| // Copyright 2014 the V8 project authors. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/crankshaft/s390/lithium-codegen-s390.h" |
| |
| #include "src/base/bits.h" |
| #include "src/builtins/builtins-constructor.h" |
| #include "src/code-factory.h" |
| #include "src/code-stubs.h" |
| #include "src/crankshaft/hydrogen-osr.h" |
| #include "src/crankshaft/s390/lithium-gap-resolver-s390.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class SafepointGenerator final : public CallWrapper { |
| public: |
| SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, |
| Safepoint::DeoptMode mode) |
| : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {} |
| virtual ~SafepointGenerator() {} |
| |
| void BeforeCall(int call_size) const override {} |
| |
| void AfterCall() const override { |
| codegen_->RecordSafepoint(pointers_, deopt_mode_); |
| } |
| |
| private: |
| LCodeGen* codegen_; |
| LPointerMap* pointers_; |
| Safepoint::DeoptMode deopt_mode_; |
| }; |
| |
| LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope( |
| LCodeGen* codegen) |
| : codegen_(codegen) { |
| DCHECK(codegen_->info()->is_calling()); |
| DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); |
| codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; |
| StoreRegistersStateStub stub(codegen_->isolate()); |
| codegen_->masm_->CallStub(&stub); |
| } |
| |
| LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() { |
| DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); |
| RestoreRegistersStateStub stub(codegen_->isolate()); |
| codegen_->masm_->CallStub(&stub); |
| codegen_->expected_safepoint_kind_ = Safepoint::kSimple; |
| } |
| |
| #define __ masm()-> |
| |
| bool LCodeGen::GenerateCode() { |
| LPhase phase("Z_Code generation", chunk()); |
| DCHECK(is_unused()); |
| status_ = GENERATING; |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // NONE indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done in GeneratePrologue). |
| FrameScope frame_scope(masm_, StackFrame::NONE); |
| |
| return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && |
| GenerateJumpTable() && GenerateSafepointTable(); |
| } |
| |
| void LCodeGen::FinishCode(Handle<Code> code) { |
| DCHECK(is_done()); |
| code->set_stack_slots(GetTotalFrameSlotCount()); |
| code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
| PopulateDeoptimizationData(code); |
| } |
| |
| void LCodeGen::SaveCallerDoubles() { |
| DCHECK(info()->saves_caller_doubles()); |
| DCHECK(NeedsEagerFrame()); |
| Comment(";;; Save clobbered callee double registers"); |
| int count = 0; |
| BitVector* doubles = chunk()->allocated_double_registers(); |
| BitVector::Iterator save_iterator(doubles); |
| while (!save_iterator.Done()) { |
| __ StoreDouble(DoubleRegister::from_code(save_iterator.Current()), |
| MemOperand(sp, count * kDoubleSize)); |
| save_iterator.Advance(); |
| count++; |
| } |
| } |
| |
| void LCodeGen::RestoreCallerDoubles() { |
| DCHECK(info()->saves_caller_doubles()); |
| DCHECK(NeedsEagerFrame()); |
| Comment(";;; Restore clobbered callee double registers"); |
| BitVector* doubles = chunk()->allocated_double_registers(); |
| BitVector::Iterator save_iterator(doubles); |
| int count = 0; |
| while (!save_iterator.Done()) { |
| __ LoadDouble(DoubleRegister::from_code(save_iterator.Current()), |
| MemOperand(sp, count * kDoubleSize)); |
| save_iterator.Advance(); |
| count++; |
| } |
| } |
| |
| bool LCodeGen::GeneratePrologue() { |
| DCHECK(is_generating()); |
| |
| if (info()->IsOptimizing()) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm_); |
| |
| // r3: Callee's JS function. |
| // cp: Callee's context. |
| // fp: Caller's frame pointer. |
| // lr: Caller's pc. |
| // ip: Our own function entry (required by the prologue) |
| } |
| |
| int prologue_offset = masm_->pc_offset(); |
| |
| if (prologue_offset) { |
| // Prologue logic requires its starting address in ip and the |
| // corresponding offset from the function entry. Need to add |
| // 4 bytes for the size of AHI/AGHI that AddP expands into. |
| prologue_offset += sizeof(FourByteInstr); |
| __ AddP(ip, ip, Operand(prologue_offset)); |
| } |
| info()->set_prologue_offset(prologue_offset); |
| if (NeedsEagerFrame()) { |
| if (info()->IsStub()) { |
| __ StubPrologue(StackFrame::STUB, ip, prologue_offset); |
| } else { |
| __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset); |
| } |
| frame_is_built_ = true; |
| } |
| |
| // Reserve space for the stack slots needed by the code. |
| int slots = GetStackSlotCount(); |
| if (slots > 0) { |
| __ lay(sp, MemOperand(sp, -(slots * kPointerSize))); |
| if (FLAG_debug_code) { |
| __ Push(r2, r3); |
| __ mov(r2, Operand(slots * kPointerSize)); |
| __ mov(r3, Operand(kSlotsZapValue)); |
| Label loop; |
| __ bind(&loop); |
| __ StoreP(r3, MemOperand(sp, r2, kPointerSize)); |
| __ lay(r2, MemOperand(r2, -kPointerSize)); |
| __ CmpP(r2, Operand::Zero()); |
| __ bne(&loop); |
| __ Pop(r2, r3); |
| } |
| } |
| |
| if (info()->saves_caller_doubles()) { |
| SaveCallerDoubles(); |
| } |
| return !is_aborted(); |
| } |
| |
| void LCodeGen::DoPrologue(LPrologue* instr) { |
| Comment(";;; Prologue begin"); |
| |
| // Possibly allocate a local context. |
| if (info()->scope()->NeedsContext()) { |
| Comment(";;; Allocate local context"); |
| bool need_write_barrier = true; |
| // Argument to NewContext is the function, which is in r3. |
| int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; |
| if (info()->scope()->is_script_scope()) { |
| __ push(r3); |
| __ Push(info()->scope()->scope_info()); |
| __ CallRuntime(Runtime::kNewScriptContext); |
| deopt_mode = Safepoint::kLazyDeopt; |
| } else { |
| if (slots <= |
| ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { |
| Callable callable = CodeFactory::FastNewFunctionContext( |
| isolate(), info()->scope()->scope_type()); |
| __ mov(FastNewFunctionContextDescriptor::SlotsRegister(), |
| Operand(slots)); |
| __ Call(callable.code(), RelocInfo::CODE_TARGET); |
| // Result of the FastNewFunctionContext builtin is always in new space. |
| need_write_barrier = false; |
| } else { |
| __ push(r3); |
| __ Push(Smi::FromInt(info()->scope()->scope_type())); |
| __ CallRuntime(Runtime::kNewFunctionContext); |
| } |
| } |
| RecordSafepoint(deopt_mode); |
| |
| // Context is returned in both r2 and cp. It replaces the context |
| // passed to us. It's saved in the stack and kept live in cp. |
| __ LoadRR(cp, r2); |
| __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // Copy any necessary parameters into the context. |
| int num_parameters = info()->scope()->num_parameters(); |
| int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; |
| for (int i = first_parameter; i < num_parameters; i++) { |
| Variable* var = (i == -1) ? info()->scope()->receiver() |
| : info()->scope()->parameter(i); |
| if (var->IsContextSlot()) { |
| int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
| (num_parameters - 1 - i) * kPointerSize; |
| // Load parameter from stack. |
| __ LoadP(r2, MemOperand(fp, parameter_offset)); |
| // Store it in the context. |
| MemOperand target = ContextMemOperand(cp, var->index()); |
| __ StoreP(r2, target); |
| // Update the write barrier. This clobbers r5 and r2. |
| if (need_write_barrier) { |
| __ RecordWriteContextSlot(cp, target.offset(), r2, r5, |
| GetLinkRegisterState(), kSaveFPRegs); |
| } else if (FLAG_debug_code) { |
| Label done; |
| __ JumpIfInNewSpace(cp, r2, &done); |
| __ Abort(kExpectedNewSpaceObject); |
| __ bind(&done); |
| } |
| } |
| } |
| Comment(";;; End allocate local context"); |
| } |
| |
| Comment(";;; Prologue end"); |
| } |
| |
| void LCodeGen::GenerateOsrPrologue() { |
| // Generate the OSR entry prologue at the first unknown OSR value, or if there |
| // are none, at the OSR entrypoint instruction. |
| if (osr_pc_offset_ >= 0) return; |
| |
| osr_pc_offset_ = masm()->pc_offset(); |
| |
| // Adjust the frame size, subsuming the unoptimized frame into the |
| // optimized frame. |
| int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); |
| DCHECK(slots >= 0); |
| __ lay(sp, MemOperand(sp, -slots * kPointerSize)); |
| } |
| |
| void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { |
| if (instr->IsCall()) { |
| EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
| } |
| if (!instr->IsLazyBailout() && !instr->IsGap()) { |
| safepoints_.BumpLastLazySafepointIndex(); |
| } |
| } |
| |
| bool LCodeGen::GenerateDeferredCode() { |
| DCHECK(is_generating()); |
| if (deferred_.length() > 0) { |
| for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { |
| LDeferredCode* code = deferred_[i]; |
| |
| HValue* value = |
| instructions_->at(code->instruction_index())->hydrogen_value(); |
| RecordAndWritePosition(value->position()); |
| |
| Comment( |
| ";;; <@%d,#%d> " |
| "-------------------- Deferred %s --------------------", |
| code->instruction_index(), code->instr()->hydrogen_value()->id(), |
| code->instr()->Mnemonic()); |
| __ bind(code->entry()); |
| if (NeedsDeferredFrame()) { |
| Comment(";;; Build frame"); |
| DCHECK(!frame_is_built_); |
| DCHECK(info()->IsStub()); |
| frame_is_built_ = true; |
| __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB)); |
| __ PushCommonFrame(scratch0()); |
| Comment(";;; Deferred code"); |
| } |
| code->Generate(); |
| if (NeedsDeferredFrame()) { |
| Comment(";;; Destroy frame"); |
| DCHECK(frame_is_built_); |
| __ PopCommonFrame(scratch0()); |
| frame_is_built_ = false; |
| } |
| __ b(code->exit()); |
| } |
| } |
| |
| return !is_aborted(); |
| } |
| |
| bool LCodeGen::GenerateJumpTable() { |
| // Check that the jump table is accessible from everywhere in the function |
| // code, i.e. that offsets in halfworld to the table can be encoded in the |
| // 32-bit signed immediate of a branch instruction. |
| // To simplify we consider the code size from the first instruction to the |
| // end of the jump table. We also don't consider the pc load delta. |
| // Each entry in the jump table generates one instruction and inlines one |
| // 32bit data after it. |
| // TODO(joransiu): The Int24 condition can likely be relaxed for S390 |
| if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) { |
| Abort(kGeneratedCodeIsTooLarge); |
| } |
| |
| if (jump_table_.length() > 0) { |
| Label needs_frame, call_deopt_entry; |
| |
| Comment(";;; -------------------- Jump table --------------------"); |
| Address base = jump_table_[0].address; |
| |
| Register entry_offset = scratch0(); |
| |
| int length = jump_table_.length(); |
| for (int i = 0; i < length; i++) { |
| Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; |
| __ bind(&table_entry->label); |
| |
| DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type); |
