blob: 1e77734ab66e182a95ea12c28fbd131b82f915da [file] [log] [blame]
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_TORQUE_EARLEY_PARSER_H_
#define V8_TORQUE_EARLEY_PARSER_H_
#include <map>
#include <vector>
#include "src/base/optional.h"
#include "src/torque/contextual.h"
#include "src/torque/source-positions.h"
#include "src/torque/utils.h"
namespace v8 {
namespace internal {
namespace torque {
class Symbol;
class Item;
class ParseResultHolderBase {
public:
enum class TypeId;
virtual ~ParseResultHolderBase() = default;
template <class T>
T& Cast();
template <class T>
const T& Cast() const;
protected:
explicit ParseResultHolderBase(TypeId type_id) : type_id_(type_id) {
// MSVC wrongly complains about type_id_ being an unused private field.
USE(type_id_);
}
private:
const TypeId type_id_;
};
using ParseResultTypeId = ParseResultHolderBase::TypeId;
template <class T>
class ParseResultHolder : public ParseResultHolderBase {
public:
explicit ParseResultHolder(T value)
: ParseResultHolderBase(id), value_(std::move(value)) {}
private:
V8_EXPORT_PRIVATE static const TypeId id;
friend class ParseResultHolderBase;
T value_;
};
template <class T>
T& ParseResultHolderBase::Cast() {
CHECK_EQ(ParseResultHolder<T>::id, type_id_);
return static_cast<ParseResultHolder<T>*>(this)->value_;
}
template <class T>
const T& ParseResultHolderBase::Cast() const {
CHECK_EQ(ParseResultHolder<T>::id, type_id_);
return static_cast<const ParseResultHolder<T>*>(this)->value_;
}
class ParseResult {
public:
template <class T>
explicit ParseResult(T x) : value_(new ParseResultHolder<T>(std::move(x))) {}
template <class T>
const T& Cast() const {
return value_->Cast<T>();
}
template <class T>
T& Cast() {
return value_->Cast<T>();
}
private:
std::unique_ptr<ParseResultHolderBase> value_;
};
using InputPosition = const char*;
struct MatchedInput {
MatchedInput(InputPosition begin, InputPosition end, SourcePosition pos)
: begin(begin), end(end), pos(pos) {}
InputPosition begin;
InputPosition end;
SourcePosition pos;
std::string ToString() const { return {begin, end}; }
};
class ParseResultIterator {
public:
explicit ParseResultIterator(std::vector<ParseResult> results,
MatchedInput matched_input)
: results_(std::move(results)), matched_input_(matched_input) {}
~ParseResultIterator() {
// Check that all parse results have been used.
CHECK_EQ(results_.size(), i_);
}
ParseResult Next() {
CHECK_LT(i_, results_.size());
return std::move(results_[i_++]);
}
template <class T>
T NextAs() {
return std::move(Next().Cast<T>());
}
bool HasNext() const { return i_ < results_.size(); }
const MatchedInput& matched_input() const { return matched_input_; }
private:
std::vector<ParseResult> results_;
size_t i_ = 0;
MatchedInput matched_input_;
DISALLOW_COPY_AND_MOVE_AND_ASSIGN(ParseResultIterator);
};
struct LexerResult {
std::vector<Symbol*> token_symbols;
std::vector<MatchedInput> token_contents;
};
using Action =
base::Optional<ParseResult> (*)(ParseResultIterator* child_results);
inline base::Optional<ParseResult> DefaultAction(
ParseResultIterator* child_results) {
if (!child_results->HasNext()) return base::nullopt;
return child_results->Next();
}
// A rule of the context-free grammar. Each rule can have an action attached to
// it, which is executed after the parsing is finished.
