blob: c295ae17f09a03f28111fc87c1181187167b356e [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.7
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/crankshaft/mips/lithium-codegen-mips.h"
#include "src/base/bits.h"
#include "src/builtins/builtins-constructor.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/crankshaft/mips/lithium-gap-resolver-mips.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
class SafepointGenerator final : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() {}
void BeforeCall(int call_size) const override {}
void AfterCall() const override {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
LCodeGen* codegen)
: codegen_(codegen) {
DCHECK(codegen_->info()->is_calling());
DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
StoreRegistersStateStub stub(codegen_->isolate());
codegen_->masm_->push(ra);
codegen_->masm_->CallStub(&stub);
}
LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
RestoreRegistersStateStub stub(codegen_->isolate());
codegen_->masm_->push(ra);
codegen_->masm_->CallStub(&stub);
codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
}
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// NONE indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::NONE);
return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
GenerateJumpTable() && GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetTotalFrameSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
void LCodeGen::SaveCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ sdc1(DoubleRegister::from_code(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ ldc1(DoubleRegister::from_code(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
// a1: Callee's JS function.
// cp: Callee's context.
// fp: Caller's frame pointer.
// lr: Caller's pc.
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
if (info()->IsStub()) {
__ StubPrologue(StackFrame::STUB);
} else {
__ Prologue(info()->GeneratePreagedPrologue());
}
frame_is_built_ = true;
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ Subu(sp, sp, Operand(slots * kPointerSize));
__ Push(a0, a1);
__ Addu(a0, sp, Operand(slots * kPointerSize));
__ li(a1, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ Subu(a0, a0, Operand(kPointerSize));
__ sw(a1, MemOperand(a0, 2 * kPointerSize));
__ Branch(&loop, ne, a0, Operand(sp));
__ Pop(a0, a1);
} else {
__ Subu(sp, sp, Operand(slots * kPointerSize));
}
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
return !is_aborted();
}
void LCodeGen::DoPrologue(LPrologue* instr) {
Comment(";;; Prologue begin");
// Possibly allocate a local context.
if (info()->scope()->NeedsContext()) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is in a1.
int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
if (info()->scope()->is_script_scope()) {
__ push(a1);
__ Push(info()->scope()->scope_info());
__ CallRuntime(Runtime::kNewScriptContext);
deopt_mode = Safepoint::kLazyDeopt;
} else {
if (slots <=
ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) {
Callable callable = CodeFactory::FastNewFunctionContext(
isolate(), info()->scope()->scope_type());
__ li(FastNewFunctionContextDescriptor::SlotsRegister(),
Operand(slots));
__ Call(callable.code(), RelocInfo::CODE_TARGET);
// Result of the FastNewFunctionContext builtin is always in new space.
need_write_barrier = false;
} else {
__ push(a1);
__ Push(Smi::FromInt(info()->scope()->scope_type()));
__ CallRuntime(Runtime::kNewFunctionContext);
}
}
RecordSafepoint(deopt_mode);
// Context is returned in both v0. It replaces the context passed to us.
// It's saved in the stack and kept live in cp.
__ mov(cp, v0);
__ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = info()->scope()->num_parameters();
int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? info()->scope()->receiver()
: info()->scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ lw(a0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextMemOperand(cp, var->index());
__ sw(a0, target);
// Update the write barrier. This clobbers a3 and a0.
if (need_write_barrier) {
__ RecordWriteContextSlot(
cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(cp, a0, &done);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
Comment(";;; Prologue end");
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ Subu(sp, sp, Operand(slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(value->position());
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
__ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
__ PushCommonFrame(scratch0());
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
__ PopCommonFrame(scratch0());
frame_is_built_ = false;
}
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateJumpTable() {
if (jump_table_.length() > 0) {
Label needs_frame, call_deopt_entry;
Comment(";;; -------------------- Jump table --------------------");
Address base = jump_table_[0].address;
Register entry_offset = t9;
int length = jump_table_.length();
for (int i = 0; i < length; i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
DCHECK(table_entry->bailout_type == jump_table_[0].bailout_type);
Address entry = table_entry->address;
DeoptComment(table_entry->deopt_info);
// Second-level deopt table entries are contiguous and small, so instead
// of loading the full, absolute address of each one, load an immediate
// offset which will be added to the base address later.
__ li(entry_offset, Operand(entry - base));
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
Comment(";;; call deopt with frame");
__ PushCommonFrame();
__ Call(&needs_frame);
} else {
__ Call(&call_deopt_entry);
}
}
if (needs_frame.is_linked()) {
__ bind(&needs_frame);
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
__ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
__ push(at);
DCHECK(info()->IsStub());
}
Comment(";;; call deopt");
__ bind(&call_deopt_entry);
if (info()->saves_caller_doubles()) {
DCHECK(info()->IsStub());
RestoreCallerDoubles();
}
// Add the base address to the offset previously loaded in entry_offset.
