimizer_data()->current_;
CHECK_NOT_NULL(result);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = nullptr;
return result;
}
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
CHECK(frame->is_optimized());
TranslatedState translated_values(frame);
translated_values.Prepare(frame->fp());
TranslatedState::iterator frame_it = translated_values.end();
int counter = jsframe_index;
for (auto it = translated_values.begin(); it != translated_values.end();
it++) {
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
it->kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
if (counter == 0) {
frame_it = it;
break;
}
counter--;
}
}
CHECK(frame_it != translated_values.end());
// We only include kJavaScriptBuiltinContinuation frames above to get the
// counting right.
CHECK_EQ(frame_it->kind(), TranslatedFrame::kInterpretedFunction);
DeoptimizedFrameInfo* info =
new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
return info;
}
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm, int count,
DeoptimizeKind kind) {
NoRootArrayScope no_root_array(masm);
TableEntryGenerator generator(masm, kind, count);
generator.Generate();
}
namespace {
class ActivationsFinder : public ThreadVisitor {
public:
explicit ActivationsFinder(std::set<Code*>* codes,
Code* topmost_optimized_code,
bool safe_to_deopt_topmost_optimized_code)
: codes_(codes) {
#ifdef DEBUG
topmost_ = topmost_optimized_code;
safe_to_deopt_ = safe_to_deopt_topmost_optimized_code;
#endif
}
// Find the frames with activations of codes marked for deoptimization, search
// for the trampoline to the deoptimizer call respective to each code, and use
// it to replace the current pc on the stack.
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
if (it.frame()->type() == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
if (code->kind() == Code::OPTIMIZED_FUNCTION &&
code->marked_for_deoptimization()) {
codes_->erase(code);
// Obtain the trampoline to the deoptimizer call.
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int trampoline_pc = safepoint.trampoline_pc();
DCHECK_IMPLIES(code == topmost_, safe_to_deopt_);
// Replace the current pc on the stack with the trampoline.
it.frame()->set_pc(code->raw_instruction_start() + trampoline_pc);
}
}
}
}
private:
std::set<Code*>* codes_;
#ifdef DEBUG
Code* topmost_;
bool safe_to_deopt_;
#endif
};
} // namespace
// Move marked code from the optimized code list to the deoptimized code list,
// and replace pc on the stack for codes marked for deoptimization.
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
DisallowHeapAllocation no_allocation;
Isolate* isolate = context->GetHeap()->isolate();
Code* topmost_optimized_code = nullptr;
bool safe_to_deopt_topmost_optimized_code = false;
#ifdef DEBUG
// Make sure all activations of optimized code can deopt at their current PC.
// The topmost optimized code has special handling because it cannot be
// deoptimized due to weak object dependency.
for (StackFrameIterator it(isolate, isolate->thread_local_top());
!it.done(); it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
JSFunction* function =
static_cast<OptimizedFrame*>(it.frame())->function();
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer found activation of function: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int deopt_index = safepoint.deoptimization_index();
// Turbofan deopt is checked when we are patching addresses on stack.
bool safe_if_deopt_triggered =
deopt_index != Safepoint::kNoDeoptimizationIndex;
bool is_builtin_code = code->kind() == Code::BUILTIN;
DCHECK(topmost_optimized_code == nullptr || safe_if_deopt_triggered ||
is_builtin_code);
if (topmost_optimized_code == nullptr) {
topmost_optimized_code = code;
safe_to_deopt_topmost_optimized_code = safe_if_deopt_triggered;
}
}
}
#endif
// We will use this set to mark those Code objects that are marked for
// deoptimization and have not been found in stack frames.
std::set<Code*> codes;
// Move marked code from the optimized code list to the deoptimized code list.
// Walk over all optimized code objects in this native context.
Code* prev = nullptr;
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
Object* next = code->next_code_link();
if (code->marked_for_deoptimization()) {
// Make sure that this object does not point to any garbage.
isolate->heap()->InvalidateCodeEmbeddedObjects(code);
codes.insert(code);
if (prev != nullptr) {
// Skip this code in the optimized code list.
prev->set_next_code_link(next);
} else {
// There was no previous node, the next node is the new head.
context->SetOptimizedCodeListHead(next);
}
// Move the code to the _deoptimized_ code list.
code->set_next_code_link(context->DeoptimizedCodeListHead());
context->SetDeoptimizedCodeListHead(code);
} else {
// Not marked; preserve this element.
prev = code;
}
element = next;
}
ActivationsFinder visitor(&codes, topmost_optimized_code,
safe_to_deopt_topmost_optimized_code);
// Iterate over the stack of this thread.
visitor.VisitThread(isolate, isolate->thread_local_top());
// In addition to iterate over the stack of this thread, we also
// need to consider all the other threads as they may also use
// the code currently beings deoptimized.
isolate->thread_manager()->IterateArchivedThreads(&visitor);
// If there's no activation of a code in any stack then we can remove its
// deoptimization data. We do this to ensure that code objects that are
// unlinked don't transitively keep objects alive unnecessarily.
for (Code* code : codes) {
isolate->heap()->InvalidateCodeDeoptimizationData(code);
}
}
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
}
isolate->AbortConcurrentOptimization(BlockingBehavior::kBlock);
DisallowHeapAllocation no_allocation;
// For all contexts, mark all code, then deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined(isolate)) {
Context* native_context = Context::cast(context);
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->next_context_link();
}
}
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, deoptimize code already marked.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined(isolate)) {
Context* native_context = Context::cast(context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->next_context_link();
}
}
void Deoptimizer::MarkAllCodeForContext(Context* context) {
Object* element = context->OptimizedCodeListHead();
Isolate* isolate = context->GetIsolate();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
code->set_marked_for_deoptimization(true);
element = code->next_code_link();
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function, Code* code) {
Isolate* isolate = function->GetIsolate();
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
if (code == nullptr) code = function->code();
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
// Mark the code for deoptimization and unlink any functions that also
// refer to that code. The code cannot be shared across native contexts,
// so we only need to search one.
code->set_marked_for_deoptimization(true);
// The code in the function's optimized code feedback vector slot might
// be different from the code on the function - evict it if necessary.
function->feedback_vector()->EvictOptimizedCodeMarkedForDeoptimization(
function->shared(), "unlinking code marked for deopt");
if (!code->deopt_already_counted()) {
function->feedback_vector()->increment_deopt_count();
code->set_deopt_already_counted(true);
}
DeoptimizeMarkedCodeForContext(function->context()->native_context());
}
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
const char* Deoptimizer::MessageFor(DeoptimizeKind kind) {
switch (kind) {
case DeoptimizeKind::kEager:
return "eager";
case DeoptimizeKind::kSoft:
return "soft";
case DeoptimizeKind::kLazy:
return "lazy";
}
FATAL("Unsupported deopt kind");
return nullptr;
}
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
DeoptimizeKind kind, unsigned bailout_id, Address from,
int fp_to_sp_delta)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
deopt_kind_(kind),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
deoptimizing_throw_(false),
catch_handler_data_(-1),
catch_handler_pc_offset_(-1),
input_(nullptr),
output_count_(0),
jsframe_count_(0),
output_(nullptr),
caller_frame_top_(0),
caller_fp_(0),
caller_pc_(0),
caller_constant_pool_(0),
input_frame_context_(0),
stack_fp_(0),
trace_scope_(nullptr) {
if (isolate->deoptimizer_lazy_throw()) {
isolate->set_deoptimizer_lazy_throw(false);
deoptimizing_throw_ = true;
}
DCHECK_NE(from, kNullAddress);
compiled_code_ = FindOptimizedCode();
DCHECK_NOT_NULL(compiled_code_);
DCHECK(function->IsJSFunction());
trace_scope_ = FLAG_trace_deopt
? new CodeTracer::Scope(isolate->GetCodeTracer())
: nullptr;
#ifdef DEBUG
DCHECK(AllowHeapAllocation::IsAllowed());
disallow_heap_allocation_ = new DisallowHeapAllocation();
#endif // DEBUG
if (compiled_code_->kind() != Code::OPTIMIZED_FUNCTION ||
!compiled_code_->deopt_already_counted()) {
// If the function is optimized, and we haven't counted that deopt yet, then
// increment the function's deopt count so that we can avoid optimising
// functions that deopt too often.