| Address entry = table_entry->address; |
| DeoptComment(table_entry->deopt_info); |
| |
| // Second-level deopt table entries are contiguous and small, so instead |
| // of loading the full, absolute address of each one, load an immediate |
| // offset which will be added to the base address later. |
| __ mov(entry_offset, Operand(entry - base)); |
| |
| if (table_entry->needs_frame) { |
| DCHECK(!info()->saves_caller_doubles()); |
| Comment(";;; call deopt with frame"); |
| __ PushCommonFrame(); |
| __ b(r14, &needs_frame); |
| } else { |
| __ b(r14, &call_deopt_entry); |
| } |
| } |
| |
| if (needs_frame.is_linked()) { |
| __ bind(&needs_frame); |
| // This variant of deopt can only be used with stubs. Since we don't |
| // have a function pointer to install in the stack frame that we're |
| // building, install a special marker there instead. |
| DCHECK(info()->IsStub()); |
| __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB)); |
| __ push(ip); |
| DCHECK(info()->IsStub()); |
| } |
| |
| Comment(";;; call deopt"); |
| __ bind(&call_deopt_entry); |
| |
| if (info()->saves_caller_doubles()) { |
| DCHECK(info()->IsStub()); |
| RestoreCallerDoubles(); |
| } |
| |
| // Add the base address to the offset previously loaded in entry_offset. |
| __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base))); |
| __ AddP(ip, entry_offset, ip); |
| __ Jump(ip); |
| } |
| |
| // The deoptimization jump table is the last part of the instruction |
| // sequence. Mark the generated code as done unless we bailed out. |
| if (!is_aborted()) status_ = DONE; |
| return !is_aborted(); |
| } |
| |
| bool LCodeGen::GenerateSafepointTable() { |
| DCHECK(is_done()); |
| safepoints_.Emit(masm(), GetTotalFrameSlotCount()); |
| return !is_aborted(); |
| } |
| |
| Register LCodeGen::ToRegister(int code) const { |
| return Register::from_code(code); |
| } |
| |
| DoubleRegister LCodeGen::ToDoubleRegister(int code) const { |
| return DoubleRegister::from_code(code); |
| } |
| |
| Register LCodeGen::ToRegister(LOperand* op) const { |
| DCHECK(op->IsRegister()); |
| return ToRegister(op->index()); |
| } |
| |
| Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { |
| if (op->IsRegister()) { |
| return ToRegister(op->index()); |
| } else if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| HConstant* constant = chunk_->LookupConstant(const_op); |
| Handle<Object> literal = constant->handle(isolate()); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsInteger32()) { |
| AllowDeferredHandleDereference get_number; |
| DCHECK(literal->IsNumber()); |
| __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number())); |
| } else if (r.IsDouble()) { |
| Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); |
| } else { |
| DCHECK(r.IsSmiOrTagged()); |
| __ Move(scratch, literal); |
| } |
| return scratch; |
| } else if (op->IsStackSlot()) { |
| __ LoadP(scratch, ToMemOperand(op)); |
| return scratch; |
| } |
| UNREACHABLE(); |
| return scratch; |
| } |
| |
| void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op, |
| Register dst) { |
| DCHECK(IsInteger32(const_op)); |
| HConstant* constant = chunk_->LookupConstant(const_op); |
| int32_t value = constant->Integer32Value(); |
| if (IsSmi(const_op)) { |
| __ LoadSmiLiteral(dst, Smi::FromInt(value)); |
| } else { |
| __ LoadIntLiteral(dst, value); |
| } |
| } |
| |
| DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
| DCHECK(op->IsDoubleRegister()); |
| return ToDoubleRegister(op->index()); |
| } |
| |
| Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); |
| return constant->handle(isolate()); |
| } |
| |
| bool LCodeGen::IsInteger32(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); |
| } |
| |
| bool LCodeGen::IsSmi(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsSmi(); |
| } |
| |
| int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { |
| return ToRepresentation(op, Representation::Integer32()); |
| } |
| |
| intptr_t LCodeGen::ToRepresentation(LConstantOperand* op, |
| const Representation& r) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| int32_t value = constant->Integer32Value(); |
| if (r.IsInteger32()) return value; |
| DCHECK(r.IsSmiOrTagged()); |
| return reinterpret_cast<intptr_t>(Smi::FromInt(value)); |
| } |
| |
| Smi* LCodeGen::ToSmi(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| return Smi::FromInt(constant->Integer32Value()); |
| } |
| |
| double LCodeGen::ToDouble(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(constant->HasDoubleValue()); |
| return constant->DoubleValue(); |
| } |
| |
| Operand LCodeGen::ToOperand(LOperand* op) { |
| if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| HConstant* constant = chunk()->LookupConstant(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsSmi()) { |
| DCHECK(constant->HasSmiValue()); |
| return Operand(Smi::FromInt(constant->Integer32Value())); |
| } else if (r.IsInteger32()) { |
| DCHECK(constant->HasInteger32Value()); |
| return Operand(constant->Integer32Value()); |
| } else if (r.IsDouble()) { |
| Abort(kToOperandUnsupportedDoubleImmediate); |
| } |
| DCHECK(r.IsTagged()); |
| return Operand(constant->handle(isolate())); |
| } else if (op->IsRegister()) { |
| return Operand(ToRegister(op)); |
| } else if (op->IsDoubleRegister()) { |
| Abort(kToOperandIsDoubleRegisterUnimplemented); |
| return Operand::Zero(); |
| } |
| // Stack slots not implemented, use ToMemOperand instead. |
| UNREACHABLE(); |
| return Operand::Zero(); |
| } |
| |
| static int ArgumentsOffsetWithoutFrame(int index) { |
| DCHECK(index < 0); |
| return -(index + 1) * kPointerSize; |
| } |
| |
| MemOperand LCodeGen::ToMemOperand(LOperand* op) const { |
| DCHECK(!op->IsRegister()); |
| DCHECK(!op->IsDoubleRegister()); |
| DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); |
| if (NeedsEagerFrame()) { |
| return MemOperand(fp, FrameSlotToFPOffset(op->index())); |
| } else { |
| // Retrieve parameter without eager stack-frame relative to the |
| // stack-pointer. |
| return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index())); |
| } |
| } |
| |
| MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { |
| DCHECK(op->IsDoubleStackSlot()); |
| if (NeedsEagerFrame()) { |
| return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize); |
| } else { |
| // Retrieve parameter without eager stack-frame relative to the |
| // stack-pointer. |
| return MemOperand(sp, |
| ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); |
| } |
| } |
| |
| void LCodeGen::WriteTranslation(LEnvironment* environment, |
| Translation* translation) { |
| if (environment == NULL) return; |
| |
| // The translation includes one command per value in the environment. |
| int translation_size = environment->translation_size(); |
| |
| WriteTranslation(environment->outer(), translation); |
| WriteTranslationFrame(environment, translation); |
| |
| int object_index = 0; |
| int dematerialized_index = 0; |
| for (int i = 0; i < translation_size; ++i) { |
| LOperand* value = environment->values()->at(i); |
| AddToTranslation( |
| environment, translation, value, environment->HasTaggedValueAt(i), |
| environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); |
| } |
| } |
| |
| void LCodeGen::AddToTranslation(LEnvironment* environment, |
| Translation* translation, LOperand* op, |
| bool is_tagged, bool is_uint32, |
| int* object_index_pointer, |
| int* dematerialized_index_pointer) { |
| if (op == LEnvironment::materialization_marker()) { |
| int object_index = (*object_index_pointer)++; |
| if (environment->ObjectIsDuplicateAt(object_index)) { |
| int dupe_of = environment->ObjectDuplicateOfAt(object_index); |
| translation->DuplicateObject(dupe_of); |
| return; |
| } |
| int object_length = environment->ObjectLengthAt(object_index); |
| if (environment->ObjectIsArgumentsAt(object_index)) { |
| translation->BeginArgumentsObject(object_length); |
| } else { |
| translation->BeginCapturedObject(object_length); |
| } |
| int dematerialized_index = *dematerialized_index_pointer; |
| int env_offset = environment->translation_size() + dematerialized_index; |
| *dematerialized_index_pointer += object_length; |
| for (int i = 0; i < object_length; ++i) { |
| LOperand* value = environment->values()->at(env_offset + i); |
| AddToTranslation(environment, translation, value, |
| environment->HasTaggedValueAt(env_offset + i), |
| environment->HasUint32ValueAt(env_offset + i), |
| object_index_pointer, dematerialized_index_pointer); |
| } |
| return; |
| } |
| |
| if (op->IsStackSlot()) { |
| int index = op->index(); |
| if (is_tagged) { |
| translation->StoreStackSlot(index); |
| } else if (is_uint32) { |
| translation->StoreUint32StackSlot(index); |
| } else { |
| translation->StoreInt32StackSlot(index); |
| } |
| } else if (op->IsDoubleStackSlot()) { |
| int index = op->index(); |
| translation->StoreDoubleStackSlot(index); |
| } else if (op->IsRegister()) { |
| Register reg = ToRegister(op); |
| if (is_tagged) { |
| translation->StoreRegister(reg); |
| } else if (is_uint32) { |
| translation->StoreUint32Register(reg); |
| } else { |
| translation->StoreInt32Register(reg); |
| } |
| } else if (op->IsDoubleRegister()) { |
| DoubleRegister reg = ToDoubleRegister(op); |
| translation->StoreDoubleRegister(reg); |
| } else if (op->IsConstantOperand()) { |
| HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); |
| int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); |
| translation->StoreLiteral(src_index); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, |
| LInstruction* instr) { |
| CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, |
| LInstruction* instr, |
| SafepointMode safepoint_mode) { |
| DCHECK(instr != NULL); |
| __ Call(code, mode); |
| RecordSafepointWithLazyDeopt(instr, safepoint_mode); |
| |
| // Signal that we don't inline smi code before these stubs in the |
| // optimizing code generator. |
| if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { |
| __ nop(); |
| } |
| } |
| |
| void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, |
| LInstruction* instr, SaveFPRegsMode save_doubles) { |
| DCHECK(instr != NULL); |
| |
| __ CallRuntime(function, num_arguments, save_doubles); |
| |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| void LCodeGen::LoadContextFromDeferred(LOperand* context) { |
| if (context->IsRegister()) { |
| __ Move(cp, ToRegister(context)); |
| } else if (context->IsStackSlot()) { |
| __ LoadP(cp, ToMemOperand(context)); |
| } else if (context->IsConstantOperand()) { |
| HConstant* constant = |
| chunk_->LookupConstant(LConstantOperand::cast(context)); |
| __ Move(cp, Handle<Object>::cast(constant->handle(isolate()))); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, |
| LInstruction* instr, LOperand* context) { |