class Rule final {
public:
explicit Rule(std::vector<Symbol*> right_hand_side,
Action action = DefaultAction)
: right_hand_side_(std::move(right_hand_side)), action_(action) {}
Symbol* left() const {
DCHECK_NOT_NULL(left_hand_side_);
return left_hand_side_;
}
const std::vector<Symbol*>& right() const { return right_hand_side_; }
void SetLeftHandSide(Symbol* left_hand_side) {
DCHECK_NULL(left_hand_side_);
left_hand_side_ = left_hand_side;
}
V8_EXPORT_PRIVATE base::Optional<ParseResult> RunAction(
const Item* completed_item, const LexerResult& tokens) const;
private:
Symbol* left_hand_side_ = nullptr;
std::vector<Symbol*> right_hand_side_;
Action action_;
};
// A Symbol represents a terminal or a non-terminal of the grammar.
// It stores the list of rules, which have this symbol as the
// left-hand side.
// Terminals have an empty list of rules, they are created by the Lexer
// instead of from rules.
// Symbols need to reside at stable memory addresses, because the addresses are
// used in the parser.
class Symbol {
public:
Symbol() : Symbol({}) {}
Symbol(std::initializer_list<Rule> rules) { *this = rules; }
V8_EXPORT_PRIVATE Symbol& operator=(std::initializer_list<Rule> rules);
bool IsTerminal() const { return rules_.empty(); }
Rule* rule(size_t index) const { return rules_[index].get(); }
size_t rule_number() const { return rules_.size(); }
void AddRule(const Rule& rule) {
rules_.push_back(base::make_unique<Rule>(rule));
rules_.back()->SetLeftHandSide(this);
}
V8_EXPORT_PRIVATE base::Optional<ParseResult> RunAction(
const Item* item, const LexerResult& tokens);
private:
std::vector<std::unique_ptr<Rule>> rules_;
// Disallow copying and moving to ensure Symbol has a stable address.
DISALLOW_COPY_AND_MOVE_AND_ASSIGN(Symbol);
};
// Items are the core datastructure of Earley's algorithm.
// They consist of a (partially) matched rule, a marked position inside of the
// right-hand side of the rule (traditionally written as a dot) and an input
// range from {start} to {pos} that matches the symbols of the right-hand side
// that are left of the mark. In addition, they store a child and a left-sibling
// pointer to reconstruct the AST in the end.
class Item {
public:
Item(const Rule* rule, size_t mark, size_t start, size_t pos)
: rule_(rule), mark_(mark), start_(start), pos_(pos) {
DCHECK_LE(mark_, right().size());
}
// A complete item has the mark at the right end, which means the input range
// matches the complete rule.
bool IsComplete() const {
DCHECK_LE(mark_, right().size());
return mark_ == right().size();
}
// The symbol right after the mark is expected at {pos} for this item to
// advance.
Symbol* NextSymbol() const {
DCHECK(!IsComplete());
DCHECK_LT(mark_, right().size());
return right()[mark_];
}
// We successfully parsed NextSymbol() between {pos} and {new_pos}.
// If NextSymbol() was a non-terminal, then {child} is a pointer to a
// completed item for this parse.
// We create a new item, which moves the mark one forward.
Item Advance(size_t new_pos, const Item* child = nullptr) const {
if (child) {
DCHECK(child->IsComplete());
DCHECK_EQ(pos(), child->start());
DCHECK_EQ(new_pos, child->pos());
DCHECK_EQ(NextSymbol(), child->left());
}
Item result(rule_, mark_ + 1, start_, new_pos);
result.prev_ = this;
result.child_ = child;
return result;
}
// Collect the items representing the AST children of this completed item.
std::vector<const Item*> Children() const;
// The matched input separated according to the next branching AST level.
std::string SplitByChildren(const LexerResult& tokens) const;
// Check if {other} results in the same AST as this Item.
void CheckAmbiguity(const Item& other, const LexerResult& tokens) const;
MatchedInput GetMatchedInput(const LexerResult& tokens) const {
return {tokens.token_contents[start_].begin,
start_ == pos_ ? tokens.token_contents[start_].begin
: tokens.token_contents[pos_ - 1].end,
tokens.token_contents[start_].pos};
}
// We exclude {prev_} and {child_} from equality and hash computations,
// because they are just globally unique data associated with an item.
