| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/crankshaft/x64/lithium-codegen-x64.h" |
| |
| #include "src/base/bits.h" |
| #include "src/builtins/builtins-constructor.h" |
| #include "src/code-factory.h" |
| #include "src/code-stubs.h" |
| #include "src/crankshaft/hydrogen-osr.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // When invoking builtins, we need to record the safepoint in the middle of |
| // the invoke instruction sequence generated by the macro assembler. |
| class SafepointGenerator final : public CallWrapper { |
| public: |
| SafepointGenerator(LCodeGen* codegen, |
| LPointerMap* pointers, |
| Safepoint::DeoptMode mode) |
| : codegen_(codegen), |
| pointers_(pointers), |
| deopt_mode_(mode) { } |
| virtual ~SafepointGenerator() {} |
| |
| void BeforeCall(int call_size) const override {} |
| |
| void AfterCall() const override { |
| codegen_->RecordSafepoint(pointers_, deopt_mode_); |
| } |
| |
| private: |
| LCodeGen* codegen_; |
| LPointerMap* pointers_; |
| Safepoint::DeoptMode deopt_mode_; |
| }; |
| |
| |
| #define __ masm()-> |
| |
| bool LCodeGen::GenerateCode() { |
| LPhase phase("Z_Code generation", chunk()); |
| DCHECK(is_unused()); |
| status_ = GENERATING; |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done in GeneratePrologue). |
| FrameScope frame_scope(masm_, StackFrame::MANUAL); |
| |
| return GeneratePrologue() && |
| GenerateBody() && |
| GenerateDeferredCode() && |
| GenerateJumpTable() && |
| GenerateSafepointTable(); |
| } |
| |
| |
| void LCodeGen::FinishCode(Handle<Code> code) { |
| DCHECK(is_done()); |
| code->set_stack_slots(GetTotalFrameSlotCount()); |
| code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
| PopulateDeoptimizationData(code); |
| } |
| |
| |
| #ifdef _MSC_VER |
| void LCodeGen::MakeSureStackPagesMapped(int offset) { |
| const int kPageSize = 4 * KB; |
| for (offset -= kPageSize; offset > 0; offset -= kPageSize) { |
| __ movp(Operand(rsp, offset), rax); |
| } |
| } |
| #endif |
| |
| |
| void LCodeGen::SaveCallerDoubles() { |
| DCHECK(info()->saves_caller_doubles()); |
| DCHECK(NeedsEagerFrame()); |
| Comment(";;; Save clobbered callee double registers"); |
| int count = 0; |
| BitVector* doubles = chunk()->allocated_double_registers(); |
| BitVector::Iterator save_iterator(doubles); |
| while (!save_iterator.Done()) { |
| __ Movsd(MemOperand(rsp, count * kDoubleSize), |
| XMMRegister::from_code(save_iterator.Current())); |
| save_iterator.Advance(); |
| count++; |
| } |
| } |
| |
| |
| void LCodeGen::RestoreCallerDoubles() { |
| DCHECK(info()->saves_caller_doubles()); |
| DCHECK(NeedsEagerFrame()); |
| Comment(";;; Restore clobbered callee double registers"); |
| BitVector* doubles = chunk()->allocated_double_registers(); |
| BitVector::Iterator save_iterator(doubles); |
| int count = 0; |
| while (!save_iterator.Done()) { |
| __ Movsd(XMMRegister::from_code(save_iterator.Current()), |
| MemOperand(rsp, count * kDoubleSize)); |
| save_iterator.Advance(); |
| count++; |
| } |
| } |
| |
| |
| bool LCodeGen::GeneratePrologue() { |
| DCHECK(is_generating()); |
| |
| if (info()->IsOptimizing()) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm_); |
| } |
| |
| info()->set_prologue_offset(masm_->pc_offset()); |
| if (NeedsEagerFrame()) { |
| DCHECK(!frame_is_built_); |
| frame_is_built_ = true; |
| if (info()->IsStub()) { |
| __ StubPrologue(StackFrame::STUB); |
| } else { |
| __ Prologue(info()->GeneratePreagedPrologue()); |
| } |
| } |
| |
| // Reserve space for the stack slots needed by the code. |
| int slots = GetStackSlotCount(); |
| if (slots > 0) { |
| if (FLAG_debug_code) { |
| __ subp(rsp, Immediate(slots * kPointerSize)); |
| #ifdef _MSC_VER |
| MakeSureStackPagesMapped(slots * kPointerSize); |
| #endif |
| __ Push(rax); |
| __ Set(rax, slots); |
| __ Set(kScratchRegister, kSlotsZapValue); |
| Label loop; |
| __ bind(&loop); |
| __ movp(MemOperand(rsp, rax, times_pointer_size, 0), |
| kScratchRegister); |
| __ decl(rax); |
| __ j(not_zero, &loop); |
| __ Pop(rax); |
| } else { |
| __ subp(rsp, Immediate(slots * kPointerSize)); |
| #ifdef _MSC_VER |
| MakeSureStackPagesMapped(slots * kPointerSize); |
| #endif |
| } |
| |
| if (info()->saves_caller_doubles()) { |
| SaveCallerDoubles(); |
| } |
| } |
| return !is_aborted(); |
| } |
| |
| |
| void LCodeGen::DoPrologue(LPrologue* instr) { |
| Comment(";;; Prologue begin"); |
| |
| // Possibly allocate a local context. |
| if (info_->scope()->NeedsContext()) { |
| Comment(";;; Allocate local context"); |
| bool need_write_barrier = true; |
| // Argument to NewContext is the function, which is still in rdi. |
| int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; |
| if (info()->scope()->is_script_scope()) { |
| __ Push(rdi); |
| __ Push(info()->scope()->scope_info()); |
| __ CallRuntime(Runtime::kNewScriptContext); |
| deopt_mode = Safepoint::kLazyDeopt; |
| } else { |
| if (slots <= |
| ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { |
| Callable callable = CodeFactory::FastNewFunctionContext( |