| LoadContextFromDeferred(context); |
| __ CallRuntimeSaveDoubles(id); |
| RecordSafepointWithRegisters(instr->pointer_map(), argc, |
| Safepoint::kNoLazyDeopt); |
| } |
| |
| void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, |
| Safepoint::DeoptMode mode) { |
| environment->set_has_been_used(); |
| if (!environment->HasBeenRegistered()) { |
| // Physical stack frame layout: |
| // -x ............. -4 0 ..................................... y |
| // [incoming arguments] [spill slots] [pushed outgoing arguments] |
| |
| // Layout of the environment: |
| // 0 ..................................................... size-1 |
| // [parameters] [locals] [expression stack including arguments] |
| |
| // Layout of the translation: |
| // 0 ........................................................ size - 1 + 4 |
| // [expression stack including arguments] [locals] [4 words] [parameters] |
| // |>------------ translation_size ------------<| |
| |
| int frame_count = 0; |
| int jsframe_count = 0; |
| for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
| ++frame_count; |
| if (e->frame_type() == JS_FUNCTION) { |
| ++jsframe_count; |
| } |
| } |
| Translation translation(&translations_, frame_count, jsframe_count, zone()); |
| WriteTranslation(environment, &translation); |
| int deoptimization_index = deoptimizations_.length(); |
| int pc_offset = masm()->pc_offset(); |
| environment->Register(deoptimization_index, translation.index(), |
| (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
| deoptimizations_.Add(environment, zone()); |
| } |
| } |
| |
| void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, |
| DeoptimizeReason deopt_reason, |
| Deoptimizer::BailoutType bailout_type, |
| CRegister cr) { |
| LEnvironment* environment = instr->environment(); |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| DCHECK(environment->HasBeenRegistered()); |
| int id = environment->deoptimization_index(); |
| Address entry = |
| Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); |
| if (entry == NULL) { |
| Abort(kBailoutWasNotPrepared); |
| return; |
| } |
| |
| if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { |
| Register scratch = scratch0(); |
| ExternalReference count = ExternalReference::stress_deopt_count(isolate()); |
| Label no_deopt; |
| |
| // Store the condition on the stack if necessary |
| if (cond != al) { |
| Label done; |
| __ LoadImmP(scratch, Operand::Zero()); |
| __ b(NegateCondition(cond), &done, Label::kNear); |
| __ LoadImmP(scratch, Operand(1)); |
| __ bind(&done); |
| __ push(scratch); |
| } |
| |
| Label done; |
| __ Push(r3); |
| __ mov(scratch, Operand(count)); |
| __ LoadW(r3, MemOperand(scratch)); |
| __ Sub32(r3, r3, Operand(1)); |
| __ Cmp32(r3, Operand::Zero()); |
| __ bne(&no_deopt, Label::kNear); |
| |
| __ LoadImmP(r3, Operand(FLAG_deopt_every_n_times)); |
| __ StoreW(r3, MemOperand(scratch)); |
| __ Pop(r3); |
| |
| if (cond != al) { |
| // Clean up the stack before the deoptimizer call |
| __ pop(scratch); |
| } |
| |
| __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
| |
| __ b(&done); |
| |
| __ bind(&no_deopt); |
| __ StoreW(r3, MemOperand(scratch)); |
| __ Pop(r3); |
| |
| if (cond != al) { |
| // Clean up the stack before the deoptimizer call |
| __ pop(scratch); |
| } |
| |
| __ bind(&done); |
| |
| if (cond != al) { |
| cond = ne; |
| __ CmpP(scratch, Operand::Zero()); |
| } |
| } |
| |
| if (info()->ShouldTrapOnDeopt()) { |
| __ stop("trap_on_deopt", cond, kDefaultStopCode, cr); |
| } |
| |
| Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); |
| |
| DCHECK(info()->IsStub() || frame_is_built_); |
| // Go through jump table if we need to handle condition, build frame, or |
| // restore caller doubles. |
| if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) { |
| __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
| } else { |
| Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, |
| !frame_is_built_); |
| // We often have several deopts to the same entry, reuse the last |
| // jump entry if this is the case. |
| if (FLAG_trace_deopt || isolate()->is_profiling() || |
| jump_table_.is_empty() || |
| !table_entry.IsEquivalentTo(jump_table_.last())) { |
| jump_table_.Add(table_entry, zone()); |
| } |
| __ b(cond, &jump_table_.last().label /*, cr*/); |
| } |
| } |
| |
| void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, |
| DeoptimizeReason deopt_reason, CRegister cr) { |
| Deoptimizer::BailoutType bailout_type = |
| info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; |
| DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr); |
| } |
| |
| void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, |
| SafepointMode safepoint_mode) { |
| if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
| RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
| } else { |
| DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| RecordSafepointWithRegisters(instr->pointer_map(), 0, |
| Safepoint::kLazyDeopt); |
| } |
| } |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind, |
| int arguments, Safepoint::DeoptMode deopt_mode) { |
| DCHECK(expected_safepoint_kind_ == kind); |
| |
| const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
| Safepoint safepoint = |
| safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); |
| for (int i = 0; i < operands->length(); i++) { |
| LOperand* pointer = operands->at(i); |
| if (pointer->IsStackSlot()) { |
| safepoint.DefinePointerSlot(pointer->index(), zone()); |
| } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
| safepoint.DefinePointerRegister(ToRegister(pointer), zone()); |
| } |
| } |
| } |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); |
| } |
| |
| void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { |
| LPointerMap empty_pointers(zone()); |
| RecordSafepoint(&empty_pointers, deopt_mode); |
| } |
| |
| void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); |
| } |
| |
| static const char* LabelType(LLabel* label) { |
| if (label->is_loop_header()) return " (loop header)"; |
| if (label->is_osr_entry()) return " (OSR entry)"; |
| return ""; |
| } |
| |
| void LCodeGen::DoLabel(LLabel* label) { |
| Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", |
| current_instruction_, label->hydrogen_value()->id(), |
| label->block_id(), LabelType(label)); |
| __ bind(label->label()); |
| current_block_ = label->block_id(); |
| DoGap(label); |
| } |
| |
| void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } |
| |
| void LCodeGen::DoGap(LGap* gap) { |
| for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; |
| i++) { |
| LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
| LParallelMove* move = gap->GetParallelMove(inner_pos); |
| if (move != NULL) DoParallelMove(move); |
| } |
| } |
| |
| void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } |
| |
| void LCodeGen::DoParameter(LParameter* instr) { |
| // Nothing to do. |
| } |
| |
| void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
| GenerateOsrPrologue(); |
| } |
| |
| void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| DCHECK(dividend.is(ToRegister(instr->result()))); |
| |
| // Theoretically, a variation of the branch-free code for integer division by |
| // a power of 2 (calculating the remainder via an additional multiplication |
| // (which gets simplified to an 'and') and subtraction) should be faster, and |
| // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to |
| // indicate that positive dividends are heavily favored, so the branching |
| // version performs better. |
| HMod* hmod = instr->hydrogen(); |
| int32_t shift = WhichPowerOf2Abs(divisor); |
| Label dividend_is_not_negative, done; |
| if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { |
| __ CmpP(dividend, Operand::Zero()); |
| __ bge(÷nd_is_not_negative, Label::kNear); |
| if (shift) { |
| // Note that this is correct even for kMinInt operands. |
| __ LoadComplementRR(dividend, dividend); |
| __ ExtractBitRange(dividend, dividend, shift - 1, 0); |
| __ LoadComplementRR(dividend, dividend); |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } |
| } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ mov(dividend, Operand::Zero()); |
| } else { |
| DeoptimizeIf(al, instr, DeoptimizeReason::kMinusZero); |
| } |
| __ b(&done, Label::kNear); |
| } |
| |
| __ bind(÷nd_is_not_negative); |
| if (shift) { |
| __ ExtractBitRange(dividend, dividend, shift - 1, 0); |
| } else { |
| __ mov(dividend, Operand::Zero()); |
| } |
| __ bind(&done); |
| } |
| |
| void LCodeGen::DoModByConstI(LModByConstI* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister(instr->result()); |
| DCHECK(!dividend.is(result)); |
| |
| if (divisor == 0) { |
| DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| __ TruncatingDiv(result, dividend, Abs(divisor)); |
| __ mov(ip, Operand(Abs(divisor))); |
| __ Mul(result, result, ip); |
| __ SubP(result, dividend, result /*, LeaveOE, SetRC*/); |
| |
| // Check for negative zero. |
| HMod* hmod = instr->hydrogen(); |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label remainder_not_zero; |
| __ bne(&remainder_not_zero, Label::kNear /*, cr0*/); |
| __ Cmp32(dividend, Operand::Zero()); |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); |
| __ bind(&remainder_not_zero); |
| } |
| } |
| |
| void LCodeGen::DoModI(LModI* instr) { |
| HMod* hmod = instr->hydrogen(); |
| Register left_reg = ToRegister(instr->left()); |
| Register right_reg = ToRegister(instr->right()); |
| Register result_reg = ToRegister(instr->result()); |
| Label done; |
| |
| // Check for x % 0. |
| if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ Cmp32(right_reg, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for kMinInt % -1, dr will return undefined, which is not what we |
| // want. We have to deopt if we care about -0, because we can't return that. |
| if (hmod->CheckFlag(HValue::kCanOverflow)) { |
| Label no_overflow_possible; |
| __ Cmp32(left_reg, Operand(kMinInt)); |
| __ bne(&no_overflow_possible, Label::kNear); |
| __ Cmp32(right_reg, Operand(-1)); |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } else { |
| __ b(ne, &no_overflow_possible, Label::kNear); |
| __ mov(result_reg, Operand::Zero()); |
| __ b(&done, Label::kNear); |
| } |
| __ bind(&no_overflow_possible); |
| } |
| |
| // Divide instruction dr will implicity use register pair |
| // r0 & r1 below. |
| DCHECK(!left_reg.is(r1)); |
| DCHECK(!right_reg.is(r1)); |
| DCHECK(!result_reg.is(r1)); |
| __ LoadRR(r0, left_reg); |
| __ srda(r0, Operand(32)); |
| __ dr(r0, right_reg); // R0:R1 = R1 / divisor - R0 remainder |
| |
| __ LoadAndTestP_ExtendSrc(result_reg, r0); // Copy remainder to resultreg |
| |