bool operator==(const Item& other) const {
return rule_ == other.rule_ && mark_ == other.mark_ &&
start_ == other.start_ && pos_ == other.pos_;
}
friend size_t hash_value(const Item& i) {
return base::hash_combine(i.rule_, i.mark_, i.start_, i.pos_);
}
const Rule* rule() const { return rule_; }
Symbol* left() const { return rule_->left(); }
const std::vector<Symbol*>& right() const { return rule_->right(); }
size_t pos() const { return pos_; }
size_t start() const { return start_; }
private:
const Rule* rule_;
size_t mark_;
size_t start_;
size_t pos_;
const Item* prev_ = nullptr;
const Item* child_ = nullptr;
};
inline base::Optional<ParseResult> Symbol::RunAction(
const Item* item, const LexerResult& tokens) {
DCHECK(item->IsComplete());
DCHECK_EQ(item->left(), this);
return item->rule()->RunAction(item, tokens);
}
V8_EXPORT_PRIVATE const Item* RunEarleyAlgorithm(
Symbol* start, const LexerResult& tokens,
std::unordered_set<Item, base::hash<Item>>* processed);
inline base::Optional<ParseResult> ParseTokens(Symbol* start,
const LexerResult& tokens) {
std::unordered_set<Item, base::hash<Item>> table;
const Item* final_item = RunEarleyAlgorithm(start, tokens, &table);
return start->RunAction(final_item, tokens);
}
// The lexical syntax is dynamically defined while building the grammar by
// adding patterns and keywords to the Lexer.
// The term keyword here can stand for any fixed character sequence, including
// operators and parentheses.
// Each pattern or keyword automatically gets a terminal symbol associated with
// it. These symbols form the result of the lexing.
// Patterns and keywords are matched using the longest match principle. If the
// longest matching pattern coincides with a keyword, the keyword symbol is
// chosen instead of the pattern.
// In addition, there is a single whitespace pattern which is consumed but does
// not become part of the token list.
class Lexer {
public:
// Functions to define patterns. They try to match starting from {pos}. If
// successful, they return true and advance {pos}. Otherwise, {pos} stays
// unchanged.
using PatternFunction = bool (*)(InputPosition* pos);
void SetWhitespace(PatternFunction whitespace) {
match_whitespace_ = whitespace;
}
Symbol* Pattern(PatternFunction pattern) { return &patterns_[pattern]; }
Symbol* Token(const std::string& keyword) { return &keywords_[keyword]; }
V8_EXPORT_PRIVATE LexerResult RunLexer(const std::string& input);
private:
PatternFunction match_whitespace_ = [](InputPosition*) { return false; };
std::map<PatternFunction, Symbol> patterns_;
std::map<std::string, Symbol> keywords_;
Symbol* MatchToken(InputPosition* pos, InputPosition end);
};
// A grammar can have a result, which is the results of the start symbol.
// Grammar is intended to be subclassed, with Symbol members forming the
// mutually recursive rules of the grammar.
class Grammar {
public:
using PatternFunction = Lexer::PatternFunction;
explicit Grammar(Symbol* start) : start_(start) {}
base::Optional<ParseResult> Parse(const std::string& input) {
LexerResult tokens = lexer().RunLexer(input);
return ParseTokens(start_, tokens);
}
protected:
Symbol* Token(const std::string& s) { return lexer_.Token(s); }
Symbol* Pattern(PatternFunction pattern) { return lexer_.Pattern(pattern); }
void SetWhitespace(PatternFunction ws) { lexer_.SetWhitespace(ws); }
// NewSymbol() allocates a fresh symbol and stores it in the current grammar.
// This is necessary to define helpers that create new symbols.