if (deopt_kind_ == DeoptimizeKind::kSoft) {
// Soft deopts shouldn't count against the overall deoptimization count
// that can eventually lead to disabling optimization for a function.
isolate->counters()->soft_deopts_executed()->Increment();
} else if (function != nullptr) {
function->feedback_vector()->increment_deopt_count();
}
}
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
compiled_code_->set_deopt_already_counted(true);
PROFILE(isolate_,
CodeDeoptEvent(compiled_code_, kind, from_, fp_to_sp_delta_));
}
unsigned size = ComputeInputFrameSize();
int parameter_count =
function->shared()->internal_formal_parameter_count() + 1;
input_ = new (size) FrameDescription(size, parameter_count);
}
Code* Deoptimizer::FindOptimizedCode() {
Code* compiled_code = FindDeoptimizingCode(from_);
return (compiled_code == nullptr)
? static_cast<Code*>(isolate_->FindCodeObject(from_))
: compiled_code;
}
void Deoptimizer::PrintFunctionName() {
if (function_->IsHeapObject() && function_->IsJSFunction()) {
function_->ShortPrint(trace_scope_->file());
} else {
PrintF(trace_scope_->file(),
"%s", Code::Kind2String(compiled_code_->kind()));
}
}
Handle<JSFunction> Deoptimizer::function() const {
return Handle<JSFunction>(function_, isolate());
}
Handle<Code> Deoptimizer::compiled_code() const {
return Handle<Code>(compiled_code_, isolate());
}
Deoptimizer::~Deoptimizer() {
DCHECK(input_ == nullptr && output_ == nullptr);
DCHECK_NULL(disallow_heap_allocation_);
delete trace_scope_;
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = nullptr;
output_ = nullptr;
#ifdef DEBUG
DCHECK(!AllowHeapAllocation::IsAllowed());
DCHECK_NOT_NULL(disallow_heap_allocation_);
delete disallow_heap_allocation_;
disallow_heap_allocation_ = nullptr;
#endif // DEBUG
}
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate, int id,
DeoptimizeKind kind) {
CHECK_GE(id, 0);
if (id >= kMaxNumberOfEntries) return kNullAddress;
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LE(kind, DeoptimizerData::kLastDeoptimizeKind);
CHECK_NOT_NULL(data->deopt_entry_code(kind));
Code* code = data->deopt_entry_code(kind);
return code->raw_instruction_start() + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Isolate* isolate, Address addr,
DeoptimizeKind kind) {
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LE(kind, DeoptimizerData::kLastDeoptimizeKind);
DCHECK(IsInDeoptimizationTable(isolate, addr, kind));
Code* code = data->deopt_entry_code(kind);
Address start = code->raw_instruction_start();
DCHECK_EQ(0,
static_cast<int>(addr - start) % table_entry_size_);
return static_cast<int>(addr - start) / table_entry_size_;
}
bool Deoptimizer::IsInDeoptimizationTable(Isolate* isolate, Address addr,
DeoptimizeKind type) {
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LE(type, DeoptimizerData::kLastDeoptimizeKind);
Code* code = data->deopt_entry_code(type);
if (code == nullptr) return false;
Address start = code->raw_instruction_start();
return ((table_entry_size_ == 0 && addr == start) ||
(addr >= start &&
addr < start + (kMaxNumberOfEntries * table_entry_size_)));
}
bool Deoptimizer::IsDeoptimizationEntry(Isolate* isolate, Address addr,
DeoptimizeKind* type) {
if (IsInDeoptimizationTable(isolate, addr, DeoptimizeKind::kEager)) {
*type = DeoptimizeKind::kEager;
return true;
}
if (IsInDeoptimizationTable(isolate, addr, DeoptimizeKind::kSoft)) {
*type = DeoptimizeKind::kSoft;
return true;
}
if (IsInDeoptimizationTable(isolate, addr, DeoptimizeKind::kLazy)) {
*type = DeoptimizeKind::kLazy;
return true;
}
return false;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
// Count all entries in the deoptimizing code list of every context.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined(isolate)) {
Context* native_context = Context::cast(context);
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (!code->marked_for_deoptimization()) {
length++;
}
element = code->next_code_link();
}
context = Context::cast(context)->next_context_link();
}
return length;
}
namespace {
int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
switch (translated_frame->kind()) {
case TranslatedFrame::kInterpretedFunction: {
int bytecode_offset = translated_frame->node_id().ToInt();
HandlerTable table(
translated_frame->raw_shared_info()->GetBytecodeArray());
return table.LookupRange(bytecode_offset, data_out, nullptr);
}
case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch: {
return 0;
}
default:
break;
}
return -1;
}
bool ShouldPadArguments(int arg_count) {
return kPadArguments && (arg_count % 2 != 0);
}
} // namespace
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
base::ElapsedTimer timer;
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationData* input_data =
DeoptimizationData::cast(compiled_code_->deoptimization_data());
{
// Read caller's PC, caller's FP and caller's constant pool values
// from input frame. Compute caller's frame top address.
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = input_->GetRegister(fp_reg.code());
caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
Address fp_address = input_->GetFramePointerAddress();
caller_fp_ = Memory<intptr_t>(fp_address);
caller_pc_ =
Memory<intptr_t>(fp_address + CommonFrameConstants::kCallerPCOffset);
input_frame_context_ = Memory<intptr_t>(
fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
if (FLAG_enable_embedded_constant_pool) {
caller_constant_pool_ = Memory<intptr_t>(
fp_address + CommonFrameConstants::kConstantPoolOffset);
}
}
if (trace_scope_ != nullptr) {
timer.Start();
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
MessageFor(deopt_kind_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" (opt #%d) @%d, FP to SP delta: %d, caller sp: " V8PRIxPTR_FMT
"]\n",
input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_,
caller_frame_top_);
if (deopt_kind_ == DeoptimizeKind::kEager ||
deopt_kind_ == DeoptimizeKind::kSoft) {
compiled_code_->PrintDeoptLocation(
trace_scope_->file(), " ;;; deoptimize at ", from_);
}
}
BailoutId node_id = input_data->BytecodeOffset(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
TranslationIterator state_iterator(translations, translation_index);
translated_state_.Init(
isolate_, input_->GetFramePointerAddress(), &state_iterator,
input_data->LiteralArray(), input_->GetRegisterValues(),
trace_scope_ == nullptr ? nullptr : trace_scope_->file(),
function_->IsHeapObject()
? function_->shared()->internal_formal_parameter_count()
: 0);
// Do the input frame to output frame(s) translation.
size_t count = translated_state_.frames().size();
// If we are supposed to go to the catch handler, find the catching frame
// for the catch and make sure we only deoptimize upto that frame.
if (deoptimizing_throw_) {
size_t catch_handler_frame_index = count;
for (size_t i = count; i-- > 0;) {
catch_handler_pc_offset_ = LookupCatchHandler(
&(translated_state_.frames()[i]), &catch_handler_data_);
if (catch_handler_pc_offset_ >= 0) {
catch_handler_frame_index = i;
break;
}
}
CHECK_LT(catch_handler_frame_index, count);
count = catch_handler_frame_index + 1;
}
DCHECK_NULL(output_);
output_ = new FrameDescription*[count];
for (size_t i = 0; i < count; ++i) {
output_[i] = nullptr;
}
output_count_ = static_cast<int>(count);
// Translate each output frame.
int frame_index = 0; // output_frame_index
for (size_t i = 0; i < count; ++i, ++frame_index) {
// Read the ast node id, function, and frame height for this output frame.
TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
bool handle_exception = deoptimizing_throw_ && i == count - 1;
switch (translated_frame->kind()) {
case TranslatedFrame::kInterpretedFunction:
DoComputeInterpretedFrame(translated_frame, frame_index,
handle_exception);
jsframe_count_++;
break;
case TranslatedFrame::kArgumentsAdaptor:
DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
break;
case TranslatedFrame::kConstructStub:
DoComputeConstructStubFrame(translated_frame, frame_index);
break;
case TranslatedFrame::kBuiltinContinuation:
DoComputeBuiltinContinuation(translated_frame, frame_index,
BuiltinContinuationMode::STUB);
break;
case TranslatedFrame::kJavaScriptBuiltinContinuation:
DoComputeBuiltinContinuation(translated_frame, frame_index,
BuiltinContinuationMode::JAVASCRIPT);
break;
case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch:
DoComputeBuiltinContinuation(
translated_frame, frame_index,
handle_exception
? BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION
: BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH);
break;
case TranslatedFrame::kInvalid:
FATAL("invalid frame");
break;
}
}
// Print some helpful diagnostic information.
if (trace_scope_ != nullptr) {
double ms = timer.Elapsed().InMillisecondsF();
int index = output_count_ - 1; // Index of the topmost frame.
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
MessageFor(deopt_kind_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" @%d => node=%d, pc=" V8PRIxPTR_FMT ", caller sp=" V8PRIxPTR_FMT
", took %0.3f ms]\n",
bailout_id_, node_id.ToInt(), output_[index]->GetPc(),
caller_frame_top_, ms);
}
}
void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
int frame_index,
bool goto_catch_handler) {
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
TranslatedFrame::iterator value_iterator = translated_frame->begin();
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
int bytecode_offset = translated_frame->node_id().ToInt();
int height = translated_frame->height();
int register_count = height - 1; // Exclude accumulator.
int register_stack_slot_count =
InterpreterFrameConstants::RegisterStackSlotCount(register_count);
int height_in_bytes = register_stack_slot_count * kPointerSize;
// The topmost frame will contain the accumulator.
if (is_topmost) {
height_in_bytes += kPointerSize;
if (PadTopOfStackRegister()) height_in_bytes += kPointerSize;
}
TranslatedFrame::iterator function_iterator = value_iterator++;
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " translating interpreted frame ");
std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
PrintF(trace_scope_->file(), "%s", name.get());
PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
bytecode_offset, height_in_bytes,
goto_catch_handler ? " (throw)" : "");
}
if (goto_catch_handler) {
bytecode_offset = catch_handler_pc_offset_;
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by InterpreterFrameConstants. This will include
// argument padding, when needed.
unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
int parameter_count = shared->internal_formal_parameter_count() + 1;
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameter_count);
FrameWriter frame_writer(this, output_frame, trace_scope_);
CHECK(frame_index >= 0 && frame_index < output_count_);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
if (is_bottommost) {
top_address = caller_frame_top_ - output_frame_size;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(parameter_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
for (int i = 0; i < parameter_count; ++i, ++value_iterator) {
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " -------------------------\n");
}
// There are no translation commands for the caller's pc and fp, the
// context, the function and the bytecode offset. Synthesize
// their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
const intptr_t caller_pc =
is_bottommost ? caller_pc_ : output_[frame_index - 1]->GetPc();
frame_writer.PushCallerPc(caller_pc);
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
const intptr_t caller_fp =
is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
if (is_topmost) {
Register fp_reg = InterpretedFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
}
if (FLAG_enable_embedded_constant_pool) {
// For the bottommost output frame the constant pool pointer can be gotten
// from the input frame. For subsequent output frames, it can be read from
// the previous frame.
const intptr_t caller_cp =
is_bottommost ? caller_constant_pool_
: output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
// When deoptimizing into a catch block, we need to take the context
// from a register that was specified in the handler table.
TranslatedFrame::iterator context_pos = value_iterator++;
if (goto_catch_handler) {
// Skip to the translated value of the register specified
// in the handler table.
for (int i = 0; i < catch_handler_data_ + 1; ++i) {
context_pos++;
}
}
// Read the context from the translations.
Object* context = context_pos->GetRawValue();
output_frame->SetContext(reinterpret_cast<intptr_t>(context));
frame_writer.PushTranslatedValue(context_pos, "context\n");
// The function was mentioned explicitly in the BEGIN_FRAME.
frame_writer.PushTranslatedValue(function_iterator, "function\n");
// Set the bytecode array pointer.
Object* bytecode_array = shared->HasBreakInfo()
? shared->GetDebugInfo()->DebugBytecodeArray()
: shared->GetBytecodeArray();
frame_writer.PushRawObject(bytecode_array, "bytecode array\n");
// The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
int raw_bytecode_offset =
BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
frame_writer.PushRawObject(smi_bytecode_offset, "bytecode offset\n");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " -------------------------\n");
}
// Translate the rest of the interpreter registers in the frame.
for (int i = 0; i < register_count; ++i, ++value_iterator) {
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
int register_slots_written = register_count;
DCHECK_LE(register_slots_written, register_stack_slot_count);
// Some architectures must pad the stack frame with extra stack slots
// to ensure the stack frame is aligned. Do this now.
while (register_slots_written < register_stack_slot_count) {
register_slots_written++;
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Translate the accumulator register (depending on frame position).
if (is_topmost) {
if (PadTopOfStackRegister()) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// For topmost frame, put the accumulator on the stack. The
// {NotifyDeoptimized} builtin pops it off the topmost frame (possibly
// after materialization).
if (goto_catch_handler) {
// If we are lazy deopting to a catch handler, we set the accumulator to
// the exception (which lives in the result register).
intptr_t accumulator_value =
input_->GetRegister(kInterpreterAccumulatorRegister.code());
frame_writer.PushRawObject(reinterpret_cast<Object*>(accumulator_value),
"accumulator\n");
++value_iterator; // Skip the accumulator.
} else {
frame_writer.PushTranslatedValue(value_iterator++, "accumulator");
}
} else {
// For non-topmost frames, skip the accumulator translation. For those
// frames, the return value from the callee will become the accumulator.