| isolate(), info()->scope()->scope_type()); |
| __ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots); |
| __ Call(callable.code(), RelocInfo::CODE_TARGET); |
| // Result of FastNewFunctionContextStub is always in new space. |
| need_write_barrier = false; |
| } else { |
| __ Push(rdi); |
| __ Push(Smi::FromInt(info()->scope()->scope_type())); |
| __ CallRuntime(Runtime::kNewFunctionContext); |
| } |
| } |
| RecordSafepoint(deopt_mode); |
| |
| // Context is returned in rax. It replaces the context passed to us. |
| // It's saved in the stack and kept live in rsi. |
| __ movp(rsi, rax); |
| __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax); |
| |
| // Copy any necessary parameters into the context. |
| int num_parameters = info()->scope()->num_parameters(); |
| int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; |
| for (int i = first_parameter; i < num_parameters; i++) { |
| Variable* var = (i == -1) ? info()->scope()->receiver() |
| : info()->scope()->parameter(i); |
| if (var->IsContextSlot()) { |
| int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
| (num_parameters - 1 - i) * kPointerSize; |
| // Load parameter from stack. |
| __ movp(rax, Operand(rbp, parameter_offset)); |
| // Store it in the context. |
| int context_offset = Context::SlotOffset(var->index()); |
| __ movp(Operand(rsi, context_offset), rax); |
| // Update the write barrier. This clobbers rax and rbx. |
| if (need_write_barrier) { |
| __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs); |
| } else if (FLAG_debug_code) { |
| Label done; |
| __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear); |
| __ Abort(kExpectedNewSpaceObject); |
| __ bind(&done); |
| } |
| } |
| } |
| Comment(";;; End allocate local context"); |
| } |
| |
| Comment(";;; Prologue end"); |
| } |
| |
| |
| void LCodeGen::GenerateOsrPrologue() { |
| // Generate the OSR entry prologue at the first unknown OSR value, or if there |
| // are none, at the OSR entrypoint instruction. |
| if (osr_pc_offset_ >= 0) return; |
| |
| osr_pc_offset_ = masm()->pc_offset(); |
| |
| // Adjust the frame size, subsuming the unoptimized frame into the |
| // optimized frame. |
| int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); |
| DCHECK(slots >= 0); |
| __ subp(rsp, Immediate(slots * kPointerSize)); |
| } |
| |
| |
| void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { |
| if (instr->IsCall()) { |
| EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
| } |
| if (!instr->IsLazyBailout() && !instr->IsGap()) { |
| safepoints_.BumpLastLazySafepointIndex(); |
| } |
| } |
| |
| |
| void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { |
| if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() && |
| instr->hydrogen_value()->representation().IsInteger32() && |
| instr->result()->IsRegister()) { |
| __ AssertZeroExtended(ToRegister(instr->result())); |
| } |
| |
| if (instr->HasResult() && instr->MustSignExtendResult(chunk())) { |
| // We sign extend the dehoisted key at the definition point when the pointer |
| // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use |
| // points and MustSignExtendResult is always false. We can't use |
| // STATIC_ASSERT here as the pointer size is 32-bit for x32. |
| DCHECK(kPointerSize == kInt64Size); |
| if (instr->result()->IsRegister()) { |
| Register result_reg = ToRegister(instr->result()); |
| __ movsxlq(result_reg, result_reg); |
| } else { |
| // Sign extend the 32bit result in the stack slots. |
| DCHECK(instr->result()->IsStackSlot()); |
| Operand src = ToOperand(instr->result()); |
| __ movsxlq(kScratchRegister, src); |
| __ movq(src, kScratchRegister); |
| } |
| } |
| } |
| |
| |
| bool LCodeGen::GenerateJumpTable() { |
| if (jump_table_.length() == 0) return !is_aborted(); |
| |
| Label needs_frame; |
| Comment(";;; -------------------- Jump table --------------------"); |
| for (int i = 0; i < jump_table_.length(); i++) { |
| Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; |
| __ bind(&table_entry->label); |
| Address entry = table_entry->address; |
| DeoptComment(table_entry->deopt_info); |
| if (table_entry->needs_frame) { |
| DCHECK(!info()->saves_caller_doubles()); |
| __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry)); |
| __ call(&needs_frame); |
| } else { |
| if (info()->saves_caller_doubles()) { |
| DCHECK(info()->IsStub()); |
| RestoreCallerDoubles(); |
| } |
| __ call(entry, RelocInfo::RUNTIME_ENTRY); |
| } |
| } |
| |
| if (needs_frame.is_linked()) { |
| __ bind(&needs_frame); |
| /* stack layout |
| 3: return address <-- rsp |
| 2: garbage |
| 1: garbage |
| 0: garbage |
| */ |
| // Reserve space for stub marker. |
| __ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize)); |
| __ Push(MemOperand( |
| rsp, TypedFrameConstants::kFrameTypeSize)); // Copy return address. |
| __ Push(kScratchRegister); |
| |
| /* stack layout |
| 3: return address |
| 2: garbage |
| 1: return address |
| 0: entry address <-- rsp |
| */ |
| |
| // Create a stack frame. |
| __ movp(MemOperand(rsp, 3 * kPointerSize), rbp); |