| // If we care about -0, test if the dividend is <0 and the result is 0. |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ bne(&done, Label::kNear); |
| __ Cmp32(left_reg, Operand::Zero()); |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| __ bind(&done); |
| } |
| |
| void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister(instr->result()); |
| DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); |
| DCHECK(!result.is(dividend)); |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| __ Cmp32(dividend, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { |
| __ Cmp32(dividend, Operand(0x80000000)); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); |
| } |
| |
| int32_t shift = WhichPowerOf2Abs(divisor); |
| |
| // Deoptimize if remainder will not be 0. |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) { |
| __ TestBitRange(dividend, shift - 1, 0, r0); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, cr0); |
| } |
| |
| if (divisor == -1) { // Nice shortcut, not needed for correctness. |
| __ LoadComplementRR(result, dividend); |
| return; |
| } |
| if (shift == 0) { |
| __ LoadRR(result, dividend); |
| } else { |
| if (shift == 1) { |
| __ ShiftRight(result, dividend, Operand(31)); |
| } else { |
| __ ShiftRightArith(result, dividend, Operand(31)); |
| __ ShiftRight(result, result, Operand(32 - shift)); |
| } |
| __ AddP(result, dividend, result); |
| __ ShiftRightArith(result, result, Operand(shift)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| } |
| if (divisor < 0) __ LoadComplementRR(result, result); |
| } |
| |
| void LCodeGen::DoDivByConstI(LDivByConstI* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister(instr->result()); |
| DCHECK(!dividend.is(result)); |
| |
| if (divisor == 0) { |
| DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| __ Cmp32(dividend, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| __ TruncatingDiv(result, dividend, Abs(divisor)); |
| if (divisor < 0) __ LoadComplementRR(result, result); |
| |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { |
| Register scratch = scratch0(); |
| __ mov(ip, Operand(divisor)); |
| __ Mul(scratch, result, ip); |
| __ Cmp32(scratch, dividend); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); |
| } |
| } |
| |
| // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. |
| void LCodeGen::DoDivI(LDivI* instr) { |
| HBinaryOperation* hdiv = instr->hydrogen(); |
| const Register dividend = ToRegister(instr->dividend()); |
| const Register divisor = ToRegister(instr->divisor()); |
| Register result = ToRegister(instr->result()); |
| |
| DCHECK(!dividend.is(result)); |
| DCHECK(!divisor.is(result)); |
| |
| // Check for x / 0. |
| if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ Cmp32(divisor, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label dividend_not_zero; |
| __ Cmp32(dividend, Operand::Zero()); |
| __ bne(÷nd_not_zero, Label::kNear); |
| __ Cmp32(divisor, Operand::Zero()); |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); |
| __ bind(÷nd_not_zero); |
| } |
| |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow)) { |
| Label dividend_not_min_int; |
| __ Cmp32(dividend, Operand(kMinInt)); |
| __ bne(÷nd_not_min_int, Label::kNear); |
| __ Cmp32(divisor, Operand(-1)); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); |
| __ bind(÷nd_not_min_int); |
| } |
| |
| __ LoadRR(r0, dividend); |
| __ srda(r0, Operand(32)); |
| __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient |
| |
| __ LoadAndTestP_ExtendSrc(result, r1); // Move quotient to result register |
| |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { |
| // Deoptimize if remainder is not 0. |
| __ Cmp32(r0, Operand::Zero()); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); |
| } |
| } |
| |
| void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { |
| HBinaryOperation* hdiv = instr->hydrogen(); |
| Register dividend = ToRegister(instr->dividend()); |
| Register result = ToRegister(instr->result()); |
| int32_t divisor = instr->divisor(); |
| bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt); |
| |
| // If the divisor is positive, things are easy: There can be no deopts and we |
| // can simply do an arithmetic right shift. |
| int32_t shift = WhichPowerOf2Abs(divisor); |
| if (divisor > 0) { |
| if (shift || !result.is(dividend)) { |
| __ ShiftRightArith(result, dividend, Operand(shift)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| } |
| return; |
| } |
| |
| // If the divisor is negative, we have to negate and handle edge cases. |
| #if V8_TARGET_ARCH_S390X |
| if (divisor == -1 && can_overflow) { |
| __ Cmp32(dividend, Operand(0x80000000)); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); |
| } |
| #endif |
| |
| __ LoadComplementRR(result, dividend); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, cr0); |
| } |
| |
| // If the negation could not overflow, simply shifting is OK. |
| #if !V8_TARGET_ARCH_S390X |
| if (!can_overflow) { |
| #endif |
| if (shift) { |
| __ ShiftRightArithP(result, result, Operand(shift)); |
| } |
| return; |
| #if !V8_TARGET_ARCH_S390X |
| } |
| |
| // Dividing by -1 is basically negation, unless we overflow. |
| if (divisor == -1) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0); |
| return; |
| } |
| |
| Label overflow_label, done; |
| __ b(overflow, &overflow_label, Label::kNear); |
| __ ShiftRightArith(result, result, Operand(shift)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| __ b(&done, Label::kNear); |
| __ bind(&overflow_label); |
| __ mov(result, Operand(kMinInt / divisor)); |
| __ bind(&done); |
| #endif |
| } |
| |
| void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister(instr->result()); |
| DCHECK(!dividend.is(result)); |
| |
| if (divisor == 0) { |
| DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HMathFloorOfDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| __ Cmp32(dividend, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| // Easy case: We need no dynamic check for the dividend and the flooring |
| // division is the same as the truncating division. |
| if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || |
| (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { |
| __ TruncatingDiv(result, dividend, Abs(divisor)); |
| if (divisor < 0) __ LoadComplementRR(result, result); |
| return; |
| } |
| |
| // In the general case we may need to adjust before and after the truncating |
| // division to get a flooring division. |
| Register temp = ToRegister(instr->temp()); |
| DCHECK(!temp.is(dividend) && !temp.is(result)); |
| Label needs_adjustment, done; |
| __ Cmp32(dividend, Operand::Zero()); |
| __ b(divisor > 0 ? lt : gt, &needs_adjustment); |
| __ TruncatingDiv(result, dividend, Abs(divisor)); |
| if (divisor < 0) __ LoadComplementRR(result, result); |
| __ b(&done, Label::kNear); |
| __ bind(&needs_adjustment); |
| __ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1)); |
| __ TruncatingDiv(result, temp, Abs(divisor)); |
| if (divisor < 0) __ LoadComplementRR(result, result); |
| __ SubP(result, result, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. |
| void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { |
| HBinaryOperation* hdiv = instr->hydrogen(); |
| const Register dividend = ToRegister(instr->dividend()); |
| const Register divisor = ToRegister(instr->divisor()); |
| Register result = ToRegister(instr->result()); |
| |
| DCHECK(!dividend.is(result)); |
| DCHECK(!divisor.is(result)); |
| |
| // Check for x / 0. |
| if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ Cmp32(divisor, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label dividend_not_zero; |
| __ Cmp32(dividend, Operand::Zero()); |
| __ bne(÷nd_not_zero, Label::kNear); |
| __ Cmp32(divisor, Operand::Zero()); |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); |
| __ bind(÷nd_not_zero); |
| } |
| |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow)) { |
| Label no_overflow_possible; |
| __ Cmp32(dividend, Operand(kMinInt)); |
| __ bne(&no_overflow_possible, Label::kNear); |
| __ Cmp32(divisor, Operand(-1)); |
| if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); |
| } else { |
| __ bne(&no_overflow_possible, Label::kNear); |
| __ LoadRR(result, dividend); |
| } |
| __ bind(&no_overflow_possible); |
| } |
| |
| __ LoadRR(r0, dividend); |
| __ srda(r0, Operand(32)); |
| __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient |
| |
| __ lr(result, r1); // Move quotient to result register |
| |
| Label done; |
| Register scratch = scratch0(); |
| // If both operands have the same sign then we are done. |
| __ Xor(scratch, dividend, divisor); |
| __ ltr(scratch, scratch); // use 32 bit version LoadAndTestRR even in 64 bit |
| __ bge(&done, Label::kNear); |
| |
| // If there is no remainder then we are done. |
| __ lr(scratch, result); |
| __ msr(scratch, divisor); |
| __ Cmp32(dividend, scratch); |
| __ beq(&done, Label::kNear); |
| |
| // We performed a truncating division. Correct the result. |
| __ Sub32(result, result, Operand(1)); |
| __ bind(&done); |
| } |
| |
| void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { |
| DoubleRegister addend = ToDoubleRegister(instr->addend()); |
| DoubleRegister multiplier = ToDoubleRegister(instr->multiplier()); |
| DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| |
| // Unable to use madbr as the intermediate value is not rounded |
| // to proper precision |
| __ ldr(result, multiplier); |
| __ mdbr(result, multiplicand); |
| __ adbr(result, addend); |
| } |
| |
| void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) { |
| DoubleRegister minuend = ToDoubleRegister(instr->minuend()); |
| DoubleRegister multiplier = ToDoubleRegister(instr->multiplier()); |
| DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| |
| // Unable to use msdbr as the intermediate value is not rounded |
| // to proper precision |
| __ ldr(result, multiplier); |
| __ mdbr(result, multiplicand); |
| __ sdbr(result, minuend); |
| } |
| |
| void LCodeGen::DoMulI(LMulI* instr) { |
| Register scratch = scratch0(); |
| Register result = ToRegister(instr->result()); |
| // Note that result may alias left. |
| Register left = ToRegister(instr->left()); |
| LOperand* right_op = instr->right(); |
| |
| bool bailout_on_minus_zero = |
| instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
| bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| |
| if (right_op->IsConstantOperand()) { |
| int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); |
| |
| if (bailout_on_minus_zero && (constant < 0)) { |
| // The case of a null constant will be handled separately. |
| // If constant is negative and left is null, the result should be -0. |
