blob: 9258ff7706cf9f53012009a5b4b06f0c4cd6dee2 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/crankshaft/arm64/lithium-arm64.h"
#include <sstream>
#include "src/crankshaft/arm64/lithium-codegen-arm64.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/crankshaft/lithium-inl.h"
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
void L##type::CompileToNative(LCodeGen* generator) { \
generator->Do##type(this); \
}
LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
#ifdef DEBUG
void LInstruction::VerifyCall() {
// Call instructions can use only fixed registers as temporaries and
// outputs because all registers are blocked by the calling convention.
// Inputs operands must use a fixed register or use-at-start policy or
// a non-register policy.
DCHECK(Output() == NULL ||
LUnallocated::cast(Output())->HasFixedPolicy() ||
!LUnallocated::cast(Output())->HasRegisterPolicy());
for (UseIterator it(this); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
DCHECK(operand->HasFixedPolicy() ||
operand->IsUsedAtStart());
}
for (TempIterator it(this); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
DCHECK(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy());
}
}
#endif
void LLabel::PrintDataTo(StringStream* stream) {
LGap::PrintDataTo(stream);
LLabel* rep = replacement();
if (rep != NULL) {
stream->Add(" Dead block replaced with B%d", rep->block_id());
}
}
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintTo(stream);
stream->Add(" length ");
length()->PrintTo(stream);
stream->Add(" index ");
index()->PrintTo(stream);
}
void LBranch::PrintDataTo(StringStream* stream) {
stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
value()->PrintTo(stream);
}
void LCallWithDescriptor::PrintDataTo(StringStream* stream) {
for (int i = 0; i < InputCount(); i++) {
InputAt(i)->PrintTo(stream);
stream->Add(" ");
}
stream->Add("#%d / ", arity());
}
void LCallNewArray::PrintDataTo(StringStream* stream) {
stream->Add("= ");
constructor()->PrintTo(stream);
stream->Add(" #%d / ", arity());
ElementsKind kind = hydrogen()->elements_kind();
stream->Add(" (%s) ", ElementsKindToString(kind));
}
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if class_of_test(");
value()->PrintTo(stream);
stream->Add(", \"%o\") then B%d else B%d",
*hydrogen()->class_name(),
true_block_id(),
false_block_id());
}
void LCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
left()->PrintTo(stream);
stream->Add(" %s ", Token::String(op()));
right()->PrintTo(stream);
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
bool LGoto::HasInterestingComment(LCodeGen* gen) const {
return !gen->IsNextEmittedBlock(block_id());
}
void LGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", block_id());
}
void LInnerAllocatedObject::PrintDataTo(StringStream* stream) {
stream->Add(" = ");
base_object()->PrintTo(stream);
stream->Add(" + ");
offset()->PrintTo(stream);
}
void LInvokeFunction::PrintDataTo(StringStream* stream) {
stream->Add("= ");
function()->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LInstruction::PrintTo(StringStream* stream) {
stream->Add("%s ", this->Mnemonic());
PrintOutputOperandTo(stream);
PrintDataTo(stream);
if (HasEnvironment()) {
stream->Add(" ");
environment()->PrintTo(stream);
}
if (HasPointerMap()) {
stream->Add(" ");
pointer_map()->PrintTo(stream);
}
}
void LInstruction::PrintDataTo(StringStream* stream) {
stream->Add("= ");
for (int i = 0; i < InputCount(); i++) {
if (i > 0) stream->Add(" ");
if (InputAt(i) == NULL) {
stream->Add("NULL");
} else {
InputAt(i)->PrintTo(stream);
}
}
}
void LInstruction::PrintOutputOperandTo(StringStream* stream) {
if (HasResult()) result()->PrintTo(stream);
}
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_instance_type(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsStringAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_string(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_smi(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if typeof ");
value()->PrintTo(stream);
stream->Add(" == \"%s\" then B%d else B%d",
hydrogen()->type_literal()->ToCString().get(),
true_block_id(), false_block_id());
}
void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_undetectable(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
bool LGap::IsRedundant() const {
for (int i = 0; i < 4; i++) {
if ((parallel_moves_[i] != NULL) && !parallel_moves_[i]->IsRedundant()) {
return false;
}
}
return true;
}
void LGap::PrintDataTo(StringStream* stream) {
for (int i = 0; i < 4; i++) {
stream->Add("(");
if (parallel_moves_[i] != NULL) {
parallel_moves_[i]->PrintDataTo(stream);
}
stream->Add(") ");
}
}
void LLoadContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintTo(stream);
stream->Add("[%d]", slot_index());
}
void LStoreCodeEntry::PrintDataTo(StringStream* stream) {
stream->Add(" = ");
function()->PrintTo(stream);
stream->Add(".code_entry = ");
code_object()->PrintTo(stream);
}
void LStoreContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintTo(stream);
stream->Add("[%d] <- ", slot_index());
value()->PrintTo(stream);
}
void LStoreNamedField::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
std::ostringstream os;
os << hydrogen()->access();
stream->Add(os.str().c_str());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStringCompareAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if string_compare(");
left()->PrintTo(stream);
right()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LTransitionElementsKind::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add("%p -> %p", *original_map(), *transitioned_map());
}
template<int T>
void LUnaryMathOperation<T>::PrintDataTo(StringStream* stream) {
value()->PrintTo(stream);
}
const char* LArithmeticD::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-d";
case Token::SUB: return "sub-d";
case Token::MUL: return "mul-d";
case Token::DIV: return "div-d";
case Token::MOD: return "mod-d";
default:
UNREACHABLE();
return NULL;
}
}
const char* LArithmeticT::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-t";
case Token::SUB: return "sub-t";
case Token::MUL: return "mul-t";
case Token::MOD: return "mod-t";
case Token::DIV: return "div-t";
case Token::BIT_AND: return "bit-and-t";
case Token::BIT_OR: return "bit-or-t";
case Token::BIT_XOR: return "bit-xor-t";
case Token::ROR: return "ror-t";
case Token::SHL: return "shl-t";
case Token::SAR: return "sar-t";
case Token::SHR: return "shr-t";
default:
UNREACHABLE();
return NULL;
}
}
LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
return new (zone()) LUnallocated(LUnallocated::FIXED_REGISTER, reg.code());
}
LUnallocated* LChunkBuilder::ToUnallocated(DoubleRegister reg) {
return new (zone())
LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, reg.code());
}
LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
if (value->EmitAtUses()) {
HInstruction* instr = HInstruction::cast(value);
VisitInstruction(instr);
}
operand->set_virtual_register(value->id());
return operand;
}
LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
return Use(value, ToUnallocated(fixed_register));
}
LOperand* LChunkBuilder::UseFixedDouble(HValue* value,
DoubleRegister fixed_register) {
return Use(value, ToUnallocated(fixed_register));
}
LOperand* LChunkBuilder::UseRegister(HValue* value) {
return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LOperand* LChunkBuilder::UseRegisterAndClobber(HValue* value) {
return Use(value, new(zone()) LUnallocated(LUnallocated::WRITABLE_REGISTER));
}
LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
return Use(value,
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
return value->IsConstant() ? UseConstant(value) : UseRegister(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
return value->IsConstant() ? UseConstant(value) : UseRegisterAtStart(value);
}
LConstantOperand* LChunkBuilder::UseConstant(HValue* value) {
return chunk_->DefineConstantOperand(HConstant::cast(value));
}
LOperand* LChunkBuilder::UseAny(HValue* value) {
return value->IsConstant()
? UseConstant(value)
: Use(value, new(zone()) LUnallocated(LUnallocated::ANY));
}
LInstruction* LChunkBuilder::Define(LTemplateResultInstruction<1>* instr,
LUnallocated* result) {
result->set_virtual_register(current_instruction_->id());
instr->set_result(result);
return instr;
}
LInstruction* LChunkBuilder::DefineAsRegister(
LTemplateResultInstruction<1>* instr) {
return Define(instr,
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LInstruction* LChunkBuilder::DefineAsSpilled(
LTemplateResultInstruction<1>* instr, int index) {
return Define(instr,
new(zone()) LUnallocated(LUnallocated::FIXED_SLOT, index));
}
LInstruction* LChunkBuilder::DefineSameAsFirst(
LTemplateResultInstruction<1>* instr) {
return Define(instr,
new(zone()) LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
}
LInstruction* LChunkBuilder::DefineFixed(
LTemplateResultInstruction<1>* instr, Register reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::DefineFixedDouble(
LTemplateResultInstruction<1>* instr, DoubleRegister reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize) {
info()->MarkAsNonDeferredCalling();
#ifdef DEBUG
instr->VerifyCall();
#endif
instr->MarkAsCall();
instr = AssignPointerMap(instr);
// If instruction does not have side-effects lazy deoptimization
// after the call will try to deoptimize to the point before the call.