| __ leap(rbp, MemOperand(rsp, 3 * kPointerSize)); |
| |
| // This variant of deopt can only be used with stubs. Since we don't |
| // have a function pointer to install in the stack frame that we're |
| // building, install a special marker there instead. |
| DCHECK(info()->IsStub()); |
| __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB)); |
| |
| /* stack layout |
| 3: old rbp |
| 2: stub marker |
| 1: return address |
| 0: entry address <-- rsp |
| */ |
| __ ret(0); |
| } |
| |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateDeferredCode() { |
| DCHECK(is_generating()); |
| if (deferred_.length() > 0) { |
| for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { |
| LDeferredCode* code = deferred_[i]; |
| |
| HValue* value = |
| instructions_->at(code->instruction_index())->hydrogen_value(); |
| RecordAndWritePosition(value->position()); |
| |
| Comment(";;; <@%d,#%d> " |
| "-------------------- Deferred %s --------------------", |
| code->instruction_index(), |
| code->instr()->hydrogen_value()->id(), |
| code->instr()->Mnemonic()); |
| __ bind(code->entry()); |
| if (NeedsDeferredFrame()) { |
| Comment(";;; Build frame"); |
| DCHECK(!frame_is_built_); |
| DCHECK(info()->IsStub()); |
| frame_is_built_ = true; |
| // Build the frame in such a way that esi isn't trashed. |
| __ pushq(rbp); // Caller's frame pointer. |
| __ Push(Smi::FromInt(StackFrame::STUB)); |
| __ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp)); |
| Comment(";;; Deferred code"); |
| } |
| code->Generate(); |
| if (NeedsDeferredFrame()) { |
| __ bind(code->done()); |
| Comment(";;; Destroy frame"); |
| DCHECK(frame_is_built_); |
| frame_is_built_ = false; |
| __ movp(rsp, rbp); |
| __ popq(rbp); |
| } |
| __ jmp(code->exit()); |
| } |
| } |
| |
| // Deferred code is the last part of the instruction sequence. Mark |
| // the generated code as done unless we bailed out. |
| if (!is_aborted()) status_ = DONE; |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateSafepointTable() { |
| DCHECK(is_done()); |
| safepoints_.Emit(masm(), GetTotalFrameSlotCount()); |
| return !is_aborted(); |
| } |
| |
| |
| Register LCodeGen::ToRegister(int index) const { |
| return Register::from_code(index); |
| } |
| |
| |
| XMMRegister LCodeGen::ToDoubleRegister(int index) const { |
| return XMMRegister::from_code(index); |
| } |
| |
| |
| Register LCodeGen::ToRegister(LOperand* op) const { |
| DCHECK(op->IsRegister()); |
| return ToRegister(op->index()); |
| } |
| |
| |
| XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
| DCHECK(op->IsDoubleRegister()); |
| return ToDoubleRegister(op->index()); |
| } |
| |
| |
| bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); |
| } |
| |
| |
| bool LCodeGen::IsExternalConstant(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsExternal(); |
| } |
| |
| |
| bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const { |
| return op->IsConstantOperand() && |
| chunk_->IsDehoistedKey(chunk_->LookupConstant(op)); |
| } |
| |
| |
| bool LCodeGen::IsSmiConstant(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsSmi(); |
| } |
| |
| |
| int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { |
| return ToRepresentation(op, Representation::Integer32()); |
| } |
| |
| |
| int32_t LCodeGen::ToRepresentation(LConstantOperand* op, |
| const Representation& r) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| int32_t value = constant->Integer32Value(); |
| if (r.IsInteger32()) return value; |
| DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged()); |
| return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value))); |
| } |
| |
| |
| Smi* LCodeGen::ToSmi(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| return Smi::FromInt(constant->Integer32Value()); |
| } |
| |
| |
| double LCodeGen::ToDouble(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(constant->HasDoubleValue()); |
| return constant->DoubleValue(); |
| } |
| |
| |
| ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(constant->HasExternalReferenceValue()); |
| return constant->ExternalReferenceValue(); |
| } |
| |
| |
| Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { |
| HConstant* constant = chunk_->LookupConstant(op); |
| DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); |
| return constant->handle(isolate()); |
| } |
| |
| |
| static int ArgumentsOffsetWithoutFrame(int index) { |
| DCHECK(index < 0); |
| return -(index + 1) * kPointerSize + kPCOnStackSize; |
| } |
| |
| |
| Operand LCodeGen::ToOperand(LOperand* op) const { |
| // Does not handle registers. In X64 assembler, plain registers are not |
| // representable as an Operand. |
| DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); |
| if (NeedsEagerFrame()) { |
| return Operand(rbp, FrameSlotToFPOffset(op->index())); |
| } else { |
| // Retrieve parameter without eager stack-frame relative to the |
| // stack-pointer. |
| return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index())); |
| } |
| } |
| |
| |
| void LCodeGen::WriteTranslation(LEnvironment* environment, |
| Translation* translation) { |
