blob: 2b4fca24273892d0abeab1623c30e534a8ababf1 [file] [log] [blame]
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/microtask-queue.h"
#include <stddef.h>
#include <algorithm>
#include "src/base/logging.h"
#include "src/handles-inl.h"
#include "src/isolate.h"
#include "src/objects/microtask-inl.h"
#include "src/roots-inl.h"
#include "src/visitors.h"
namespace v8 {
namespace internal {
const size_t MicrotaskQueue::kRingBufferOffset =
OFFSET_OF(MicrotaskQueue, ring_buffer_);
const size_t MicrotaskQueue::kCapacityOffset =
OFFSET_OF(MicrotaskQueue, capacity_);
const size_t MicrotaskQueue::kSizeOffset = OFFSET_OF(MicrotaskQueue, size_);
const size_t MicrotaskQueue::kStartOffset = OFFSET_OF(MicrotaskQueue, start_);
const intptr_t MicrotaskQueue::kMinimumCapacity = 8;
// static
void MicrotaskQueue::SetUpDefaultMicrotaskQueue(Isolate* isolate) {
DCHECK_NULL(isolate->default_microtask_queue());
MicrotaskQueue* microtask_queue = new MicrotaskQueue;
microtask_queue->next_ = microtask_queue;
microtask_queue->prev_ = microtask_queue;
isolate->set_default_microtask_queue(microtask_queue);
}
// static
std::unique_ptr<MicrotaskQueue> MicrotaskQueue::New(Isolate* isolate) {
DCHECK_NOT_NULL(isolate->default_microtask_queue());
std::unique_ptr<MicrotaskQueue> microtask_queue(new MicrotaskQueue);
// Insert the new instance to the next of last MicrotaskQueue instance.
MicrotaskQueue* last = isolate->default_microtask_queue()->prev_;
microtask_queue->next_ = last->next_;
microtask_queue->prev_ = last;
last->next_->prev_ = microtask_queue.get();
last->next_ = microtask_queue.get();
return microtask_queue;
}
MicrotaskQueue::MicrotaskQueue() = default;
MicrotaskQueue::~MicrotaskQueue() {
if (next_ != this) {
DCHECK_NE(prev_, this);
next_->prev_ = prev_;
prev_->next_ = next_;
}
delete[] ring_buffer_;
}
// static
Address MicrotaskQueue::CallEnqueueMicrotask(Isolate* isolate,
intptr_t microtask_queue_pointer,
Address raw_microtask) {
Microtask microtask = Microtask::cast(Object(raw_microtask));
reinterpret_cast<MicrotaskQueue*>(microtask_queue_pointer)
->EnqueueMicrotask(microtask);
return ReadOnlyRoots(isolate).undefined_value().ptr();
}
void MicrotaskQueue::EnqueueMicrotask(Microtask microtask) {
if (size_ == capacity_) {
// Keep the capacity of |ring_buffer_| power of 2, so that the JIT
// implementation can calculate the modulo easily.
intptr_t new_capacity = std::max(kMinimumCapacity, capacity_ << 1);
ResizeBuffer(new_capacity);
}
DCHECK_LT(size_, capacity_);
ring_buffer_[(start_ + size_) % capacity_] = microtask.ptr();
++size_;
}
namespace {
class SetIsRunningMicrotasks {
public:
explicit SetIsRunningMicrotasks(bool* flag) : flag_(flag) {
DCHECK(!*flag_);
*flag_ = true;
}
~SetIsRunningMicrotasks() {
DCHECK(*flag_);
*flag_ = false;
}
private:
bool* flag_;
};
} // namespace
int MicrotaskQueue::RunMicrotasks(Isolate* isolate) {
HandleScope handle_scope(isolate);
MaybeHandle<Object> maybe_exception;
SetIsRunningMicrotasks scope(&is_running_microtasks_);
MaybeHandle<Object> maybe_result =
Execution::TryRunMicrotasks(isolate, this, &maybe_exception);
// If execution is terminating, clean up and propagate that to the caller.
if (maybe_result.is_null() && maybe_exception.is_null()) {
delete[] ring_buffer_;
ring_buffer_ = nullptr;
capacity_ = 0;
size_ = 0;
start_ = 0;
return -1;
}
// TODO(tzik): Return the number of microtasks run in this round.
return 0;
}
void MicrotaskQueue::IterateMicrotasks(RootVisitor* visitor) {
if (size_) {
// Iterate pending Microtasks as root objects to avoid the write barrier for
// all single Microtask. If this hurts the GC performance, use a FixedArray.
visitor->VisitRootPointers(
Root::kStrongRoots, nullptr, FullObjectSlot(ring_buffer_ + start_),
FullObjectSlot(ring_buffer_ + std::min(start_ + size_, capacity_)));
visitor->VisitRootPointers(
Root::kStrongRoots, nullptr, FullObjectSlot(ring_buffer_),
FullObjectSlot(ring_buffer_ + std::max(start_ + size_ - capacity_,
static_cast<intptr_t>(0))));
}
if (capacity_ <= kMinimumCapacity) {
return;
}
intptr_t new_capacity = capacity_;
while (new_capacity > 2 * size_) {
new_capacity >>= 1;
}
new_capacity = std::max(new_capacity, kMinimumCapacity);
if (new_capacity < capacity_) {
ResizeBuffer(new_capacity);
}
}
void MicrotaskQueue::AddMicrotasksCompletedCallback(
MicrotasksCompletedCallback callback) {
auto pos = std::find(microtasks_completed_callbacks_.begin(),
microtasks_completed_callbacks_.end(), callback);
if (pos != microtasks_completed_callbacks_.end()) return;
microtasks_completed_callbacks_.push_back(callback);
}
void MicrotaskQueue::RemoveMicrotasksCompletedCallback(
MicrotasksCompletedCallback callback) {
auto pos = std::find(microtasks_completed_callbacks_.begin(),
microtasks_completed_callbacks_.end(), callback);
if (pos == microtasks_completed_callbacks_.end()) return;
microtasks_completed_callbacks_.erase(pos);
}
void MicrotaskQueue::FireMicrotasksCompletedCallback(Isolate* isolate) const {
std::vector<MicrotasksCompletedCallback> callbacks(
microtasks_completed_callbacks_);
for (auto& callback : callbacks) {
callback(reinterpret_cast<v8::Isolate*>(isolate));
}
}
void MicrotaskQueue::ResizeBuffer(intptr_t new_capacity) {
DCHECK_LE(size_, new_capacity);
Address* new_ring_buffer = new Address[new_capacity];
for (intptr_t i = 0; i < size_; ++i) {
new_ring_buffer[i] = ring_buffer_[(start_ + i) % capacity_];
}
delete[] ring_buffer_;
ring_buffer_ = new_ring_buffer;
capacity_ = new_capacity;
start_ = 0;
}
} // namespace internal
} // namespace v8