++value_iterator;
}
CHECK_EQ(translated_frame->end(), value_iterator);
CHECK_EQ(0u, frame_writer.top_offset());
// Compute this frame's PC and state. The PC will be a special builtin that
// continues the bytecode dispatch. Note that non-topmost and lazy-style
// bailout handlers also advance the bytecode offset before dispatch, hence
// simulating what normal handlers do upon completion of the operation.
Builtins* builtins = isolate_->builtins();
Code* dispatch_builtin =
(!is_topmost || (deopt_kind_ == DeoptimizeKind::kLazy)) &&
!goto_catch_handler
? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance)
: builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
output_frame->SetPc(
static_cast<intptr_t>(dispatch_builtin->InstructionStart()));
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
static_cast<intptr_t>(dispatch_builtin->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
InterpretedFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
// Set the continuation for the topmost frame.
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
static_cast<intptr_t>(continuation->InstructionStart()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(
TranslatedFrame* translated_frame, int frame_index) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
bool is_bottommost = (0 == frame_index);
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
int parameter_count = height;
if (ShouldPadArguments(parameter_count)) height_in_bytes += kPointerSize;
TranslatedFrame::iterator function_iterator = value_iterator++;
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" translating arguments adaptor => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameter_count);
FrameWriter frame_writer(this, output_frame, trace_scope_);
// Arguments adaptor can not be topmost.
CHECK(frame_index < output_count_ - 1);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
if (is_bottommost) {
top_address = caller_frame_top_ - output_frame_size;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(parameter_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Compute the incoming parameter translation.
for (int i = 0; i < parameter_count; ++i, ++value_iterator) {
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
// Read caller's PC from the previous frame.
const intptr_t caller_pc =
is_bottommost ? caller_pc_ : output_[frame_index - 1]->GetPc();
frame_writer.PushCallerPc(caller_pc);
// Read caller's FP from the previous frame, and set this frame's FP.
const intptr_t caller_fp =
is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
const intptr_t caller_cp =
is_bottommost ? caller_constant_pool_
: output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// A marker value is used in place of the context.
intptr_t marker = StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR);
frame_writer.PushRawValue(marker, "context (adaptor sentinel)\n");
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
frame_writer.PushTranslatedValue(function_iterator, "function\n");
// Number of incoming arguments.
frame_writer.PushRawObject(Smi::FromInt(height - 1), "argc\n");
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
CHECK_EQ(translated_frame->end(), value_iterator);
DCHECK_EQ(0, frame_writer.top_offset());
Builtins* builtins = isolate_->builtins();
Code* adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = static_cast<intptr_t>(
adaptor_trampoline->InstructionStart() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
output_frame->SetPc(pc_value);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
static_cast<intptr_t>(adaptor_trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
int frame_index) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
bool is_topmost = (output_count_ - 1 == frame_index);
// The construct frame could become topmost only if we inlined a constructor
// call which does a tail call (otherwise the tail callee's frame would be
// the topmost one). So it could only be the DeoptimizeKind::kLazy case.
CHECK(!is_topmost || deopt_kind_ == DeoptimizeKind::kLazy);
Builtins* builtins = isolate_->builtins();
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
BailoutId bailout_id = translated_frame->node_id();
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
// If the construct frame appears to be topmost we should ensure that the
// value of result register is preserved during continuation execution.
// We do this here by "pushing" the result of the constructor function to the
// top of the reconstructed stack and popping it in
// {Builtins::kNotifyDeoptimized}.
if (is_topmost) {
height_in_bytes += kPointerSize;
if (PadTopOfStackRegister()) height_in_bytes += kPointerSize;
}
int parameter_count = height;
if (ShouldPadArguments(parameter_count)) height_in_bytes += kPointerSize;
TranslatedFrame::iterator function_iterator = value_iterator++;
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" translating construct stub => bailout_id=%d (%s), height=%d\n",
bailout_id.ToInt(),
bailout_id == BailoutId::ConstructStubCreate() ? "create" : "invoke",
height_in_bytes);
}
unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameter_count);
FrameWriter frame_writer(this, output_frame, trace_scope_);
// Construct stub can not be topmost.
DCHECK(frame_index > 0 && frame_index < output_count_);
DCHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(parameter_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// The allocated receiver of a construct stub frame is passed as the
// receiver parameter through the translation. It might be encoding
// a captured object, so we need save it for later.
TranslatedFrame::iterator receiver_iterator = value_iterator;
// Compute the incoming parameter translation.
for (int i = 0; i < parameter_count; ++i, ++value_iterator) {
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
// Read caller's PC from the previous frame.
const intptr_t caller_pc = output_[frame_index - 1]->GetPc();
frame_writer.PushCallerPc(caller_pc);
// Read caller's FP from the previous frame, and set this frame's FP.
const intptr_t caller_fp = output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
if (is_topmost) {
Register fp_reg = JavaScriptFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
}
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
const intptr_t caller_cp = output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// A marker value is used to mark the frame.
intptr_t marker = StackFrame::TypeToMarker(StackFrame::CONSTRUCT);
frame_writer.PushRawValue(marker, "context (construct stub sentinel)\n");
// The context can be gotten from the previous frame.
Object* context =
reinterpret_cast<Object*>(output_[frame_index - 1]->GetContext());
frame_writer.PushRawObject(context, "context\n");
// Number of incoming arguments.
frame_writer.PushRawObject(Smi::FromInt(height - 1), "argc\n");
// The constructor function was mentioned explicitly in the
// CONSTRUCT_STUB_FRAME.
frame_writer.PushTranslatedValue(function_iterator, "constuctor function\n");
// The deopt info contains the implicit receiver or the new target at the
// position of the receiver. Copy it to the top of stack, with the hole value
// as padding to maintain alignment.
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
CHECK(bailout_id == BailoutId::ConstructStubCreate() ||
bailout_id == BailoutId::ConstructStubInvoke());
const char* debug_hint = bailout_id == BailoutId::ConstructStubCreate()
? "new target\n"
: "allocated receiver\n";
frame_writer.PushTranslatedValue(receiver_iterator, debug_hint);
if (is_topmost) {
if (PadTopOfStackRegister()) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Ensure the result is restored back when we return to the stub.
Register result_reg = kReturnRegister0;
intptr_t result = input_->GetRegister(result_reg.code());
frame_writer.PushRawValue(result, "subcall result\n");
}
CHECK_EQ(translated_frame->end(), value_iterator);
CHECK_EQ(0u, frame_writer.top_offset());
// Compute this frame's PC.