| if (environment == NULL) return; |
| |
| // The translation includes one command per value in the environment. |
| int translation_size = environment->translation_size(); |
| |
| WriteTranslation(environment->outer(), translation); |
| WriteTranslationFrame(environment, translation); |
| |
| int object_index = 0; |
| int dematerialized_index = 0; |
| for (int i = 0; i < translation_size; ++i) { |
| LOperand* value = environment->values()->at(i); |
| AddToTranslation( |
| environment, translation, value, environment->HasTaggedValueAt(i), |
| environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); |
| } |
| } |
| |
| |
| void LCodeGen::AddToTranslation(LEnvironment* environment, |
| Translation* translation, |
| LOperand* op, |
| bool is_tagged, |
| bool is_uint32, |
| int* object_index_pointer, |
| int* dematerialized_index_pointer) { |
| if (op == LEnvironment::materialization_marker()) { |
| int object_index = (*object_index_pointer)++; |
| if (environment->ObjectIsDuplicateAt(object_index)) { |
| int dupe_of = environment->ObjectDuplicateOfAt(object_index); |
| translation->DuplicateObject(dupe_of); |
| return; |
| } |
| int object_length = environment->ObjectLengthAt(object_index); |
| if (environment->ObjectIsArgumentsAt(object_index)) { |
| translation->BeginArgumentsObject(object_length); |
| } else { |
| translation->BeginCapturedObject(object_length); |
| } |
| int dematerialized_index = *dematerialized_index_pointer; |
| int env_offset = environment->translation_size() + dematerialized_index; |
| *dematerialized_index_pointer += object_length; |
| for (int i = 0; i < object_length; ++i) { |
| LOperand* value = environment->values()->at(env_offset + i); |
| AddToTranslation(environment, |
| translation, |
| value, |
| environment->HasTaggedValueAt(env_offset + i), |
| environment->HasUint32ValueAt(env_offset + i), |
| object_index_pointer, |
| dematerialized_index_pointer); |
| } |
| return; |
| } |
| |
| if (op->IsStackSlot()) { |
| int index = op->index(); |
| if (is_tagged) { |
| translation->StoreStackSlot(index); |
| } else if (is_uint32) { |
| translation->StoreUint32StackSlot(index); |
| } else { |
| translation->StoreInt32StackSlot(index); |
| } |
| } else if (op->IsDoubleStackSlot()) { |
| int index = op->index(); |
| translation->StoreDoubleStackSlot(index); |
| } else if (op->IsRegister()) { |
| Register reg = ToRegister(op); |
| if (is_tagged) { |
| translation->StoreRegister(reg); |
| } else if (is_uint32) { |
| translation->StoreUint32Register(reg); |
| } else { |
| translation->StoreInt32Register(reg); |
| } |
| } else if (op->IsDoubleRegister()) { |
| XMMRegister reg = ToDoubleRegister(op); |
| translation->StoreDoubleRegister(reg); |
| } else if (op->IsConstantOperand()) { |
| HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); |
| int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); |
| translation->StoreLiteral(src_index); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::CallCodeGeneric(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr, |
| SafepointMode safepoint_mode, |
| int argc) { |
| DCHECK(instr != NULL); |
| __ call(code, mode); |
| RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc); |
| |
| // Signal that we don't inline smi code before these stubs in the |
| // optimizing code generator. |
| if (code->kind() == Code::BINARY_OP_IC || |
| code->kind() == Code::COMPARE_IC) { |
| __ nop(); |
| } |
| } |
| |
| |
| void LCodeGen::CallCode(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr) { |
| CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0); |
| } |
| |
| |
| void LCodeGen::CallRuntime(const Runtime::Function* function, |
| int num_arguments, |
| LInstruction* instr, |
| SaveFPRegsMode save_doubles) { |
| DCHECK(instr != NULL); |
| DCHECK(instr->HasPointerMap()); |
| |
| __ CallRuntime(function, num_arguments, save_doubles); |
| |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); |
| } |
| |
| |
| void LCodeGen::LoadContextFromDeferred(LOperand* context) { |
| if (context->IsRegister()) { |
| if (!ToRegister(context).is(rsi)) { |
| __ movp(rsi, ToRegister(context)); |
| } |
| } else if (context->IsStackSlot()) { |
| __ movp(rsi, ToOperand(context)); |
| } else if (context->IsConstantOperand()) { |
| HConstant* constant = |
| chunk_->LookupConstant(LConstantOperand::cast(context)); |
| __ Move(rsi, Handle<Object>::cast(constant->handle(isolate()))); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| |
| void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
| int argc, |
| LInstruction* instr, |
| LOperand* context) { |
| LoadContextFromDeferred(context); |
| |
| __ CallRuntimeSaveDoubles(id); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); |
| } |
| |
| |
| void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, |
| Safepoint::DeoptMode mode) { |
| environment->set_has_been_used(); |
| if (!environment->HasBeenRegistered()) { |
| // Physical stack frame layout: |
| // -x ............. -4 0 ..................................... y |