__ Addu(entry_offset, entry_offset,
Operand(ExternalReference::ForDeoptEntry(base)));
__ Jump(entry_offset);
}
__ RecordComment("]");
// The deoptimization jump table is the last part of the instruction
// sequence. Mark the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
safepoints_.Emit(masm(), GetTotalFrameSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::from_code(index);
}
DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
return DoubleRegister::from_code(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
AllowDeferredHandleDereference get_number;
DCHECK(literal->IsNumber());
__ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
} else if (r.IsSmi()) {
DCHECK(constant->HasSmiValue());
__ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
} else if (r.IsDouble()) {
Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
} else {
DCHECK(r.IsSmiOrTagged());
__ li(scratch, literal);
}
return scratch;
} else if (op->IsStackSlot()) {
__ lw(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
FloatRegister flt_scratch,
DoubleRegister dbl_scratch) {
if (op->IsDoubleRegister()) {
return ToDoubleRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
DCHECK(literal->IsNumber());
__ li(at, Operand(static_cast<int32_t>(literal->Number())));
__ mtc1(at, flt_scratch);
__ cvt_d_w(dbl_scratch, flt_scratch);
return dbl_scratch;
} else if (r.IsDouble()) {
Abort(kUnsupportedDoubleImmediate);
} else if (r.IsTagged()) {
Abort(kUnsupportedTaggedImmediate);
}
} else if (op->IsStackSlot()) {
MemOperand mem_op = ToMemOperand(op);
__ ldc1(dbl_scratch, mem_op);
return dbl_scratch;
}
UNREACHABLE();
return dbl_scratch;
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(r.IsSmiOrTagged());
return reinterpret_cast<int32_t>(Smi::FromInt(value));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk()->LookupConstant(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsSmi()) {
DCHECK(constant->HasSmiValue());
return Operand(Smi::FromInt(constant->Integer32Value()));
} else if (r.IsInteger32()) {
DCHECK(constant->HasInteger32Value());
return Operand(constant->Integer32Value());
} else if (r.IsDouble()) {
Abort(kToOperandUnsupportedDoubleImmediate);
}
DCHECK(r.IsTagged());
return Operand(constant->handle(isolate()));
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort(kToOperandIsDoubleRegisterUnimplemented);
return Operand(0);
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand(0);
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize;
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, FrameSlotToFPOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
DCHECK(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(
sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
WriteTranslation(environment->outer(), translation);
WriteTranslationFrame(environment, translation);
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(
environment, translation, value, environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
int index = op->index();
if (is_tagged) {
translation->StoreStackSlot(index);
} else if (is_uint32) {
translation->StoreUint32StackSlot(index);
} else {
translation->StoreInt32StackSlot(index);
}
} else if (op->IsDoubleStackSlot()) {
int index = op->index();
translation->StoreDoubleStackSlot(index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
DCHECK(instr != NULL);
__ Call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr,
SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
__ Move(cp, ToRegister(context));
} else if (context->IsStackSlot()) {
__ lw(cp, ToMemOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ li(cp, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
DeoptimizeReason deopt_reason,
Deoptimizer::BailoutType bailout_type,
Register src1, const Operand& src2) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
Register scratch = scratch0();
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
__ Push(a1, scratch);
__ li(scratch, Operand(count));
__ lw(a1, MemOperand(scratch));
__ Subu(a1, a1, Operand(1));
__ Branch(&no_deopt, ne, a1, Operand(zero_reg));
__ li(a1, Operand(FLAG_deopt_every_n_times));
__ sw(a1, MemOperand(scratch));
__ Pop(a1, scratch);
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ sw(a1, MemOperand(scratch));
__ Pop(a1, scratch);
}
if (info()->ShouldTrapOnDeopt()) {
Label skip;
if (condition != al) {
__ Branch(&skip, NegateCondition(condition), src1, src2);
}
__ stop("trap_on_deopt");
__ bind(&skip);
}
Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
DCHECK(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (condition == al && frame_is_built_ &&
!info()->saves_caller_doubles()) {
DeoptComment(deopt_info);
__ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (FLAG_trace_deopt || isolate()->is_profiling() ||
jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
__ Branch(&jump_table_.last().label, condition, src1, src2);
}
}
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
DeoptimizeReason deopt_reason, Register src1,
const Operand& src2) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
DCHECK(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(
pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
// Note: The code below even works when right contains kMinInt.
__ subu(dividend, zero_reg, dividend);
__ And(dividend, dividend, Operand(mask));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
Operand(zero_reg));
}
__ Branch(USE_DELAY_SLOT, &done);
__ subu(dividend, zero_reg, dividend);
}
__ bind(&dividend_is_not_negative);
__ And(dividend, dividend, Operand(mask));
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr);
return;
}
__ TruncatingDiv(result, dividend, Abs(divisor));
__ Mul(result, result, Operand(Abs(divisor)));
__ Subu(result, dividend, Operand(result));
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, dividend,
Operand(zero_reg));
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
const Register left_reg = ToRegister(instr->left());
const Register right_reg = ToRegister(instr->right());
const Register result_reg = ToRegister(instr->result());
// div runs in the background while we check for special cases.