Symbol* NewSymbol(std::initializer_list<Rule> rules = {}) {
Symbol* result = new Symbol(rules);
generated_symbols_.push_back(std::unique_ptr<Symbol>(result));
return result;
}
// Helper functions to define lexer patterns. If they match, they return true
// and advance {pos}. Otherwise, {pos} is unchanged.
V8_EXPORT_PRIVATE static bool MatchChar(int (*char_class)(int),
InputPosition* pos);
V8_EXPORT_PRIVATE static bool MatchChar(bool (*char_class)(char),
InputPosition* pos);
V8_EXPORT_PRIVATE static bool MatchAnyChar(InputPosition* pos);
V8_EXPORT_PRIVATE static bool MatchString(const char* s, InputPosition* pos);
// The action MatchInput() produces the input matched by the rule as
// result.
static base::Optional<ParseResult> YieldMatchedInput(
ParseResultIterator* child_results) {
return ParseResult{child_results->matched_input().ToString()};
}
// Create a new symbol to parse the given sequence of symbols.
// At most one of the symbols can return a result.
Symbol* Sequence(std::vector<Symbol*> symbols) {
return NewSymbol({Rule(std::move(symbols))});
}
template <class T, T value>
static base::Optional<ParseResult> YieldIntegralConstant(
ParseResultIterator* child_results) {
return ParseResult{value};
}
template <class T>
static base::Optional<ParseResult> YieldDefaultValue(
ParseResultIterator* child_results) {
return ParseResult{T{}};
}
template <class From, class To>
static base::Optional<ParseResult> CastParseResult(
ParseResultIterator* child_results) {
To result = std::move(child_results->NextAs<From>());
return ParseResult{std::move(result)};
}
// Try to parse {s} and return the result of type {Result} casted to {T}.
// Otherwise, the result is a default-constructed {T}.
template <class T, class Result = T>
Symbol* TryOrDefault(Symbol* s) {
return NewSymbol({Rule({s}, CastParseResult<Result, T>),
Rule({}, YieldDefaultValue<T>)});
}
template <class T>
static base::Optional<ParseResult> MakeSingletonVector(
ParseResultIterator* child_results) {
T x = child_results->NextAs<T>();
std::vector<T> result;
result.push_back(std::move(x));
return ParseResult{std::move(result)};
}
template <class T>
static base::Optional<ParseResult> MakeExtendedVector(
ParseResultIterator* child_results) {
std::vector<T> l = child_results->NextAs<std::vector<T>>();
T x = child_results->NextAs<T>();
l.push_back(std::move(x));
return ParseResult{std::move(l)};
}
// For example, NonemptyList(Token("A"), Token(",")) parses any of
// A or A,A or A,A,A and so on.
template <class T>
Symbol* NonemptyList(Symbol* element,
base::Optional<Symbol*> separator = {}) {
Symbol* list = NewSymbol();
*list = {Rule({element}, MakeSingletonVector<T>),
separator
? Rule({list, *separator, element}, MakeExtendedVector<T>)
: Rule({list, element}, MakeExtendedVector<T>)};
return list;
}
template <class T>
Symbol* List(Symbol* element, base::Optional<Symbol*> separator = {}) {
return TryOrDefault<std::vector<T>>(NonemptyList<T>(element, separator));
}
template <class T>
Symbol* Optional(Symbol* x) {
return TryOrDefault<base::Optional<T>, T>(x);
}
Symbol* CheckIf(Symbol* x) {
return NewSymbol({Rule({x}, YieldIntegralConstant<bool, true>),
Rule({}, YieldIntegralConstant<bool, false>)});
}
Lexer& lexer() { return lexer_; }
private:
Lexer lexer_;
std::vector<std::unique_ptr<Symbol>> generated_symbols_;
Symbol* start_;
};
} // namespace torque
} // namespace internal
} // namespace v8
#endif // V8_TORQUE_EARLEY_PARSER_H_