| __ CmpP(left, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| switch (constant) { |
| case -1: |
| if (can_overflow) { |
| #if V8_TARGET_ARCH_S390X |
| if (instr->hydrogen()->representation().IsSmi()) { |
| #endif |
| __ LoadComplementRR(result, left); |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| #if V8_TARGET_ARCH_S390X |
| } else { |
| __ LoadComplementRR(result, left); |
| __ TestIfInt32(result, r0); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); |
| } |
| #endif |
| } else { |
| __ LoadComplementRR(result, left); |
| } |
| break; |
| case 0: |
| if (bailout_on_minus_zero) { |
| // If left is strictly negative and the constant is null, the |
| // result is -0. Deoptimize if required, otherwise return 0. |
| #if V8_TARGET_ARCH_S390X |
| if (instr->hydrogen()->representation().IsSmi()) { |
| #endif |
| __ Cmp32(left, Operand::Zero()); |
| #if V8_TARGET_ARCH_S390X |
| } else { |
| __ Cmp32(left, Operand::Zero()); |
| } |
| #endif |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); |
| } |
| __ LoadImmP(result, Operand::Zero()); |
| break; |
| case 1: |
| __ Move(result, left); |
| break; |
| default: |
| // Multiplying by powers of two and powers of two plus or minus |
| // one can be done faster with shifted operands. |
| // For other constants we emit standard code. |
| int32_t mask = constant >> 31; |
| uint32_t constant_abs = (constant + mask) ^ mask; |
| |
| if (base::bits::IsPowerOfTwo32(constant_abs)) { |
| int32_t shift = WhichPowerOf2(constant_abs); |
| __ ShiftLeftP(result, left, Operand(shift)); |
| // Correct the sign of the result if the constant is negative. |
| if (constant < 0) __ LoadComplementRR(result, result); |
| } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) { |
| int32_t shift = WhichPowerOf2(constant_abs - 1); |
| __ ShiftLeftP(scratch, left, Operand(shift)); |
| __ AddP(result, scratch, left); |
| // Correct the sign of the result if the constant is negative. |
| if (constant < 0) __ LoadComplementRR(result, result); |
| } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) { |
| int32_t shift = WhichPowerOf2(constant_abs + 1); |
| __ ShiftLeftP(scratch, left, Operand(shift)); |
| __ SubP(result, scratch, left); |
| // Correct the sign of the result if the constant is negative. |
| if (constant < 0) __ LoadComplementRR(result, result); |
| } else { |
| // Generate standard code. |
| __ Move(result, left); |
| __ MulP(result, Operand(constant)); |
| } |
| } |
| |
| } else { |
| DCHECK(right_op->IsRegister()); |
| Register right = ToRegister(right_op); |
| |
| if (can_overflow) { |
| #if V8_TARGET_ARCH_S390X |
| // result = left * right. |
| if (instr->hydrogen()->representation().IsSmi()) { |
| __ SmiUntag(result, left); |
| __ SmiUntag(scratch, right); |
| __ msgr(result, scratch); |
| } else { |
| __ LoadRR(result, left); |
| __ msgr(result, right); |
| } |
| __ TestIfInt32(result, r0); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); |
| if (instr->hydrogen()->representation().IsSmi()) { |
| __ SmiTag(result); |
| } |
| #else |
| // r0:scratch = scratch * right |
| if (instr->hydrogen()->representation().IsSmi()) { |
| __ SmiUntag(scratch, left); |
| __ mr_z(r0, right); |
| __ LoadRR(result, scratch); |
| } else { |
| // r0:scratch = scratch * right |
| __ LoadRR(scratch, left); |
| __ mr_z(r0, right); |
| __ LoadRR(result, scratch); |
| } |
| __ TestIfInt32(r0, result, scratch); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); |
| #endif |
| } else { |
| if (instr->hydrogen()->representation().IsSmi()) { |
| __ SmiUntag(result, left); |
| __ Mul(result, result, right); |
| } else { |
| __ Mul(result, left, right); |
| } |
| } |
| |
| if (bailout_on_minus_zero) { |
| Label done; |
| #if V8_TARGET_ARCH_S390X |
| if (instr->hydrogen()->representation().IsSmi()) { |
| #endif |
| __ XorP(r0, left, right); |
| __ LoadAndTestRR(r0, r0); |
| __ bge(&done, Label::kNear); |
| #if V8_TARGET_ARCH_S390X |
| } else { |
| __ XorP(r0, left, right); |
| __ Cmp32(r0, Operand::Zero()); |
| __ bge(&done, Label::kNear); |
| } |
| #endif |
| // Bail out if the result is minus zero. |
| __ CmpP(result, Operand::Zero()); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); |
| __ bind(&done); |
| } |
| } |
| } |
| |
| void LCodeGen::DoBitI(LBitI* instr) { |
| LOperand* left_op = instr->left(); |
| LOperand* right_op = instr->right(); |
| DCHECK(left_op->IsRegister()); |
| Register left = ToRegister(left_op); |
| Register result = ToRegister(instr->result()); |
| |
| if (right_op->IsConstantOperand()) { |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ AndP(result, left, Operand(ToOperand(right_op))); |
| break; |
| case Token::BIT_OR: |
| __ OrP(result, left, Operand(ToOperand(right_op))); |
| break; |
| case Token::BIT_XOR: |
| __ XorP(result, left, Operand(ToOperand(right_op))); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (right_op->IsStackSlot()) { |
| // Reg-Mem instruction clobbers, so copy src to dst first. |
| if (!left.is(result)) __ LoadRR(result, left); |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ AndP(result, ToMemOperand(right_op)); |
| break; |
| case Token::BIT_OR: |
| __ OrP(result, ToMemOperand(right_op)); |
| break; |
| case Token::BIT_XOR: |
| __ XorP(result, ToMemOperand(right_op)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| DCHECK(right_op->IsRegister()); |
| |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ AndP(result, left, ToRegister(right_op)); |
| break; |
| case Token::BIT_OR: |
| __ OrP(result, left, ToRegister(right_op)); |
| break; |
| case Token::BIT_XOR: |
| __ XorP(result, left, ToRegister(right_op)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| void LCodeGen::DoShiftI(LShiftI* instr) { |
| // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so |
| // result may alias either of them. |
| LOperand* right_op = instr->right(); |
| Register left = ToRegister(instr->left()); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| if (right_op->IsRegister()) { |
| // Mask the right_op operand. |
| __ AndP(scratch, ToRegister(right_op), Operand(0x1F)); |
| switch (instr->op()) { |
| case Token::ROR: |
| // rotate_right(a, b) == rotate_left(a, 32 - b) |
| __ LoadComplementRR(scratch, scratch); |
| __ rll(result, left, scratch, Operand(32)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| break; |
| case Token::SAR: |
| __ ShiftRightArith(result, left, scratch); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| break; |
| case Token::SHR: |
| __ ShiftRight(result, left, scratch); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| if (instr->can_deopt()) { |
| #if V8_TARGET_ARCH_S390X |
| __ ltgfr(result, result /*, SetRC*/); |
| #else |
| __ ltr(result, result); // Set the <,==,> condition |
| #endif |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, cr0); |
| } |
| break; |
| case Token::SHL: |
| __ ShiftLeft(result, left, scratch); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // Mask the right_op operand. |
| int value = ToInteger32(LConstantOperand::cast(right_op)); |
| uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); |
| switch (instr->op()) { |
| case Token::ROR: |
| if (shift_count != 0) { |
| __ rll(result, left, Operand(32 - shift_count)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| } else { |
| __ Move(result, left); |
| } |
| break; |
| case Token::SAR: |
| if (shift_count != 0) { |
| __ ShiftRightArith(result, left, Operand(shift_count)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| } else { |
| __ Move(result, left); |
| } |
| break; |
| case Token::SHR: |
| if (shift_count != 0) { |
| __ ShiftRight(result, left, Operand(shift_count)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| } else { |
| if (instr->can_deopt()) { |
| __ Cmp32(left, Operand::Zero()); |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue); |
| } |
| __ Move(result, left); |
| } |
| break; |
| case Token::SHL: |
| if (shift_count != 0) { |
| #if V8_TARGET_ARCH_S390X |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ ShiftLeftP(result, left, Operand(shift_count)); |
| #else |
| if (instr->hydrogen_value()->representation().IsSmi() && |
| instr->can_deopt()) { |
| if (shift_count != 1) { |
| __ ShiftLeft(result, left, Operand(shift_count - 1)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| __ SmiTagCheckOverflow(result, result, scratch); |
| } else { |
| __ SmiTagCheckOverflow(result, left, scratch); |
| } |
| DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0); |
| #endif |
| } else { |
| __ ShiftLeft(result, left, Operand(shift_count)); |
| #if V8_TARGET_ARCH_S390X |
| __ lgfr(result, result); |
| #endif |
| } |
| } else { |
| __ Move(result, left); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| void LCodeGen::DoSubI(LSubI* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| LOperand* result = instr->result(); |
| |
| bool isInteger = !(instr->hydrogen()->representation().IsSmi() || |
| instr->hydrogen()->representation().IsExternal()); |
| |
| #if V8_TARGET_ARCH_S390X |
| // The overflow detection needs to be tested on the lower 32-bits. |
| // As a result, on 64-bit, we need to force 32-bit arithmetic operations |
| // to set the CC overflow bit properly. The result is then sign-extended. |
| bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| #else |
| bool checkOverflow = true; |
| #endif |
| |
| if (right->IsConstantOperand()) { |
| if (!isInteger || !checkOverflow) |
| __ SubP(ToRegister(result), ToRegister(left), ToOperand(right)); |
| else |
| __ Sub32(ToRegister(result), ToRegister(left), ToOperand(right)); |
| } else if (right->IsRegister()) { |
| if (!isInteger) |
| __ SubP(ToRegister(result), ToRegister(left), ToRegister(right)); |
| else if (!checkOverflow) |
| __ SubP_ExtendSrc(ToRegister(result), ToRegister(left), |
| ToRegister(right)); |
| else |
| __ Sub32(ToRegister(result), ToRegister(left), ToRegister(right)); |
| } else { |
| if (!left->Equals(instr->result())) |
| __ LoadRR(ToRegister(result), ToRegister(left)); |
| |
| MemOperand mem = ToMemOperand(right); |
| if (!isInteger) { |
| __ SubP(ToRegister(result), mem); |
| } else { |
| #if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN |
| // We want to read the 32-bits directly from memory |
| MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4); |
| #else |
| MemOperand Upper32Mem = ToMemOperand(right); |
| #endif |
| if (checkOverflow) { |
| __ Sub32(ToRegister(result), Upper32Mem); |
| } else { |
| __ SubP_ExtendSrc(ToRegister(result), Upper32Mem); |
| } |
| } |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| if (isInteger && checkOverflow) |
| __ lgfr(ToRegister(result), ToRegister(result)); |
| #endif |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } |
| } |
| |