| // [incoming arguments] [spill slots] [pushed outgoing arguments] |
| |
| // Layout of the environment: |
| // 0 ..................................................... size-1 |
| // [parameters] [locals] [expression stack including arguments] |
| |
| // Layout of the translation: |
| // 0 ........................................................ size - 1 + 4 |
| // [expression stack including arguments] [locals] [4 words] [parameters] |
| // |>------------ translation_size ------------<| |
| |
| int frame_count = 0; |
| int jsframe_count = 0; |
| for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
| ++frame_count; |
| if (e->frame_type() == JS_FUNCTION) { |
| ++jsframe_count; |
| } |
| } |
| Translation translation(&translations_, frame_count, jsframe_count, zone()); |
| WriteTranslation(environment, &translation); |
| int deoptimization_index = deoptimizations_.length(); |
| int pc_offset = masm()->pc_offset(); |
| environment->Register(deoptimization_index, |
| translation.index(), |
| (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
| deoptimizations_.Add(environment, environment->zone()); |
| } |
| } |
| |
| void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, |
| DeoptimizeReason deopt_reason, |
| Deoptimizer::BailoutType bailout_type) { |
| LEnvironment* environment = instr->environment(); |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| DCHECK(environment->HasBeenRegistered()); |
| int id = environment->deoptimization_index(); |
| Address entry = |
| Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); |
| if (entry == NULL) { |
| Abort(kBailoutWasNotPrepared); |
| return; |
| } |
| |
| if (DeoptEveryNTimes()) { |
| ExternalReference count = ExternalReference::stress_deopt_count(isolate()); |
| Label no_deopt; |
| __ pushfq(); |
| __ pushq(rax); |
| Operand count_operand = masm()->ExternalOperand(count, kScratchRegister); |
| __ movl(rax, count_operand); |
| __ subl(rax, Immediate(1)); |
| __ j(not_zero, &no_deopt, Label::kNear); |
| if (FLAG_trap_on_deopt) __ int3(); |
| __ movl(rax, Immediate(FLAG_deopt_every_n_times)); |
| __ movl(count_operand, rax); |
| __ popq(rax); |
| __ popfq(); |
| DCHECK(frame_is_built_); |
| __ call(entry, RelocInfo::RUNTIME_ENTRY); |
| __ bind(&no_deopt); |
| __ movl(count_operand, rax); |
| __ popq(rax); |
| __ popfq(); |
| } |
| |
| if (info()->ShouldTrapOnDeopt()) { |
| Label done; |
| if (cc != no_condition) { |
| __ j(NegateCondition(cc), &done, Label::kNear); |
| } |
| __ int3(); |
| __ bind(&done); |
| } |
| |
| Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); |
| |
| DCHECK(info()->IsStub() || frame_is_built_); |
| // Go through jump table if we need to handle condition, build frame, or |
| // restore caller doubles. |
| if (cc == no_condition && frame_is_built_ && |
| !info()->saves_caller_doubles()) { |
| DeoptComment(deopt_info); |
| __ call(entry, RelocInfo::RUNTIME_ENTRY); |
| } else { |
| Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, |
| !frame_is_built_); |
| // We often have several deopts to the same entry, reuse the last |
| // jump entry if this is the case. |
| if (FLAG_trace_deopt || isolate()->is_profiling() || |
| jump_table_.is_empty() || |
| !table_entry.IsEquivalentTo(jump_table_.last())) { |
| jump_table_.Add(table_entry, zone()); |
| } |
| if (cc == no_condition) { |
| __ jmp(&jump_table_.last().label); |
| } else { |
| __ j(cc, &jump_table_.last().label); |
| } |
| } |
| } |
| |
| void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, |
| DeoptimizeReason deopt_reason) { |
| Deoptimizer::BailoutType bailout_type = info()->IsStub() |
| ? Deoptimizer::LAZY |
| : Deoptimizer::EAGER; |
| DeoptimizeIf(cc, instr, deopt_reason, bailout_type); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithLazyDeopt( |
| LInstruction* instr, SafepointMode safepoint_mode, int argc) { |
| if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
| RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
| } else { |
| DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), argc, Safepoint::kLazyDeopt); |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint( |
| LPointerMap* pointers, |
| Safepoint::Kind kind, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| DCHECK(kind == expected_safepoint_kind_); |
| |
| const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
| |
| Safepoint safepoint = safepoints_.DefineSafepoint(masm(), |
| kind, arguments, deopt_mode); |
| for (int i = 0; i < operands->length(); i++) { |
| LOperand* pointer = operands->at(i); |
| if (pointer->IsStackSlot()) { |
| safepoint.DefinePointerSlot(pointer->index(), zone()); |
| } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
| safepoint.DefinePointerRegister(ToRegister(pointer), zone()); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { |
| LPointerMap empty_pointers(zone()); |
| RecordSafepoint(&empty_pointers, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); |
| } |
| |
| |
| static const char* LabelType(LLabel* label) { |
| if (label->is_loop_header()) return " (loop header)"; |
| if (label->is_osr_entry()) return " (OSR entry)"; |