__ Mod(result_reg, left_reg, right_reg);
Label done;
// Check for x % 0, we have to deopt in this case because we can't return a
// NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, right_reg,
Operand(zero_reg));
}
// Check for kMinInt % -1, div will return kMinInt, which is not what we
// want. We have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, right_reg,
Operand(-1));
} else {
__ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
__ Branch(USE_DELAY_SLOT, &done);
__ mov(result_reg, zero_reg);
}
__ bind(&no_overflow_possible);
}
// If we care about -0, test if the dividend is <0 and the result is 0.
__ Branch(&done, ge, left_reg, Operand(zero_reg));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result_reg,
Operand(zero_reg));
}
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
Operand(zero_reg));
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, dividend,
Operand(kMinInt));
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ And(at, dividend, Operand(mask));
DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, at,
Operand(zero_reg));
}
if (divisor == -1) { // Nice shortcut, not needed for correctness.
__ Subu(result, zero_reg, dividend);
return;
}
uint16_t shift = WhichPowerOf2Abs(divisor);
if (shift == 0) {
__ Move(result, dividend);
} else if (shift == 1) {
__ srl(result, dividend, 31);
__ Addu(result, dividend, Operand(result));
} else {
__ sra(result, dividend, 31);
__ srl(result, result, 32 - shift);
__ Addu(result, dividend, Operand(result));
}
if (shift > 0) __ sra(result, result, shift);
if (divisor < 0) __ Subu(result, zero_reg, result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr);
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
Operand(zero_reg));
}
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ Subu(result, zero_reg, result);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ Mul(scratch0(), result, Operand(divisor));
__ Subu(scratch0(), scratch0(), dividend);
DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, scratch0(),
Operand(zero_reg));
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
const Register result = ToRegister(instr->result());
Register remainder = ToRegister(instr->temp());
// On MIPS div is asynchronous - it will run in the background while we
// check for special cases.
__ Div(remainder, result, dividend, divisor);
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor,
Operand(zero_reg));
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label left_not_zero;
__ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor,
Operand(zero_reg));
__ bind(&left_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) &&
!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
Label left_not_min_int;
__ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1));
__ bind(&left_not_min_int);
}
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, remainder,
Operand(zero_reg));
}
}
void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
DoubleRegister addend = ToDoubleRegister(instr->addend());
DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
// This is computed in-place.
DCHECK(addend.is(ToDoubleRegister(instr->result())));
__ madd_d(addend, addend, multiplier, multiplicand);
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
Register result = ToRegister(instr->result());
int32_t divisor = instr->divisor();
Register scratch = result.is(dividend) ? scratch0() : dividend;
DCHECK(!result.is(dividend) || !scratch.is(dividend));
// If the divisor is 1, return the dividend.
if (divisor == 1) {
__ Move(result, dividend);
return;
}
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
uint16_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ sra(result, dividend, shift);
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
// dividend can be the same register as result so save the value of it
// for checking overflow.
__ Move(scratch, dividend);
__ Subu(result, zero_reg, dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
Operand(zero_reg));
}
// Dividing by -1 is basically negation, unless we overflow.
__ Xor(scratch, scratch, result);
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(ge, instr, DeoptimizeReason::kOverflow, scratch,
Operand(zero_reg));
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ sra(result, result, shift);
return;
}
Label no_overflow, done;
__ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
__ li(result, Operand(kMinInt / divisor));
__ Branch(&done);
__ bind(&no_overflow);
__ sra(result, result, shift);
__ bind(&done);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr);
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
Operand(zero_reg));
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ Subu(result, zero_reg, result);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp());
DCHECK(!temp.is(dividend) && !temp.is(result));
Label needs_adjustment, done;
__ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
dividend, Operand(zero_reg));
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ Subu(result, zero_reg, result);
__ jmp(&done);
__ bind(&needs_adjustment);
__ Addu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
__ TruncatingDiv(result, temp, Abs(divisor));
if (divisor < 0) __ Subu(result, zero_reg, result);
__ Subu(result, result, Operand(1));
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
const Register result = ToRegister(instr->result());
Register remainder = scratch0();
// On MIPS div is asynchronous - it will run in the background while we
// check for special cases.
__ Div(remainder, result, dividend, divisor);
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor,
Operand(zero_reg));
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label left_not_zero;
__ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor,
Operand(zero_reg));
__ bind(&left_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) &&
!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
Label left_not_min_int;
__ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1));
__ bind(&left_not_min_int);
}
// We performed a truncating division. Correct the result if necessary.
Label done;
__ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
__ Xor(remainder, remainder, Operand(divisor));
__ Branch(&done, ge, remainder, Operand(zero_reg));
__ Subu(result, result, Operand(1));
__ bind(&done);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
// Note that result may alias left.
Register left = ToRegister(instr->left());
LOperand* right_op = instr->right();
bool bailout_on_minus_zero =
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right_op->IsConstantOperand()) {
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
if (bailout_on_minus_zero && (constant < 0)) {
// The case of a null constant will be handled separately.