| void LCodeGen::DoConstantI(LConstantI* instr) { |
| Register dst = ToRegister(instr->result()); |
| if (instr->value() == 0) |
| __ XorP(dst, dst); |
| else |
| __ Load(dst, Operand(instr->value())); |
| } |
| |
| void LCodeGen::DoConstantS(LConstantS* instr) { |
| __ LoadSmiLiteral(ToRegister(instr->result()), instr->value()); |
| } |
| |
| void LCodeGen::DoConstantD(LConstantD* instr) { |
| DCHECK(instr->result()->IsDoubleRegister()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| uint64_t bits = instr->bits(); |
| __ LoadDoubleLiteral(result, bits, scratch0()); |
| } |
| |
| void LCodeGen::DoConstantE(LConstantE* instr) { |
| __ mov(ToRegister(instr->result()), Operand(instr->value())); |
| } |
| |
| void LCodeGen::DoConstantT(LConstantT* instr) { |
| Handle<Object> object = instr->value(isolate()); |
| AllowDeferredHandleDereference smi_check; |
| __ Move(ToRegister(instr->result()), object); |
| } |
| |
| MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index, |
| String::Encoding encoding) { |
| if (index->IsConstantOperand()) { |
| int offset = ToInteger32(LConstantOperand::cast(index)); |
| if (encoding == String::TWO_BYTE_ENCODING) { |
| offset *= kUC16Size; |
| } |
| STATIC_ASSERT(kCharSize == 1); |
| return FieldMemOperand(string, SeqString::kHeaderSize + offset); |
| } |
| Register scratch = scratch0(); |
| DCHECK(!scratch.is(string)); |
| DCHECK(!scratch.is(ToRegister(index))); |
| // TODO(joransiu) : Fold Add into FieldMemOperand |
| if (encoding == String::ONE_BYTE_ENCODING) { |
| __ AddP(scratch, string, ToRegister(index)); |
| } else { |
| STATIC_ASSERT(kUC16Size == 2); |
| __ ShiftLeftP(scratch, ToRegister(index), Operand(1)); |
| __ AddP(scratch, string, scratch); |
| } |
| return FieldMemOperand(scratch, SeqString::kHeaderSize); |
| } |
| |
| void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { |
| String::Encoding encoding = instr->hydrogen()->encoding(); |
| Register string = ToRegister(instr->string()); |
| Register result = ToRegister(instr->result()); |
| |
| if (FLAG_debug_code) { |
| Register scratch = scratch0(); |
| __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); |
| __ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| |
| __ AndP(scratch, scratch, |
| Operand(kStringRepresentationMask | kStringEncodingMask)); |
| static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
| static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
| __ CmpP(scratch, |
| Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type |
| : two_byte_seq_type)); |
| __ Check(eq, kUnexpectedStringType); |
| } |
| |
| MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); |
| if (encoding == String::ONE_BYTE_ENCODING) { |
| __ llc(result, operand); |
| } else { |
| __ llh(result, operand); |
| } |
| } |
| |
| void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { |
| String::Encoding encoding = instr->hydrogen()->encoding(); |
| Register string = ToRegister(instr->string()); |
| Register value = ToRegister(instr->value()); |
| |
| if (FLAG_debug_code) { |
| Register index = ToRegister(instr->index()); |
| static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
| static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
| int encoding_mask = |
| instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING |
| ? one_byte_seq_type |
| : two_byte_seq_type; |
| __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); |
| } |
| |
| MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); |
| if (encoding == String::ONE_BYTE_ENCODING) { |
| __ stc(value, operand); |
| } else { |
| __ sth(value, operand); |
| } |
| } |
| |
| void LCodeGen::DoAddI(LAddI* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| LOperand* result = instr->result(); |
| bool isInteger = !(instr->hydrogen()->representation().IsSmi() || |
| instr->hydrogen()->representation().IsExternal()); |
| #if V8_TARGET_ARCH_S390X |
| // The overflow detection needs to be tested on the lower 32-bits. |
| // As a result, on 64-bit, we need to force 32-bit arithmetic operations |
| // to set the CC overflow bit properly. The result is then sign-extended. |
| bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| #else |
| bool checkOverflow = true; |
| #endif |
| |
| if (right->IsConstantOperand()) { |
| if (!isInteger || !checkOverflow) |
| __ AddP(ToRegister(result), ToRegister(left), ToOperand(right)); |
| else |
| __ Add32(ToRegister(result), ToRegister(left), ToOperand(right)); |
| } else if (right->IsRegister()) { |
| if (!isInteger) |
| __ AddP(ToRegister(result), ToRegister(left), ToRegister(right)); |
| else if (!checkOverflow) |
| __ AddP_ExtendSrc(ToRegister(result), ToRegister(left), |
| ToRegister(right)); |
| else |
| __ Add32(ToRegister(result), ToRegister(left), ToRegister(right)); |
| } else { |
| if (!left->Equals(instr->result())) |
| __ LoadRR(ToRegister(result), ToRegister(left)); |
| |
| MemOperand mem = ToMemOperand(right); |
| if (!isInteger) { |
| __ AddP(ToRegister(result), mem); |
| } else { |
| #if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN |
| // We want to read the 32-bits directly from memory |
| MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4); |
| #else |
| MemOperand Upper32Mem = ToMemOperand(right); |
| #endif |
| if (checkOverflow) { |
| __ Add32(ToRegister(result), Upper32Mem); |
| } else { |
| __ AddP_ExtendSrc(ToRegister(result), Upper32Mem); |
| } |
| } |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| if (isInteger && checkOverflow) |
| __ lgfr(ToRegister(result), ToRegister(result)); |
| #endif |
| // Doptimize on overflow |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } |
| } |
| |
| void LCodeGen::DoMathMinMax(LMathMinMax* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| HMathMinMax::Operation operation = instr->hydrogen()->operation(); |
| Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge; |
| if (instr->hydrogen()->representation().IsSmiOrInteger32()) { |
| Register left_reg = ToRegister(left); |
| Register right_reg = EmitLoadRegister(right, ip); |
| Register result_reg = ToRegister(instr->result()); |
| Label return_left, done; |
| #if V8_TARGET_ARCH_S390X |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| #endif |
| __ CmpP(left_reg, right_reg); |
| #if V8_TARGET_ARCH_S390X |
| } else { |
| __ Cmp32(left_reg, right_reg); |
| } |
| #endif |
| __ b(cond, &return_left, Label::kNear); |
| __ Move(result_reg, right_reg); |
| __ b(&done, Label::kNear); |
| __ bind(&return_left); |
| __ Move(result_reg, left_reg); |
| __ bind(&done); |
| } else { |
| DCHECK(instr->hydrogen()->representation().IsDouble()); |
| DoubleRegister left_reg = ToDoubleRegister(left); |
| DoubleRegister right_reg = ToDoubleRegister(right); |
| DoubleRegister result_reg = ToDoubleRegister(instr->result()); |
| Label check_nan_left, check_zero, return_left, return_right, done; |
| __ cdbr(left_reg, right_reg); |
| __ bunordered(&check_nan_left, Label::kNear); |
| __ beq(&check_zero); |
| __ b(cond, &return_left, Label::kNear); |
| __ b(&return_right, Label::kNear); |
| |
| __ bind(&check_zero); |
| __ lzdr(kDoubleRegZero); |
| __ cdbr(left_reg, kDoubleRegZero); |
| __ bne(&return_left, Label::kNear); // left == right != 0. |
| |
| // At this point, both left and right are either 0 or -0. |
| // N.B. The following works because +0 + -0 == +0 |
| if (operation == HMathMinMax::kMathMin) { |
| // For min we want logical-or of sign bit: -(-L + -R) |
| __ lcdbr(left_reg, left_reg); |
| __ ldr(result_reg, left_reg); |
| if (left_reg.is(right_reg)) { |
| __ adbr(result_reg, right_reg); |
| } else { |
| __ sdbr(result_reg, right_reg); |
| } |
| __ lcdbr(result_reg, result_reg); |
| } else { |
| // For max we want logical-and of sign bit: (L + R) |
| __ ldr(result_reg, left_reg); |
| __ adbr(result_reg, right_reg); |
| } |
| __ b(&done, Label::kNear); |
| |
| __ bind(&check_nan_left); |
| __ cdbr(left_reg, left_reg); |
| __ bunordered(&return_left, Label::kNear); // left == NaN. |
| |
| __ bind(&return_right); |
| if (!right_reg.is(result_reg)) { |
| __ ldr(result_reg, right_reg); |
| } |
| __ b(&done, Label::kNear); |
| |
| __ bind(&return_left); |
| if (!left_reg.is(result_reg)) { |
| __ ldr(result_reg, left_reg); |
| } |
| __ bind(&done); |
| } |
| } |
| |
| void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
| DoubleRegister left = ToDoubleRegister(instr->left()); |
| DoubleRegister right = ToDoubleRegister(instr->right()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| switch (instr->op()) { |
| case Token::ADD: |
| if (CpuFeatures::IsSupported(VECTOR_FACILITY)) { |
| __ vfa(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ adbr(result, right); |
| } |
| break; |
| case Token::SUB: |
| if (CpuFeatures::IsSupported(VECTOR_FACILITY)) { |
| __ vfs(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ sdbr(result, right); |
| } |
| break; |
| case Token::MUL: |
| if (CpuFeatures::IsSupported(VECTOR_FACILITY)) { |
| __ vfm(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ mdbr(result, right); |
| } |
| break; |
| case Token::DIV: |
| if (CpuFeatures::IsSupported(VECTOR_FACILITY)) { |
| __ vfd(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ ddbr(result, right); |
| } |
| break; |
| case Token::MOD: { |
| __ PrepareCallCFunction(0, 2, scratch0()); |
| __ MovToFloatParameters(left, right); |
| __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()), |
| 0, 2); |
| // Move the result in the double result register. |
| __ MovFromFloatResult(result); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
| DCHECK(ToRegister(instr->context()).is(cp)); |
| DCHECK(ToRegister(instr->left()).is(r3)); |
| DCHECK(ToRegister(instr->right()).is(r2)); |
| DCHECK(ToRegister(instr->result()).is(r2)); |
| |
| Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); |
| CallCode(code, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| template <class InstrType> |
| void LCodeGen::EmitBranch(InstrType instr, Condition cond) { |
| int left_block = instr->TrueDestination(chunk_); |
| int right_block = instr->FalseDestination(chunk_); |
| |
| int next_block = GetNextEmittedBlock(); |
| |
| if (right_block == left_block || cond == al) { |
| EmitGoto(left_block); |
| } else if (left_block == next_block) { |
| __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block)); |
| } else if (right_block == next_block) { |
| __ b(cond, chunk_->GetAssemblyLabel(left_block)); |
| } else { |
| __ b(cond, chunk_->GetAssemblyLabel(left_block)); |
| __ b(chunk_->GetAssemblyLabel(right_block)); |
| } |
| } |
| |
| template <class InstrType> |
| void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) { |
| int true_block = instr->TrueDestination(chunk_); |
| __ b(cond, chunk_->GetAssemblyLabel(true_block)); |
| } |
| |
| template <class InstrType> |
| void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) { |
| int false_block = instr->FalseDestination(chunk_); |
| __ b(cond, chunk_->GetAssemblyLabel(false_block)); |
| } |
| |
| void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); } |
| |
| void LCodeGen::DoBranch(LBranch* instr) { |
| Representation r = instr->hydrogen()->value()->representation(); |
| DoubleRegister dbl_scratch = double_scratch0(); |
| |
| if (r.IsInteger32()) { |
| DCHECK(!info()->IsStub()); |
| Register reg = ToRegister(instr->value()); |
| __ Cmp32(reg, Operand::Zero()); |
| EmitBranch(instr, ne); |
| } else if (r.IsSmi()) { |
| DCHECK(!info()->IsStub()); |
| Register reg = ToRegister(instr->value()); |
| __ CmpP(reg, Operand::Zero()); |
| EmitBranch(instr, ne); |
| } else if (r.IsDouble()) { |
| DCHECK(!info()->IsStub()); |
| DoubleRegister reg = ToDoubleRegister(instr->value()); |
| __ lzdr(kDoubleRegZero); |
| __ cdbr(reg, kDoubleRegZero); |
| // Test the double value. Zero and NaN are false. |
| Condition lt_gt = static_cast<Condition>(lt | gt); |
| |
| EmitBranch(instr, lt_gt); |
| } else { |
| DCHECK(r.IsTagged()); |
| Register reg = ToRegister(instr->value()); |
| HType type = instr->hydrogen()->value()->type(); |
| if (type.IsBoolean()) { |
| DCHECK(!info()->IsStub()); |
| __ CompareRoot(reg, Heap::kTrueValueRootIndex); |
| EmitBranch(instr, eq); |
| } else if (type.IsSmi()) { |
| DCHECK(!info()->IsStub()); |
| __ CmpP(reg, Operand::Zero()); |
| EmitBranch(instr, ne); |
| } else if (type.IsJSArray()) { |
| DCHECK(!info()->IsStub()); |
| EmitBranch(instr, al); |
| } else if (type.IsHeapNumber()) { |
| DCHECK(!info()->IsStub()); |
| __ LoadDouble(dbl_scratch, |
| FieldMemOperand(reg, HeapNumber::kValueOffset)); |
| // Test the double value. Zero and NaN are false. |
| __ lzdr(kDoubleRegZero); |
| __ cdbr(dbl_scratch, kDoubleRegZero); |
| Condition lt_gt = static_cast<Condition>(lt | gt); |
| EmitBranch(instr, lt_gt); |
| } else if (type.IsString()) { |
| DCHECK(!info()->IsStub()); |
| __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset)); |
| __ CmpP(ip, Operand::Zero()); |
| EmitBranch(instr, ne); |
| } else { |
| ToBooleanHints expected = instr->hydrogen()->expected_input_types(); |
| // Avoid deopts in the case where we've never executed this path before. |
| if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; |
| |
| if (expected & ToBooleanHint::kUndefined) { |
| // undefined -> false. |
| __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); |
| __ beq(instr->FalseLabel(chunk_)); |
| } |
| if (expected & ToBooleanHint::kBoolean) { |
| // Boolean -> its value. |
| __ CompareRoot(reg, Heap::kTrueValueRootIndex); |
| __ beq(instr->TrueLabel(chunk_)); |
| __ CompareRoot(reg, Heap::kFalseValueRootIndex); |
| __ beq(instr->FalseLabel(chunk_)); |
| } |
| if (expected & ToBooleanHint::kNull) { |
| // 'null' -> false. |
| __ CompareRoot(reg, Heap::kNullValueRootIndex); |
| __ beq(instr->FalseLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kSmallInteger) { |
| // Smis: 0 -> false, all other -> true. |
| __ CmpP(reg, Operand::Zero()); |
| __ beq(instr->FalseLabel(chunk_)); |
| __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); |
| } else if (expected & ToBooleanHint::kNeedsMap) { |
| // If we need a map later and have a Smi -> deopt. |
| __ TestIfSmi(reg); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0); |
| } |
| |
| const Register map = scratch0(); |
| if (expected & ToBooleanHint::kNeedsMap) { |
| __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| |
| if (expected & ToBooleanHint::kCanBeUndetectable) { |
| // Undetectable -> false. |
| __ tm(FieldMemOperand(map, Map::kBitFieldOffset), |
| Operand(1 << Map::kIsUndetectable)); |
| __ bne(instr->FalseLabel(chunk_)); |
| } |
| } |
| |
| if (expected & ToBooleanHint::kReceiver) { |
| // spec object -> true. |
| __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE); |
| __ bge(instr->TrueLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kString) { |
| // String value -> false iff empty. |
| Label not_string; |
| __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); |
| __ bge(¬_string, Label::kNear); |
| __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset)); |
| __ CmpP(ip, Operand::Zero()); |
| __ bne(instr->TrueLabel(chunk_)); |
| __ b(instr->FalseLabel(chunk_)); |
| __ bind(¬_string); |
| } |
| |
| if (expected & ToBooleanHint::kSymbol) { |
| // Symbol value -> true. |
| __ CompareInstanceType(map, ip, SYMBOL_TYPE); |
| __ beq(instr->TrueLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kSimdValue) { |
| // SIMD value -> true. |
| Label not_simd; |
| __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE); |
| __ beq(instr->TrueLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kHeapNumber) { |
| // heap number -> false iff +0, -0, or NaN. |
| Label not_heap_number; |
| __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); |
| __ bne(¬_heap_number, Label::kNear); |
| __ LoadDouble(dbl_scratch, |
| FieldMemOperand(reg, HeapNumber::kValueOffset)); |
| __ lzdr(kDoubleRegZero); |
| __ cdbr(dbl_scratch, kDoubleRegZero); |
| __ bunordered(instr->FalseLabel(chunk_)); // NaN -> false. |
| __ beq(instr->FalseLabel(chunk_)); // +0, -0 -> false. |
| __ b(instr->TrueLabel(chunk_)); |
| __ bind(¬_heap_number); |
| } |
| |
| if (expected != ToBooleanHint::kAny) { |
| // We've seen something for the first time -> deopt. |
| // This can only happen if we are not generic already. |
| DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject); |
| } |
| } |
| } |
| } |
| |
| void LCodeGen::EmitGoto(int block) { |
| if (!IsNextEmittedBlock(block)) { |
| __ b(chunk_->GetAssemblyLabel(LookupDestination(block))); |
| } |
| } |
| |
| void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } |
| |
| Condition LCodeGen::TokenToCondition(Token::Value op) { |
| Condition cond = kNoCondition; |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: |
| cond = eq; |
| break; |
| case Token::NE: |
| case Token::NE_STRICT: |
| cond = ne; |
| break; |
| case Token::LT: |
| cond = lt; |
| break; |
| case Token::GT: |
| cond = gt; |
| break; |
| case Token::LTE: |
| cond = le; |
| break; |
| case Token::GTE: |
| cond = ge; |
| break; |
| case Token::IN: |
| case Token::INSTANCEOF: |
| default: |
| UNREACHABLE(); |
| } |
| return cond; |
| } |
| |
| void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| bool is_unsigned = |
| instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || |
| instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); |
| Condition cond = TokenToCondition(instr->op()); |
| |
| if (left->IsConstantOperand() && right->IsConstantOperand()) { |
| // We can statically evaluate the comparison. |
| double left_val = ToDouble(LConstantOperand::cast(left)); |
| double right_val = ToDouble(LConstantOperand::cast(right)); |
| int next_block = Token::EvalComparison(instr->op(), left_val, right_val) |
| ? instr->TrueDestination(chunk_) |
| : instr->FalseDestination(chunk_); |
| EmitGoto(next_block); |
| } else { |
| if (instr->is_double()) { |
| // Compare left and right operands as doubles and load the |
| // resulting flags into the normal status register. |
| __ cdbr(ToDoubleRegister(left), ToDoubleRegister(right)); |
| // If a NaN is involved, i.e. the result is unordered, |
| // jump to false block label. |
| __ bunordered(instr->FalseLabel(chunk_)); |
| } else { |
| if (right->IsConstantOperand()) { |
| int32_t value = ToInteger32(LConstantOperand::cast(right)); |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| if (is_unsigned) { |
| __ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0); |
| } else { |
| __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0); |
| } |
| } else { |
| if (is_unsigned) { |
| __ CmpLogical32(ToRegister(left), ToOperand(right)); |
| } else { |
| __ Cmp32(ToRegister(left), ToOperand(right)); |
| } |
| } |
| } else if (left->IsConstantOperand()) { |
| int32_t value = ToInteger32(LConstantOperand::cast(left)); |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| if (is_unsigned) { |
| __ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0); |
| } else { |
| __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0); |
| } |
| } else { |
| if (is_unsigned) { |
| __ CmpLogical32(ToRegister(right), ToOperand(left)); |
| } else { |
| __ Cmp32(ToRegister(right), ToOperand(left)); |
| } |
| } |
| // We commuted the operands, so commute the condition. |
| cond = CommuteCondition(cond); |
| } else if (instr->hydrogen_value()->representation().IsSmi()) { |
| if (is_unsigned) { |
| __ CmpLogicalP(ToRegister(left), ToRegister(right)); |
| } else { |
| __ CmpP(ToRegister(left), ToRegister(right)); |
| } |
| } else { |
| if (is_unsigned) { |
| __ CmpLogical32(ToRegister(left), ToRegister(right)); |
| } else { |
| __ Cmp32(ToRegister(left), ToRegister(right)); |
| } |
| } |
| } |
| EmitBranch(instr, cond); |
| } |
| } |
| |
| void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
| Register left = ToRegister(instr->left()); |
| Register right = ToRegister(instr->right()); |
| |
| __ CmpP(left, right); |
| EmitBranch(instr, eq); |
| } |
| |
| void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { |
| if (instr->hydrogen()->representation().IsTagged()) { |
| Register input_reg = ToRegister(instr->object()); |
| __ CmpP(input_reg, Operand(factory()->the_hole_value())); |
| EmitBranch(instr, eq); |
| return; |
| } |
| |
| DoubleRegister input_reg = ToDoubleRegister(instr->object()); |
| __ cdbr(input_reg, input_reg); |
| EmitFalseBranch(instr, ordered); |
| |
| Register scratch = scratch0(); |
| // Convert to GPR and examine the upper 32 bits |
| __ lgdr(scratch, input_reg); |
| __ srlg(scratch, scratch, Operand(32)); |
| __ Cmp32(scratch, Operand(kHoleNanUpper32)); |
| EmitBranch(instr, eq); |
| } |
| |
| Condition LCodeGen::EmitIsString(Register input, Register temp1, |
| Label* is_not_string, |
| SmiCheck check_needed = INLINE_SMI_CHECK) { |
| if (check_needed == INLINE_SMI_CHECK) { |
| __ JumpIfSmi(input, is_not_string); |
| } |
| __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); |
| |
| return lt; |
| } |
| |
| void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { |
| Register reg = ToRegister(instr->value()); |
| Register temp1 = ToRegister(instr->temp()); |
| |
| SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() |
| ? OMIT_SMI_CHECK |
| : INLINE_SMI_CHECK; |
| Condition true_cond = |
| EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); |
| |
| EmitBranch(instr, true_cond); |
| } |
| |
| void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
| Register input_reg = EmitLoadRegister(instr->value(), ip); |
| __ TestIfSmi(input_reg); |