DCHECK(bailout_id.IsValidForConstructStub());
Address start = construct_stub->InstructionStart();
int pc_offset =
bailout_id == BailoutId::ConstructStubCreate()
? isolate_->heap()->construct_stub_create_deopt_pc_offset()->value()
: isolate_->heap()->construct_stub_invoke_deopt_pc_offset()->value();
intptr_t pc_value = static_cast<intptr_t>(start + pc_offset);
output_frame->SetPc(pc_value);
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
static_cast<intptr_t>(construct_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
JavaScriptFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
}
// Set the continuation for the topmost frame.
if (is_topmost) {
Builtins* builtins = isolate_->builtins();
DCHECK_EQ(DeoptimizeKind::kLazy, deopt_kind_);
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
static_cast<intptr_t>(continuation->InstructionStart()));
}
}
bool Deoptimizer::BuiltinContinuationModeIsJavaScript(
BuiltinContinuationMode mode) {
switch (mode) {
case BuiltinContinuationMode::STUB:
return false;
case BuiltinContinuationMode::JAVASCRIPT:
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return true;
}
UNREACHABLE();
}
bool Deoptimizer::BuiltinContinuationModeIsWithCatch(
BuiltinContinuationMode mode) {
switch (mode) {
case BuiltinContinuationMode::STUB:
case BuiltinContinuationMode::JAVASCRIPT:
return false;
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return true;
}
UNREACHABLE();
}
StackFrame::Type Deoptimizer::BuiltinContinuationModeToFrameType(
BuiltinContinuationMode mode) {
switch (mode) {
case BuiltinContinuationMode::STUB:
return StackFrame::BUILTIN_CONTINUATION;
case BuiltinContinuationMode::JAVASCRIPT:
return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION;
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH;
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH;
}
UNREACHABLE();
}
Builtins::Name Deoptimizer::TrampolineForBuiltinContinuation(
BuiltinContinuationMode mode, bool must_handle_result) {
switch (mode) {
case BuiltinContinuationMode::STUB:
return must_handle_result ? Builtins::kContinueToCodeStubBuiltinWithResult
: Builtins::kContinueToCodeStubBuiltin;
case BuiltinContinuationMode::JAVASCRIPT:
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return must_handle_result
? Builtins::kContinueToJavaScriptBuiltinWithResult
: Builtins::kContinueToJavaScriptBuiltin;
}
UNREACHABLE();
}
// BuiltinContinuationFrames capture the machine state that is expected as input
// to a builtin, including both input register values and stack parameters. When
// the frame is reactivated (i.e. the frame below it returns), a
// ContinueToBuiltin stub restores the register state from the frame and tail
// calls to the actual target builtin, making it appear that the stub had been
// directly called by the frame above it. The input values to populate the frame
// are taken from the deopt's FrameState.
//
// Frame translation happens in two modes, EAGER and LAZY. In EAGER mode, all of
// the parameters to the Builtin are explicitly specified in the TurboFan
// FrameState node. In LAZY mode, there is always one fewer parameters specified
// in the FrameState than expected by the Builtin. In that case, construction of
// BuiltinContinuationFrame adds the final missing parameter during
// deoptimization, and that parameter is always on the stack and contains the
// value returned from the callee of the call site triggering the LAZY deopt
// (e.g. rax on x64). This requires that continuation Builtins for LAZY deopts
// must have at least one stack parameter.
//
// TO
// | .... |
// +-------------------------+
// | arg padding (arch dept) |<- at most 1*kPointerSize
// +-------------------------+
// | builtin param 0 |<- FrameState input value n becomes
// +-------------------------+
// | ... |
// +-------------------------+
// | builtin param m |<- FrameState input value n+m-1, or in
// +-----needs-alignment-----+ the LAZY case, return LAZY result value
// | ContinueToBuiltin entry |
// +-------------------------+
// | | saved frame (FP) |
// | +=====needs=alignment=====+<- fpreg
// | |constant pool (if ool_cp)|
// v +-------------------------+
// |BUILTIN_CONTINUATION mark|
// +-------------------------+
// | JSFunction (or zero) |<- only if JavaScript builtin
// +-------------------------+
// | frame height above FP |
// +-------------------------+
// | context |<- this non-standard context slot contains
// +-------------------------+ the context, even for non-JS builtins.
// | builtin address |
// +-------------------------+
// | builtin input GPR reg0 |<- populated from deopt FrameState using
// +-------------------------+ the builtin's CallInterfaceDescriptor
// | ... | to map a FrameState's 0..n-1 inputs to
// +-------------------------+ the builtin's n input register params.
// | builtin input GPR regn |
// +-------------------------+
// | reg padding (arch dept) |
// +-----needs--alignment----+
// | res padding (arch dept) |<- only if {is_topmost}; result is pop'd by
// +-------------------------+<- kNotifyDeopt ASM stub and moved to acc
// | result value |<- reg, as ContinueToBuiltin stub expects.
// +-----needs-alignment-----+<- spreg
//
void Deoptimizer::DoComputeBuiltinContinuation(
TranslatedFrame* translated_frame, int frame_index,
BuiltinContinuationMode mode) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
// The output frame must have room for all of the parameters that need to be
// passed to the builtin continuation.
const int height_in_words = translated_frame->height();
BailoutId bailout_id = translated_frame->node_id();
Builtins::Name builtin_name = Builtins::GetBuiltinFromBailoutId(bailout_id);
CHECK(!Builtins::IsLazy(builtin_name));
Code* builtin = isolate()->builtins()->builtin(builtin_name);
Callable continuation_callable =
Builtins::CallableFor(isolate(), builtin_name);
CallInterfaceDescriptor continuation_descriptor =
continuation_callable.descriptor();
const bool is_bottommost = (0 == frame_index);
const bool is_topmost = (output_count_ - 1 == frame_index);
const bool must_handle_result =
!is_topmost || deopt_kind_ == DeoptimizeKind::kLazy;
const RegisterConfiguration* config(RegisterConfiguration::Default());
const int allocatable_register_count =
config->num_allocatable_general_registers();
const int padding_slot_count =
BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count);
const int register_parameter_count =
continuation_descriptor.GetRegisterParameterCount();
// Make sure to account for the context by removing it from the register
// parameter count.
const int translated_stack_parameters =
height_in_words - register_parameter_count - 1;
const int stack_param_count =
translated_stack_parameters + (must_handle_result ? 1 : 0) +
(BuiltinContinuationModeIsWithCatch(mode) ? 1 : 0);
const int stack_param_pad_count =
ShouldPadArguments(stack_param_count) ? 1 : 0;
// If the builtins frame appears to be topmost we should ensure that the
// value of result register is preserved during continuation execution.
// We do this here by "pushing" the result of callback function to the
// top of the reconstructed stack and popping it in
// {Builtins::kNotifyDeoptimized}.
const int push_result_count =
is_topmost ? (PadTopOfStackRegister() ? 2 : 1) : 0;
const unsigned output_frame_size =
kPointerSize * (stack_param_count + stack_param_pad_count +
allocatable_register_count + padding_slot_count +
push_result_count) +
BuiltinContinuationFrameConstants::kFixedFrameSize;
const unsigned output_frame_size_above_fp =
kPointerSize * (allocatable_register_count + padding_slot_count +
push_result_count) +
(BuiltinContinuationFrameConstants::kFixedFrameSize -
BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp);
// Validate types of parameters. They must all be tagged except for argc for
// JS builtins.
bool has_argc = false;
for (int i = 0; i < register_parameter_count; ++i) {
MachineType type = continuation_descriptor.GetParameterType(i);
int code = continuation_descriptor.GetRegisterParameter(i).code();
// Only tagged and int32 arguments are supported, and int32 only for the
// arguments count on JavaScript builtins.
if (type == MachineType::Int32()) {
CHECK_EQ(code, kJavaScriptCallArgCountRegister.code());
has_argc = true;
} else {
// Any other argument must be a tagged value.