// Thus we still need to attach environment to this call even if
// call sequence can not deoptimize eagerly.
bool needs_environment =
(can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) ||
!hinstr->HasObservableSideEffects();
if (needs_environment && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
// We can't really figure out if the environment is needed or not.
instr->environment()->set_has_been_used();
}
return instr;
}
LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
DCHECK(!instr->HasPointerMap());
instr->set_pointer_map(new(zone()) LPointerMap(zone()));
return instr;
}
LUnallocated* LChunkBuilder::TempRegister() {
LUnallocated* operand =
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
int vreg = allocator_->GetVirtualRegister();
if (!allocator_->AllocationOk()) {
Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister);
vreg = 0;
}
operand->set_virtual_register(vreg);
return operand;
}
LUnallocated* LChunkBuilder::TempDoubleRegister() {
LUnallocated* operand =
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_DOUBLE_REGISTER);
int vreg = allocator_->GetVirtualRegister();
if (!allocator_->AllocationOk()) {
Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister);
vreg = 0;
}
operand->set_virtual_register(vreg);
return operand;
}
int LPlatformChunk::GetNextSpillIndex() { return current_frame_slots_++; }
LOperand* LPlatformChunk::GetNextSpillSlot(RegisterKind kind) {
int index = GetNextSpillIndex();
if (kind == DOUBLE_REGISTERS) {
return LDoubleStackSlot::Create(index, zone());
} else {
DCHECK(kind == GENERAL_REGISTERS);
return LStackSlot::Create(index, zone());
}
}
LOperand* LChunkBuilder::FixedTemp(Register reg) {
LUnallocated* operand = ToUnallocated(reg);
DCHECK(operand->HasFixedPolicy());
return operand;
}
LOperand* LChunkBuilder::FixedTemp(DoubleRegister reg) {
LUnallocated* operand = ToUnallocated(reg);
DCHECK(operand->HasFixedPolicy());
return operand;
}
LPlatformChunk* LChunkBuilder::Build() {
DCHECK(is_unused());
chunk_ = new(zone()) LPlatformChunk(info_, graph_);
LPhase phase("L_Building chunk", chunk_);
status_ = BUILDING;
// If compiling for OSR, reserve space for the unoptimized frame,
// which will be subsumed into this frame.
if (graph()->has_osr()) {
// TODO(all): GetNextSpillIndex just increments a field. It has no other
// side effects, so we should get rid of this loop.
for (int i = graph()->osr()->UnoptimizedFrameSlots(); i > 0; i--) {
chunk_->GetNextSpillIndex();
}
}
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
for (int i = 0; i < blocks->length(); i++) {
DoBasicBlock(blocks->at(i));
if (is_aborted()) return NULL;
}
status_ = DONE;
return chunk_;
}
void LChunkBuilder::DoBasicBlock(HBasicBlock* block) {
DCHECK(is_building());
current_block_ = block;
if (block->IsStartBlock()) {
block->UpdateEnvironment(graph_->start_environment());
argument_count_ = 0;
} else if (block->predecessors()->length() == 1) {
// We have a single predecessor => copy environment and outgoing
// argument count from the predecessor.
DCHECK(block->phis()->length() == 0);
HBasicBlock* pred = block->predecessors()->at(0);
HEnvironment* last_environment = pred->last_environment();
DCHECK(last_environment != NULL);
// Only copy the environment, if it is later used again.
if (pred->end()->SecondSuccessor() == NULL) {
DCHECK(pred->end()->FirstSuccessor() == block);
} else {
if ((pred->end()->FirstSuccessor()->block_id() > block->block_id()) ||
(pred->end()->SecondSuccessor()->block_id() > block->block_id())) {
last_environment = last_environment->Copy();
}
}
block->UpdateEnvironment(last_environment);
DCHECK(pred->argument_count() >= 0);
argument_count_ = pred->argument_count();
} else {
// We are at a state join => process phis.
HBasicBlock* pred = block->predecessors()->at(0);
// No need to copy the environment, it cannot be used later.
HEnvironment* last_environment = pred->last_environment();
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
if (phi->HasMergedIndex()) {
last_environment->SetValueAt(phi->merged_index(), phi);
}
}
for (int i = 0; i < block->deleted_phis()->length(); ++i) {
if (block->deleted_phis()->at(i) < last_environment->length()) {
last_environment->SetValueAt(block->deleted_phis()->at(i),
graph_->GetConstantUndefined());
}
}
block->UpdateEnvironment(last_environment);
// Pick up the outgoing argument count of one of the predecessors.
argument_count_ = pred->argument_count();
}
// Translate hydrogen instructions to lithium ones for the current block.
HInstruction* current = block->first();
int start = chunk_->instructions()->length();
while ((current != NULL) && !is_aborted()) {
// Code for constants in registers is generated lazily.
if (!current->EmitAtUses()) {
VisitInstruction(current);
}
current = current->next();
}
int end = chunk_->instructions()->length() - 1;
if (end >= start) {
block->set_first_instruction_index(start);
block->set_last_instruction_index(end);
}
block->set_argument_count(argument_count_);
current_block_ = NULL;
}
void LChunkBuilder::VisitInstruction(HInstruction* current) {
HInstruction* old_current = current_instruction_;
current_instruction_ = current;
LInstruction* instr = NULL;
if (current->CanReplaceWithDummyUses()) {
if (current->OperandCount() == 0) {
instr = DefineAsRegister(new(zone()) LDummy());
} else {
DCHECK(!current->OperandAt(0)->IsControlInstruction());
instr = DefineAsRegister(new(zone())
LDummyUse(UseAny(current->OperandAt(0))));
}
for (int i = 1; i < current->OperandCount(); ++i) {
if (current->OperandAt(i)->IsControlInstruction()) continue;
LInstruction* dummy =
new(zone()) LDummyUse(UseAny(current->OperandAt(i)));
dummy->set_hydrogen_value(current);
chunk_->AddInstruction(dummy, current_block_);
}
} else {
HBasicBlock* successor;
if (current->IsControlInstruction() &&
HControlInstruction::cast(current)->KnownSuccessorBlock(&successor) &&
successor != NULL) {
instr = new(zone()) LGoto(successor);
} else {
instr = current->CompileToLithium(this);
}
}
argument_count_ += current->argument_delta();
DCHECK(argument_count_ >= 0);
if (instr != NULL) {
AddInstruction(instr, current);
}
current_instruction_ = old_current;
}
void LChunkBuilder::AddInstruction(LInstruction* instr,
HInstruction* hydrogen_val) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(hydrogen_val);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, the register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() &&
instr->ClobbersDoubleRegisters(isolate()))) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
DCHECK(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
chunk_->AddInstruction(instr, current_block_);
CreateLazyBailoutForCall(current_block_, instr, hydrogen_val);
}
LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
HEnvironment* hydrogen_env = current_block_->last_environment();
return LChunkBuilderBase::AssignEnvironment(instr, hydrogen_env);
}
LInstruction* LChunkBuilder::DoPrologue(HPrologue* instr) {
LInstruction* result = new (zone()) LPrologue();
if (info_->scope()->NeedsContext()) {
result = MarkAsCall(result, instr);
}
return result;
}
LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) {
// The control instruction marking the end of a block that completed
// abruptly (e.g., threw an exception). There is nothing specific to do.
return NULL;
}
LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr) {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->left()->representation().IsDouble());
DCHECK(instr->right()->representation().IsDouble());
if (op == Token::MOD) {
LOperand* left = UseFixedDouble(instr->left(), d0);
LOperand* right = UseFixedDouble(instr->right(), d1);
LArithmeticD* result = new(zone()) LArithmeticD(Token::MOD, left, right);
return MarkAsCall(DefineFixedDouble(result, d0), instr);
} else {
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
return DefineAsRegister(result);
}
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HBinaryOperation* instr) {
DCHECK((op == Token::ADD) || (op == Token::SUB) || (op == Token::MUL) ||
(op == Token::DIV) || (op == Token::MOD) || (op == Token::SHR) ||
(op == Token::SHL) || (op == Token::SAR) || (op == Token::ROR) ||
(op == Token::BIT_OR) || (op == Token::BIT_AND) ||
(op == Token::BIT_XOR));
HValue* left = instr->left();
HValue* right = instr->right();
// TODO(jbramley): Once we've implemented smi support for all arithmetic
// operations, these assertions should check IsTagged().