| return ""; |
| } |
| |
| |
| void LCodeGen::DoLabel(LLabel* label) { |
| Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", |
| current_instruction_, |
| label->hydrogen_value()->id(), |
| label->block_id(), |
| LabelType(label)); |
| __ bind(label->label()); |
| current_block_ = label->block_id(); |
| DoGap(label); |
| } |
| |
| |
| void LCodeGen::DoParallelMove(LParallelMove* move) { |
| resolver_.Resolve(move); |
| } |
| |
| |
| void LCodeGen::DoGap(LGap* gap) { |
| for (int i = LGap::FIRST_INNER_POSITION; |
| i <= LGap::LAST_INNER_POSITION; |
| i++) { |
| LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
| LParallelMove* move = gap->GetParallelMove(inner_pos); |
| if (move != NULL) DoParallelMove(move); |
| } |
| } |
| |
| |
| void LCodeGen::DoInstructionGap(LInstructionGap* instr) { |
| DoGap(instr); |
| } |
| |
| |
| void LCodeGen::DoParameter(LParameter* instr) { |
| // Nothing to do. |
| } |
| |
| |
| void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
| GenerateOsrPrologue(); |
| } |
| |
| |
| void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| DCHECK(dividend.is(ToRegister(instr->result()))); |
| |
| // Theoretically, a variation of the branch-free code for integer division by |
| // a power of 2 (calculating the remainder via an additional multiplication |
| // (which gets simplified to an 'and') and subtraction) should be faster, and |
| // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to |
| // indicate that positive dividends are heavily favored, so the branching |
| // version performs better. |
| HMod* hmod = instr->hydrogen(); |
| int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); |
| Label dividend_is_not_negative, done; |
| if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { |
| __ testl(dividend, dividend); |
| __ j(not_sign, ÷nd_is_not_negative, Label::kNear); |
| // Note that this is correct even for kMinInt operands. |
| __ negl(dividend); |
| __ andl(dividend, Immediate(mask)); |
| __ negl(dividend); |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); |
| } |
| __ jmp(&done, Label::kNear); |
| } |
| |
| __ bind(÷nd_is_not_negative); |
| __ andl(dividend, Immediate(mask)); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoModByConstI(LModByConstI* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| DCHECK(ToRegister(instr->result()).is(rax)); |
| |
| if (divisor == 0) { |
| DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| __ TruncatingDiv(dividend, Abs(divisor)); |
| __ imull(rdx, rdx, Immediate(Abs(divisor))); |
| __ movl(rax, dividend); |
| __ subl(rax, rdx); |
| |
| // Check for negative zero. |
| HMod* hmod = instr->hydrogen(); |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label remainder_not_zero; |
| __ j(not_zero, &remainder_not_zero, Label::kNear); |
| __ cmpl(dividend, Immediate(0)); |
| DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero); |
| __ bind(&remainder_not_zero); |
| } |
| } |
| |
| |
| void LCodeGen::DoModI(LModI* instr) { |
| HMod* hmod = instr->hydrogen(); |
| |
| Register left_reg = ToRegister(instr->left()); |
| DCHECK(left_reg.is(rax)); |
| Register right_reg = ToRegister(instr->right()); |
| DCHECK(!right_reg.is(rax)); |
| DCHECK(!right_reg.is(rdx)); |
| Register result_reg = ToRegister(instr->result()); |
| DCHECK(result_reg.is(rdx)); |
| |
| Label done; |
| // Check for x % 0, idiv would signal a divide error. We have to |
| // deopt in this case because we can't return a NaN. |
| if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ testl(right_reg, right_reg); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for kMinInt % -1, idiv would signal a divide error. We |
| // have to deopt if we care about -0, because we can't return that. |
| if (hmod->CheckFlag(HValue::kCanOverflow)) { |
| Label no_overflow_possible; |
| __ cmpl(left_reg, Immediate(kMinInt)); |
| __ j(not_zero, &no_overflow_possible, Label::kNear); |
| __ cmpl(right_reg, Immediate(-1)); |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero); |
| } else { |
| __ j(not_equal, &no_overflow_possible, Label::kNear); |
| __ Set(result_reg, 0); |
| __ jmp(&done, Label::kNear); |
| } |
| __ bind(&no_overflow_possible); |
| } |
| |
| // Sign extend dividend in eax into edx:eax, since we are using only the low |
| // 32 bits of the values. |
| __ cdq(); |
| |
| // If we care about -0, test if the dividend is <0 and the result is 0. |
| if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label positive_left; |
| __ testl(left_reg, left_reg); |
| __ j(not_sign, &positive_left, Label::kNear); |
| __ idivl(right_reg); |
| __ testl(result_reg, result_reg); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); |
| __ jmp(&done, Label::kNear); |
| __ bind(&positive_left); |
| } |
| __ idivl(right_reg); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| DCHECK(dividend.is(ToRegister(instr->result()))); |
| |
| // If the divisor is positive, things are easy: There can be no deopts and we |
| // can simply do an arithmetic right shift. |
| if (divisor == 1) return; |
| int32_t shift = WhichPowerOf2Abs(divisor); |
| if (divisor > 1) { |
| __ sarl(dividend, Immediate(shift)); |
| return; |
| } |
| |
| // If the divisor is negative, we have to negate and handle edge cases. |
| __ negl(dividend); |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| // Dividing by -1 is basically negation, unless we overflow. |
| if (divisor == -1) { |
| if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } |
| return; |
| } |
| |
| // If the negation could not overflow, simply shifting is OK. |
| if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { |
| __ sarl(dividend, Immediate(shift)); |
| return; |
| } |
| |
| Label not_kmin_int, done; |
| __ j(no_overflow, ¬_kmin_int, Label::kNear); |
| __ movl(dividend, Immediate(kMinInt / divisor)); |
| __ jmp(&done, Label::kNear); |
| __ bind(¬_kmin_int); |
| __ sarl(dividend, Immediate(shift)); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| DCHECK(ToRegister(instr->result()).is(rdx)); |
| |
| if (divisor == 0) { |
| DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HMathFloorOfDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| __ testl(dividend, dividend); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| // Easy case: We need no dynamic check for the dividend and the flooring |
| // division is the same as the truncating division. |
| if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || |
| (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { |
| __ TruncatingDiv(dividend, Abs(divisor)); |
| if (divisor < 0) __ negl(rdx); |
| return; |
| } |
| |
| // In the general case we may need to adjust before and after the truncating |
| // division to get a flooring division. |
| Register temp = ToRegister(instr->temp3()); |
| DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx)); |
| Label needs_adjustment, done; |
| __ cmpl(dividend, Immediate(0)); |
| __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear); |
| __ TruncatingDiv(dividend, Abs(divisor)); |
| if (divisor < 0) __ negl(rdx); |
| __ jmp(&done, Label::kNear); |
| __ bind(&needs_adjustment); |
| __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1)); |
| __ TruncatingDiv(temp, Abs(divisor)); |
| if (divisor < 0) __ negl(rdx); |
| __ decl(rdx); |
| __ bind(&done); |
| } |
| |
| |
| // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. |
| void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { |
| HBinaryOperation* hdiv = instr->hydrogen(); |
| Register dividend = ToRegister(instr->dividend()); |
| Register divisor = ToRegister(instr->divisor()); |
| Register remainder = ToRegister(instr->temp()); |
| Register result = ToRegister(instr->result()); |
| DCHECK(dividend.is(rax)); |
| DCHECK(remainder.is(rdx)); |
| DCHECK(result.is(rax)); |
| DCHECK(!divisor.is(rax)); |
| DCHECK(!divisor.is(rdx)); |
| |
| // Check for x / 0. |
| if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ testl(divisor, divisor); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label dividend_not_zero; |
| __ testl(dividend, dividend); |
| __ j(not_zero, ÷nd_not_zero, Label::kNear); |
| __ testl(divisor, divisor); |
| DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); |
| __ bind(÷nd_not_zero); |
| } |
| |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow)) { |
| Label dividend_not_min_int; |
| __ cmpl(dividend, Immediate(kMinInt)); |
| __ j(not_zero, ÷nd_not_min_int, Label::kNear); |
| __ cmpl(divisor, Immediate(-1)); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); |
| __ bind(÷nd_not_min_int); |
| } |
| |
| // Sign extend to rdx (= remainder). |
| __ cdq(); |
| __ idivl(divisor); |
| |
| Label done; |
| __ testl(remainder, remainder); |
| __ j(zero, &done, Label::kNear); |
| __ xorl(remainder, divisor); |
| __ sarl(remainder, Immediate(31)); |
| __ addl(result, remainder); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| Register result = ToRegister(instr->result()); |
| DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); |
| DCHECK(!result.is(dividend)); |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| __ testl(dividend, dividend); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); |
| } |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { |
| __ cmpl(dividend, Immediate(kMinInt)); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); |
| } |
| // Deoptimize if remainder will not be 0. |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && |
| divisor != 1 && divisor != -1) { |
| int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); |
| __ testl(dividend, Immediate(mask)); |
| DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision); |
| } |
| __ Move(result, dividend); |
| int32_t shift = WhichPowerOf2Abs(divisor); |
| if (shift > 0) { |
| // The arithmetic shift is always OK, the 'if' is an optimization only. |
| if (shift > 1) __ sarl(result, Immediate(31)); |
| __ shrl(result, Immediate(32 - shift)); |
| __ addl(result, dividend); |
| __ sarl(result, Immediate(shift)); |
| } |
| if (divisor < 0) __ negl(result); |
| } |
| |
| |