CHECK(IsAnyTagged(type.representation()));
}
}
CHECK_EQ(BuiltinContinuationModeIsJavaScript(mode), has_argc);
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" translating BuiltinContinuation to %s,"
" register param count %d,"
" stack param count %d\n",
Builtins::name(builtin_name), register_parameter_count,
stack_param_count);
}
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, stack_param_count);
output_[frame_index] = output_frame;
FrameWriter frame_writer(this, output_frame, trace_scope_);
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
if (is_bottommost) {
top_address = caller_frame_top_ - output_frame_size;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Get the possible JSFunction for the case that this is a
// JavaScriptBuiltinContinuationFrame, which needs the JSFunction pointer
// like a normal JavaScriptFrame.
const intptr_t maybe_function =
reinterpret_cast<intptr_t>(value_iterator->GetRawValue());
++value_iterator;
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(stack_param_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
for (int i = 0; i < translated_stack_parameters; ++i, ++value_iterator) {
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
switch (mode) {
case BuiltinContinuationMode::STUB:
break;
case BuiltinContinuationMode::JAVASCRIPT:
break;
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: {
frame_writer.PushRawObject(roots.the_hole_value(),
"placeholder for exception on lazy deopt\n");
} break;
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: {
intptr_t accumulator_value =
input_->GetRegister(kInterpreterAccumulatorRegister.code());
frame_writer.PushRawObject(reinterpret_cast<Object*>(accumulator_value),
"exception (from accumulator)\n");
} break;
}
if (must_handle_result) {
frame_writer.PushRawObject(roots.the_hole_value(),
"placeholder for return result on lazy deopt\n");
}
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
std::vector<TranslatedFrame::iterator> register_values;
int total_registers = config->num_general_registers();
register_values.resize(total_registers, {value_iterator});
for (int i = 0; i < register_parameter_count; ++i, ++value_iterator) {
int code = continuation_descriptor.GetRegisterParameter(i).code();
register_values[code] = value_iterator;
}
// The context register is always implicit in the CallInterfaceDescriptor but
// its register must be explicitly set when continuing to the builtin. Make
// sure that it's harvested from the translation and copied into the register
// set (it was automatically added at the end of the FrameState by the
// instruction selector).
Object* context = value_iterator->GetRawValue();
const intptr_t value = reinterpret_cast<intptr_t>(context);
TranslatedFrame::iterator context_register_value = value_iterator++;
register_values[kContextRegister.code()] = context_register_value;
output_frame->SetContext(value);
output_frame->SetRegister(kContextRegister.code(), value);
// Set caller's PC (JSFunction continuation).
const intptr_t caller_pc =
is_bottommost ? caller_pc_ : output_[frame_index - 1]->GetPc();
frame_writer.PushCallerPc(caller_pc);
// Read caller's FP from the previous frame, and set this frame's FP.
const intptr_t caller_fp =
is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
const intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
DCHECK_EQ(output_frame_size_above_fp, frame_writer.top_offset());
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
const intptr_t caller_cp =
is_bottommost ? caller_constant_pool_
: output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// A marker value is used in place of the context.
const intptr_t marker =
StackFrame::TypeToMarker(BuiltinContinuationModeToFrameType(mode));
frame_writer.PushRawValue(marker,
"context (builtin continuation sentinel)\n");
if (BuiltinContinuationModeIsJavaScript(mode)) {
frame_writer.PushRawValue(maybe_function, "JSFunction\n");
} else {
frame_writer.PushRawValue(0, "unused\n");
}
// The delta from the SP to the FP; used to reconstruct SP in
// Isolate::UnwindAndFindHandler.
frame_writer.PushRawObject(Smi::FromInt(output_frame_size_above_fp),
"frame height at deoptimization\n");
// The context even if this is a stub contininuation frame. We can't use the
// usual context slot, because we must store the frame marker there.
frame_writer.PushTranslatedValue(context_register_value,
"builtin JavaScript context\n");
// The builtin to continue to.
frame_writer.PushRawObject(builtin, "builtin address\n");
for (int i = 0; i < allocatable_register_count; ++i) {
int code = config->GetAllocatableGeneralCode(i);
ScopedVector<char> str(128);
if (trace_scope_ != nullptr) {
if (BuiltinContinuationModeIsJavaScript(mode) &&
code == kJavaScriptCallArgCountRegister.code()) {
SNPrintF(
str,
"tagged argument count %s (will be untagged by continuation)\n",
config->GetGeneralRegisterName(code));
} else {
SNPrintF(str, "builtin register argument %s\n",
config->GetGeneralRegisterName(code));
}
}
frame_writer.PushTranslatedValue(
register_values[code], trace_scope_ != nullptr ? str.start() : "");
}
// Some architectures must pad the stack frame with extra stack slots
// to ensure the stack frame is aligned.
for (int i = 0; i < padding_slot_count; ++i) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
if (is_topmost) {
if (PadTopOfStackRegister()) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Ensure the result is restored back when we return to the stub.
if (must_handle_result) {
Register result_reg = kReturnRegister0;
frame_writer.PushRawValue(input_->GetRegister(result_reg.code()),
"callback result\n");
} else {
frame_writer.PushRawObject(roots.undefined_value(), "callback result\n");
}
}
CHECK_EQ(translated_frame->end(), value_iterator);
CHECK_EQ(0u, frame_writer.top_offset());
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
}
// Ensure the frame pointer register points to the callee's frame. The builtin
// will build its own frame once we continue to it.
Register fp_reg = JavaScriptFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
Code* continue_to_builtin = isolate()->builtins()->builtin(
TrampolineForBuiltinContinuation(mode, must_handle_result));
output_frame->SetPc(
static_cast<intptr_t>(continue_to_builtin->InstructionStart()));
Code* continuation =
isolate()->builtins()->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
static_cast<intptr_t>(continuation->InstructionStart()));
}
void Deoptimizer::MaterializeHeapObjects() {
translated_state_.Prepare(static_cast<Address>(stack_fp_));
if (FLAG_deopt_every_n_times > 0) {
// Doing a GC here will find problems with the deoptimized frames.
isolate_->heap()->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
GarbageCollectionReason::kTesting);
}
for (auto& materialization : values_to_materialize_) {
Handle<Object> value = materialization.value_->GetValue();
if (trace_scope_ != nullptr) {
PrintF("Materialization [" V8PRIxPTR_FMT "] <- " V8PRIxPTR_FMT " ; ",
static_cast<intptr_t>(materialization.output_slot_address_),
reinterpret_cast<intptr_t>(*value));
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
reinterpret_cast<intptr_t>(*value);
}
translated_state_.VerifyMaterializedObjects();
bool feedback_updated = translated_state_.DoUpdateFeedback();
if (trace_scope_ != nullptr && feedback_updated) {
PrintF(trace_scope_->file(), "Feedback updated");
compiled_code_->PrintDeoptLocation(trace_scope_->file(),
" from deoptimization at ", from_);
}
isolate_->materialized_object_store()->Remove(
static_cast<Address>(stack_fp_));
}
void Deoptimizer::QueueValueForMaterialization(
Address output_address, Object* obj,
const TranslatedFrame::iterator& iterator) {
if (obj == ReadOnlyRoots(isolate_).arguments_marker()) {
values_to_materialize_.push_back({output_address, iterator});
}
}
unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
if (!function_->IsSmi()) {
fixed_size += ComputeIncomingArgumentSize(function_->shared());
}
return fixed_size;
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
// The fp-to-sp delta already takes the context, constant pool pointer and the
// function into account so we have to avoid double counting them.
unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
unsigned stack_slots = compiled_code_->stack_slots();
unsigned outgoing_size = 0;
// ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
CHECK_EQ(fixed_size_above_fp + (stack_slots * kPointerSize) -
CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
result);
}
return result;
}
// static
unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, bytecode offset and all the incoming arguments.
return ComputeIncomingArgumentSize(shared) +
InterpreterFrameConstants::kFixedFrameSize;
}
// static
unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) {
int parameter_slots = shared->internal_formal_parameter_count() + 1;
if (kPadArguments) parameter_slots = RoundUp(parameter_slots, 2);
return parameter_slots * kPointerSize;
}
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
DeoptimizeKind kind) {
CHECK(kind == DeoptimizeKind::kEager || kind == DeoptimizeKind::kSoft ||
kind == DeoptimizeKind::kLazy);
DeoptimizerData* data = isolate->deoptimizer_data();
if (data->deopt_entry_code(kind) != nullptr) return;
MacroAssembler masm(isolate, nullptr, 16 * KB, CodeObjectRequired::kYes);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, kMaxNumberOfEntries, kind);
CodeDesc desc;
masm.GetCode(isolate, &desc);
DCHECK(!RelocInfo::RequiresRelocationAfterCodegen(desc));
// Allocate the code as immovable since the entry addresses will be used
// directly and there is no support for relocating them.