DCHECK(instr->representation().IsSmiOrTagged());
DCHECK(left->representation().IsSmiOrTagged());
DCHECK(right->representation().IsSmiOrTagged());
LOperand* context = UseFixed(instr->context(), cp);
LOperand* left_operand = UseFixed(left, x1);
LOperand* right_operand = UseFixed(right, x0);
LArithmeticT* result =
new(zone()) LArithmeticT(op, context, left_operand, right_operand);
return MarkAsCall(DefineFixed(result, x0), instr);
}
LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
info()->MarkAsRequiresFrame();
LOperand* args = NULL;
LOperand* length = NULL;
LOperand* index = NULL;
if (instr->length()->IsConstant() && instr->index()->IsConstant()) {
args = UseRegisterAtStart(instr->arguments());
length = UseConstant(instr->length());
index = UseConstant(instr->index());
} else {
args = UseRegister(instr->arguments());
length = UseRegisterAtStart(instr->length());
index = UseRegisterOrConstantAtStart(instr->index());
}
return DefineAsRegister(new(zone()) LAccessArgumentsAt(args, length, index));
}
LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
if (instr->representation().IsSmiOrInteger32()) {
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LInstruction* shifted_operation = TryDoOpWithShiftedRightOperand(instr);
if (shifted_operation != NULL) {
return shifted_operation;
}
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right =
UseRegisterOrConstantAtStart(instr->BetterRightOperand());
LInstruction* result = instr->representation().IsSmi() ?
DefineAsRegister(new(zone()) LAddS(left, right)) :
DefineAsRegister(new(zone()) LAddI(left, right));
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsExternal()) {
DCHECK(instr->IsConsistentExternalRepresentation());
DCHECK(!instr->CheckFlag(HValue::kCanOverflow));
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterOrConstantAtStart(instr->right());
return DefineAsRegister(new(zone()) LAddE(left, right));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::ADD, instr);
} else {
DCHECK(instr->representation().IsTagged());
return DoArithmeticT(Token::ADD, instr);
}
}
LInstruction* LChunkBuilder::DoAllocate(HAllocate* instr) {
LOperand* size = UseRegisterOrConstant(instr->size());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
if (instr->IsAllocationFolded()) {
LFastAllocate* result = new (zone()) LFastAllocate(size, temp1, temp2);
return DefineAsRegister(result);
} else {
info()->MarkAsDeferredCalling();
LOperand* context = UseAny(instr->context());
LOperand* temp3 = instr->MustPrefillWithFiller() ? TempRegister() : NULL;
LAllocate* result =
new (zone()) LAllocate(context, size, temp1, temp2, temp3);
return AssignPointerMap(DefineAsRegister(result));
}
}
LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
LOperand* function = UseFixed(instr->function(), x1);
LOperand* receiver = UseFixed(instr->receiver(), x0);
LOperand* length = UseFixed(instr->length(), x2);
LOperand* elements = UseFixed(instr->elements(), x3);
LApplyArguments* result = new(zone()) LApplyArguments(function,
receiver,
length,
elements);
return MarkAsCall(DefineFixed(result, x0), instr, CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* instr) {
info()->MarkAsRequiresFrame();
LOperand* temp = instr->from_inlined() ? NULL : TempRegister();
return DefineAsRegister(new(zone()) LArgumentsElements(temp));
}
LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* instr) {
info()->MarkAsRequiresFrame();
LOperand* value = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LArgumentsLength(value));
}
LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) {
// There are no real uses of the arguments object.
// arguments.length and element access are supported directly on
// stack arguments, and any real arguments object use causes a bailout.
// So this value is never used.
return NULL;
}
LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
if (instr->representation().IsSmiOrInteger32()) {
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
DCHECK(instr->CheckFlag(HValue::kTruncatingToInt32));
LInstruction* shifted_operation = TryDoOpWithShiftedRightOperand(instr);
if (shifted_operation != NULL) {
return shifted_operation;
}
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right =
UseRegisterOrConstantAtStart(instr->BetterRightOperand());
return instr->representation().IsSmi() ?
DefineAsRegister(new(zone()) LBitS(left, right)) :
DefineAsRegister(new(zone()) LBitI(left, right));
} else {
return DoArithmeticT(instr->op(), instr);
}
}
LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
// V8 expects a label to be generated for each basic block.
// This is used in some places like LAllocator::IsBlockBoundary
// in lithium-allocator.cc
return new(zone()) LLabel(instr->block());
}
LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
if (!FLAG_debug_code && instr->skip_check()) return NULL;
LOperand* index = UseRegisterOrConstantAtStart(instr->index());
LOperand* length = !index->IsConstantOperand()
? UseRegisterOrConstantAtStart(instr->length())
: UseRegisterAtStart(instr->length());
LInstruction* result = new(zone()) LBoundsCheck(index, length);
if (!FLAG_debug_code || !instr->skip_check()) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
HValue* value = instr->value();
Representation r = value->representation();
HType type = value->type();
if (r.IsInteger32() || r.IsSmi() || r.IsDouble()) {
// These representations have simple checks that cannot deoptimize.
return new(zone()) LBranch(UseRegister(value), NULL, NULL);
} else {
DCHECK(r.IsTagged());
if (type.IsBoolean() || type.IsSmi() || type.IsJSArray() ||
type.IsHeapNumber()) {
// These types have simple checks that cannot deoptimize.
return new(zone()) LBranch(UseRegister(value), NULL, NULL);
}
if (type.IsString()) {
// This type cannot deoptimize, but needs a scratch register.
return new(zone()) LBranch(UseRegister(value), TempRegister(), NULL);
}
ToBooleanHints expected = instr->expected_input_types();
bool needs_temps = (expected & ToBooleanHint::kNeedsMap) ||
expected == ToBooleanHint::kNone;
LOperand* temp1 = needs_temps ? TempRegister() : NULL;
LOperand* temp2 = needs_temps ? TempRegister() : NULL;
if (expected == ToBooleanHint::kAny || expected == ToBooleanHint::kNone) {
// The generic case cannot deoptimize because it already supports every
// possible input type.
DCHECK(needs_temps);
return new(zone()) LBranch(UseRegister(value), temp1, temp2);
} else {
return AssignEnvironment(
new(zone()) LBranch(UseRegister(value), temp1, temp2));
}
}
}
LInstruction* LChunkBuilder::DoCallWithDescriptor(
HCallWithDescriptor* instr) {
CallInterfaceDescriptor descriptor = instr->descriptor();
DCHECK_EQ(descriptor.GetParameterCount() +
LCallWithDescriptor::kImplicitRegisterParameterCount,
instr->OperandCount());
LOperand* target = UseRegisterOrConstantAtStart(instr->target());
ZoneList<LOperand*> ops(instr->OperandCount(), zone());
// Target
ops.Add(target, zone());
// Context
LOperand* op = UseFixed(instr->OperandAt(1), cp);
ops.Add(op, zone());
// Load register parameters.
int i = 0;
for (; i < descriptor.GetRegisterParameterCount(); i++) {
op = UseFixed(instr->OperandAt(
i + LCallWithDescriptor::kImplicitRegisterParameterCount),
descriptor.GetRegisterParameter(i));
ops.Add(op, zone());
}
// Push stack parameters.
if (i < descriptor.GetParameterCount()) {
int argc = descriptor.GetParameterCount() - i;
AddInstruction(new (zone()) LPreparePushArguments(argc), instr);
LPushArguments* push_args = new (zone()) LPushArguments(zone());
for (; i < descriptor.GetParameterCount(); i++) {
if (push_args->ShouldSplitPush()) {
AddInstruction(push_args, instr);
push_args = new (zone()) LPushArguments(zone());
}
op = UseRegisterAtStart(instr->OperandAt(
i + LCallWithDescriptor::kImplicitRegisterParameterCount));
push_args->AddArgument(op);
}
AddInstruction(push_args, instr);
}
LCallWithDescriptor* result = new(zone()) LCallWithDescriptor(descriptor,
ops,
zone());
if (instr->syntactic_tail_call_mode() == TailCallMode::kAllow) {
result->MarkAsSyntacticTailCall();
}
return MarkAsCall(DefineFixed(result, x0), instr);
}
LInstruction* LChunkBuilder::DoCallNewArray(HCallNewArray* instr) {
LOperand* context = UseFixed(instr->context(), cp);
// The call to ArrayConstructCode will expect the constructor to be in x1.
LOperand* constructor = UseFixed(instr->constructor(), x1);
LCallNewArray* result = new(zone()) LCallNewArray(context, constructor);
return MarkAsCall(DefineFixed(result, x0), instr);
}
LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
LOperand* context = UseFixed(instr->context(), cp);
return MarkAsCall(DefineFixed(new(zone()) LCallRuntime(context), x0), instr);
}
LInstruction* LChunkBuilder::DoCapturedObject(HCapturedObject* instr) {
instr->ReplayEnvironment(current_block_->last_environment());
// There are no real uses of a captured object.
return NULL;
}
LInstruction* LChunkBuilder::DoChange(HChange* instr) {
Representation from = instr->from();
Representation to = instr->to();
HValue* val = instr->value();
if (from.IsSmi()) {
if (to.IsTagged()) {
LOperand* value = UseRegister(val);
return DefineSameAsFirst(new(zone()) LDummyUse(value));
}
from = Representation::Tagged();
}
if (from.IsTagged()) {
if (to.IsDouble()) {
LOperand* value = UseRegister(val);
LOperand* temp = TempRegister();
LInstruction* result =
DefineAsRegister(new(zone()) LNumberUntagD(value, temp));
if (!val->representation().IsSmi()) result = AssignEnvironment(result);
return result;
} else if (to.IsSmi()) {
LOperand* value = UseRegister(val);
if (val->type().IsSmi()) {
return DefineSameAsFirst(new(zone()) LDummyUse(value));
}
return AssignEnvironment(DefineSameAsFirst(new(zone()) LCheckSmi(value)));
} else {
DCHECK(to.IsInteger32());
if (val->type().IsSmi() || val->representation().IsSmi()) {
LOperand* value = UseRegisterAtStart(val);
return DefineAsRegister(new(zone()) LSmiUntag(value, false));
} else {
LOperand* value = UseRegister(val);
LOperand* temp1 = TempRegister();
LOperand* temp2 = instr->CanTruncateToInt32()
? NULL : TempDoubleRegister();
LInstruction* result =
DefineAsRegister(new(zone()) LTaggedToI(value, temp1, temp2));
if (!val->representation().IsSmi()) result = AssignEnvironment(result);
return result;
}
}
} else if (from.IsDouble()) {
if (to.IsTagged()) {
info()->MarkAsDeferredCalling();
LOperand* value = UseRegister(val);
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LNumberTagD* result = new(zone()) LNumberTagD(value, temp1, temp2);
return AssignPointerMap(DefineAsRegister(result));
} else {
DCHECK(to.IsSmi() || to.IsInteger32());
if (instr->CanTruncateToInt32()) {
LOperand* value = UseRegister(val);
return DefineAsRegister(new(zone()) LTruncateDoubleToIntOrSmi(value));
} else {
LOperand* value = UseRegister(val);
LDoubleToIntOrSmi* result = new(zone()) LDoubleToIntOrSmi(value);
return AssignEnvironment(DefineAsRegister(result));
}
}
} else if (from.IsInteger32()) {
info()->MarkAsDeferredCalling();
if (to.IsTagged()) {
if (val->CheckFlag(HInstruction::kUint32)) {
LOperand* value = UseRegister(val);
LNumberTagU* result =
new(zone()) LNumberTagU(value, TempRegister(), TempRegister());
return AssignPointerMap(DefineAsRegister(result));
} else {
STATIC_ASSERT((kMinInt == Smi::kMinValue) &&
(kMaxInt == Smi::kMaxValue));
LOperand* value = UseRegisterAtStart(val);
return DefineAsRegister(new(zone()) LSmiTag(value));
}
} else if (to.IsSmi()) {
LOperand* value = UseRegisterAtStart(val);
LInstruction* result = DefineAsRegister(new(zone()) LSmiTag(value));
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else {
DCHECK(to.IsDouble());
if (val->CheckFlag(HInstruction::kUint32)) {
return DefineAsRegister(
new(zone()) LUint32ToDouble(UseRegisterAtStart(val)));
} else {
return DefineAsRegister(
new(zone()) LInteger32ToDouble(UseRegisterAtStart(val)));
}
}
}
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoCheckValue(HCheckValue* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new(zone()) LCheckValue(value));
}
LInstruction* LChunkBuilder::DoCheckArrayBufferNotNeutered(
HCheckArrayBufferNotNeutered* instr) {
LOperand* view = UseRegisterAtStart(instr->value());
LCheckArrayBufferNotNeutered* result =
new (zone()) LCheckArrayBufferNotNeutered(view);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
LInstruction* result = new(zone()) LCheckInstanceType(value, temp);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckMaps(HCheckMaps* instr) {
if (instr->IsStabilityCheck()) return new(zone()) LCheckMaps;
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
LInstruction* result = AssignEnvironment(new(zone()) LCheckMaps(value, temp));
if (instr->HasMigrationTarget()) {
info()->MarkAsDeferredCalling();
result = AssignPointerMap(result);
}
return result;
}
LInstruction* LChunkBuilder::DoCheckHeapObject(HCheckHeapObject* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LInstruction* result = new(zone()) LCheckNonSmi(value);
if (!instr->value()->type().IsHeapObject()) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new(zone()) LCheckSmi(value));
}
LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) {
HValue* value = instr->value();
Representation input_rep = value->representation();
LOperand* reg = UseRegister(value);
if (input_rep.IsDouble()) {
return DefineAsRegister(new(zone()) LClampDToUint8(reg));
} else if (input_rep.IsInteger32()) {
return DefineAsRegister(new(zone()) LClampIToUint8(reg));
} else {
DCHECK(input_rep.IsSmiOrTagged());
return AssignEnvironment(
DefineAsRegister(new(zone()) LClampTToUint8(reg,
TempDoubleRegister())));
}
}
LInstruction* LChunkBuilder::DoClassOfTestAndBranch(
HClassOfTestAndBranch* instr) {
DCHECK(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return new(zone()) LClassOfTestAndBranch(value,
TempRegister(),
TempRegister());
}
LInstruction* LChunkBuilder::DoCompareNumericAndBranch(
HCompareNumericAndBranch* instr) {
Representation r = instr->representation();
if (r.IsSmiOrInteger32()) {
DCHECK(instr->left()->representation().Equals(r));
DCHECK(instr->right()->representation().Equals(r));
LOperand* left = UseRegisterOrConstantAtStart(instr->left());
LOperand* right = UseRegisterOrConstantAtStart(instr->right());
return new(zone()) LCompareNumericAndBranch(left, right);
} else {
DCHECK(r.IsDouble());
DCHECK(instr->left()->representation().IsDouble());
DCHECK(instr->right()->representation().IsDouble());
if (instr->left()->IsConstant() && instr->right()->IsConstant()) {
LOperand* left = UseConstant(instr->left());
LOperand* right = UseConstant(instr->right());
return new(zone()) LCompareNumericAndBranch(left, right);
}
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return new(zone()) LCompareNumericAndBranch(left, right);
}
}
LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) {
DCHECK(instr->left()->representation().IsTagged());
DCHECK(instr->right()->representation().IsTagged());
LOperand* context = UseFixed(instr->context(), cp);
LOperand* left = UseFixed(instr->left(), x1);
LOperand* right = UseFixed(instr->right(), x0);
LCmpT* result = new(zone()) LCmpT(context, left, right);
return MarkAsCall(DefineFixed(result, x0), instr);
}
LInstruction* LChunkBuilder::DoCompareHoleAndBranch(
HCompareHoleAndBranch* instr) {
LOperand* value = UseRegister(instr->value());
if (instr->representation().IsTagged()) {
return new(zone()) LCmpHoleAndBranchT(value);
} else {
LOperand* temp = TempRegister();
return new(zone()) LCmpHoleAndBranchD(value, temp);
}
}
LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch(
HCompareObjectEqAndBranch* instr) {
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return new(zone()) LCmpObjectEqAndBranch(left, right);
}
LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) {
DCHECK(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
return new(zone()) LCmpMapAndBranch(value, temp);
}
LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
Representation r = instr->representation();
if (r.IsSmi()) {
return DefineAsRegister(new(zone()) LConstantS);
} else if (r.IsInteger32()) {
return DefineAsRegister(new(zone()) LConstantI);
} else if (r.IsDouble()) {
return DefineAsRegister(new(zone()) LConstantD);
} else if (r.IsExternal()) {
return DefineAsRegister(new(zone()) LConstantE);
} else if (r.IsTagged()) {
return DefineAsRegister(new(zone()) LConstantT);
} else {
UNREACHABLE();
return NULL;
}
}
LInstruction* LChunkBuilder::DoContext(HContext* instr) {
if (instr->HasNoUses()) return NULL;
if (info()->IsStub()) {
return DefineFixed(new(zone()) LContext, cp);
}
return DefineAsRegister(new(zone()) LContext);
}
LInstruction* LChunkBuilder::DoDebugBreak(HDebugBreak* instr) {
return new(zone()) LDebugBreak();
}
LInstruction* LChunkBuilder::DoDeclareGlobals(HDeclareGlobals* instr) {
LOperand* context = UseFixed(instr->context(), cp);
return MarkAsCall(new(zone()) LDeclareGlobals(context), instr);
}
LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
return AssignEnvironment(new(zone()) LDeoptimize);
}
LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegister(instr->left());
int32_t divisor = instr->right()->GetInteger32Constant();
LInstruction* result = DefineAsRegister(new(zone()) LDivByPowerOf2I(
dividend, divisor));
if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
(instr->CheckFlag(HValue::kCanOverflow) && divisor == -1) ||
(!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoDivByConstI(HDiv* instr) {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegister(instr->left());
int32_t divisor = instr->right()->GetInteger32Constant();
LOperand* temp = instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)
? NULL : TempRegister();
LInstruction* result = DefineAsRegister(new(zone()) LDivByConstI(
dividend, divisor, temp));
if (divisor == 0 ||
(instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoDivI(HBinaryOperation* instr) {
DCHECK(instr->representation().IsSmiOrInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegister(instr->left());
LOperand* divisor = UseRegister(instr->right());
LOperand* temp = instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)
? NULL : TempRegister();
LInstruction* result =
DefineAsRegister(new(zone()) LDivI(dividend, divisor, temp));
if (!instr->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsSmiOrInteger32()) {
if (instr->RightIsPowerOf2()) {
return DoDivByPowerOf2I(instr);
} else if (instr->right()->IsConstant()) {
return DoDivByConstI(instr);
} else {
return DoDivI(instr);
}
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
return DoArithmeticT(Token::DIV, instr);
}
}
LInstruction* LChunkBuilder::DoDummyUse(HDummyUse* instr) {
return DefineAsRegister(new(zone()) LDummyUse(UseAny(instr->value())));
}
LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) {
HEnvironment* outer = current_block_->last_environment();
outer->set_ast_id(instr->ReturnId());
HConstant* undefined = graph()->GetConstantUndefined();
HEnvironment* inner = outer->CopyForInlining(
instr->closure(), instr->arguments_count(), instr->function(), undefined,
instr->inlining_kind(), instr->syntactic_tail_call_mode());
// Only replay binding of arguments object if it wasn't removed from graph.
if ((instr->arguments_var() != NULL) &&
instr->arguments_object()->IsLinked()) {
inner->Bind(instr->arguments_var(), instr->arguments_object());
}
inner->BindContext(instr->closure_context());
inner->set_entry(instr);
current_block_->UpdateEnvironment(inner);
return NULL;
}
LInstruction* LChunkBuilder::DoEnvironmentMarker(HEnvironmentMarker* instr) {
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoForceRepresentation(
HForceRepresentation* instr) {
// All HForceRepresentation instructions should be eliminated in the
// representation change phase of Hydrogen.
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
return new(zone()) LGoto(instr->FirstSuccessor());
}
LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch(
HHasInstanceTypeAndBranch* instr) {
DCHECK(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return new(zone()) LHasInstanceTypeAndBranch(value, TempRegister());
}
LInstruction* LChunkBuilder::DoInnerAllocatedObject(
HInnerAllocatedObject* instr) {
LOperand* base_object = UseRegisterAtStart(instr->base_object());
LOperand* offset = UseRegisterOrConstantAtStart(instr->offset());
return DefineAsRegister(
new(zone()) LInnerAllocatedObject(base_object, offset));
}
LInstruction* LChunkBuilder::DoHasInPrototypeChainAndBranch(
HHasInPrototypeChainAndBranch* instr) {
LOperand* object = UseRegister(instr->object());
LOperand* prototype = UseRegister(instr->prototype());
LOperand* scratch1 = TempRegister();
LOperand* scratch2 = TempRegister();
LHasInPrototypeChainAndBranch* result = new (zone())
LHasInPrototypeChainAndBranch(object, prototype, scratch1, scratch2);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) {
LOperand* context = UseFixed(instr->context(), cp);
// The function is required (by MacroAssembler::InvokeFunction) to be in x1.
LOperand* function = UseFixed(instr->function(), x1);
LInvokeFunction* result = new(zone()) LInvokeFunction(context, function);
if (instr->syntactic_tail_call_mode() == TailCallMode::kAllow) {
result->MarkAsSyntacticTailCall();
}
return MarkAsCall(DefineFixed(result, x0), instr, CANNOT_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoIsStringAndBranch(HIsStringAndBranch* instr) {
DCHECK(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
return new(zone()) LIsStringAndBranch(value, temp);
}
LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) {
DCHECK(instr->value()->representation().IsTagged());
return new(zone()) LIsSmiAndBranch(UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoIsUndetectableAndBranch(
HIsUndetectableAndBranch* instr) {
DCHECK(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return new(zone()) LIsUndetectableAndBranch(value, TempRegister());
}
LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) {
LInstruction* pop = NULL;
HEnvironment* env = current_block_->last_environment();
if (env->entry()->arguments_pushed()) {
int argument_count = env->arguments_environment()->parameter_count();
pop = new(zone()) LDrop(argument_count);
DCHECK(instr->argument_delta() == -argument_count);
}
HEnvironment* outer =
current_block_->last_environment()->DiscardInlined(false);
current_block_->UpdateEnvironment(outer);
return pop;
}
LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
return DefineAsRegister(new (zone()) LLoadContextSlot(context));
}
LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
HLoadFunctionPrototype* instr) {
LOperand* function = UseRegister(instr->function());
LOperand* temp = TempRegister();
return AssignEnvironment(DefineAsRegister(
new(zone()) LLoadFunctionPrototype(function, temp)));
}
LInstruction* LChunkBuilder::DoLoadKeyed(HLoadKeyed* instr) {
DCHECK(instr->key()->representation().IsSmiOrInteger32());
ElementsKind elements_kind = instr->elements_kind();
LOperand* elements = UseRegister(instr->elements());
LOperand* key = UseRegisterOrConstant(instr->key());
if (!instr->is_fixed_typed_array()) {
if (instr->representation().IsDouble()) {
LOperand* temp = (!instr->key()->IsConstant() ||
instr->RequiresHoleCheck())
? TempRegister()
: NULL;
LInstruction* result = DefineAsRegister(
new (zone()) LLoadKeyedFixedDouble(elements, key, temp));
if (instr->RequiresHoleCheck()) {
result = AssignEnvironment(result);
}
return result;
} else {
DCHECK(instr->representation().IsSmiOrTagged() ||
instr->representation().IsInteger32());
LOperand* temp = instr->key()->IsConstant() ? NULL : TempRegister();
LInstruction* result =
DefineAsRegister(new (zone()) LLoadKeyedFixed(elements, key, temp));
if (instr->RequiresHoleCheck() ||
(instr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED &&
info()->IsStub())) {
result = AssignEnvironment(result);
}
return result;
}
} else {
DCHECK((instr->representation().IsInteger32() &&
!IsDoubleOrFloatElementsKind(instr->elements_kind())) ||
(instr->representation().IsDouble() &&
IsDoubleOrFloatElementsKind(instr->elements_kind())));
LOperand* temp = instr->key()->IsConstant() ? NULL : TempRegister();
LOperand* backing_store_owner = UseAny(instr->backing_store_owner());
LInstruction* result = DefineAsRegister(new (zone()) LLoadKeyedExternal(
elements, key, backing_store_owner, temp));
if (elements_kind == UINT32_ELEMENTS &&
!instr->CheckFlag(HInstruction::kUint32)) {
result = AssignEnvironment(result);
}
return result;
}
}
LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
LOperand* object = UseRegisterAtStart(instr->object());
return DefineAsRegister(new(zone()) LLoadNamedField(object));
}
LInstruction* LChunkBuilder::DoLoadRoot(HLoadRoot* instr) {
return DefineAsRegister(new(zone()) LLoadRoot);
}
LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegisterAtStart(instr->left());
int32_t divisor = instr->right()->GetInteger32Constant();
LInstruction* result = DefineAsRegister(new(zone()) LFlooringDivByPowerOf2I(
dividend, divisor));
if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
(instr->CheckFlag(HValue::kLeftCanBeMinInt) && divisor == -1)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegister(instr->left());
int32_t divisor = instr->right()->GetInteger32Constant();
LOperand* temp =
((divisor > 0 && !instr->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !instr->CheckFlag(HValue::kLeftCanBePositive))) ?
NULL : TempRegister();
LInstruction* result = DefineAsRegister(
new(zone()) LFlooringDivByConstI(dividend, divisor, temp));
if (divisor == 0 ||
(instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoFlooringDivI(HMathFloorOfDiv* instr) {
LOperand* dividend = UseRegister(instr->left());
LOperand* divisor = UseRegister(instr->right());
LOperand* remainder = TempRegister();
LInstruction* result =
DefineAsRegister(new(zone()) LFlooringDivI(dividend, divisor, remainder));
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
if (instr->RightIsPowerOf2()) {
return DoFlooringDivByPowerOf2I(instr);
} else if (instr->right()->IsConstant()) {
return DoFlooringDivByConstI(instr);
} else {
return DoFlooringDivI(instr);
}
}
LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
LOperand* left = NULL;
LOperand* right = NULL;
if (instr->representation().IsSmiOrInteger32()) {
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
left = UseRegisterAtStart(instr->BetterLeftOperand());
right = UseRegisterOrConstantAtStart(instr->BetterRightOperand());
} else {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->left()->representation().IsDouble());
DCHECK(instr->right()->representation().IsDouble());
left = UseRegisterAtStart(instr->left());
right = UseRegisterAtStart(instr->right());
}
return DefineAsRegister(new(zone()) LMathMinMax(left, right));
}
LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegisterAtStart(instr->left());
int32_t divisor = instr->right()->GetInteger32Constant();
LInstruction* result = DefineSameAsFirst(new(zone()) LModByPowerOf2I(
dividend, divisor));
if (instr->CheckFlag(HValue::kLeftCanBeNegative) &&
instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoModByConstI(HMod* instr) {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegister(instr->left());
int32_t divisor = instr->right()->GetInteger32Constant();
LOperand* temp = TempRegister();
LInstruction* result = DefineAsRegister(new(zone()) LModByConstI(
dividend, divisor, temp));
if (divisor == 0 || instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoModI(HMod* instr) {
DCHECK(instr->representation().IsSmiOrInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LOperand* dividend = UseRegister(instr->left());
LOperand* divisor = UseRegister(instr->right());
LInstruction* result = DefineAsRegister(new(zone()) LModI(dividend, divisor));
if (instr->CheckFlag(HValue::kCanBeDivByZero) ||
instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
result = AssignEnvironment(result);
}
return result;
}
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
if (instr->representation().IsSmiOrInteger32()) {
if (instr->RightIsPowerOf2()) {
return DoModByPowerOf2I(instr);
} else if (instr->right()->IsConstant()) {
return DoModByConstI(instr);
} else {
return DoModI(instr);
}
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
return DoArithmeticT(Token::MOD, instr);
}
}
LInstruction* LChunkBuilder::DoMul(HMul* instr) {
if (instr->representation().IsSmiOrInteger32()) {
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
bool can_overflow = instr->CheckFlag(HValue::kCanOverflow);
bool bailout_on_minus_zero = instr->CheckFlag(HValue::kBailoutOnMinusZero);
HValue* least_const = instr->BetterLeftOperand();
HValue* most_const = instr->BetterRightOperand();
// LMulConstI can handle a subset of constants:
// With support for overflow detection:
// -1, 0, 1, 2
// 2^n, -(2^n)
// Without support for overflow detection:
// 2^n + 1, -(2^n - 1)
if (most_const->IsConstant()) {
int32_t constant = HConstant::cast(most_const)->Integer32Value();
bool small_constant = (constant >= -1) && (constant <= 2);
bool end_range_constant = (constant <= -kMaxInt) || (constant == kMaxInt);
int32_t constant_abs = Abs(constant);
if (!end_range_constant &&
(small_constant || (base::bits::IsPowerOfTwo32(constant_abs)) ||
(!can_overflow && (base::bits::IsPowerOfTwo32(constant_abs + 1) ||
base::bits::IsPowerOfTwo32(constant_abs - 1))))) {
LConstantOperand* right = UseConstant(most_const);
bool need_register =
base::bits::IsPowerOfTwo32(constant_abs) && !small_constant;
LOperand* left = need_register ? UseRegister(least_const)
: UseRegisterAtStart(least_const);
LInstruction* result =
DefineAsRegister(new(zone()) LMulConstIS(left, right));
if ((bailout_on_minus_zero && constant <= 0) ||
(can_overflow && constant != 1 &&
base::bits::IsPowerOfTwo32(constant_abs))) {
result = AssignEnvironment(result);
}
return result;
}
}
// LMulI/S can handle all cases, but it requires that a register is
// allocated for the second operand.
LOperand* left = UseRegisterAtStart(least_const);
LOperand* right = UseRegisterAtStart(most_const);
LInstruction* result = instr->representation().IsSmi()
? DefineAsRegister(new(zone()) LMulS(left, right))
: DefineAsRegister(new(zone()) LMulI(left, right));
if ((bailout_on_minus_zero && least_const != most_const) || can_overflow) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MUL, instr);
} else {
return DoArithmeticT(Token::MUL, instr);
}
}
LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) {
DCHECK(argument_count_ == 0);
allocator_->MarkAsOsrEntry();
current_block_->last_environment()->set_ast_id(instr->ast_id());
return AssignEnvironment(new(zone()) LOsrEntry);
}
LInstruction* LChunkBuilder::DoParameter(HParameter* instr) {
LParameter* result = new(zone()) LParameter;
if (instr->kind() == HParameter::STACK_PARAMETER) {
int spill_index = chunk_->GetParameterStackSlot(instr->index());
return DefineAsSpilled(result, spill_index);
} else {
DCHECK(info()->IsStub());
CallInterfaceDescriptor descriptor = graph()->descriptor();
int index = static_cast<int>(instr->index());
Register reg = descriptor.GetRegisterParameter(index);
return DefineFixed(result, reg);
}
}
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
DCHECK(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
// We need to use fixed result register for the call.
Representation exponent_type = instr->right()->representation();
DCHECK(instr->left()->representation().IsDouble());
LOperand* left = UseFixedDouble(instr->left(), d0);
LOperand* right;
if (exponent_type.IsInteger32()) {
right = UseFixed(instr->right(), MathPowIntegerDescriptor::exponent());
} else if (exponent_type.IsDouble()) {
right = UseFixedDouble(instr->right(), d1);
} else {
right = UseFixed(instr->right(), MathPowTaggedDescriptor::exponent());
}
LPower* result = new(zone()) LPower(left, right);
return MarkAsCall(DefineFixedDouble(result, d0),
instr,
CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoPushArguments(HPushArguments* instr) {
int argc = instr->OperandCount();
AddInstruction(new(zone()) LPreparePushArguments(argc), instr);
LPushArguments* push_args = new(zone()) LPushArguments(zone());
for (int i = 0; i < argc; ++i) {
if (push_args->ShouldSplitPush()) {
AddInstruction(push_args, instr);
push_args = new(zone()) LPushArguments(zone());
}
push_args->AddArgument(UseRegister(instr->argument(i)));
}
return push_args;
}
LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
LOperand* context = info()->IsStub()
? UseFixed(instr->context(), cp)
: NULL;
LOperand* parameter_count = UseRegisterOrConstant(instr->parameter_count());
return new(zone()) LReturn(UseFixed(instr->value(), x0), context,
parameter_count);
}
LInstruction* LChunkBuilder::DoSeqStringGetChar(HSeqStringGetChar* instr) {
LOperand* string = UseRegisterAtStart(instr->string());
LOperand* index = UseRegisterOrConstantAtStart(instr->index());
LOperand* temp = TempRegister();
LSeqStringGetChar* result =
new(zone()) LSeqStringGetChar(string, index, temp);
return DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoSeqStringSetChar(HSeqStringSetChar* instr) {
LOperand* string = UseRegister(instr->string());
LOperand* index = FLAG_debug_code
? UseRegister(instr->index())
: UseRegisterOrConstant(instr->index());
LOperand* value = UseRegister(instr->value());
LOperand* context = FLAG_debug_code ? UseFixed(instr->context(), cp) : NULL;
LOperand* temp = TempRegister();
LSeqStringSetChar* result =
new(zone()) LSeqStringSetChar(context, string, index, value, temp);
return DefineAsRegister(result);
}
HBitwiseBinaryOperation* LChunkBuilder::CanTransformToShiftedOp(HValue* val,
HValue** left) {
if (!val->representation().IsInteger32()) return NULL;
if (!(val->IsBitwise() || val->IsAdd() || val->IsSub())) return NULL;
HBinaryOperation* hinstr = HBinaryOperation::cast(val);
HValue* hleft = hinstr->left();
HValue* hright = hinstr->right();
DCHECK(hleft->representation().Equals(hinstr->representation()));
DCHECK(hright->representation().Equals(hinstr->representation()));
if (hleft == hright) return NULL;
if ((hright->IsConstant() &&
LikelyFitsImmField(hinstr, HConstant::cast(hright)->Integer32Value())) ||
(hinstr->IsCommutative() && hleft->IsConstant() &&
LikelyFitsImmField(hinstr, HConstant::cast(hleft)->Integer32Value()))) {
// The constant operand will likely fit in the immediate field. We are
// better off with
// lsl x8, x9, #imm
// add x0, x8, #imm2
// than with
// mov x16, #imm2
// add x0, x16, x9 LSL #imm
return NULL;
}
HBitwiseBinaryOperation* shift = NULL;
// TODO(aleram): We will miss situations where a shift operation is used by
// different instructions both as a left and right operands.
if (hright->IsBitwiseBinaryShift() &&
HBitwiseBinaryOperation::cast(hright)->right()->IsConstant()) {
shift = HBitwiseBinaryOperation::cast(hright);
if (left != NULL) {
*left = hleft;
}
} else if (hinstr->IsCommutative() &&
hleft->IsBitwiseBinaryShift() &&
HBitwiseBinaryOperation::cast(hleft)->right()->IsConstant()) {
shift = HBitwiseBinaryOperation::cast(hleft);
if (left != NULL) {
*left = hright;
}
} else {
return NULL;
}
if ((JSShiftAmountFromHConstant(shift->right()) == 0) && shift->IsShr()) {
// Shifts right by zero can deoptimize.
return NULL;
}
return shift;
}
bool LChunkBuilder::ShiftCanBeOptimizedAway(HBitwiseBinaryOperation* shift) {
if (!shift->representation().IsInteger32()) {
return false;
}
for (HUseIterator it(shift->uses()); !it.Done(); it.Advance()) {
if (shift != CanTransformToShiftedOp(it.value())) {
return false;
}
}
return true;
}
LInstruction* LChunkBuilder::TryDoOpWithShiftedRightOperand(
HBinaryOperation* instr) {
HValue* left;
HBitwiseBinaryOperation* shift = CanTransformToShiftedOp(instr, &left);
if ((shift != NULL) && ShiftCanBeOptimizedAway(shift)) {
return DoShiftedBinaryOp(instr, left, shift);
}
return NULL;
}
LInstruction* LChunkBuilder::DoShiftedBinaryOp(
HBinaryOperation* hinstr, HValue* hleft, HBitwiseBinaryOperation* hshift) {
DCHECK(hshift->IsBitwiseBinaryShift());
DCHECK(!hshift->IsShr() || (JSShiftAmountFromHConstant(hshift->right()) > 0));
LTemplateResultInstruction<1>* res;
LOperand* left = UseRegisterAtStart(hleft);
LOperand* right = UseRegisterAtStart(hshift->left());
LOperand* shift_amount = UseConstant(hshift->right());
Shift shift_op;
switch (hshift->opcode()) {
case HValue::kShl: shift_op = LSL; break;
case HValue::kShr: shift_op = LSR; break;
case HValue::kSar: shift_op = ASR; break;
default: UNREACHABLE(); shift_op = NO_SHIFT;
}
if (hinstr->IsBitwise()) {
res = new(zone()) LBitI(left, right, shift_op, shift_amount);
} else if (hinstr->IsAdd()) {
res = new(zone()) LAddI(left, right, shift_op, shift_amount);
} else {
DCHECK(hinstr->IsSub());
res = new(zone()) LSubI(left, right, shift_op, shift_amount);
}
if (hinstr->CheckFlag(HValue::kCanOverflow)) {
AssignEnvironment(res);
}
return DefineAsRegister(res);
}
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsTagged()) {
return DoArithmeticT(op, instr);
}
DCHECK(instr->representation().IsSmiOrInteger32());
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
if (ShiftCanBeOptimizedAway(instr)) {
return NULL;
}
LOperand* left = instr->representation().IsSmi()
? UseRegister(instr->left())
: UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterOrConstantAtStart(instr->right());
// The only shift that can deoptimize is `left >>> 0`, where left is negative.
// In these cases, the result is a uint32 that is too large for an int32.
bool right_can_be_zero = !instr->right()->IsConstant() ||
(JSShiftAmountFromHConstant(instr->right()) == 0);
bool can_deopt = false;
if ((op == Token::SHR) && right_can_be_zero) {
can_deopt = !instr->CheckFlag(HInstruction::kUint32);
}
LInstruction* result;
if (instr->representation().IsInteger32()) {
result = DefineAsRegister(new (zone()) LShiftI(op, left, right, can_deopt));
} else {
DCHECK(instr->representation().IsSmi());
result = DefineAsRegister(new (zone()) LShiftS(op, left, right, can_deopt));
}
return can_deopt ? AssignEnvironment(result) : result;
}
LInstruction* LChunkBuilder::DoRor(HRor* instr) {
return DoShift(Token::ROR, instr);
}
LInstruction* LChunkBuilder::DoSar(HSar* instr) {
return DoShift(Token::SAR, instr);
}
LInstruction* LChunkBuilder::DoShl(HShl* instr) {
return DoShift(Token::SHL, instr);
}
LInstruction* LChunkBuilder::DoShr(HShr* instr) {
return DoShift(Token::SHR, instr);
}
LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) {
instr->ReplayEnvironment(current_block_->last_environment());
return NULL;
}
LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) {
if (instr->is_function_entry()) {
LOperand* context = UseFixed(instr->context(), cp);
return MarkAsCall(new(zone()) LStackCheck(context), instr);
} else {
DCHECK(instr->is_backwards_branch());
LOperand* context = UseAny(instr->context());
return AssignEnvironment(
AssignPointerMap(new(zone()) LStackCheck(context)));
}
}
LInstruction* LChunkBuilder::DoStoreCodeEntry(HStoreCodeEntry* instr) {
LOperand* function = UseRegister(instr->function());
LOperand* code_object = UseRegisterAtStart(instr->code_object());
LOperand* temp = TempRegister();
return new(zone()) LStoreCodeEntry(function, code_object, temp);
}
LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) {
LOperand* temp = TempRegister();
LOperand* context;
LOperand* value;
if (instr->NeedsWriteBarrier()) {
// TODO(all): Replace these constraints when RecordWriteStub has been
// rewritten.
context = UseRegisterAndClobber(instr->context());
value = UseRegisterAndClobber(instr->value());
} else {
context = UseRegister(instr->context());
value = UseRegister(instr->value());
}
return new (zone()) LStoreContextSlot(context, value, temp);
}
LInstruction* LChunkBuilder::DoStoreKeyed(HStoreKeyed* instr) {
LOperand* key = UseRegisterOrConstant(instr->key());
LOperand* temp = NULL;
LOperand* elements = NULL;
LOperand* val = NULL;
if (!instr->is_fixed_typed_array() &&
instr->value()->representation().IsTagged() &&
instr->NeedsWriteBarrier()) {
// RecordWrite() will clobber all registers.
elements = UseRegisterAndClobber(instr->elements());
val = UseRegisterAndClobber(instr->value());
temp = TempRegister();
} else {
elements = UseRegister(instr->elements());
val = UseRegister(instr->value());
temp = instr->key()->IsConstant() ? NULL : TempRegister();
}
if (instr->is_fixed_typed_array()) {
DCHECK((instr->value()->representation().IsInteger32() &&
!IsDoubleOrFloatElementsKind(instr->elements_kind())) ||
(instr->value()->representation().IsDouble() &&
IsDoubleOrFloatElementsKind(instr->elements_kind())));
DCHECK(instr->elements()->representation().IsExternal());
LOperand* backing_store_owner = UseAny(instr->backing_store_owner());
return new (zone())
LStoreKeyedExternal(elements, key, val, backing_store_owner, temp);
} else if (instr->value()->representation().IsDouble()) {
DCHECK(instr->elements()->representation().IsTagged());
return new(zone()) LStoreKeyedFixedDouble(elements, key, val, temp);
} else {
DCHECK(instr->elements()->representation().IsTagged());
DCHECK(instr->value()->representation().IsSmiOrTagged() ||
instr->value()->representation().IsInteger32());
return new(zone()) LStoreKeyedFixed(elements, key, val, temp);
}
}
LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) {
// TODO(jbramley): It might be beneficial to allow value to be a constant in
// some cases. x64 makes use of this with FLAG_track_fields, for example.
LOperand* object = UseRegister(instr->object());
LOperand* value;
LOperand* temp0 = NULL;
LOperand* temp1 = NULL;
if (instr->access().IsExternalMemory() ||
(!FLAG_unbox_double_fields && instr->field_representation().IsDouble())) {
value = UseRegister(instr->value());
} else if (instr->NeedsWriteBarrier()) {
value = UseRegisterAndClobber(instr->value());
temp0 = TempRegister();
temp1 = TempRegister();
} else if (instr->NeedsWriteBarrierForMap()) {
value = UseRegister(instr->value());
temp0 = TempRegister();
temp1 = TempRegister();
} else {
value = UseRegister(instr->value());
temp0 = TempRegister();
}
return new(zone()) LStoreNamedField(object, value, temp0, temp1);
}
LInstruction* LChunkBuilder::DoStringAdd(HStringAdd* instr) {
LOperand* context = UseFixed(instr->context(), cp);
LOperand* left = UseFixed(instr->left(), x1);
LOperand* right = UseFixed(instr->right(), x0);
LStringAdd* result = new(zone()) LStringAdd(context, left, right);
return MarkAsCall(DefineFixed(result, x0), instr);
}
LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) {
LOperand* string = UseRegisterAndClobber(instr->string());
LOperand* index = UseRegisterAndClobber(instr->index());
LOperand* context = UseAny(instr->context());
LStringCharCodeAt* result =
new(zone()) LStringCharCodeAt(context, string, index);
return AssignPointerMap(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) {
LOperand* char_code = UseRegister(instr->value());
LOperand* context = UseAny(instr->context());
LStringCharFromCode* result =
new(zone()) LStringCharFromCode(context, char_code);
return AssignPointerMap(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoStringCompareAndBranch(
HStringCompareAndBranch* instr) {
DCHECK(instr->left()->representation().IsTagged());
DCHECK(instr->right()->representation().IsTagged());
LOperand* context = UseFixed(instr->context(), cp);
LOperand* left = UseFixed(instr->left(), x1);
LOperand* right = UseFixed(instr->right(), x0);
LStringCompareAndBranch* result =
new(zone()) LStringCompareAndBranch(context, left, right);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoSub(HSub* instr) {
if (instr->representation().IsSmiOrInteger32()) {
DCHECK(instr->left()->representation().Equals(instr->representation()));
DCHECK(instr->right()->representation().Equals(instr->representation()));
LInstruction* shifted_operation = TryDoOpWithShiftedRightOperand(instr);
if (shifted_operation != NULL) {
return shifted_operation;
}
LOperand *left;
if (instr->left()->IsConstant() &&
(HConstant::cast(instr->left())->Integer32Value() == 0)) {
left = UseConstant(instr->left());
} else {
left = UseRegisterAtStart(instr->left());
}
LOperand* right = UseRegisterOrConstantAtStart(instr->right());
LInstruction* result = instr->representation().IsSmi() ?
DefineAsRegister(new(zone()) LSubS(left, right)) :
DefineAsRegister(new(zone()) LSubI(left, right));
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::SUB, instr);
} else {
return DoArithmeticT(Token::SUB, instr);
}
}
LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) {
if (instr->HasNoUses()) {
return NULL;
} else {
return DefineAsRegister(new(zone()) LThisFunction);
}
}
LInstruction* LChunkBuilder::DoTransitionElementsKind(
HTransitionElementsKind* instr) {
if (IsSimpleMapChangeTransition(instr->from_kind(), instr->to_kind())) {
LOperand* object = UseRegister(instr->object());
LTransitionElementsKind* result =
new(zone()) LTransitionElementsKind(object, NULL,
TempRegister(), TempRegister());
return result;
} else {
LOperand* object = UseFixed(instr->object(), x0);
LOperand* context = UseFixed(instr->context(), cp);
LTransitionElementsKind* result =
new(zone()) LTransitionElementsKind(object, context, NULL, NULL);
return MarkAsCall(result, instr);
}
}
LInstruction* LChunkBuilder::DoTrapAllocationMemento(
HTrapAllocationMemento* instr) {
LOperand* object = UseRegister(instr->object());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LTrapAllocationMemento* result =
new(zone()) LTrapAllocationMemento(object, temp1, temp2);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoMaybeGrowElements(HMaybeGrowElements* instr) {
info()->MarkAsDeferredCalling();
LOperand* context = UseFixed(instr->context(), cp);
LOperand* object = UseRegister(instr->object());
LOperand* elements = UseRegister(instr->elements());
LOperand* key = UseRegisterOrConstant(instr->key());
LOperand* current_capacity = UseRegisterOrConstant(instr->current_capacity());
LMaybeGrowElements* result = new (zone())
LMaybeGrowElements(context, object, elements, key, current_capacity);
DefineFixed(result, x0);
return AssignPointerMap(AssignEnvironment(result));
}
LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
LOperand* context = UseFixed(instr->context(), cp);
LOperand* value = UseFixed(instr->value(), x3);
LTypeof* result = new (zone()) LTypeof(context, value);
return MarkAsCall(DefineFixed(result, x0), instr);
}
LInstruction* LChunkBuilder::DoTypeofIsAndBranch(HTypeofIsAndBranch* instr) {
// We only need temp registers in some cases, but we can't dereference the
// instr->type_literal() handle to test that here.
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
return new(zone()) LTypeofIsAndBranch(
UseRegister(instr->value()), temp1, temp2);
}
LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs: {
Representation r = instr->representation();
if (r.IsTagged()) {
// The tagged case might need to allocate a HeapNumber for the result,
// so it is handled by a separate LInstruction.
LOperand* context = UseFixed(instr->context(), cp);
LOperand* input = UseRegister(instr->value());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LOperand* temp3 = TempRegister();
LInstruction* result = DefineAsRegister(
new(zone()) LMathAbsTagged(context, input, temp1, temp2, temp3));
return AssignEnvironment(AssignPointerMap(result));
} else {
LOperand* input = UseRegisterAtStart(instr->value());
LInstruction* result = DefineAsRegister(new(zone()) LMathAbs(input));
if (!r.IsDouble()) result = AssignEnvironment(result);
return result;
}
}
case kMathCos: {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseFixedDouble(instr->value(), d0);
LMathCos* result = new (zone()) LMathCos(input);
return MarkAsCall(DefineFixedDouble(result, d0), instr);
}
case kMathSin: {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseFixedDouble(instr->value(), d0);
LMathSin* result = new (zone()) LMathSin(input);
return MarkAsCall(DefineFixedDouble(result, d0), instr);
}
case kMathExp: {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseFixedDouble(instr->value(), d0);
LMathExp* result = new (zone()) LMathExp(input);
return MarkAsCall(DefineFixedDouble(result, d0), instr);
}
case kMathFloor: {
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseRegisterAtStart(instr->value());
if (instr->representation().IsInteger32()) {
LMathFloorI* result = new(zone()) LMathFloorI(input);
return AssignEnvironment(AssignPointerMap(DefineAsRegister(result)));
} else {
DCHECK(instr->representation().IsDouble());
LMathFloorD* result = new(zone()) LMathFloorD(input);
return DefineAsRegister(result);
}
}
case kMathLog: {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseFixedDouble(instr->value(), d0);
LMathLog* result = new(zone()) LMathLog(input);
return MarkAsCall(DefineFixedDouble(result, d0), instr);
}
case kMathPowHalf: {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseRegister(instr->value());
return DefineAsRegister(new(zone()) LMathPowHalf(input));
}
case kMathRound: {
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseRegister(instr->value());
if (instr->representation().IsInteger32()) {
LOperand* temp = TempDoubleRegister();
LMathRoundI* result = new(zone()) LMathRoundI(input, temp);
return AssignEnvironment(DefineAsRegister(result));
} else {
DCHECK(instr->representation().IsDouble());
LMathRoundD* result = new(zone()) LMathRoundD(input);
return DefineAsRegister(result);
}
}
case kMathFround: {
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseRegister(instr->value());
LMathFround* result = new (zone()) LMathFround(input);
return DefineAsRegister(result);
}
case kMathSqrt: {
DCHECK(instr->representation().IsDouble());
DCHECK(instr->value()->representation().IsDouble());
LOperand* input = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LMathSqrt(input));
}
case kMathClz32: {
DCHECK(instr->representation().IsInteger32());
DCHECK(instr->value()->representation().IsInteger32());
LOperand* input = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LMathClz32(input));
}
default:
UNREACHABLE();
return NULL;
}
}
LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) {
// Use an index that corresponds to the location in the unoptimized frame,
// which the optimized frame will subsume.
int env_index = instr->index();
int spill_index = 0;
if (instr->environment()->is_parameter_index(env_index)) {
spill_index = chunk_->GetParameterStackSlot(env_index);
} else {
spill_index = env_index - instr->environment()->first_local_index();
if (spill_index > LUnallocated::kMaxFixedSlotIndex) {
Retry(kTooManySpillSlotsNeededForOSR);
spill_index = 0;
}
spill_index += StandardFrameConstants::kFixedSlotCount;
}
return DefineAsSpilled(new(zone()) LUnknownOSRValue, spill_index);
}
LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) {
return NULL;
}
LInstruction* LChunkBuilder::DoForInPrepareMap(HForInPrepareMap* instr) {
LOperand* context = UseFixed(instr->context(), cp);
// Assign object to a fixed register different from those already used in
// LForInPrepareMap.
LOperand* object = UseFixed(instr->enumerable(), x0);
LForInPrepareMap* result = new(zone()) LForInPrepareMap(context, object);
return MarkAsCall(DefineFixed(result, x0), instr, CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoForInCacheArray(HForInCacheArray* instr) {
LOperand* map = UseRegister(instr->map());
return AssignEnvironment(DefineAsRegister(new(zone()) LForInCacheArray(map)));
}
LInstruction* LChunkBuilder::DoCheckMapValue(HCheckMapValue* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* map = UseRegister(instr->map());
LOperand* temp = TempRegister();
return AssignEnvironment(new(zone()) LCheckMapValue(value, map, temp));
}
LInstruction* LChunkBuilder::DoLoadFieldByIndex(HLoadFieldByIndex* instr) {
LOperand* object = UseRegisterAtStart(instr->object());
LOperand* index = UseRegisterAndClobber(instr->index());
LLoadFieldByIndex* load = new(zone()) LLoadFieldByIndex(object, index);
LInstruction* result = DefineSameAsFirst(load);
return AssignPointerMap(result);
}
LInstruction* LChunkBuilder::DoWrapReceiver(HWrapReceiver* instr) {
LOperand* receiver = UseRegister(instr->receiver());
LOperand* function = UseRegister(instr->function());
LWrapReceiver* result = new(zone()) LWrapReceiver(receiver, function);
return AssignEnvironment(DefineAsRegister(result));
}
} // namespace internal
} // namespace v8