| EmitBranch(instr, eq); |
| } |
| |
| void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
| Register input = ToRegister(instr->value()); |
| Register temp = ToRegister(instr->temp()); |
| |
| if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
| __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
| } |
| __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset)); |
| __ tm(FieldMemOperand(temp, Map::kBitFieldOffset), |
| Operand(1 << Map::kIsUndetectable)); |
| EmitBranch(instr, ne); |
| } |
| |
| static Condition ComputeCompareCondition(Token::Value op) { |
| switch (op) { |
| case Token::EQ_STRICT: |
| case Token::EQ: |
| return eq; |
| case Token::LT: |
| return lt; |
| case Token::GT: |
| return gt; |
| case Token::LTE: |
| return le; |
| case Token::GTE: |
| return ge; |
| default: |
| UNREACHABLE(); |
| return kNoCondition; |
| } |
| } |
| |
| void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { |
| DCHECK(ToRegister(instr->context()).is(cp)); |
| DCHECK(ToRegister(instr->left()).is(r3)); |
| DCHECK(ToRegister(instr->right()).is(r2)); |
| |
| Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code(); |
| CallCode(code, RelocInfo::CODE_TARGET, instr); |
| __ CompareRoot(r2, Heap::kTrueValueRootIndex); |
| EmitBranch(instr, eq); |
| } |
| |
| static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == FIRST_TYPE) return to; |
| DCHECK(from == to || to == LAST_TYPE); |
| return from; |
| } |
| |
| static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == to) return eq; |
| if (to == LAST_TYPE) return ge; |
| if (from == FIRST_TYPE) return le; |
| UNREACHABLE(); |
| return eq; |
| } |
| |
| void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
| Register scratch = scratch0(); |
| Register input = ToRegister(instr->value()); |
| |
| if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
| __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
| } |
| |
| __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); |
| EmitBranch(instr, BranchCondition(instr->hydrogen())); |
| } |
| |
| // Branches to a label or falls through with the answer in flags. Trashes |
| // the temp registers, but not the input. |
| void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, |
| Handle<String> class_name, Register input, |
| Register temp, Register temp2) { |
| DCHECK(!input.is(temp)); |
| DCHECK(!input.is(temp2)); |
| DCHECK(!temp.is(temp2)); |
| |
| __ JumpIfSmi(input, is_false); |
| |
| __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE); |
| STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); |
| if (String::Equals(isolate()->factory()->Function_string(), class_name)) { |
| __ bge(is_true); |
| } else { |
| __ bge(is_false); |
| } |
| |
| // Check if the constructor in the map is a function. |
| Register instance_type = ip; |
| __ GetMapConstructor(temp, temp, temp2, instance_type); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE)); |
| if (String::Equals(isolate()->factory()->Object_string(), class_name)) { |
| __ bne(is_true); |
| } else { |
| __ bne(is_false); |
| } |
| |
| // temp now contains the constructor function. Grab the |
| // instance class name from there. |
| __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadP(temp, |
| FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); |
| // The class name we are testing against is internalized since it's a literal. |
| // The name in the constructor is internalized because of the way the context |
| // is booted. This routine isn't expected to work for random API-created |
| // classes and it doesn't have to because you can't access it with natives |
| // syntax. Since both sides are internalized it is sufficient to use an |
| // identity comparison. |
| __ CmpP(temp, Operand(class_name)); |
| // End with the answer in flags. |
| } |
| |
| void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
| Register input = ToRegister(instr->value()); |
| Register temp = scratch0(); |
| Register temp2 = ToRegister(instr->temp()); |
| Handle<String> class_name = instr->hydrogen()->class_name(); |
| |
| EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), |
| class_name, input, temp, temp2); |
| |
| EmitBranch(instr, eq); |
| } |
| |
| void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
| Register reg = ToRegister(instr->value()); |
| Register temp = ToRegister(instr->temp()); |
| |
| __ mov(temp, Operand(instr->map())); |
| __ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| EmitBranch(instr, eq); |
| } |
| |
| void LCodeGen::DoHasInPrototypeChainAndBranch( |
| LHasInPrototypeChainAndBranch* instr) { |
| Register const object = ToRegister(instr->object()); |
| Register const object_map = scratch0(); |
| Register const object_instance_type = ip; |
| Register const object_prototype = object_map; |
| Register const prototype = ToRegister(instr->prototype()); |
| |
| // The {object} must be a spec object. It's sufficient to know that {object} |
| // is not a smi, since all other non-spec objects have {null} prototypes and |
| // will be ruled out below. |
| if (instr->hydrogen()->ObjectNeedsSmiCheck()) { |
| __ TestIfSmi(object); |
| EmitFalseBranch(instr, eq); |
| } |
| // Loop through the {object}s prototype chain looking for the {prototype}. |
| __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| Label loop; |
| __ bind(&loop); |
| |
| // Deoptimize if the object needs to be access checked. |
| __ LoadlB(object_instance_type, |
| FieldMemOperand(object_map, Map::kBitFieldOffset)); |
| __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0); |
| DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, cr0); |
| // Deoptimize for proxies. |
| __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy); |
| __ LoadP(object_prototype, |
| FieldMemOperand(object_map, Map::kPrototypeOffset)); |
| __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); |
| EmitFalseBranch(instr, eq); |
| __ CmpP(object_prototype, prototype); |
| EmitTrueBranch(instr, eq); |
| __ LoadP(object_map, |
| FieldMemOperand(object_prototype, HeapObject::kMapOffset)); |
| __ b(&loop); |
| } |
| |
| void LCodeGen::DoCmpT(LCmpT* instr) { |
| DCHECK(ToRegister(instr->context()).is(cp)); |
| Token::Value op = instr->op(); |
| |
| Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| // This instruction also signals no smi code inlined |
| __ CmpP(r2, Operand::Zero()); |
| |
| Condition condition = ComputeCompareCondition(op); |
| Label true_value, done; |
| |
| __ b(condition, &true_value, Label::kNear); |
| |
| __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); |
| __ b(&done, Label::kNear); |
| |
| __ bind(&true_value); |
| __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); |
| |
| __ bind(&done); |
| } |
| |
| void LCodeGen::DoReturn(LReturn* instr) { |
| if (FLAG_trace && info()->IsOptimizing()) { |
| // Push the return value on the stack as the parameter. |
| // Runtime::TraceExit returns its parameter in r2. We're leaving the code |
| // managed by the register allocator and tearing down the frame, it's |
| // safe to write to the context register. |
| __ push(r2); |
| __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kTraceExit); |
| } |
| if (info()->saves_caller_doubles()) { |
| RestoreCallerDoubles(); |
| } |
| if (instr->has_constant_parameter_count()) { |
| int parameter_count = ToInteger32(instr->constant_parameter_count()); |
| int32_t sp_delta = (parameter_count + 1) * kPointerSize; |
| if (NeedsEagerFrame()) { |
| masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta); |
| } else if (sp_delta != 0) { |
| // TODO(joransiu): Clean this up into Macro Assembler |
| if (sp_delta >= 0 && sp_delta < 4096) |
| __ la(sp, MemOperand(sp, sp_delta)); |
| else |
| __ lay(sp, MemOperand(sp, sp_delta)); |
| } |
| } else { |
| DCHECK(info()->IsStub()); // Functions would need to drop one more value. |
| Register reg = ToRegister(instr->parameter_count()); |
| // The argument count parameter is a smi |
| if (NeedsEagerFrame()) { |
| masm_->LeaveFrame(StackFrame::JAVA_SCRIPT); |
| } |
| __ SmiToPtrArrayOffset(r0, reg); |
| __ AddP(sp, sp, r0); |
| } |
| |
| __ Ret(); |
| } |
| |
| void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| __ LoadP(result, ContextMemOperand(context, instr->slot_index())); |
| } |
| |
| void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register value = ToRegister(instr->value()); |
| Register scratch = scratch0(); |
| MemOperand target = ContextMemOperand(context, instr->slot_index()); |
| |
| __ StoreP(value, target); |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() |
| ? OMIT_SMI_CHECK |
| : INLINE_SMI_CHECK; |
| __ RecordWriteContextSlot(context, target.offset(), value, scratch, |
| GetLinkRegisterState(), kSaveFPRegs, |
| EMIT_REMEMBERED_SET, check_needed); |
| } |
| } |
| |
| void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
| HObjectAccess access = instr->hydrogen()->access(); |
| int offset = access.offset(); |
| Register object = ToRegister(instr->object()); |
| |
| if (access.IsExternalMemory()) { |
| Register result = ToRegister(instr->result()); |
| MemOperand operand = MemOperand(object, offset); |
| __ LoadRepresentation(result, operand, access.representation(), r0); |
| return; |
| } |
| |
| if (instr->hydrogen()->representation().IsDouble()) { |
| DCHECK(access.IsInobject()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| __ LoadDouble(result, FieldMemOperand(object, offset)); |
| return; |
| } |
| |
| Register result = ToRegister(instr->result()); |
| if (!access.IsInobject()) { |
| __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
| object = result; |
| } |
| |
| Representation representation = access.representation(); |
| |
| #if V8_TARGET_ARCH_S390X |
| // 64-bit Smi optimization |
| if (representation.IsSmi() && |
| instr->hydrogen()->representation().IsInteger32()) { |
| // Read int value directly from upper half of the smi. |
| offset = SmiWordOffset(offset); |
| representation = Representation::Integer32(); |
| } |
| #endif |
| |
| __ LoadRepresentation(result, FieldMemOperand(object, offset), representation, |
| r0); |
| } |
| |
| void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
| Register scratch = scratch0(); |
| Register function = ToRegister(instr->function()); |
| Register result = ToRegister(instr->result()); |
| |
| // Get the prototype or initial map from the function. |
| __ LoadP(result, |
| FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check that the function has a prototype or an initial map. |
| __ CompareRoot(result, Heap::kTheHoleValueRootIndex); |
| DeoptimizeIf(eq, instr, DeoptimizeReason::kHole); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| __ CompareObjectType(result, scratch, scratch,
|