// If constant is negative and left is null, the result should be -0.
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, left,
Operand(zero_reg));
}
switch (constant) {
case -1:
if (overflow) {
Label no_overflow;
__ SubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow);
DeoptimizeIf(al, instr);
__ bind(&no_overflow);
} else {
__ Subu(result, zero_reg, left);
}
break;
case 0:
if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, left,
Operand(zero_reg));
}
__ mov(result, zero_reg);
break;
case 1:
// Nothing to do.
__ Move(result, left);
break;
default:
// Multiplying by powers of two and powers of two plus or minus
// one can be done faster with shifted operands.
// For other constants we emit standard code.
int32_t mask = constant >> 31;
uint32_t constant_abs = (constant + mask) ^ mask;
if (base::bits::IsPowerOfTwo32(constant_abs)) {
int32_t shift = WhichPowerOf2(constant_abs);
__ sll(result, left, shift);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ Subu(result, zero_reg, result);
} else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
int32_t shift = WhichPowerOf2(constant_abs - 1);
__ Lsa(result, left, left, shift);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ Subu(result, zero_reg, result);
} else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
int32_t shift = WhichPowerOf2(constant_abs + 1);
__ sll(scratch, left, shift);
__ Subu(result, scratch, left);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ Subu(result, zero_reg, result);
} else {
// Generate standard code.
__ li(at, constant);
__ Mul(result, left, at);
}
}
} else {
DCHECK(right_op->IsRegister());
Register right = ToRegister(right_op);
if (overflow) {
// hi:lo = left * right.
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ Mul(scratch, result, result, right);
} else {
__ Mul(scratch, result, left, right);
}
__ sra(at, result, 31);
DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, scratch,
Operand(at));
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ Mul(result, result, right);
} else {
__ Mul(result, left, right);
}
}
if (bailout_on_minus_zero) {
Label done;
__ Xor(at, left, right);
__ Branch(&done, ge, at, Operand(zero_reg));
// Bail out if the result is minus zero.
DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
Operand(zero_reg));
__ bind(&done);
}
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left_op = instr->left();
LOperand* right_op = instr->right();
DCHECK(left_op->IsRegister());
Register left = ToRegister(left_op);
Register result = ToRegister(instr->result());
Operand right(no_reg);
if (right_op->IsStackSlot()) {
right = Operand(EmitLoadRegister(right_op, at));
} else {
DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
right = ToOperand(right_op);
}
switch (instr->op()) {
case Token::BIT_AND:
__ And(result, left, right);
break;
case Token::BIT_OR:
__ Or(result, left, right);
break;
case Token::BIT_XOR:
if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
__ Nor(result, zero_reg, left);
} else {
__ Xor(result, left, right);
}
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
// result may alias either of them.
LOperand* right_op = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
if (right_op->IsRegister()) {
// No need to mask the right operand on MIPS, it is built into the variable
// shift instructions.
switch (instr->op()) {
case Token::ROR:
__ Ror(result, left, Operand(ToRegister(right_op)));
break;
case Token::SAR:
__ srav(result, left, ToRegister(right_op));
break;
case Token::SHR:
__ srlv(result, left, ToRegister(right_op));
if (instr->can_deopt()) {
DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, result,
Operand(zero_reg));
}
break;
case Token::SHL:
__ sllv(result, left, ToRegister(right_op));
break;
default:
UNREACHABLE();
break;
}
} else {
// Mask the right_op operand.
int value = ToInteger32(LConstantOperand::cast(right_op));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ Ror(result, left, Operand(shift_count));
} else {
__ Move(result, left);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ sra(result, left, shift_count);
} else {
__ Move(result, left);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ srl(result, left, shift_count);
} else {
if (instr->can_deopt()) {
__ And(at, left, Operand(0x80000000));
DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue, at,
Operand(zero_reg));
}
__ Move(result, left);
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ sll(result, left, shift_count - 1);
__ SmiTagCheckOverflow(result, result, scratch);
} else {
__ SmiTagCheckOverflow(result, left, scratch);
}
DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, scratch,
Operand(zero_reg));
} else {
__ sll(result, left, shift_count);
}
} else {
__ Move(result, left);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (!can_overflow) {
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, at);
__ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
}
} else { // can_overflow.
Register scratch = scratch0();
Label no_overflow_label;
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, scratch);
__ SubBranchNoOvf(ToRegister(result), ToRegister(left),
Operand(right_reg), &no_overflow_label);
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ SubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
&no_overflow_label, scratch);
}
DeoptimizeIf(al, instr);
__ bind(&no_overflow_label);
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ li(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ li(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
DCHECK(instr->result()->IsDoubleRegister());
DoubleRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
__ Move(result, v);
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ li(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ li(ToRegister(instr->result()), object);
}
MemOperand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldMemOperand(string, SeqString::kHeaderSize + offset);
}
Register scratch = scratch0();
DCHECK(!scratch.is(string));
DCHECK(!scratch.is(ToRegister(index)));
if (encoding == String::ONE_BYTE_ENCODING) {
__ Addu(scratch, string, ToRegister(index));
} else {
STATIC_ASSERT(kUC16Size == 2);
__ sll(scratch, ToRegister(index), 1);
__ Addu(scratch, string, scratch);
}
return FieldMemOperand(scratch, SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
Register scratch = scratch0();
__ lw(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ And(scratch, scratch,
Operand(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ Subu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ lbu(result, operand);
} else {
__ lhu(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register value = ToRegister(instr->value());
if (FLAG_debug_code) {
Register scratch = scratch0();
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ sb(value, operand);
} else {
__ sh(value, operand);
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (!can_overflow) {
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, at);
__ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
}
} else { // can_overflow.