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::STUB, Handle<Object>(), Builtins::kNoBuiltinId,
MaybeHandle<ByteArray>(), MaybeHandle<DeoptimizationData>(), kImmovable);
CHECK(Heap::IsImmovable(*code));
CHECK_NULL(data->deopt_entry_code(kind));
data->set_deopt_entry_code(kind, *code);
}
void Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(Isolate* isolate) {
EnsureCodeForDeoptimizationEntry(isolate, DeoptimizeKind::kEager);
EnsureCodeForDeoptimizationEntry(isolate, DeoptimizeKind::kLazy);
EnsureCodeForDeoptimizationEntry(isolate, DeoptimizeKind::kSoft);
}
FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
: frame_size_(frame_size),
parameter_count_(parameter_count),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32),
constant_pool_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
// isn't used before the next safepoint, the GC will try to scan it as a
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
void TranslationBuffer::Add(int32_t value) {
// This wouldn't handle kMinInt correctly if it ever encountered it.
DCHECK_NE(value, kMinInt);
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = (static_cast<uint32_t>(is_negative ? -value : value) << 1) |
static_cast<uint32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.push_back(((bits << 1) & 0xFF) | (next != 0));
bits = next;
} while (bits != 0);
}
TranslationIterator::TranslationIterator(ByteArray* buffer, int index)
: buffer_(buffer), index_(index) {
DCHECK(index >= 0 && index < buffer->length());
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
DCHECK(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
bool TranslationIterator::HasNext() const { return index_ < buffer_->length(); }
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
Handle<ByteArray> result = factory->NewByteArray(CurrentIndex(), TENURED);
contents_.CopyTo(result->GetDataStartAddress());
return result;
}
void Translation::BeginBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id,
unsigned height) {
buffer_->Add(BUILTIN_CONTINUATION_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginJavaScriptBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id,
unsigned height) {
buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginJavaScriptBuiltinContinuationWithCatchFrame(
BailoutId bailout_id, int literal_id, unsigned height) {
buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginConstructStubFrame(BailoutId bailout_id, int literal_id,
unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME);
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
int literal_id, unsigned height) {
buffer_->Add(INTERPRETED_FRAME);
buffer_->Add(bytecode_offset.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::ArgumentsElements(CreateArgumentsType type) {
buffer_->Add(ARGUMENTS_ELEMENTS);
buffer_->Add(static_cast<uint8_t>(type));
}
void Translation::ArgumentsLength(CreateArgumentsType type) {
buffer_->Add(ARGUMENTS_LENGTH);
buffer_->Add(static_cast<uint8_t>(type));
}
void Translation::BeginCapturedObject(int length) {
buffer_->Add(CAPTURED_OBJECT);
buffer_->Add(length);
}
void Translation::DuplicateObject(int object_index) {
buffer_->Add(DUPLICATED_OBJECT);
buffer_->Add(object_index);
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreBoolRegister(Register reg) {
buffer_->Add(BOOL_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreFloatRegister(FloatRegister reg) {
buffer_->Add(FLOAT_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreBoolStackSlot(int index) {
buffer_->Add(BOOL_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreFloatStackSlot(int index) {
buffer_->Add(FLOAT_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL);
buffer_->Add(literal_id);
}
void Translation::AddUpdateFeedback(int vector_literal, int slot) {
buffer_->Add(UPDATE_FEEDBACK);
buffer_->Add(vector_literal);
buffer_->Add(slot);
}
void Translation::StoreJSFrameFunction() {
StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
StandardFrameConstants::kFunctionOffset) /
kPointerSize);
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case DUPLICATED_OBJECT:
case ARGUMENTS_ELEMENTS:
case ARGUMENTS_LENGTH:
case CAPTURED_OBJECT:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case BOOL_REGISTER:
case FLOAT_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case BOOL_STACK_SLOT:
case FLOAT_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
return 1;
case ARGUMENTS_ADAPTOR_FRAME:
case UPDATE_FEEDBACK:
return 2;
case BEGIN:
case INTERPRETED_FRAME:
case CONSTRUCT_STUB_FRAME:
case BUILTIN_CONTINUATION_FRAME:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
return 3;
}
FATAL("Unexpected translation type");
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
switch (opcode) {
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
}
#undef TRANSLATION_OPCODE_CASE
UNREACHABLE();
}
#endif
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
CHECK_GT(array->length(), index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
int index = StackIdToIndex(fp);
if (index == -1) {
index = static_cast<int>(frame_fps_.size());
frame_fps_.push_back(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
bool MaterializedObjectStore::Remove(Address fp) {
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
if (it == frame_fps_.end()) return false;
int index = static_cast<int>(std::distance(frame_fps_.begin(), it));
frame_fps_.erase(it);
FixedArray* array = isolate()->heap()->materialized_objects();
CHECK_LT(index, array->length());
int fps_size = static_cast<int>(frame_fps_.size());
for (int i = index; i < fps_size; i++) {
array->set(i, array->get(i + 1));
}
array->set(fps_size, ReadOnlyRoots(isolate()).undefined_value());
return true;
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
return it == frame_fps_.end()
? -1
: static_cast<int>(std::distance(frame_fps_.begin(), it));
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects(),
isolate());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, TENURED);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
HeapObject* undefined_value = ReadOnlyRoots(isolate()).undefined_value();
for (int i = array->length(); i < length; i++) {
new_array->set(i, undefined_value);
}
isolate()->heap()->SetRootMaterializedObjects(*new_array);
return new_array;
}
namespace {
Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
Isolate* isolate) {
if (it->GetRawValue() == ReadOnlyRoots(isolate).arguments_marker()) {
if (!it->IsMaterializableByDebugger()) {
return isolate->factory()->optimized_out();
}
}
return it->GetValue();
}
} // namespace
DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
TranslatedState::iterator frame_it,
Isolate* isolate) {
int parameter_count =
frame_it->shared_info()->internal_formal_parameter_count();
TranslatedFrame::iterator stack_it = frame_it->begin();
// Get the function. Note that this might materialize the function.
// In case the debugger mutates this value, we should deoptimize
// the function and remember the value in the materialized value store.
function_ = Handle<JSFunction>::cast(stack_it->GetValue());
stack_it++; // Skip the function.
stack_it++; // Skip the receiver.
DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray(
*frame_it->shared_info(), frame_it->node_id());
DCHECK_EQ(parameter_count,
function_->shared()->internal_formal_parameter_count());
parameters_.resize(static_cast<size_t>(parameter_count));
for (int i = 0; i < parameter_count; i++) {
Handle<Object> parameter = GetValueForDebugger(stack_it, isolate);
SetParameter(i, parameter);
stack_it++;
}
// Get the context.
context_ = GetValueForDebugger(stack_it, isolate);
stack_it++;
// Get the expression stack.
int stack_height = frame_it->height();
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
// For interpreter frames, we should not count the accumulator.
// TODO(jarin): Clean up the indexing in translated frames.
stack_height--;
}
expression_stack_.resize(static_cast<size_t>(stack_height));
for (int i = 0; i < stack_height; i++) {
Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
SetExpression(i, expression);
stack_it++;
}
// For interpreter frame, skip the accumulator.
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
stack_it++;
}
CHECK(stack_it == frame_it->end());
}
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
CHECK(code->InstructionStart() <= pc && pc <= code->InstructionEnd());
SourcePosition last_position = SourcePosition::Unknown();
DeoptimizeReason last_reason = DeoptimizeReason::kUnknown;
int last_deopt_id = kNoDeoptimizationId;
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) |
RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() >= pc) break;
if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) {
int script_offset = static_cast<int>(info->data());
it.next();
DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID);
int inlining_id = static_cast<int>(it.rinfo()->data());
last_position = SourcePosition(script_offset, inlining_id);
} else if (info->rmode() == RelocInfo::DEOPT_ID) {
last_deopt_id = static_cast<int>(info->data());
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
last_reason = static_cast<DeoptimizeReason>(info->data());
}
}
return DeoptInfo(last_position, last_reason, last_deopt_id);
}
// static
int Deoptimizer::ComputeSourcePositionFromBytecodeArray(
SharedFunctionInfo* shared, BailoutId node_id) {
DCHECK(shared->HasBytecodeArray());
return AbstractCode::cast(shared->GetBytecodeArray())
->SourcePosition(node_id.ToInt());
}
// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kCapturedObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
int id) {
TranslatedValue slot(container, kDuplicatedObject);
slot.materialization_info_ = {id, -1};
return slot;
}
// static
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
Float32 value) {
TranslatedValue slot(container, kFloat);
slot.float_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
Float64 value) {
TranslatedValue slot(container, kDouble);
slot.double_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
int32_t value) {
TranslatedValue slot(container, kInt32);
slot.int32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kUInt32);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kBoolBit);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
Object* literal) {
TranslatedValue slot(container, kTagged);
slot.raw_literal_ = literal;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
return TranslatedValue(container, kInvalid);
}
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
Object* TranslatedValue::raw_literal() const {
DCHECK_EQ(kTagged, kind());
return raw_literal_;
}
int32_t TranslatedValue::int32_value() const {
DCHECK_EQ(kInt32, kind());
return int32_value_;
}
uint32_t TranslatedValue::uint32_value() const {
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
return uint32_value_;
}
Float32 TranslatedValue::float_value() const {
DCHECK_EQ(kFloat, kind());
return float_value_;
}
Float64 TranslatedValue::double_value() const {
DCHECK_EQ(kDouble, kind());
return double_value_;
}
int TranslatedValue::object_length() const {
DCHECK_EQ(kind(), kCapturedObject);
return materialization_info_.length_;
}
int TranslatedValue::object_index() const {
DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
return materialization_info_.id_;
}
Object* TranslatedValue::GetRawValue() const {
// If we have a value, return it.
if (materialization_state() == kFinished) {
return *storage_;
}
// Otherwise, do a best effort to get the value without allocation.
switch (kind()) {
case kTagged:
return raw_literal();
case kInt32: {
bool is_smi = Smi::IsValid(int32_value());
if (is_smi) {
return Smi::FromInt(int32_value());
}
break;
}
case kUInt32: {
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
}
break;
}
case kBoolBit: {
if (uint32_value() == 0) {
return ReadOnlyRoots(isolate()).false_value();
} else {
CHECK_EQ(1U, uint32_value());
return ReadOnlyRoots(isolate()).true_value();
}
}
default:
break;
}
// If we could not get the value without allocation, return the arguments
// marker.
return ReadOnlyRoots(isolate()).arguments_marker();
}
void TranslatedValue::set_initialized_storage(Handle<Object> storage) {
DCHECK_EQ(kUninitialized, materialization_state());
storage_ = storage;
materialization_state_ = kFinished;
}
Handle<Object> TranslatedValue::GetValue() {
// If we already have a value, then get it.
if (materialization_state() == kFinished) return storage_;
// Otherwise we have to materialize.
switch (kind()) {
case TranslatedValue::kTagged:
case TranslatedValue::kInt32:
case TranslatedValue::kUInt32:
case TranslatedValue::kBoolBit:
case TranslatedValue::kFloat:
case TranslatedValue::kDouble: {
MaterializeSimple();
return storage_;
}
case TranslatedValue::kCapturedObject:
case TranslatedValue::kDuplicatedObject: {
// We need to materialize the object (or possibly even object graphs).
// To make the object verifier happy, we materialize in two steps.
// 1. Allocate storage for reachable objects. This makes sure that for
// each object we have allocated space on heap. The space will be
// a byte array that will be later initialized, or a fully
// initialized object if it is safe to allocate one that will
// pass the verifier.
container_->EnsureObjectAllocatedAt(this);
// 2. Initialize the objects. If we have allocated only byte arrays
// for some objects, we now overwrite the byte arrays with the
// correct object fields. Note that this phase does not allocate
// any new objects, so it does not trigger the object verifier.
return container_->InitializeObjectAt(this);
}
case TranslatedValue::kInvalid:
FATAL("unexpected case");
return Handle<Object>::null();
}
FATAL("internal error: value missing");
return Handle<Object>::null();
}
void TranslatedValue::MaterializeSimple() {
// If we already have materialized, return.
if (materialization_state() == kFinished) return;
Object* raw_value = GetRawValue();
if (raw_value != ReadOnlyRoots(isolate()).arguments_marker()) {
// We can get the value without allocation, just return it here.
set_initialized_storage(Handle<Object>(raw_value, isolate()));
return;
}
switch (kind()) {
case kInt32:
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(int32_value())));
return;
case kUInt32:
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(uint32_value())));
return;
case kFloat: {
double scalar_value = float_value().get_scalar();
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
return;
}
case kDouble: {
double scalar_value = double_value().get_scalar();
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
return;
}
case kCapturedObject:
case kDuplicatedObject:
case kInvalid:
case kTagged:
case kBoolBit:
FATAL("internal error: unexpected materialization.");
break;
}
}
bool TranslatedValue::IsMaterializedObject() const {
switch (kind()) {
case kCapturedObject:
case kDuplicatedObject:
return true;
default:
return false;
}
}
bool TranslatedValue::IsMaterializableByDebugger() const {
// At the moment, we only allow materialization of doubles.
return (kind() == kDouble);
}
int TranslatedValue::GetChildrenCount() const {
if (kind() == kCapturedObject) {
return object_length();
} else {
return 0;
}
}
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
return Memory<uint32_t>(address + kIntSize);
#else
return Memory<uint32_t>(address);
#endif
}
Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
#if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
#else
return Float32::FromBits(Memory<uint32_t>(fp + slot_offset));
#endif
}
Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {