| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/crankshaft/arm64/lithium-codegen-arm64.h" |
| |
| #include "src/arm64/frames-arm64.h" |
| #include "src/base/bits.h" |
| #include "src/builtins/builtins-constructor.h" |
| #include "src/code-factory.h" |
| #include "src/code-stubs.h" |
| #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h" |
| #include "src/crankshaft/hydrogen-osr.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| class SafepointGenerator final : public CallWrapper { |
| public: |
| SafepointGenerator(LCodeGen* codegen, |
| LPointerMap* pointers, |
| Safepoint::DeoptMode mode) |
| : codegen_(codegen), |
| pointers_(pointers), |
| deopt_mode_(mode) { } |
| virtual ~SafepointGenerator() { } |
| |
| virtual void BeforeCall(int call_size) const { } |
| |
| virtual void AfterCall() const { |
| codegen_->RecordSafepoint(pointers_, deopt_mode_); |
| } |
| |
| private: |
| LCodeGen* codegen_; |
| LPointerMap* pointers_; |
| Safepoint::DeoptMode deopt_mode_; |
| }; |
| |
| LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope( |
| LCodeGen* codegen) |
| : codegen_(codegen) { |
| DCHECK(codegen_->info()->is_calling()); |
| DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); |
| codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; |
| |
| UseScratchRegisterScope temps(codegen_->masm_); |
| // Preserve the value of lr which must be saved on the stack (the call to |
| // the stub will clobber it). |
| Register to_be_pushed_lr = |
| temps.UnsafeAcquire(StoreRegistersStateStub::to_be_pushed_lr()); |
| codegen_->masm_->Mov(to_be_pushed_lr, lr); |
| StoreRegistersStateStub stub(codegen_->isolate()); |
| codegen_->masm_->CallStub(&stub); |
| } |
| |
| LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() { |
| DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); |
| RestoreRegistersStateStub stub(codegen_->isolate()); |
| codegen_->masm_->CallStub(&stub); |
| codegen_->expected_safepoint_kind_ = Safepoint::kSimple; |
| } |
| |
| #define __ masm()-> |
| |
| // Emit code to branch if the given condition holds. |
| // The code generated here doesn't modify the flags and they must have |
| // been set by some prior instructions. |
| // |
| // The EmitInverted function simply inverts the condition. |
| class BranchOnCondition : public BranchGenerator { |
| public: |
| BranchOnCondition(LCodeGen* codegen, Condition cond) |
| : BranchGenerator(codegen), |
| cond_(cond) { } |
| |
| virtual void Emit(Label* label) const { |
| __ B(cond_, label); |
| } |
| |
| virtual void EmitInverted(Label* label) const { |
| if (cond_ != al) { |
| __ B(NegateCondition(cond_), label); |
| } |
| } |
| |
| private: |
| Condition cond_; |
| }; |
| |
| |
| // Emit code to compare lhs and rhs and branch if the condition holds. |
| // This uses MacroAssembler's CompareAndBranch function so it will handle |
| // converting the comparison to Cbz/Cbnz if the right-hand side is 0. |
| // |
| // EmitInverted still compares the two operands but inverts the condition. |
| class CompareAndBranch : public BranchGenerator { |
| public: |
| CompareAndBranch(LCodeGen* codegen, |
| Condition cond, |
| const Register& lhs, |
| const Operand& rhs) |
| : BranchGenerator(codegen), |
| cond_(cond), |
| lhs_(lhs), |
| rhs_(rhs) { } |
| |
| virtual void Emit(Label* label) const { |
| __ CompareAndBranch(lhs_, rhs_, cond_, label); |
| } |
| |
| virtual void EmitInverted(Label* label) const { |
| __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); |
| } |
| |
| private: |
| Condition cond_; |
| const Register& lhs_; |
| const Operand& rhs_; |
| }; |
| |
| |
| // Test the input with the given mask and branch if the condition holds. |
| // If the condition is 'eq' or 'ne' this will use MacroAssembler's |
| // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the |
| // conversion to Tbz/Tbnz when possible. |
| class TestAndBranch : public BranchGenerator { |
| public: |
| TestAndBranch(LCodeGen* codegen, |
| Condition cond, |
| const Register& value, |
| uint64_t mask) |
| : BranchGenerator(codegen), |
| cond_(cond), |
| value_(value), |
| mask_(mask) { } |
| |
| virtual void Emit(Label* label) const { |
| switch (cond_) { |
| case eq: |
| __ TestAndBranchIfAllClear(value_, mask_, label); |
| break; |
| case ne: |
| __ TestAndBranchIfAnySet(value_, mask_, label); |
| break; |
| default: |
| __ Tst(value_, mask_); |
| __ B(cond_, label); |
| } |
| } |
| |
| virtual void EmitInverted(Label* label) const { |
| // The inverse of "all clear" is "any set" and vice versa. |
| switch (cond_) { |
| case eq: |
| __ TestAndBranchIfAnySet(value_, mask_, label); |
| break; |
| case ne: |
| __ TestAndBranchIfAllClear(value_, mask_, label); |
| break; |
| default: |
| __ Tst(value_, mask_); |
| __ B(NegateCondition(cond_), label); |
| } |
| } |
| |
| private: |
| Condition cond_; |
| const Register& value_; |
| uint64_t mask_; |
| }; |
| |
| |
| // Test the input and branch if it is non-zero and not a NaN. |
| class BranchIfNonZeroNumber : public BranchGenerator { |
| public: |
| BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, |
| const FPRegister& scratch) |
| : BranchGenerator(codegen), value_(value), scratch_(scratch) { } |
| |
| virtual void Emit(Label* label) const { |
| __ Fabs(scratch_, value_); |
| // Compare with 0.0. Because scratch_ is positive, the result can be one of |
| // nZCv (equal), nzCv (greater) or nzCV (unordered). |
| __ Fcmp(scratch_, 0.0); |
| __ B(gt, label); |
| } |
| |
| virtual void EmitInverted(Label* label) const { |
| __ Fabs(scratch_, value_); |
| __ Fcmp(scratch_, 0.0); |
| __ B(le, label); |
| } |
| |
| private: |
| const FPRegister& value_; |
| const FPRegister& scratch_; |
| }; |
| |
| |
| // Test the input and branch if it is a heap number. |
| class BranchIfHeapNumber : public BranchGenerator { |
| public: |
| BranchIfHeapNumber(LCodeGen* codegen, const Register& value) |
| : BranchGenerator(codegen), value_(value) { } |
| |
| virtual void Emit(Label* label) const { |
| __ JumpIfHeapNumber(value_, label); |
| } |
| |
| virtual void EmitInverted(Label* label) const { |
| __ JumpIfNotHeapNumber(value_, label); |
| } |
| |
| private: |
| const Register& value_; |
| }; |
| |
| |
| // Test the input and branch if it is the specified root value. |
| class BranchIfRoot : public BranchGenerator { |
| public: |
| BranchIfRoot(LCodeGen* codegen, const Register& value, |
| Heap::RootListIndex index) |
| : BranchGenerator(codegen), value_(value), index_(index) { } |
| |
| virtual void Emit(Label* label) const { |
| __ JumpIfRoot(value_, index_, label); |
| } |
| |
| virtual void EmitInverted(Label* label) const { |
| __ JumpIfNotRoot(value_, index_, label); |
| } |
| |
| private: |
| const Register& value_; |
| const Heap::RootListIndex index_; |
| }; |
| |
| |
| void LCodeGen::WriteTranslation(LEnvironment* environment, |
| Translation* translation) { |
| if (environment == NULL) return; |
| |
| // The translation includes one command per value in the environment. |
| int translation_size = environment->translation_size(); |
| |
| WriteTranslation(environment->outer(), translation); |
| WriteTranslationFrame(environment, translation); |
| |
| int object_index = 0; |
| int dematerialized_index = 0; |
| for (int i = 0; i < translation_size; ++i) { |
| LOperand* value = environment->values()->at(i); |
| AddToTranslation( |
| environment, translation, value, environment->HasTaggedValueAt(i), |
| environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); |
| } |
| } |
| |
| |
| void LCodeGen::AddToTranslation(LEnvironment* environment, |
| Translation* translation, |
| LOperand* op, |
| bool is_tagged, |
| bool is_uint32, |
| int* object_index_pointer, |
| int* dematerialized_index_pointer) { |
| if (op == LEnvironment::materialization_marker()) { |
| int object_index = (*object_index_pointer)++; |
| if (environment->ObjectIsDuplicateAt(object_index)) { |
| int dupe_of = environment->ObjectDuplicateOfAt(object_index); |
| translation->DuplicateObject(dupe_of); |
| return; |
| } |
| int object_length = environment->ObjectLengthAt(object_index); |
| if (environment->ObjectIsArgumentsAt(object_index)) { |
| translation->BeginArgumentsObject(object_length); |
| } else { |
| translation->BeginCapturedObject(object_length); |
| } |
| int dematerialized_index = *dematerialized_index_pointer; |
| int env_offset = environment->translation_size() + dematerialized_index; |
| *dematerialized_index_pointer += object_length; |
| for (int i = 0; i < object_length; ++i) { |
| LOperand* value = environment->values()->at(env_offset + i); |
| AddToTranslation(environment, |
| translation, |
| value, |
| environment->HasTaggedValueAt(env_offset + i), |
| environment->HasUint32ValueAt(env_offset + i), |
| object_index_pointer, |
| dematerialized_index_pointer); |
| } |
| return; |
| } |
| |
| if (op->IsStackSlot()) { |
| int index = op->index(); |
| if (is_tagged) { |
| translation->StoreStackSlot(index); |
| } else if (is_uint32) { |
| translation->StoreUint32StackSlot(index); |
| } else { |
| translation->StoreInt32StackSlot(index); |
| } |
| } else if (op->IsDoubleStackSlot()) { |
| int index = op->index(); |
| translation->StoreDoubleStackSlot(index); |
| } else if (op->IsRegister()) { |
| Register reg = ToRegister(op); |
| if (is_tagged) { |
| translation->StoreRegister(reg); |
| } else if (is_uint32) { |
| translation->StoreUint32Register(reg); |
| } else { |
| translation->StoreInt32Register(reg); |
| } |
| } else if (op->IsDoubleRegister()) { |
| DoubleRegister reg = ToDoubleRegister(op); |
| translation->StoreDoubleRegister(reg); |
| } else if (op->IsConstantOperand()) { |
| HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); |
| int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); |
| translation->StoreLiteral(src_index); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, |
| Safepoint::DeoptMode mode) { |
| environment->set_has_been_used(); |
| if (!environment->HasBeenRegistered()) { |
| int frame_count = 0; |
| int jsframe_count = 0; |
| for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
| ++frame_count; |
| if (e->frame_type() == JS_FUNCTION) { |
| ++jsframe_count; |
| } |
| } |
| Translation translation(&translations_, frame_count, jsframe_count, zone()); |
| WriteTranslation(environment, &translation); |
| int deoptimization_index = deoptimizations_.length(); |
| int pc_offset = masm()->pc_offset(); |
| environment->Register(deoptimization_index, |
| translation.index(), |
| (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
| deoptimizations_.Add(environment, zone()); |
| } |
| } |
| |
| |
| void LCodeGen::CallCode(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr) { |
| CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::CallCodeGeneric(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr, |
| SafepointMode safepoint_mode) { |
| DCHECK(instr != NULL); |
| |
| Assembler::BlockPoolsScope scope(masm_); |
| __ Call(code, mode); |
| RecordSafepointWithLazyDeopt(instr, safepoint_mode); |
| |
| if ((code->kind() == Code::BINARY_OP_IC) || |
| (code->kind() == Code::COMPARE_IC)) { |
| // Signal that we don't inline smi code before these stubs in the |
| // optimizing code generator. |
| InlineSmiCheckInfo::EmitNotInlined(masm()); |
| } |
| } |
| |
| |
| void LCodeGen::DoCallNewArray(LCallNewArray* instr) { |
| DCHECK(instr->IsMarkedAsCall()); |
| DCHECK(ToRegister(instr->context()).is(cp)); |
| DCHECK(ToRegister(instr->constructor()).is(x1)); |
| |
| __ Mov(x0, Operand(instr->arity())); |
| __ Mov(x2, instr->hydrogen()->site()); |
| |
| ElementsKind kind = instr->hydrogen()->elements_kind(); |
| AllocationSiteOverrideMode override_mode = |
| (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) |
| ? DISABLE_ALLOCATION_SITES |
| : DONT_OVERRIDE; |
| |
| if (instr->arity() == 0) { |
| ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } else if (instr->arity() == 1) { |
| Label done; |
| if (IsFastPackedElementsKind(kind)) { |
| Label packed_case; |
| |
| // We might need to create a holey array; look at the first argument. |
| __ Peek(x10, 0); |
| __ Cbz(x10, &packed_case); |
| |
| ElementsKind holey_kind = GetHoleyElementsKind(kind); |
| ArraySingleArgumentConstructorStub stub(isolate(), |
| holey_kind, |
| override_mode); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| __ B(&done); |
| __ Bind(&packed_case); |
| } |
| |
| ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| __ Bind(&done); |
| } else { |
| ArrayNArgumentsConstructorStub stub(isolate()); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
| |
| DCHECK(ToRegister(instr->result()).is(x0)); |
| } |
| |
| |
| void LCodeGen::CallRuntime(const Runtime::Function* function, |
| int num_arguments, |
| LInstruction* instr, |
| SaveFPRegsMode save_doubles) { |
| DCHECK(instr != NULL); |
| |
| __ CallRuntime(function, num_arguments, save_doubles); |
| |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::LoadContextFromDeferred(LOperand* context) { |
| if (context->IsRegister()) { |
| __ Mov(cp, ToRegister(context)); |
| } else if (context->IsStackSlot()) { |
| __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); |
| } else if (context->IsConstantOperand()) { |
| HConstant* constant = |
| chunk_->LookupConstant(LConstantOperand::cast(context)); |
| __ LoadHeapObject(cp, |
| Handle<HeapObject>::cast(constant->handle(isolate()))); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
| int argc, |
| LInstruction* instr, |
| LOperand* context) { |
| if (context != nullptr) LoadContextFromDeferred(context); |
| __ CallRuntimeSaveDoubles(id); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, |
| SafepointMode safepoint_mode) { |
| if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
| RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
| } else { |
| DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), 0, Safepoint::kLazyDeopt); |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
| Safepoint::Kind kind, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| DCHECK(expected_safepoint_kind_ == kind); |
| |
| const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
| Safepoint safepoint = safepoints_.DefineSafepoint( |
| masm(), kind, arguments, deopt_mode); |
| |
| for (int i = 0; i < operands->length(); i++) { |
| LOperand* pointer = operands->at(i); |
| if (pointer->IsStackSlot()) { |
| safepoint.DefinePointerSlot(pointer->index(), zone()); |
| } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
| safepoint.DefinePointerRegister(ToRegister(pointer), zone()); |
| } |
| } |
| } |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { |
| LPointerMap empty_pointers(zone()); |
| RecordSafepoint(&empty_pointers, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); |
| } |
| |
| |
| bool LCodeGen::GenerateCode() { |
| LPhase phase("Z_Code generation", chunk()); |
| DCHECK(is_unused()); |
| status_ = GENERATING; |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // NONE indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done in GeneratePrologue). |
| FrameScope frame_scope(masm_, StackFrame::NONE); |
| |
| return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && |
| GenerateJumpTable() && GenerateSafepointTable(); |
| } |
| |
| |
| void LCodeGen::SaveCallerDoubles() { |
| DCHECK(info()->saves_caller_doubles()); |
| DCHECK(NeedsEagerFrame()); |
| Comment(";;; Save clobbered callee double registers"); |
| BitVector* doubles = chunk()->allocated_double_registers(); |
| BitVector::Iterator iterator(doubles); |
| int count = 0; |
| while (!iterator.Done()) { |
| // TODO(all): Is this supposed to save just the callee-saved doubles? It |
| // looks like it's saving all of them. |
| FPRegister value = FPRegister::from_code(iterator.Current()); |
| __ Poke(value, count * kDoubleSize); |
| iterator.Advance(); |
| count++; |
| } |
| } |
| |
| |
| void LCodeGen::RestoreCallerDoubles() { |
| DCHECK(info()->saves_caller_doubles()); |
| DCHECK(NeedsEagerFrame()); |
| Comment(";;; Restore clobbered callee double registers"); |
| BitVector* doubles = chunk()->allocated_double_registers(); |
| BitVector::Iterator iterator(doubles); |
| int count = 0; |
| while (!iterator.Done()) { |
| // TODO(all): Is this supposed to restore just the callee-saved doubles? It |
| // looks like it's restoring all of them. |
| FPRegister value = FPRegister::from_code(iterator.Current()); |
| __ Peek(value, count * kDoubleSize); |
| iterator.Advance(); |
| count++; |
| } |
| } |
| |
| |
| bool LCodeGen::GeneratePrologue() { |
| DCHECK(is_generating()); |
| |
| if (info()->IsOptimizing()) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm_); |
| } |
| |
| DCHECK(__ StackPointer().Is(jssp)); |
| info()->set_prologue_offset(masm_->pc_offset()); |
| if (NeedsEagerFrame()) { |
| if (info()->IsStub()) { |
| __ StubPrologue( |
| StackFrame::STUB, |
| GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount); |
| } else { |
| __ Prologue(info()->GeneratePreagedPrologue()); |
| // Reserve space for the stack slots needed by the code. |
| int slots = GetStackSlotCount(); |
| if (slots > 0) { |
| __ Claim(slots, kPointerSize); |
| } |
| } |
| frame_is_built_ = true; |
| } |
| |
| if (info()->saves_caller_doubles()) { |
| SaveCallerDoubles(); |
| } |
| return !is_aborted(); |
| } |
| |
| |
| void LCodeGen::DoPrologue(LPrologue* instr) { |
| Comment(";;; Prologue begin"); |
| |
| // Allocate a local context if needed. |
| if (info()->scope()->NeedsContext()) { |
| Comment(";;; Allocate local context"); |
| bool need_write_barrier = true; |
| // Argument to NewContext is the function, which is in x1. |
| int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; |
| if (info()->scope()->is_script_scope()) { |
| __ Mov(x10, Operand(info()->scope()->scope_info())); |
| __ Push(x1, x10); |
| __ CallRuntime(Runtime::kNewScriptContext); |
| deopt_mode = Safepoint::kLazyDeopt; |
| } else { |
| if (slots <= |
| ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { |
| Callable callable = CodeFactory::FastNewFunctionContext( |
| isolate(), info()->scope()->scope_type()); |
| __ Mov(FastNewFunctionContextDescriptor::SlotsRegister(), slots); |
| __ Call(callable.code(), RelocInfo::CODE_TARGET); |
| // Result of the FastNewFunctionContext builtin is always in new space. |
| need_write_barrier = false; |
| } else { |
| __ Push(x1); |
| __ Push(Smi::FromInt(info()->scope()->scope_type())); |
| __ CallRuntime(Runtime::kNewFunctionContext); |
| } |
| } |
| RecordSafepoint(deopt_mode); |
| // Context is returned in x0. It replaces the context passed to us. It's |
| // saved in the stack and kept live in cp. |
| __ Mov(cp, x0); |
| __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // Copy any necessary parameters into the context. |
| int num_parameters = info()->scope()->num_parameters(); |
| int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; |
| for (int i = first_parameter; i < num_parameters; i++) { |
| Variable* var = (i == -1) ? info()->scope()->receiver() |
| : info()->scope()->parameter(i); |
| if (var->IsContextSlot()) { |
| Register value = x0; |
| Register scratch = x3; |
| |
| int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
| (num_parameters - 1 - i) * kPointerSize; |
| // Load parameter from stack. |
| __ Ldr(value, MemOperand(fp, parameter_offset)); |
| // Store it in the context. |
| MemOperand target = ContextMemOperand(cp, var->index()); |
| __ Str(value, target); |
| // Update the write barrier. This clobbers value and scratch. |
| if (need_write_barrier) { |
| __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), |
| value, scratch, GetLinkRegisterState(), |
| kSaveFPRegs); |
| } else if (FLAG_debug_code) { |
| Label done; |
| __ JumpIfInNewSpace(cp, &done); |
| __ Abort(kExpectedNewSpaceObject); |
| __ bind(&done); |
| } |
| } |
| } |
| Comment(";;; End allocate local context"); |
| } |
| |
| Comment(";;; Prologue end"); |
| } |
| |
| |
| void LCodeGen::GenerateOsrPrologue() { |
| // Generate the OSR entry prologue at the first unknown OSR value, or if there |
| // are none, at the OSR entrypoint instruction. |
| if (osr_pc_offset_ >= 0) return; |
| |
| osr_pc_offset_ = masm()->pc_offset(); |
| |
| // Adjust the frame size, subsuming the unoptimized frame into the |
| // optimized frame. |
| int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); |
| DCHECK(slots >= 0); |
| __ Claim(slots); |
| } |
| |
| |
| void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { |
| if (instr->IsCall()) { |
| EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
| } |
| if (!instr->IsLazyBailout() && !instr->IsGap()) { |
| safepoints_.BumpLastLazySafepointIndex(); |
| } |
| } |
| |
| |
| bool LCodeGen::GenerateDeferredCode() { |
| DCHECK(is_generating()); |
| if (deferred_.length() > 0) { |
| for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { |
| LDeferredCode* code = deferred_[i]; |
| |
| HValue* value = |
| instructions_->at(code->instruction_index())->hydrogen_value(); |
| RecordAndWritePosition(value->position()); |
| |
| Comment(";;; <@%d,#%d> " |
| "-------------------- Deferred %s --------------------", |
| code->instruction_index(), |
| code->instr()->hydrogen_value()->id(), |
| code->instr()->Mnemonic()); |
| |
| __ Bind(code->entry()); |
| |
| if (NeedsDeferredFrame()) { |
| Comment(";;; Build frame"); |
| DCHECK(!frame_is_built_); |
| DCHECK(info()->IsStub()); |
| frame_is_built_ = true; |
| __ Push(lr, fp); |
| __ Mov(fp, Smi::FromInt(StackFrame::STUB)); |
| __ Push(fp); |
| __ Add(fp, __ StackPointer(), |
| TypedFrameConstants::kFixedFrameSizeFromFp); |
| Comment(";;; Deferred code"); |
| } |
| |
| code->Generate(); |
| |
| if (NeedsDeferredFrame()) { |
| Comment(";;; Destroy frame"); |
| DCHECK(frame_is_built_); |
| __ Pop(xzr, fp, lr); |
| frame_is_built_ = false; |
| } |
| |
| __ B(code->exit()); |
| } |
| } |
| |
| // Force constant pool emission at the end of the deferred code to make |
| // sure that no constant pools are emitted after deferred code because |
| // deferred code generation is the last step which generates code. The two |
| // following steps will only output data used by crakshaft. |
| masm()->CheckConstPool(true, false); |
| |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateJumpTable() { |
| Label needs_frame, call_deopt_entry; |
| |
| if (jump_table_.length() > 0) { |
| Comment(";;; -------------------- Jump table --------------------"); |
| Address base = jump_table_[0]->address; |
| |
| UseScratchRegisterScope temps(masm()); |
| Register entry_offset = temps.AcquireX(); |
| |
| int length = jump_table_.length(); |
| for (int i = 0; i < length; i++) { |
| Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; |
| __ Bind(&table_entry->label); |
| |
| Address entry = table_entry->address; |
| DeoptComment(table_entry->deopt_info); |
| |
| // Second-level deopt table entries are contiguous and small, so instead |
| // of loading the full, absolute address of each one, load the base |
| // address and add an immediate offset. |
| __ Mov(entry_offset, entry - base); |
| |
| if (table_entry->needs_frame) { |
| DCHECK(!info()->saves_caller_doubles()); |
| Comment(";;; call deopt with frame"); |
| // Save lr before Bl, fp will be adjusted in the needs_frame code. |
| __ Push(lr, fp); |
| // Reuse the existing needs_frame code. |
| __ Bl(&needs_frame); |
| } else { |
| // There is nothing special to do, so just continue to the second-level |
| // table. |
| __ Bl(&call_deopt_entry); |
| } |
| |
| masm()->CheckConstPool(false, false); |
| } |
| |
| if (needs_frame.is_linked()) { |
| // This variant of deopt can only be used with stubs. Since we don't |
| // have a function pointer to install in the stack frame that we're |
| // building, install a special marker there instead. |
| DCHECK(info()->IsStub()); |
| |
| Comment(";;; needs_frame common code"); |
| UseScratchRegisterScope temps(masm()); |
| Register stub_marker = temps.AcquireX(); |
| __ Bind(&needs_frame); |
| __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB)); |
| __ Push(cp, stub_marker); |
| __ Add(fp, __ StackPointer(), 2 * kPointerSize); |
| } |
| |
| // Generate common code for calling the second-level deopt table. |
| __ Bind(&call_deopt_entry); |
| |
| if (info()->saves_caller_doubles()) { |
| DCHECK(info()->IsStub()); |
| RestoreCallerDoubles(); |
| } |
| |
| Register deopt_entry = temps.AcquireX(); |
| __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base), |
| RelocInfo::RUNTIME_ENTRY)); |
| __ Add(deopt_entry, deopt_entry, entry_offset); |
| __ Br(deopt_entry); |
| } |
| |
| // Force constant pool emission at the end of the deopt jump table to make |
| // sure that no constant pools are emitted after. |
| masm()->CheckConstPool(true, false); |
| |
| // The deoptimization jump table is the last part of the instruction |
| // sequence. Mark the generated code as done unless we bailed out. |
| if (!is_aborted()) status_ = DONE; |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateSafepointTable() { |
| DCHECK(is_done()); |
| // We do not know how much data will be emitted for the safepoint table, so |
| // force emission of the veneer pool. |
| masm()->CheckVeneerPool(true, true); |
| safepoints_.Emit(masm(), GetTotalFrameSlotCount()); |
| return !is_aborted(); |
| } |
| |
| |
| void LCodeGen::FinishCode(Handle<Code> code) { |
| DCHECK(is_done()); |
| code->set_stack_slots(GetTotalFrameSlotCount()); |
| code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
| PopulateDeoptimizationData(code); |
| } |
| |
| void LCodeGen::DeoptimizeBranch( |
| LInstruction* instr, DeoptimizeReason deopt_reason, BranchType branch_type, |
| Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) { |
| LEnvironment* environment = instr->environment(); |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| Deoptimizer::BailoutType bailout_type = |
| info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; |
| |
| if (override_bailout_type != NULL) { |
| bailout_type = *override_bailout_type; |
| } |
| |
| DCHECK(environment->HasBeenRegistered()); |
| int id = environment->deoptimization_index(); |
| Address entry = |
| Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); |
| |
| if (entry == NULL) { |
| Abort(kBailoutWasNotPrepared); |
| } |
| |
| if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { |
| Label not_zero; |
| ExternalReference count = ExternalReference::stress_deopt_count(isolate()); |
| |
| __ Push(x0, x1, x2); |
| __ Mrs(x2, NZCV); |
| __ Mov(x0, count); |
| __ Ldr(w1, MemOperand(x0)); |
| __ Subs(x1, x1, 1); |
| __ B(gt, ¬_zero); |
| __ Mov(w1, FLAG_deopt_every_n_times); |
| __ Str(w1, MemOperand(x0)); |
| __ Pop(x2, x1, x0); |
| DCHECK(frame_is_built_); |
| __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
| __ Unreachable(); |
| |
| __ Bind(¬_zero); |
| __ Str(w1, MemOperand(x0)); |
| __ Msr(NZCV, x2); |
| __ Pop(x2, x1, x0); |
| } |
| |
| if (info()->ShouldTrapOnDeopt()) { |
| Label dont_trap; |
| __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); |
| __ Debug("trap_on_deopt", __LINE__, BREAK); |
| __ Bind(&dont_trap); |
| } |
| |
| Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); |
| |
| DCHECK(info()->IsStub() || frame_is_built_); |
| // Go through jump table if we need to build frame, or restore caller doubles. |
| if (branch_type == always && |
| frame_is_built_ && !info()->saves_caller_doubles()) { |
| DeoptComment(deopt_info); |
| __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
| } else { |
| Deoptimizer::JumpTableEntry* table_entry = |
| new (zone()) Deoptimizer::JumpTableEntry( |
| entry, deopt_info, bailout_type, !frame_is_built_); |
| // We often have several deopts to the same entry, reuse the last |
| // jump entry if this is the case. |
| if (FLAG_trace_deopt || isolate()->is_profiling() || |
| jump_table_.is_empty() || |
| !table_entry->IsEquivalentTo(*jump_table_.last())) { |
| jump_table_.Add(table_entry, zone()); |
| } |
| __ B(&jump_table_.last()->label, branch_type, reg, bit); |
| } |
| } |
| |
| void LCodeGen::Deoptimize(LInstruction* instr, DeoptimizeReason deopt_reason, |
| Deoptimizer::BailoutType* override_bailout_type) { |
| DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1, |
| override_bailout_type); |
| } |
| |
| void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond)); |
| } |
| |
| void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeBranch(instr, deopt_reason, reg_zero, rt); |
| } |
| |
| void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt); |
| } |
| |
| void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; |
| DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason); |
| } |
| |
| void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); |
| } |
| |
| void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); |
| } |
| |
| void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, |
| LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| __ CompareRoot(rt, index); |
| DeoptimizeIf(eq, instr, deopt_reason); |
| } |
| |
| void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, |
| LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| __ CompareRoot(rt, index); |
| DeoptimizeIf(ne, instr, deopt_reason); |
| } |
| |
| void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| __ TestForMinusZero(input); |
| DeoptimizeIf(vs, instr, deopt_reason); |
| } |
| |
| |
| void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { |
| __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); |
| } |
| |
| void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit); |
| } |
| |
| void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit); |
| } |
| |
| |
| void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { |
| if (info()->ShouldEnsureSpaceForLazyDeopt()) { |
| // Ensure that we have enough space after the previous lazy-bailout |
| // instruction for patching the code here. |
| intptr_t current_pc = masm()->pc_offset(); |
| |
| if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { |
| ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; |
| DCHECK((padding_size % kInstructionSize) == 0); |
| InstructionAccurateScope instruction_accurate( |
| masm(), padding_size / kInstructionSize); |
| |
| while (padding_size > 0) { |
| __ nop(); |
| padding_size -= kInstructionSize; |
| } |
| } |
| } |
| last_lazy_deopt_pc_ = masm()->pc_offset(); |
| } |
| |
| |
| Register LCodeGen::ToRegister(LOperand* op) const { |
| // TODO(all): support zero register results, as ToRegister32. |
| DCHECK((op != NULL) && op->IsRegister()); |
| return Register::from_code(op->index()); |
| } |
| |
| |
| Register LCodeGen::ToRegister32(LOperand* op) const { |
| DCHECK(op != NULL); |
| if (op->IsConstantOperand()) { |
| // If this is a constant operand, the result must be the zero register. |
| DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); |
| return wzr; |
| } else { |
| return ToRegister(op).W(); |
| } |
| } |
| |
| |
| Smi* LCodeGen::ToSmi(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| return Smi::FromInt(constant->Integer32Value()); |
| } |
| |
| |
| DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
| DCHECK((op != NULL) && op->IsDoubleRegister()); |
| return DoubleRegister::from_code(op->index()); |
| } |
| |
| |
| Operand LCodeGen::ToOperand(LOperand* op) { |
| DCHECK(op != NULL); |
| if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| HConstant* constant = chunk()->LookupConstant(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsSmi()) { |
| DCHECK(constant->HasSmiValue()); |
| return Operand(Smi::FromInt(constant->Integer32Value())); |
| } else if (r.IsInteger32()) { |
| DCHECK(constant->HasInteger32Value()); |
| return Operand(constant->Integer32Value()); |
| } else if (r.IsDouble()) { |
| Abort(kToOperandUnsupportedDoubleImmediate); |
| } |
| DCHECK(r.IsTagged()); |
| return Operand(constant->handle(isolate())); |
| } else if (op->IsRegister()) { |
| return Operand(ToRegister(op)); |
| } else if (op->IsDoubleRegister()) { |
| Abort(kToOperandIsDoubleRegisterUnimplemented); |
| return Operand(0); |
| } |
| // Stack slots not implemented, use ToMemOperand instead. |
| UNREACHABLE(); |
| return Operand(0); |
| } |
| |
| |
| Operand LCodeGen::ToOperand32(LOperand* op) { |
| DCHECK(op != NULL); |
| if (op->IsRegister()) { |
| return Operand(ToRegister32(op)); |
| } else if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| HConstant* constant = chunk()->LookupConstant(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsInteger32()) { |
| return Operand(constant->Integer32Value()); |
| } else { |
| // Other constants not implemented. |
| Abort(kToOperand32UnsupportedImmediate); |
| } |
| } |
| // Other cases are not implemented. |
| UNREACHABLE(); |
| return Operand(0); |
| } |
| |
| |
| static int64_t ArgumentsOffsetWithoutFrame(int index) { |
| DCHECK(index < 0); |
| return -(index + 1) * kPointerSize; |
| } |
| |
| |
| MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { |
| DCHECK(op != NULL); |
| DCHECK(!op->IsRegister()); |
| DCHECK(!op->IsDoubleRegister()); |
| DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); |
| if (NeedsEagerFrame()) { |
| int fp_offset = FrameSlotToFPOffset(op->index()); |
| // Loads and stores have a bigger reach in positive offset than negative. |
| // We try to access using jssp (positive offset) first, then fall back to |
| // fp (negative offset) if that fails. |
| // |
| // We can reference a stack slot from jssp only if we know how much we've |
| // put on the stack. We don't know this in the following cases: |
| // - stack_mode != kCanUseStackPointer: this is the case when deferred |
| // code has saved the registers. |
| // - saves_caller_doubles(): some double registers have been pushed, jssp |
| // references the end of the double registers and not the end of the stack |
| // slots. |
| // In both of the cases above, we _could_ add the tracking information |
| // required so that we can use jssp here, but in practice it isn't worth it. |
| if ((stack_mode == kCanUseStackPointer) && |
| !info()->saves_caller_doubles()) { |
| int jssp_offset_to_fp = |
| (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize - |
| StandardFrameConstants::kFixedFrameSizeAboveFp; |
| int jssp_offset = fp_offset + jssp_offset_to_fp; |
| if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) { |
| return MemOperand(masm()->StackPointer(), jssp_offset); |
| } |
| } |
| return MemOperand(fp, fp_offset); |
| } else { |
| // Retrieve parameter without eager stack-frame relative to the |
| // stack-pointer. |
| return MemOperand(masm()->StackPointer(), |
| ArgumentsOffsetWithoutFrame(op->index())); |
| } |
| } |
| |
| |
| Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); |
| return constant->handle(isolate()); |
| } |
| |
| |
| template <class LI> |
| Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { |
| if (shift_info->shift() == NO_SHIFT) { |
| return ToOperand32(right); |
| } else { |
| return Operand( |
| ToRegister32(right), |
| shift_info->shift(), |
| JSShiftAmountFromLConstant(shift_info->shift_amount())); |
| } |
| } |
| |
| |
| bool LCodeGen::IsSmi(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsSmi(); |
| } |
| |
| |
| bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); |
| } |
| |
| |
| int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| return constant->Integer32Value(); |
| } |
| |
| |
| double LCodeGen::ToDouble(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(constant->HasDoubleValue()); |
| return constant->DoubleValue(); |
| } |
| |
| |
| Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
| Condition cond = nv; |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: |
| cond = eq; |
| break; |
| case Token::NE: |
| case Token::NE_STRICT: |
| cond = ne; |
| break; |
| case Token::LT: |
| cond = is_unsigned ? lo : lt; |
| break; |
| case Token::GT: |
| cond = is_unsigned ? hi : gt; |
| break; |
| case Token::LTE: |
| cond = is_unsigned ? ls : le; |
| break; |
| case Token::GTE: |
| cond = is_unsigned ? hs : ge; |
| break; |
| case Token::IN: |
| case Token::INSTANCEOF: |
| default: |
| UNREACHABLE(); |
| } |
| return cond; |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitBranchGeneric(InstrType instr, |
| const BranchGenerator& branch) { |
| int left_block = instr->TrueDestination(chunk_); |
| int right_block = instr->FalseDestination(chunk_); |
| |
| int next_block = GetNextEmittedBlock(); |
| |
| if (right_block == left_block) { |
| EmitGoto(left_block); |
| } else if (left_block == next_block) { |
| branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); |
| } else { |
| branch.Emit(chunk_->GetAssemblyLabel(left_block)); |
| if (right_block != next_block) { |
| __ B(chunk_->GetAssemblyLabel(right_block)); |
| } |
| } |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitBranch(InstrType instr, Condition condition) { |
| DCHECK((condition != al) && (condition != nv)); |
| BranchOnCondition branch(this, condition); |
| EmitBranchGeneric(instr, branch); |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitCompareAndBranch(InstrType instr, |
| Condition condition, |
| const Register& lhs, |
| const Operand& rhs) { |
| DCHECK((condition != al) && (condition != nv)); |
| CompareAndBranch branch(this, condition, lhs, rhs); |
| EmitBranchGeneric(instr, branch); |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitTestAndBranch(InstrType instr, |
| Condition condition, |
| const Register& value, |
| uint64_t mask) { |
| DCHECK((condition != al) && (condition != nv)); |
| TestAndBranch branch(this, condition, value, mask); |
| EmitBranchGeneric(instr, branch); |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, |
| const FPRegister& value, |
| const FPRegister& scratch) { |
| BranchIfNonZeroNumber branch(this, value, scratch); |
| EmitBranchGeneric(instr, branch); |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, |
| const Register& value) { |
| BranchIfHeapNumber branch(this, value); |
| EmitBranchGeneric(instr, branch); |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitBranchIfRoot(InstrType instr, |
| const Register& value, |
| Heap::RootListIndex index) { |
| BranchIfRoot branch(this, value, index); |
| EmitBranchGeneric(instr, branch); |
| } |
| |
| |
| void LCodeGen::DoGap(LGap* gap) { |
| for (int i = LGap::FIRST_INNER_POSITION; |
| i <= LGap::LAST_INNER_POSITION; |
| i++) { |
| LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
| LParallelMove* move = gap->GetParallelMove(inner_pos); |
| if (move != NULL) { |
| resolver_.Resolve(move); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
| Register arguments = ToRegister(instr->arguments()); |
| Register result = ToRegister(instr->result()); |
| |
| // The pointer to the arguments array come from DoArgumentsElements. |
| // It does not point directly to the arguments and there is an offest of |
| // two words that we must take into account when accessing an argument. |
| // Subtracting the index from length accounts for one, so we add one more. |
| |
| if (instr->length()->IsConstantOperand() && |
| instr->index()->IsConstantOperand()) { |
| int index = ToInteger32(LConstantOperand::cast(instr->index())); |
| int length = ToInteger32(LConstantOperand::cast(instr->length())); |
| int offset = ((length - index) + 1) * kPointerSize; |
| __ Ldr(result, MemOperand(arguments, offset)); |
| } else if (instr->index()->IsConstantOperand()) { |
| Register length = ToRegister32(instr->length()); |
| int index = ToInteger32(LConstantOperand::cast(instr->index())); |
| int loc = index - 1; |
| if (loc != 0) { |
| __ Sub(result.W(), length, loc); |
| __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); |
| } else { |
| __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); |
| } |
| } else { |
| Register length = ToRegister32(instr->length()); |
| Operand index = ToOperand32(instr->index()); |
| __ Sub(result.W(), length, index); |
| __ Add(result.W(), result.W(), 1); |
| __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); |
| } |
| } |
| |
| |
| void LCodeGen::DoAddE(LAddE* instr) { |
| Register result = ToRegister(instr->result()); |
| Register left = ToRegister(instr->left()); |
| Operand right = Operand(x0); // Dummy initialization. |
| if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) { |
| right = Operand(ToRegister(instr->right())); |
| } else if (instr->right()->IsConstantOperand()) { |
| right = ToInteger32(LConstantOperand::cast(instr->right())); |
| } else { |
| right = Operand(ToRegister32(instr->right()), SXTW); |
| } |
| |
| DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); |
| __ Add(result, left, right); |
| } |
| |
| |
| void LCodeGen::DoAddI(LAddI* instr) { |
| bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| Register result = ToRegister32(instr->result()); |
| Register left = ToRegister32(instr->left()); |
| Operand right = ToShiftedRightOperand32(instr->right(), instr); |
| |
| if (can_overflow) { |
| __ Adds(result, left, right); |
| DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); |
| } else { |
| __ Add(result, left, right); |
| } |
| } |
| |
| |
| void LCodeGen::DoAddS(LAddS* instr) { |
| bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| Register result = ToRegister(instr->result()); |
| Register left = ToRegister(instr->left()); |
| Operand right = ToOperand(instr->right()); |
| if (can_overflow) { |
| __ Adds(result, left, right); |
| DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); |
| } else { |
| __ Add(result, left, right); |
| } |
| } |
| |
| |
| void LCodeGen::DoAllocate(LAllocate* instr) { |
| class DeferredAllocate: public LDeferredCode { |
| public: |
| DeferredAllocate(LCodeGen* codegen, LAllocate* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LAllocate* instr_; |
| }; |
| |
| DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); |
| |
| Register result = ToRegister(instr->result()); |
| Register temp1 = ToRegister(instr->temp1()); |
| Register temp2 = ToRegister(instr->temp2()); |
| |
| // Allocate memory for the object. |
| AllocationFlags flags = NO_ALLOCATION_FLAGS; |
| if (instr->hydrogen()->MustAllocateDoubleAligned()) { |
| flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); |
| } |
| |
| if (instr->hydrogen()->IsOldSpaceAllocation()) { |
| DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); |
| flags = static_cast<AllocationFlags>(flags | PRETENURE); |
| } |
| |
| if (instr->hydrogen()->IsAllocationFoldingDominator()) { |
| flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR); |
| } |
| DCHECK(!instr->hydrogen()->IsAllocationFolded()); |
| |
| if (instr->size()->IsConstantOperand()) { |
| int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
| CHECK(size <= kMaxRegularHeapObjectSize); |
| __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); |
| } else { |
| Register size = ToRegister32(instr->size()); |
| __ Sxtw(size.X(), size); |
| __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); |
| } |
| |
| __ Bind(deferred->exit()); |
| |
| if (instr->hydrogen()->MustPrefillWithFiller()) { |
| Register start = temp1; |
| Register end = temp2; |
| Register filler = ToRegister(instr->temp3()); |
| |
| __ Sub(start, result, kHeapObjectTag); |
| |
| if (instr->size()->IsConstantOperand()) { |
| int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
| __ Add(end, start, size); |
| } else { |
| __ Add(end, start, ToRegister(instr->size())); |
| } |
| __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex); |
| __ InitializeFieldsWithFiller(start, end, filler); |
| } else { |
| DCHECK(instr->temp3() == NULL); |
| } |
| } |
| |
| |
| void LCodeGen::DoDeferredAllocate(LAllocate* instr) { |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| __ Mov(ToRegister(instr->result()), Smi::kZero); |
| |
| PushSafepointRegistersScope scope(this); |
| LoadContextFromDeferred(instr->context()); |
| // We're in a SafepointRegistersScope so we can use any scratch registers. |
| Register size = x0; |
| if (instr->size()->IsConstantOperand()) { |
| __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); |
| } else { |
| __ SmiTag(size, ToRegister32(instr->size()).X()); |
| } |
| int flags = AllocateDoubleAlignFlag::encode( |
| instr->hydrogen()->MustAllocateDoubleAligned()); |
| if (instr->hydrogen()->IsOldSpaceAllocation()) { |
| DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); |
| flags = AllocateTargetSpace::update(flags, OLD_SPACE); |
| } else { |
| flags = AllocateTargetSpace::update(flags, NEW_SPACE); |
| } |
| __ Mov(x10, Smi::FromInt(flags)); |
| __ Push(size, x10); |
| |
| CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr, nullptr); |
| __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); |
| |
| if (instr->hydrogen()->IsAllocationFoldingDominator()) { |
| AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; |
| if (instr->hydrogen()->IsOldSpaceAllocation()) { |
| DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); |
| allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE); |
| } |
| // If the allocation folding dominator allocate triggered a GC, allocation |
| // happend in the runtime. We have to reset the top pointer to virtually |
| // undo the allocation. |
| ExternalReference allocation_top = |
| AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); |
| Register top_address = x10; |
| __ Sub(x0, x0, Operand(kHeapObjectTag)); |
| __ Mov(top_address, Operand(allocation_top)); |
| __ Str(x0, MemOperand(top_address)); |
| __ Add(x0, x0, Operand(kHeapObjectTag)); |
| } |
| } |
| |
| void LCodeGen::DoFastAllocate(LFastAllocate* instr) { |
| DCHECK(instr->hydrogen()->IsAllocationFolded()); |
| DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); |
| Register result = ToRegister(instr->result()); |
| Register scratch1 = ToRegister(instr->temp1()); |
| Register scratch2 = ToRegister(instr->temp2()); |
| |
| AllocationFlags flags = ALLOCATION_FOLDED; |
| if (instr->hydrogen()->MustAllocateDoubleAligned()) { |
| flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); |
| } |
| if (instr->hydrogen()->IsOldSpaceAllocation()) { |
| DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); |
| flags = static_cast<AllocationFlags>(flags | PRETENURE); |
| } |
| if (instr->size()->IsConstantOperand()) { |
| int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
| CHECK(size <= kMaxRegularHeapObjectSize); |
| __ FastAllocate(size, result, scratch1, scratch2, flags); |
| } else { |
| Register size = ToRegister(instr->size()); |
| __ FastAllocate(size, result, scratch1, scratch2, flags); |
| } |
| } |
| |
| |
| void LCodeGen::DoApplyArguments(LApplyArguments* instr) { |
| Register receiver = ToRegister(instr->receiver()); |
| Register function = ToRegister(instr->function()); |
| Register length = ToRegister32(instr->length()); |
| |
| Register elements = ToRegister(instr->elements()); |
| Register scratch = x5; |
| DCHECK(receiver.Is(x0)); // Used for parameter count. |
| DCHECK(function.Is(x1)); // Required by InvokeFunction. |
| DCHECK(ToRegister(instr->result()).Is(x0)); |
| DCHECK(instr->IsMarkedAsCall()); |
| |
| // Copy the arguments to this function possibly from the |
| // adaptor frame below it. |
| const uint32_t kArgumentsLimit = 1 * KB; |
| __ Cmp(length, kArgumentsLimit); |
| DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments); |
| |
| // Push the receiver and use the register to keep the original |
| // number of arguments. |
| __ Push(receiver); |
| Register argc = receiver; |
| receiver = NoReg; |
| __ Sxtw(argc, length); |
| // The arguments are at a one pointer size offset from elements. |
| __ Add(elements, elements, 1 * kPointerSize); |
| |
| // Loop through the arguments pushing them onto the execution |
| // stack. |
| Label invoke, loop; |
| // length is a small non-negative integer, due to the test above. |
| __ Cbz(length, &invoke); |
| __ Bind(&loop); |
| __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); |
| __ Push(scratch); |
| __ Subs(length, length, 1); |
| __ B(ne, &loop); |
| |
| __ Bind(&invoke); |
| |
| InvokeFlag flag = CALL_FUNCTION; |
| if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { |
| DCHECK(!info()->saves_caller_doubles()); |
| // TODO(ishell): drop current frame before pushing arguments to the stack. |
| flag = JUMP_FUNCTION; |
| ParameterCount actual(x0); |
| // It is safe to use x3, x4 and x5 as scratch registers here given that |
| // 1) we are not going to return to caller function anyway, |
| // 2) x3 (new.target) will be initialized below. |
| PrepareForTailCall(actual, x3, x4, x5); |
| } |
| |
| DCHECK(instr->HasPointerMap()); |
| LPointerMap* pointers = instr->pointer_map(); |
| SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); |
| // The number of arguments is stored in argc (receiver) which is x0, as |
| // expected by InvokeFunction. |
| ParameterCount actual(argc); |
| __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); |
| } |
| |
| |
| void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { |
| Register result = ToRegister(instr->result()); |
| |
| if (instr->hydrogen()->from_inlined()) { |
| // When we are inside an inlined function, the arguments are the last things |
| // that have been pushed on the stack. Therefore the arguments array can be |
| // accessed directly from jssp. |
| // However in the normal case, it is accessed via fp but there are two words |
| // on the stack between fp and the arguments (the saved lr and fp) and the |
| // LAccessArgumentsAt implementation take that into account. |
| // In the inlined case we need to subtract the size of 2 words to jssp to |
| // get a pointer which will work well with LAccessArgumentsAt. |
| DCHECK(masm()->StackPointer().Is(jssp)); |
| __ Sub(result, jssp, 2 * kPointerSize); |
| } else if (instr->hydrogen()->arguments_adaptor()) { |
| DCHECK(instr->temp() != NULL); |
| Register previous_fp = ToRegister(instr->temp()); |
| |
| __ Ldr(previous_fp, |
| MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ Ldr(result, MemOperand(previous_fp, |
| CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
| __ Csel(result, fp, previous_fp, ne); |
| } else { |
| __ Mov(result, fp); |
| } |
| } |
| |
| |
| void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { |
| Register elements = ToRegister(instr->elements()); |
| Register result = ToRegister32(instr->result()); |
| Label done; |
| |
| // If no arguments adaptor frame the number of arguments is fixed. |
| __ Cmp(fp, elements); |
| __ Mov(result, scope()->num_parameters()); |
| __ B(eq, &done); |
| |
| // Arguments adaptor frame present. Get argument length from there. |
| __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ Ldr(result, |
| UntagSmiMemOperand(result.X(), |
| ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Argument length is in result register. |
| __ Bind(&done); |
| } |
| |
| |
| void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
| DoubleRegister left = ToDoubleRegister(instr->left()); |
| DoubleRegister right = ToDoubleRegister(instr->right()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| |
| switch (instr->op()) { |
| case Token::ADD: __ Fadd(result, left, right); break; |
| case Token::SUB: __ Fsub(result, left, right); break; |
| case Token::MUL: __ Fmul(result, left, right); break; |
| case Token::DIV: __ Fdiv(result, left, right); break; |
| case Token::MOD: { |
| // The ECMA-262 remainder operator is the remainder from a truncating |
| // (round-towards-zero) division. Note that this differs from IEEE-754. |
| // |
| // TODO(jbramley): See if it's possible to do this inline, rather than by |
| // calling a helper function. With frintz (to produce the intermediate |
| // quotient) and fmsub (to calculate the remainder without loss of |
| // precision), it should be possible. However, we would need support for |
| // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't |
| // support that yet. |
| DCHECK(left.Is(d0)); |
| DCHECK(right.Is(d1)); |
| __ CallCFunction( |
| ExternalReference::mod_two_doubles_operation(isolate()), |
| 0, 2); |
| DCHECK(result.Is(d0)); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
| DCHECK(ToRegister(instr->context()).is(cp)); |
| DCHECK(ToRegister(instr->left()).is(x1)); |
| DCHECK(ToRegister(instr->right()).is(x0)); |
| DCHECK(ToRegister(instr->result()).is(x0)); |
| |
| Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); |
| CallCode(code, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoBitI(LBitI* instr) { |
| Register result = ToRegister32(instr->result()); |
| Register left = ToRegister32(instr->left()); |
| Operand right = ToShiftedRightOperand32(instr->right(), instr); |
| |
| switch (instr->op()) { |
| case Token::BIT_AND: __ And(result, left, right); break; |
| case Token::BIT_OR: __ Orr(result, left, right); break; |
| case Token::BIT_XOR: __ Eor(result, left, right); break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoBitS(LBitS* instr) { |
| Register result = ToRegister(instr->result()); |
| Register left = ToRegister(instr->left()); |
| Operand right = ToOperand(instr->right()); |
| |
| switch (instr->op()) { |
| case Token::BIT_AND: __ And(result, left, right); break; |
| case Token::BIT_OR: __ Orr(result, left, right); break; |
| case Token::BIT_XOR: __ Eor(result, left, right); break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { |
| Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; |
| DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); |
| DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); |
| if (instr->index()->IsConstantOperand()) { |
| Operand index = ToOperand32(instr->index()); |
| Register length = ToRegister32(instr->length()); |
| __ Cmp(length, index); |
| cond = CommuteCondition(cond); |
| } else { |
| Register index = ToRegister32(instr->index()); |
| Operand length = ToOperand32(instr->length()); |
| __ Cmp(index, length); |
| } |
| if (FLAG_debug_code && instr->hydrogen()->skip_check()) { |
| __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); |
| } else { |
| DeoptimizeIf(cond, instr, DeoptimizeReason::kOutOfBounds); |
| } |
| } |
| |
| |
| void LCodeGen::DoBranch(LBranch* instr) { |
| Representation r = instr->hydrogen()->value()->representation(); |
| Label* true_label = instr->TrueLabel(chunk_); |
| Label* false_label = instr->FalseLabel(chunk_); |
| |
| if (r.IsInteger32()) { |
| DCHECK(!info()->IsStub()); |
| EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); |
| } else if (r.IsSmi()) { |
| DCHECK(!info()->IsStub()); |
| STATIC_ASSERT(kSmiTag == 0); |
| EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); |
| } else if (r.IsDouble()) { |
| DoubleRegister value = ToDoubleRegister(instr->value()); |
| // Test the double value. Zero and NaN are false. |
| EmitBranchIfNonZeroNumber(instr, value, double_scratch()); |
| } else { |
| DCHECK(r.IsTagged()); |
| Register value = ToRegister(instr->value()); |
| HType type = instr->hydrogen()->value()->type(); |
| |
| if (type.IsBoolean()) { |
| DCHECK(!info()->IsStub()); |
| __ CompareRoot(value, Heap::kTrueValueRootIndex); |
| EmitBranch(instr, eq); |
| } else if (type.IsSmi()) { |
| DCHECK(!info()->IsStub()); |
| EmitCompareAndBranch(instr, ne, value, Smi::kZero); |
| } else if (type.IsJSArray()) { |
| DCHECK(!info()->IsStub()); |
| EmitGoto(instr->TrueDestination(chunk())); |
| } else if (type.IsHeapNumber()) { |
| DCHECK(!info()->IsStub()); |
| __ Ldr(double_scratch(), FieldMemOperand(value, |
| HeapNumber::kValueOffset)); |
| // Test the double value. Zero and NaN are false. |
| EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); |
| } else if (type.IsString()) { |
| DCHECK(!info()->IsStub()); |
| Register temp = ToRegister(instr->temp1()); |
| __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); |
| EmitCompareAndBranch(instr, ne, temp, 0); |
| } else { |
| ToBooleanHints expected = instr->hydrogen()->expected_input_types(); |
| // Avoid deopts in the case where we've never executed this path before. |
| if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; |
| |
| if (expected & ToBooleanHint::kUndefined) { |
| // undefined -> false. |
| __ JumpIfRoot( |
| value, Heap::kUndefinedValueRootIndex, false_label); |
| } |
| |
| if (expected & ToBooleanHint::kBoolean) { |
| // Boolean -> its value. |
| __ JumpIfRoot( |
| value, Heap::kTrueValueRootIndex, true_label); |
| __ JumpIfRoot( |
| value, Heap::kFalseValueRootIndex, false_label); |
| } |
| |
| if (expected & ToBooleanHint::kNull) { |
| // 'null' -> false. |
| __ JumpIfRoot( |
| value, Heap::kNullValueRootIndex, false_label); |
| } |
| |
| if (expected & ToBooleanHint::kSmallInteger) { |
| // Smis: 0 -> false, all other -> true. |
| DCHECK(Smi::kZero == 0); |
| __ Cbz(value, false_label); |
| __ JumpIfSmi(value, true_label); |
| } else if (expected & ToBooleanHint::kNeedsMap) { |
| // If we need a map later and have a smi, deopt. |
| DeoptimizeIfSmi(value, instr, DeoptimizeReason::kSmi); |
| } |
| |
| Register map = NoReg; |
| Register scratch = NoReg; |
| |
| if (expected & ToBooleanHint::kNeedsMap) { |
| DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
| map = ToRegister(instr->temp1()); |
| scratch = ToRegister(instr->temp2()); |
| |
| __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
| |
| if (expected & ToBooleanHint::kCanBeUndetectable) { |
| // Undetectable -> false. |
| __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
| __ TestAndBranchIfAnySet( |
| scratch, 1 << Map::kIsUndetectable, false_label); |
| } |
| } |
| |
| if (expected & ToBooleanHint::kReceiver) { |
| // spec object -> true. |
| __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE); |
| __ B(ge, true_label); |
| } |
| |
| if (expected & ToBooleanHint::kString) { |
| // String value -> false iff empty. |
| Label not_string; |
| __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); |
| __ B(ge, ¬_string); |
| __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); |
| __ Cbz(scratch, false_label); |
| __ B(true_label); |
| __ Bind(¬_string); |
| } |
| |
| if (expected & ToBooleanHint::kSymbol) { |
| // Symbol value -> true. |
| __ CompareInstanceType(map, scratch, SYMBOL_TYPE); |
| __ B(eq, true_label); |
| } |
| |
| if (expected & ToBooleanHint::kSimdValue) { |
| // SIMD value -> true. |
| __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE); |
| __ B(eq, true_label); |
| } |
| |
| if (expected & ToBooleanHint::kHeapNumber) { |
| Label not_heap_number; |
| __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); |
| |
| __ Ldr(double_scratch(), |
| FieldMemOperand(value, HeapNumber::kValueOffset)); |
| __ Fcmp(double_scratch(), 0.0); |
| // If we got a NaN (overflow bit is set), jump to the false branch. |
| __ B(vs, false_label); |
| __ B(eq, false_label); |
| __ B(true_label); |
| __ Bind(¬_heap_number); |
| } |
| |
| if (expected != ToBooleanHint::kAny) { |
| // We've seen something for the first time -> deopt. |
| // This can only happen if we are not generic already. |
| Deoptimize(instr, DeoptimizeReason::kUnexpectedObject); |
| } |
| } |
| } |
| } |
| |
| void LCodeGen::CallKnownFunction(Handle<JSFunction> function, |
| int formal_parameter_count, int arity, |
| bool is_tail_call, LInstruction* instr) { |
| bool dont_adapt_arguments = |
| formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| bool can_invoke_directly = |
| dont_adapt_arguments || formal_parameter_count == arity; |
| |
| // The function interface relies on the following register assignments. |
| Register function_reg = x1; |
| Register arity_reg = x0; |
| |
| LPointerMap* pointers = instr->pointer_map(); |
| |
| if (FLAG_debug_code) { |
| Label is_not_smi; |
| // Try to confirm that function_reg (x1) is a tagged pointer. |
| __ JumpIfNotSmi(function_reg, &is_not_smi); |
| __ Abort(kExpectedFunctionObject); |
| __ Bind(&is_not_smi); |
| } |
| |
| if (can_invoke_directly) { |
| // Change context. |
| __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); |
| |
| // Always initialize new target and number of actual arguments. |
| __ LoadRoot(x3, Heap::kUndefinedValueRootIndex); |
| __ Mov(arity_reg, arity); |
| |
| bool is_self_call = function.is_identical_to(info()->closure()); |
| |
| // Invoke function. |
| if (is_self_call) { |
| Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location())); |
| if (is_tail_call) { |
| __ Jump(self, RelocInfo::CODE_TARGET); |
| } else { |
| __ Call(self, RelocInfo::CODE_TARGET); |
| } |
| } else { |
| __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); |
| if (is_tail_call) { |
| __ Jump(x10); |
| } else { |
| __ Call(x10); |
| } |
| } |
| |
| if (!is_tail_call) { |
| // Set up deoptimization. |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| } else { |
| SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
| ParameterCount actual(arity); |
| ParameterCount expected(formal_parameter_count); |
| InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; |
| __ InvokeFunction(function_reg, expected, actual, flag, generator); |
| } |
| } |
| |
| void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { |
| DCHECK(instr->IsMarkedAsCall()); |
| DCHECK(ToRegister(instr->result()).Is(x0)); |
| |
| if (instr->hydrogen()->IsTailCall()) { |
| if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); |
| |
| if (instr->target()->IsConstantOperand()) { |
| LConstantOperand* target = LConstantOperand::cast(instr->target()); |
| Handle<Code> code = Handle<Code>::cast(ToHandle(target)); |
| // TODO(all): on ARM we use a call descriptor to specify a storage mode |
| // but on ARM64 we only have one storage mode so it isn't necessary. Check |
| // this understanding is correct. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK(instr->target()->IsRegister()); |
| Register target = ToRegister(instr->target()); |
| __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); |
| __ Br(target); |
| } |
| } else { |
| LPointerMap* pointers = instr->pointer_map(); |
| SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
| |
| if (instr->target()->IsConstantOperand()) { |
| LConstantOperand* target = LConstantOperand::cast(instr->target()); |
| Handle<Code> code = Handle<Code>::cast(ToHandle(target)); |
| generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); |
| // TODO(all): on ARM we use a call descriptor to specify a storage mode |
| // but on ARM64 we only have one storage mode so it isn't necessary. Check |
| // this understanding is correct. |
| __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); |
| } else { |
| DCHECK(instr->target()->IsRegister()); |
| Register target = ToRegister(instr->target()); |
| generator.BeforeCall(__ CallSize(target)); |
| __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); |
| __ Call(target); |
| } |
| generator.AfterCall(); |
| } |
| |
| HCallWithDescriptor* hinstr = instr->hydrogen(); |
| RecordPushedArgumentsDelta(hinstr->argument_delta()); |
| |
| // HCallWithDescriptor instruction is translated to zero or more |
| // LPushArguments (they handle parameters passed on the stack) followed by |
| // a LCallWithDescriptor. Each LPushArguments instruction generated records |
| // the number of arguments pushed thus we need to offset them here. |
| // The |argument_delta()| used above "knows" only about JS parameters while |
| // we are dealing here with particular calling convention details. |
| RecordPushedArgumentsDelta(-hinstr->descriptor().GetStackParameterCount()); |
| } |
| |
| |
| void LCodeGen::DoCallRuntime(LCallRuntime* instr) { |
| CallRuntime(instr->function(), instr->arity(), instr); |
| RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); |
| } |
| |
| |
| void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
| GenerateOsrPrologue(); |
| } |
| |
| |
| void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { |
| Register temp = ToRegister(instr->temp()); |
| { |
| PushSafepointRegistersScope scope(this); |
| __ Push(object); |
| __ Mov(cp, 0); |
| __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); |
| __ StoreToSafepointRegisterSlot(x0, temp); |
| } |
| DeoptimizeIfSmi(temp, instr, DeoptimizeReason::kInstanceMigrationFailed); |
| } |
| |
| |
| void LCodeGen::DoCheckMaps(LCheckMaps* instr) { |
| class DeferredCheckMaps: public LDeferredCode { |
| public: |
| DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) |
| : LDeferredCode(codegen), instr_(instr), object_(object) { |
| SetExit(check_maps()); |
| } |
| virtual void Generate() { |
| codegen()->DoDeferredInstanceMigration(instr_, object_); |
| } |
| Label* check_maps() { return &check_maps_; } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LCheckMaps* instr_; |
| Label check_maps_; |
| Register object_; |
| }; |
| |
| if (instr->hydrogen()->IsStabilityCheck()) { |
| const UniqueSet<Map>* maps = instr->hydrogen()->maps(); |
| for (int i = 0; i < maps->size(); ++i) { |
| AddStabilityDependency(maps->at(i).handle()); |
| } |
| return; |
| } |
| |
| Register object = ToRegister(instr->value()); |
| Register map_reg = ToRegister(instr->temp()); |
| |
| __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); |
| |
| DeferredCheckMaps* deferred = NULL; |
| if (instr->hydrogen()->HasMigrationTarget()) { |
| deferred = new(zone()) DeferredCheckMaps(this, instr, object); |
| __ Bind(deferred->check_maps()); |
| } |
| |
| const UniqueSet<Map>* maps = instr->hydrogen()->maps(); |
| Label success; |
| for (int i = 0; i < maps->size() - 1; i++) { |
| Handle<Map> map = maps->at(i).handle(); |
| __ CompareMap(map_reg, map); |
| __ B(eq, &success); |
| } |
| Handle<Map> map = maps->at(maps->size() - 1).handle(); |
| __ CompareMap(map_reg, map); |
| |
| // We didn't match a map. |
| if (instr->hydrogen()->HasMigrationTarget()) { |
| __ B(ne, deferred->entry()); |
| } else { |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); |
| } |
| |
| __ Bind(&success); |
| } |
| |
| |
| void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { |
| if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
| DeoptimizeIfSmi(ToRegister(instr->value()), instr, DeoptimizeReason::kSmi); |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckSmi(LCheckSmi* instr) { |
| Register value = ToRegister(instr->value()); |
| DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); |
| DeoptimizeIfNotSmi(value, instr, DeoptimizeReason::kNotASmi); |
| } |
| |
| |
| void LCodeGen::DoCheckArrayBufferNotNeutered( |
| LCheckArrayBufferNotNeutered* instr) { |
| UseScratchRegisterScope temps(masm()); |
| Register view = ToRegister(instr->view()); |
| Register scratch = temps.AcquireX(); |
| |
| __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); |
| __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); |
| __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds); |
| } |
| |
| |
| void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { |
| Register input = ToRegister(instr->value()); |
| Register scratch = ToRegister(instr->temp()); |
| |
| __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
| __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| |
| if (instr->hydrogen()->is_interval_check()) { |
| InstanceType first, last; |
| instr->hydrogen()->GetCheckInterval(&first, &last); |
| |
| __ Cmp(scratch, first); |
| if (first == last) { |
| // If there is only one type in the interval check for equality. |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); |
| } else if (last == LAST_TYPE) { |
| // We don't need to compare with the higher bound of the interval. |
| DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType); |
| } else { |
| // If we are below the lower bound, set the C flag and clear the Z flag |
| // to force a deopt. |
| __ Ccmp(scratch, last, CFlag, hs); |
| DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType); |
| } |
| } else { |
| uint8_t mask; |
| uint8_t tag; |
| instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); |
| |
| if (base::bits::IsPowerOfTwo32(mask)) { |
| DCHECK((tag == 0) || (tag == mask)); |
| if (tag == 0) { |
| DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr, |
| DeoptimizeReason::kWrongInstanceType); |
| } else { |
| DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr, |
| DeoptimizeReason::kWrongInstanceType); |
| } |
| } else { |
| if (tag == 0) { |
| __ Tst(scratch, mask); |
| } else { |
| __ And(scratch, scratch, mask); |
| __ Cmp(scratch, tag); |
| } |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { |
| DoubleRegister input = ToDoubleRegister(instr->unclamped()); |
| Register result = ToRegister32(instr->result()); |
| __ ClampDoubleToUint8(result, input, double_scratch()); |
| } |
| |
| |
| void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { |
| Register input = ToRegister32(instr->unclamped()); |
| Register result = ToRegister32(instr->result()); |
| __ ClampInt32ToUint8(result, input); |
| } |
| |
| |
| void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { |
| Register input = ToRegister(instr->unclamped()); |
| Register result = ToRegister32(instr->result()); |
| Label done; |
| |
| // Both smi and heap number cases are handled. |
| Label is_not_smi; |
| __ JumpIfNotSmi(input, &is_not_smi); |
| __ SmiUntag(result.X(), input); |
| __ ClampInt32ToUint8(result); |
| __ B(&done); |
| |
| __ Bind(&is_not_smi); |
| |
| // Check for heap number. |
| Label is_heap_number; |
| __ JumpIfHeapNumber(input, &is_heap_number); |
| |
| // Check for undefined. Undefined is coverted to zero for clamping conversion. |
| DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, |
| DeoptimizeReason::kNotAHeapNumberUndefined); |
| __ Mov(result, 0); |
| __ B(&done); |
| |
| // Heap number case. |
| __ Bind(&is_heap_number); |
| DoubleRegister dbl_scratch = double_scratch(); |
| DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); |
| __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); |
| __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); |
| |
| __ Bind(&done); |
| } |
| |
| |
| void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
| Handle<String> class_name = instr->hydrogen()->class_name(); |
| Label* true_label = instr->TrueLabel(chunk_); |
| Label* false_label = instr->FalseLabel(chunk_); |
| Register input = ToRegister(instr->value()); |
| Register scratch1 = ToRegister(instr->temp1()); |
| Register scratch2 = ToRegister(instr->temp2()); |
| |
| __ JumpIfSmi(input, false_label); |
| |
| Register map = scratch2; |
| __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE); |
| STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); |
| if (String::Equals(isolate()->factory()->Function_string(), class_name)) { |
| __ B(hs, true_label); |
| } else { |
| __ B(hs, false_label); |
| } |
| |
| // Check if the constructor in the map is a function. |
| { |
| UseScratchRegisterScope temps(masm()); |
| Register instance_type = temps.AcquireX(); |
| __ GetMapConstructor(scratch1, map, scratch2, instance_type); |
| __ Cmp(instance_type, JS_FUNCTION_TYPE); |
| } |
| // Objects with a non-function constructor have class 'Object'. |
| if (String::Equals(class_name, isolate()->factory()->Object_string())) { |
| __ B(ne, true_label); |
| } else { |
| __ B(ne, false_label); |
| } |
| |
| // The constructor function is in scratch1. Get its instance class name. |
| __ Ldr(scratch1, |
| FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldr(scratch1, |
| FieldMemOperand(scratch1, |
| SharedFunctionInfo::kInstanceClassNameOffset)); |
| |
| // The class name we are testing against is internalized since it's a literal. |
| // The name in the constructor is internalized because of the way the context |
| // is booted. This routine isn't expected to work for random API-created |
| // classes and it doesn't have to because you can't access it with natives |
| // syntax. Since both sides are internalized it is sufficient to use an |
| // identity comparison. |
| EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); |
| } |
| |
| |
| void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { |
| DCHECK(instr->hydrogen()->representation().IsDouble()); |
| FPRegister object = ToDoubleRegister(instr->object()); |
| Register temp = ToRegister(instr->temp()); |
| |
| // If we don't have a NaN, we don't have the hole, so branch now to avoid the |
| // (relatively expensive) hole-NaN check. |
| __ Fcmp(object, object); |
| __ B(vc, instr->FalseLabel(chunk_)); |
| |
| // We have a NaN, but is it the hole? |
| __ Fmov(temp, object); |
| EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); |
| } |
| |
| |
| void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { |
| DCHECK(instr->hydrogen()->representation().IsTagged()); |
| Register object = ToRegister(instr->object()); |
| |
| EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); |
| } |
| |
| |
| void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
| Register value = ToRegister(instr->value()); |
| Register map = ToRegister(instr->temp()); |
| |
| __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
| EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); |
| } |
| |
| |
| void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| bool is_unsigned = |
| instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || |
| instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); |
| Condition cond = TokenToCondition(instr->op(), is_unsigned); |
| |
| if (left->IsConstantOperand() && right->IsConstantOperand()) { |
| // We can statically evaluate the comparison. |
| double left_val = ToDouble(LConstantOperand::cast(left)); |
| double right_val = ToDouble(LConstantOperand::cast(right)); |
| int next_block = Token::EvalComparison(instr->op(), left_val, right_val) |
| ? instr->TrueDestination(chunk_) |
| : instr->FalseDestination(chunk_); |
| EmitGoto(next_block); |
| } else { |
| if (instr->is_double()) { |
| __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); |
| |
| // If a NaN is involved, i.e. the result is unordered (V set), |
| // jump to false block label. |
| __ B(vs, instr->FalseLabel(chunk_)); |
| EmitBranch(instr, cond); |
| } else { |
| if (instr->hydrogen_value()->representation().IsInteger32()) { |
| if (right->IsConstantOperand()) { |
| EmitCompareAndBranch(instr, cond, ToRegister32(left), |
| ToOperand32(right)); |
| } else { |
| // Commute the operands and the condition. |
| EmitCompareAndBranch(instr, CommuteCondition(cond), |
| ToRegister32(right), ToOperand32(left)); |
| } |
| } else { |
| DCHECK(instr->hydrogen_value()->representation().IsSmi()); |
| if (right->IsConstantOperand()) { |
| int32_t value = ToInteger32(LConstantOperand::cast(right)); |
| EmitCompareAndBranch(instr, |
| cond, |
| ToRegister(left), |
| Operand(Smi::FromInt(value))); |
| } else if (left->IsConstantOperand()) { |
| // Commute the operands and the condition. |
| int32_t value = ToInteger32(LConstantOperand::cast(left)); |
| EmitCompareAndBranch(instr, |
| CommuteCondition(cond), |
| ToRegister(right), |
| Operand(Smi::FromInt(value))); |
| } else { |
| EmitCompareAndBranch(instr, |
| cond, |
| ToRegister(left), |
| ToRegister(right)); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
| Register left = ToRegister(instr->left()); |
| Register right = ToRegister(instr->right()); |
| EmitCompareAndBranch(instr, eq, left, right); |
| } |
| |
| |
| void LCodeGen::DoCmpT(LCmpT* instr) { |
| DCHECK(ToRegister(instr->context()).is(cp)); |
| Token::Value op = instr->op(); |
| Condition cond = TokenToCondition(op, false); |
| |
| DCHECK(ToRegister(instr->left()).Is(x1)); |
| DCHECK(ToRegister(instr->right()).Is(x0)); |
| Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| // Signal that we don't inline smi code before this stub. |
| InlineSmiCheckInfo::EmitNotInlined(masm()); |
| |
| // Return true or false depending on CompareIC result. |
| // This instruction is marked as call. We can clobber any register. |
| DCHECK(instr->IsMarkedAsCall()); |
| __ LoadTrueFalseRoots(x1, x2); |
| __ Cmp(x0, 0); |
| __ Csel(ToRegister(instr->result()), x1, x2, cond); |
| } |
| |
| |
| void LCodeGen::DoConstantD(LConstantD* instr) { |
| DCHECK(instr->result()->IsDoubleRegister()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| if (instr->value() == 0) { |
| if (copysign(1.0, instr->value()) == 1.0) { |
| __ Fmov(result, fp_zero); |
| } else { |
| __ Fneg(result, fp_zero); |
| } |
| } else { |
| __ Fmov(result, instr->value()); |
| } |
| } |
| |
| |
| void LCodeGen::DoConstantE(LConstantE* instr) { |
| __ Mov(ToRegister(instr->result()), Operand(instr->value())); |
| } |
| |
| |
| void LCodeGen::DoConstantI(LConstantI* instr) { |
| DCHECK(is_int32(instr->value())); |
| // Cast the value here to ensure that the value isn't sign extended by the |
| // implicit Operand constructor. |
| __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value())); |
| } |
| |
| |
| void LCodeGen::DoConstantS(LConstantS* instr) { |
| __ Mov(ToRegister(instr->result()), Operand(instr->value())); |
| } |
| |
| |
| void LCodeGen::DoConstantT(LConstantT* instr) { |
| Handle<Object> object = instr->value(isolate()); |
| AllowDeferredHandleDereference smi_check; |
| __ LoadObject(ToRegister(instr->result()), object); |
| } |
| |
| |
| void LCodeGen::DoContext(LContext* instr) { |
| // If there is a non-return use, the context must be moved to a register. |
| Register result = ToRegister(instr->result()); |
| if (info()->IsOptimizing()) { |
| __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } else { |
| // If there is no frame, the context must be in cp. |
| DCHECK(result.is(cp)); |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckValue(LCheckValue* instr) { |
| Register reg = ToRegister(instr->value()); |
| Handle<HeapObject> object = instr->hydrogen()->object().handle(); |
| AllowDeferredHandleDereference smi_check; |
| if (isolate()->heap()->InNewSpace(*object)) { |
| UseScratchRegisterScope temps(masm()); |
| Register temp = temps.AcquireX(); |
| Handle<Cell> cell = isolate()->factory()->NewCell(object); |
| __ Mov(temp, Operand(cell)); |
| __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); |
| __ Cmp(reg, temp); |
| } else { |
| __ Cmp(reg, Operand(object)); |
| } |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch); |
| } |
| |
| |
| void LCodeGen::DoLazyBailout(LLazyBailout* instr) { |
| last_lazy_deopt_pc_ = masm()->pc_offset(); |
| DCHECK(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } |
| |
| |
| void LCodeGen::DoDeoptimize(LDeoptimize* instr) { |
| Deoptimizer::BailoutType type = instr->hydrogen()->type(); |
| // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the |
| // needed return address), even though the implementation of LAZY and EAGER is |
| // now identical. When LAZY is eventually completely folded into EAGER, remove |
| // the special case below. |
| if (info()->IsStub() && (type == Deoptimizer::EAGER)) { |
| type = Deoptimizer::LAZY; |
| } |
| |
| Deoptimize(instr, instr->hydrogen()->reason(), &type); |
| } |
| |
| |
| void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { |
| Register dividend = ToRegister32(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister32(instr->result()); |
| DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); |
| DCHECK(!result.is(dividend)); |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { |
| // Test dividend for kMinInt by subtracting one (cmp) and checking for |
| // overflow. |
| __ Cmp(dividend, 1); |
| DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); |
| } |
| // Deoptimize if remainder will not be 0. |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && |
| divisor != 1 && divisor != -1) { |
| int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); |
| __ Tst(dividend, mask); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); |
| } |
| |
| if (divisor == -1) { // Nice shortcut, not needed for correctness. |
| __ Neg(result, dividend); |
| return; |
| } |
| int32_t shift = WhichPowerOf2Abs(divisor); |
| if (shift == 0) { |
| __ Mov(result, dividend); |
| } else if (shift == 1) { |
| __ Add(result, dividend, Operand(dividend, LSR, 31)); |
| } else { |
| __ Mov(result, Operand(dividend, ASR, 31)); |
| __ Add(result, dividend, Operand(result, LSR, 32 - shift)); |
| } |
| if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); |
| if (divisor < 0) __ Neg(result, result); |
| } |
| |
| |
| void LCodeGen::DoDivByConstI(LDivByConstI* instr) { |
| Register dividend = ToRegister32(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister32(instr->result()); |
| DCHECK(!AreAliased(dividend, result)); |
| |
| if (divisor == 0) { |
| Deoptimize(instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| __ TruncatingDiv(result, dividend, Abs(divisor)); |
| if (divisor < 0) __ Neg(result, result); |
| |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { |
| Register temp = ToRegister32(instr->temp()); |
| DCHECK(!AreAliased(dividend, result, temp)); |
| __ Sxtw(dividend.X(), dividend); |
| __ Mov(temp, divisor); |
| __ Smsubl(temp.X(), result, temp, dividend.X()); |
| DeoptimizeIfNotZero(temp, instr, DeoptimizeReason::kLostPrecision); |
| } |
| } |
| |
| |
| // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. |
| void LCodeGen::DoDivI(LDivI* instr) { |
| HBinaryOperation* hdiv = instr->hydrogen(); |
| Register dividend = ToRegister32(instr->dividend()); |
| Register divisor = ToRegister32(instr->divisor()); |
| Register result = ToRegister32(instr->result()); |
| |
| // Issue the division first, and then check for any deopt cases whilst the |
| // result is computed. |
| __ Sdiv(result, dividend, divisor); |
| |
| if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { |
| DCHECK(!instr->temp()); |
| return; |
| } |
| |
| // Check for x / 0. |
| if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { |
| DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for (0 / -x) as that will produce negative zero. |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ Cmp(divisor, 0); |
| |
| // If the divisor < 0 (mi), compare the dividend, and deopt if it is |
| // zero, ie. zero dividend with negative divisor deopts. |
| // If the divisor >= 0 (pl, the opposite of mi) set the flags to |
| // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. |
| __ Ccmp(dividend, 0, NoFlag, mi); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow)) { |
| // Test dividend for kMinInt by subtracting one (cmp) and checking for |
| // overflow. |
| __ Cmp(dividend, 1); |
| // If overflow is set, ie. dividend = kMinInt, compare the divisor with |
| // -1. If overflow is clear, set the flags for condition ne, as the |
| // dividend isn't -1, and thus we shouldn't deopt. |
| __ Ccmp(divisor, -1, NoFlag, vs); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); |
| } |
| |
| // Compute remainder and deopt if it's not zero. |
| Register remainder = ToRegister32(instr->temp()); |
| __ Msub(remainder, result, divisor, dividend); |
| DeoptimizeIfNotZero(remainder, instr, DeoptimizeReason::kLostPrecision); |
| } |
| |
| |
| void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { |
| DoubleRegister input = ToDoubleRegister(instr->value()); |
| Register result = ToRegister32(instr->result()); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| __ TryRepresentDoubleAsInt32(result, input, double_scratch()); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); |
| |
| if (instr->tag_result()) { |
| __ SmiTag(result.X()); |
| } |
| } |
| |
| |
| void LCodeGen::DoDrop(LDrop* instr) { |
| __ Drop(instr->count()); |
| |
| RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta()); |
| } |
| |
| |
| void LCodeGen::DoDummy(LDummy* instr) { |
| // Nothing to see here, move on! |
| } |
| |
| |
| void LCodeGen::DoDummyUse(LDummyUse* instr) { |
| // Nothing to see here, move on! |
| } |
| |
| |
| void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { |
| Register map = ToRegister(instr->map()); |
| Register result = ToRegister(instr->result()); |
| Label load_cache, done; |
| |
| __ EnumLengthUntagged(result, map); |
| __ Cbnz(result, &load_cache); |
| |
| __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); |
| __ B(&done); |
| |
| __ Bind(&load_cache); |
| __ LoadInstanceDescriptors(map, result); |
| __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); |
| __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); |
| DeoptimizeIfZero(result, instr, DeoptimizeReason::kNoCache); |
| |
| __ Bind(&done); |
| } |
| |
| |
| void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { |
| Register object = ToRegister(instr->object()); |
| |
| DCHECK(instr->IsMarkedAsCall()); |
| DCHECK(object.Is(x0)); |
| |
| Label use_cache, call_runtime; |
| __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime); |
| |
| __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
| __ B(&use_cache); |
| |
| // Get the set of properties to enumerate. |
| __ Bind(&call_runtime); |
| __ Push(object); |
| CallRuntime(Runtime::kForInEnumerate, instr); |
| __ Bind(&use_cache); |
| } |
| |
| void LCodeGen::EmitGoto(int block) { |
| // Do not emit jump if we are emitting a goto to the next block. |
| if (!IsNextEmittedBlock(block)) { |
| __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); |
| } |
| } |
| |
| void LCodeGen::DoGoto(LGoto* instr) { |
| EmitGoto(instr->block_id()); |
| } |
| |
| // HHasInstanceTypeAndBranch instruction is built with an interval of type |
| // to test but is only used in very restricted ways. The only possible kinds |
| // of intervals are: |
| // - [ FIRST_TYPE, instr->to() ] |
| // - [ instr->form(), LAST_TYPE ] |
| // - instr->from() == instr->to() |
| // |
| // These kinds of intervals can be check with only one compare instruction |
| // providing the correct value and test condition are used. |
| // |
| // TestType() will return the value to use in the compare instruction and |
| // BranchCondition() will return the condition to use depending on the kind |
| // of interval actually specified in the instruction. |
| static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == FIRST_TYPE) return to; |
| DCHECK((from == to) || (to == LAST_TYPE)); |
| return from; |
| } |
| |
| |
| // See comment above TestType function for what this function does. |
| static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == to) return eq; |
| if (to == LAST_TYPE) return hs; |
| if (from == FIRST_TYPE) return ls; |
| UNREACHABLE(); |
| return eq; |
| } |
| |
| |
| void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
| Register input = ToRegister(instr->value()); |
| Register scratch = ToRegister(instr->temp()); |
| |
| if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
| __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
| } |
| __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); |
| EmitBranch(instr, BranchCondition(instr->hydrogen())); |
| } |
| |
| |
| void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { |
| Register result = ToRegister(instr->result()); |
| Register base = ToRegister(instr->base_object()); |
| if (instr->offset()->IsConstantOperand()) { |
| __ Add(result, base, ToOperand32(instr->offset())); |
| } else { |
| __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); |
| } |
| } |
| |
| |
| void LCodeGen::DoHasInPrototypeChainAndBranch( |
| LHasInPrototypeChainAndBranch* instr) { |
| Register const object = ToRegister(instr->object()); |
| Register const object_map = ToRegister(instr->scratch1()); |
| Register const object_instance_type = ToRegister(instr->scratch2()); |
| Register const object_prototype = objec
|