Register scratch = scratch1();
Label no_overflow_label;
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, scratch);
__ AddBranchNoOvf(ToRegister(result), ToRegister(left),
Operand(right_reg), &no_overflow_label);
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ AddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
&no_overflow_label, scratch);
}
DeoptimizeIf(al, instr);
__ bind(&no_overflow_label);
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
HMathMinMax::Operation operation = instr->hydrogen()->operation();
Register scratch = scratch1();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
Register left_reg = ToRegister(left);
Register right_reg = EmitLoadRegister(right, scratch0());
Register result_reg = ToRegister(instr->result());
Label return_right, done;
__ Slt(scratch, left_reg, Operand(right_reg));
if (condition == ge) {
__ Movz(result_reg, left_reg, scratch);
__ Movn(result_reg, right_reg, scratch);
} else {
DCHECK(condition == le);
__ Movn(result_reg, left_reg, scratch);
__ Movz(result_reg, right_reg, scratch);
}
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
FPURegister left_reg = ToDoubleRegister(left);
FPURegister right_reg = ToDoubleRegister(right);
FPURegister result_reg = ToDoubleRegister(instr->result());
Label nan, done;
if (operation == HMathMinMax::kMathMax) {
__ Float64Max(result_reg, left_reg, right_reg, &nan);
} else {
DCHECK(operation == HMathMinMax::kMathMin);
__ Float64Min(result_reg, left_reg, right_reg, &nan);
}
__ Branch(&done);
__ bind(&nan);
__ add_d(result_reg, left_reg, right_reg);
__ bind(&done);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->left());
DoubleRegister right = ToDoubleRegister(instr->right());
DoubleRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
__ add_d(result, left, right);
break;
case Token::SUB:
__ sub_d(result, left, right);
break;
case Token::MUL:
__ mul_d(result, left, right);
break;
case Token::DIV:
__ div_d(result, left, right);
break;
case Token::MOD: {
// Save a0-a3 on the stack.
RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
__ MultiPush(saved_regs);
__ PrepareCallCFunction(0, 2, scratch0());
__ MovToFloatParameters(left, right);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()),
0, 2);
// Move the result in the double result register.
__ MovFromFloatResult(result);
// Restore saved register.
__ MultiPop(saved_regs);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(a1));
DCHECK(ToRegister(instr->right()).is(a0));
DCHECK(ToRegister(instr->result()).is(v0));
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
// Other arch use a nop here, to signal that there is no inlined
// patchable code. Mips does not need the nop, since our marker
// instruction (andi zero_reg) will never be used in normal code.
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr,
Condition condition,
Register src1,
const Operand& src2) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || condition == al) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ Branch(chunk_->GetAssemblyLabel(right_block),
NegateCondition(condition), src1, src2);
} else if (right_block == next_block) {
__ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
} else {
__ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
__ Branch(chunk_->GetAssemblyLabel(right_block));
}
}
template<class InstrType>
void LCodeGen::EmitBranchF(InstrType instr,
Condition condition,
FPURegister src1,
FPURegister src2) {
int right_block = instr->FalseDestination(chunk_);
int left_block = instr->TrueDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
NegateFpuCondition(condition), src1, src2);
} else if (right_block == next_block) {
__ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
condition, src1, src2);
} else {
__ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
condition, src1, src2);
__ Branch(chunk_->GetAssemblyLabel(right_block));
}
}
template <class InstrType>
void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition,
Register src1, const Operand& src2) {
int true_block = instr->TrueDestination(chunk_);
__ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2);
}
template <class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition,
Register src1, const Operand& src2) {
int false_block = instr->FalseDestination(chunk_);
__ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
}
template<class InstrType>
void LCodeGen::EmitFalseBranchF(InstrType instr,
Condition condition,
FPURegister src1,
FPURegister src2) {
int false_block = instr->FalseDestination(chunk_);
__ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
condition, src1, src2);
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ stop("LDebugBreak");
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32() || r.IsSmi()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
EmitBranch(instr, ne, reg, Operand(zero_reg));
} else if (r.IsDouble()) {
DCHECK(!info()->IsStub());
DoubleRegister reg = ToDoubleRegister(instr->value());
// Test the double value. Zero and NaN are false.
EmitBranchF(instr, ogl, reg, kDoubleRegZero);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ LoadRoot(at, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq, reg, Operand(at));
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, ne, reg, Operand(zero_reg));
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, al, zero_reg, Operand(zero_reg));
} else if (type.IsHeapNumber()) {
DCHECK(!info()->IsStub());
DoubleRegister dbl_scratch = double_scratch0();
__ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
// Test the double value. Zero and NaN are false.
EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero);
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ lw(at, FieldMemOperand(reg, String::kLengthOffset));
EmitBranch(instr, ne, at, Operand(zero_reg));
} else {
ToBooleanHints expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
if (expected & ToBooleanHint::kUndefined) {
// undefined -> false.
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
}
if (expected & ToBooleanHint::kBoolean) {
// Boolean -> its value.
__ LoadRoot(at, Heap::kTrueValueRootIndex);
__ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
__ LoadRoot(at, Heap::kFalseValueRootIndex);
__ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
}
if (expected & ToBooleanHint::kNull) {
// 'null' -> false.
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
}
if (expected & ToBooleanHint::kSmallInteger) {
// Smis: 0 -> false, all other -> true.
__ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected & ToBooleanHint::kNeedsMap) {
// If we need a map later and have a Smi -> deopt.
__ SmiTst(reg, at);
DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
}
const Register map = scratch0();
if (expected & ToBooleanHint::kNeedsMap) {
__ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
if (expected & ToBooleanHint::kCanBeUndetectable) {
// Undetectable -> false.
__ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(at, at, Operand(1 << Map::kIsUndetectable));
__ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
}
}
if (expected & ToBooleanHint::kReceiver) {
// spec object -> true.
__ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(instr->TrueLabel(chunk_),
ge, at, Operand(FIRST_JS_RECEIVER_TYPE));
}
if (expected & ToBooleanHint::kString) {
// String value -> false iff empty.
Label not_string;
__ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
__ lw(at, FieldMemOperand(reg, String::kLengthOffset));
__ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
__ Branch(instr->FalseLabel(chunk_));
__ bind(&not_string);
}
if (expected & ToBooleanHint::kSymbol) {
// Symbol value -> true.
const Register scratch = scratch1();
__ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
}
if (expected & ToBooleanHint::kSimdValue) {
// SIMD value -> true.
const Register scratch = scratch1();
__ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(instr->TrueLabel(chunk_), eq, scratch,
Operand(SIMD128_VALUE_TYPE));
}
if (expected & ToBooleanHint::kHeapNumber) {
// heap number -> false iff +0, -0, or NaN.
DoubleRegister dbl_scratch = double_scratch0();
Label not_heap_number;
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&not_heap_number, ne, map, Operand(at));
__ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
__ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
ne, dbl_scratch, kDoubleRegZero);
// Falls through if dbl_scratch == 0.
__ Branch(instr->FalseLabel(chunk_));
__ bind(&not_heap_number);
}
if (expected != ToBooleanHint::kAny) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject, zero_reg,
Operand(zero_reg));
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::NE:
case Token::NE_STRICT:
cond = ne;
break;
case Token::LT:
cond = is_unsigned ? lo : lt;
break;
case Token::GT:
cond = is_unsigned ? hi : gt;
break;
case Token::LTE:
cond = is_unsigned ? ls : le;
break;
case Token::GTE:
cond = is_unsigned ? hs : ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cond = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
? instr->TrueDestination(chunk_)
: instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Compare left and right as doubles and load the
// resulting flags into the normal status register.
FPURegister left_reg = ToDoubleRegister(left);
FPURegister right_reg = ToDoubleRegister(right);
// If a NaN is involved, i.e. the result is unordered,
// jump to false block label.
__ BranchF(NULL, instr->FalseLabel(chunk_), eq,
left_reg, right_reg);
EmitBranchF(instr, cond, left_reg, right_reg);
} else {
Register cmp_left;
Operand cmp_right = Operand(0);
if (right->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
cmp_left = ToRegister(left);
cmp_right = Operand(Smi::FromInt(value));
} else {
cmp_left = ToRegister(left);
cmp_right = Operand(value);
}
} else if (left->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
cmp_left = ToRegister(right);
cmp_right = Operand(Smi::FromInt(value));
} else {
cmp_left = ToRegister(right);
cmp_right = Operand(value);
}
// We commuted the operands, so commute the condition.
cond = CommuteCondition(cond);
} else {
cmp_left = ToRegister(left);
cmp_right = Operand(ToRegister(right));
}
EmitBranch(instr, cond, cmp_left, cmp_right);
}
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
EmitBranch(instr, eq, left, Operand(right));
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ li(at, Operand(factory()->the_hole_value()));
EmitBranch(instr, eq, input_reg, Operand(at));
return;
}
DoubleRegister input_reg = ToDoubleRegister(instr->object());
EmitFalseBranchF(instr, eq, input_reg, input_reg);
Register scratch = scratch0();
__ FmoveHigh(scratch, input_reg);
EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32));
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
__ GetObjectType(input, temp1, temp1);
return lt;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp1 = ToRegister(instr->temp());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Condition true_cond =
EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond, temp1,
Operand(FIRST_NONSTRING_TYPE));
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Register input_reg = EmitLoadRegister(instr->value(), at);
__ And(at, input_reg, kSmiTagMask);
EmitBranch(instr, eq, at, Operand(zero_reg));
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
__ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
__ And(at, temp, Operand(1 << Map::kIsUndetectable));
EmitBranch(instr, ne, at, Operand(zero_reg));
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(a1));
DCHECK(ToRegister(instr->right()).is(a0));
Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
__ LoadRoot(at, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq, v0, Operand(at));
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
DCHECK(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return eq;
if (to == LAST_TYPE) return hs;
if (from == FIRST_TYPE) return ls;
UNREACHABLE();
return eq;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->value());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ GetObjectType(input, scratch, scratch);
EmitBranch(instr,
BranchCondition(instr->hydrogen()),
scratch,
Operand(TestType(instr->hydrogen())));
}
// Branches to a label or falls through with the answer in flags. Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
DCHECK(!input.is(temp));
DCHECK(!input.is(temp2));
DCHECK(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
__ GetObjectType(input, temp, temp2);
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
__ Branch(is_true, hs, temp2, Operand(FIRST_FUNCTION_TYPE));
} else {
__ Branch(is_false, hs, temp2, Operand(FIRST_FUNCTION_TYPE));
}
// Check if the constructor in the map is a function.
Register instance_type = scratch1();
DCHECK(!instance_type.is(temp));
__ GetMapConstructor(temp, temp, temp2, instance_type);
// Objects with a non-function constructor have class 'Object'.
if (String::Equals(class_name, isolate()->factory()->Object_string())) {
__ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
} else {
__ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ lw(temp, FieldMemOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is internalized since it's a literal.
// The name in the constructor is internalized because of the way the context
// is booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are internalized it is sufficient to use an
// identity comparison.
// End with the address of this class_name instance in temp register.
// On MIPS, the caller must do the comparison with Handle<String>class_name.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = scratch0();
Register temp2 = ToRegister(instr->temp());
Handle<String> class_name = instr->hydrogen()->class_name();
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
class_name, input, temp, temp2);
EmitBranch(instr, eq, temp, Operand(class_name));
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
__ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
EmitBranch(instr, eq, temp, Operand(instr->map()));
}
void LCodeGen::DoHasInPrototypeChainAndBranch(
LHasInPrototypeChainAndBranch* instr) {
Register const object = ToRegister(instr->object());
Register const object_map = scratch0();
Register const object_instance_type = scratch1();
Register const object_prototype = object_map;
Register const prototype = ToRegister(instr->prototype());
// The {object} must be a spec object. It's sufficient to know that {object}
// is not a smi, since all other non-spec objects have {null} prototypes and
// will be ruled out below.
if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
__ SmiTst(object, at);
EmitFalseBranch(instr, eq, at, Operand(zero_reg));
}
// Loop through the {object}s prototype chain looking for the {prototype}.
__ lw(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
Label loop;
__ bind(&loop);
// Deoptimize if the object needs to be access checked.
__ lbu(object_instance_type,
FieldMemOperand(object_map, Map::kBitFieldOffset));
__ And(object_instance_type, object_instance_type,
Operand(1 << Map::kIsAccessCheckNeeded));
DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, object_instance_type,
Operand(zero_reg));
// Deoptimize for proxies.
__ lbu(object_instance_type,
FieldMemOperand(object_map, Map::kInstanceTypeOffset));
DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy, object_instance_type,
Operand(JS_PROXY_TYPE));
__ lw(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
__ LoadRoot(at, Heap::kNullValueRootIndex);
EmitFalseBranch(instr, eq, object_prototype, Operand(at));
EmitTrueBranch(instr, eq, object_prototype, Operand(prototype));
__ Branch(USE_DELAY_SLOT, &loop);
__ lw(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
}
void LCodeGen::DoCmpT(LCmpT* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
Token::Value op = instr->op();
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
// On MIPS there is no need for a "no inlined smi code" marker (nop).
Condition condition = ComputeCompareCondition(op);
// A minor optimization that relies on LoadRoot always emitting one
// instruction.
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
Label done, check;
__ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
__ bind(&check);
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace && info()->IsOptimizing()) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in v0. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ push(v0);
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit);
}
if (info()->saves_caller_doubles()) {
RestoreCallerDoubles();
}
if (NeedsEagerFrame()) {
__ mov(sp, fp);
__ Pop(ra, fp);
}
if (instr->has_constant_parameter_count()) {
int parameter_count = ToInteger32(instr->constant_parameter_count());
int32_t sp_delta = (parameter_count + 1) * kPointerSize;
if (sp_delta != 0) {
__ Addu(sp, sp, Operand(sp_delta));
}
} else {
DCHECK(info()->IsStub()); // Functions would need to drop one more value.
Register reg = ToRegister(instr->parameter_count());
// The argument count parameter is a smi
__ SmiUntag(reg);
__ Lsa(sp, sp, reg, kPointerSizeLog2);
}
__ Jump(ra);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ lw(result, ContextMemOperand(context, instr->slot_index()));
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Register scratch = scratch0();
MemOperand target = ContextMemOperand(context, instr->slot_index());
__ sw(value, target);
if (instr->hydrogen()->NeedsWriteBarrier()) {
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
__ RecordWriteContextSlot(context,
target.offset(),
value,
scratch0(),
GetRAState(),
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
Register object = ToRegister(instr->object());
if (access.IsExternalMemory()) {
Register result = ToRegister(instr->result());
MemOperand operand = MemOperand(object, offset);
__ Load(result, operand, access.representation());
return;
}
if (instr->hydrogen()->representation().IsDouble()) {
DoubleRegister result = ToDoubleRegister(instr->result());
__ ldc1(result, FieldMemOperand(object, offset));
return;
}
Register result = ToRegister(instr->result());
if (!access.IsInobject()) {
__ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
object = result;
}
MemOperand operand = FieldMemOperand(object, offset);
__ Load(result, operand, access.representation());
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register scratch = scratch0();
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Get the prototype or initial map from the function.
__ lw(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at));
// If the function does not have an initial map, we're done.
Label done;
__ GetObjectType(result, scratch, scratch);
__ Branch(&done, ne, scratch, Operand(MAP_TYPE));
// Get the prototype from the initial map.
__ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
Register result = ToRegister(instr->result());
__ LoadRoot(result, instr->index());
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register result = ToRegister(instr->result());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
if (instr->length()->IsConstantOperand()) {
int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int index = (const_length - const_index) + 1;
__ lw(result, MemOperand(arguments, index * kPointerSize));
} else {
Register index = ToRegister(instr->index());
__ li(at, Operand(const_length + 1));
__ Subu(result, at, index);
__ Lsa(at, arguments, result, kPointerSizeLog2);
__ lw(result, MemOperand(at));
}
} else if (instr->index()->IsConstantOperand()) {
Register length = ToRegister(instr->length());
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int loc = const_index - 1;
if (loc != 0) {
__ Subu(result, length, Operand(loc));
__ Lsa(at, arguments, result, kPointerSizeLog2);
__ lw(result, MemOperand(at));
} else {
__ Lsa(at, arguments, length, kPointerSizeLog2);
__ lw(result, MemOperand(at));
}
} else {
Register length = ToRegister(instr->length());
Register index = ToRegister(instr->index());
__ Subu(result, length, index);
__ Addu(result, result, 1);
__ Lsa(at, arguments, result, kPointerSizeLog2);
__ lw(result, MemOperand(at));
}
}
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
Register external_pointer = ToRegister(instr->elements());
Register key = no_reg;
ElementsKind elements_kind = instr->elements_kind();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
} else {
key = ToRegister(instr->key());
}
int element_size_shift = ElementsKindToShiftSize(elements_kind);
int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
? (element_size_shift - kSmiTagSize) : element_size_shift;
int base_offset = instr->base_offset();
if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
FPURegister result = ToDoubleRegister(instr->result());
if (key_is_constant) {
__ Addu(scratch0(), external_pointer, constant_key << element_size_shift);
} else {
__ sll(scratch0(), key, shift_size);
__ Addu(scratch0(), scratch0(), external_pointer);
}
if (elements_kind == FLOAT32_ELEMENTS) {
__ lwc1(result, MemOperand(scratch0(), base_offset));
__ cvt_d_s(result, result);
} else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
__ ldc1(result, MemOperand(scratch0(), base_offset));
}
} else {
Register result = ToRegister(instr->result());
MemOperand mem_operand = PrepareKeyedOperand(
key, external_pointer, key_is_constant, constant_key,
element_size_shift, shift_size, base_offset);
switch (elements_kind) {
case INT8_ELEMENTS:
__ lb(result, mem_operand);
break;
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ lbu(result, mem_operand);
break;
case INT16_ELEMENTS:
__ lh(result, mem_operand);
break;
case UINT16_ELEMENTS:
__ lhu(result, mem_operand);
break;
case INT32_ELEMENTS:
__ lw(result, mem_operand);
break;
case UINT32_ELEMENTS:
__ lw(result, mem_operand);
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
DeoptimizeIf(Ugreater_equal, instr, DeoptimizeReason::kNegativeValue,
result, Operand(0x80000000));
}
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
Register elements = ToRegister(instr->elements());
bool key_is_constant = instr->key()->IsConstantOperand();
Register key = no_reg;
DoubleRegister result = ToDoubleRegister(instr->result());
Register scratch = scratch0();
int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
int base_offset = instr->base_offset();
if (key_is_constant) {
int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
base_offset += constant_key * kDoubleSize;
}
__ Addu(scratch, elements, Operand(base_offset));
if (!key_is_constant) {
key = ToRegister(instr->key());
int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
? (element_size_shift - kSmiTagSize) : element_size_shift;
__ Lsa(scratch, scratch, key, shift_size);
}
__ ldc1(result,