| void LCodeGen::DoDivByConstI(LDivByConstI* instr) { |
| Register dividend = ToRegister(instr->dividend()); |
| int32_t divisor = instr->divisor(); |
| DCHECK(ToRegister(instr->result()).is(rdx)); |
| |
| if (divisor == 0) { |
| DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); |
| return; |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| HDiv* hdiv = instr->hydrogen(); |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { |
| __ testl(dividend, dividend); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); |
| } |
| |
| __ TruncatingDiv(dividend, Abs(divisor)); |
| if (divisor < 0) __ negl(rdx); |
| |
| if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { |
| __ movl(rax, rdx); |
| __ imull(rax, rax, Immediate(divisor)); |
| __ subl(rax, dividend); |
| DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision); |
| } |
| } |
| |
| |
| // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. |
| void LCodeGen::DoDivI(LDivI* instr) { |
| HBinaryOperation* hdiv = instr->hydrogen(); |
| Register dividend = ToRegister(instr->dividend()); |
| Register divisor = ToRegister(instr->divisor()); |
| Register remainder = ToRegister(instr->temp()); |
| DCHECK(dividend.is(rax)); |
| DCHECK(remainder.is(rdx)); |
| DCHECK(ToRegister(instr->result()).is(rax)); |
| DCHECK(!divisor.is(rax)); |
| DCHECK(!divisor.is(rdx)); |
| |
| // Check for x / 0. |
| if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ testl(divisor, divisor); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label dividend_not_zero; |
| __ testl(dividend, dividend); |
| __ j(not_zero, ÷nd_not_zero, Label::kNear); |
| __ testl(divisor, divisor); |
| DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); |
| __ bind(÷nd_not_zero); |
| } |
| |
| // Check for (kMinInt / -1). |
| if (hdiv->CheckFlag(HValue::kCanOverflow)) { |
| Label dividend_not_min_int; |
| __ cmpl(dividend, Immediate(kMinInt)); |
| __ j(not_zero, ÷nd_not_min_int, Label::kNear); |
| __ cmpl(divisor, Immediate(-1)); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); |
| __ bind(÷nd_not_min_int); |
| } |
| |
| // Sign extend to rdx (= remainder). |
| __ cdq(); |
| __ idivl(divisor); |
| |
| if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { |
| // Deoptimize if remainder is not 0. |
| __ testl(remainder, remainder); |
| DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision); |
| } |
| } |
| |
| |
| void LCodeGen::DoMulI(LMulI* instr) { |
| Register left = ToRegister(instr->left()); |
| LOperand* right = instr->right(); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ movp(kScratchRegister, left); |
| } else { |
| __ movl(kScratchRegister, left); |
| } |
| } |
| |
| bool can_overflow = |
| instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| if (right->IsConstantOperand()) { |
| int32_t right_value = ToInteger32(LConstantOperand::cast(right)); |
| if (right_value == -1) { |
| __ negl(left); |
| } else if (right_value == 0) { |
| __ xorl(left, left); |
| } else if (right_value == 2) { |
| __ addl(left, left); |
| } else if (!can_overflow) { |
| // If the multiplication is known to not overflow, we |
| // can use operations that don't set the overflow flag |
| // correctly. |
| switch (right_value) { |
| case 1: |
| // Do nothing. |
| break; |
| case 3: |
| __ leal(left, Operand(left, left, times_2, 0)); |
| break; |
| case 4: |
| __ shll(left, Immediate(2)); |
| break; |
| case 5: |
| __ leal(left, Operand(left, left, times_4, 0)); |
| break; |
| case 8: |
| __ shll(left, Immediate(3)); |
| break; |
| case 9: |
| __ leal(left, Operand(left, left, times_8, 0)); |
| break; |
| case 16: |
| __ shll(left, Immediate(4)); |
| break; |
| default: |
| __ imull(left, left, Immediate(right_value)); |
| break; |
| } |
| } else { |
| __ imull(left, left, Immediate(right_value)); |
| } |
| } else if (right->IsStackSlot()) { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ SmiToInteger64(left, left); |
| __ imulp(left, ToOperand(right)); |
| } else { |
| __ imull(left, ToOperand(right)); |
| } |
| } else { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ SmiToInteger64(left, left); |
| __ imulp(left, ToRegister(right)); |
| } else { |
| __ imull(left, ToRegister(right)); |
| } |
| } |
| |
| if (can_overflow) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // Bail out if the result is supposed to be negative zero. |
| Label done; |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ testp(left, left); |
| } else { |
| __ testl(left, left); |
| } |
| __ j(not_zero, &done, Label::kNear); |
| if (right->IsConstantOperand()) { |
| // Constant can't be represented as 32-bit Smi due to immediate size |
| // limit. |
| DCHECK(SmiValuesAre32Bits() |
| ? !instr->hydrogen_value()->representation().IsSmi() |
| : SmiValuesAre31Bits()); |
| if (ToInteger32(LConstantOperand::cast(right)) < 0) { |
| DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); |
| } else if (ToInteger32(LConstantOperand::cast(right)) == 0) { |
| __ cmpl(kScratchRegister, Immediate(0)); |
| DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero); |
| } |
| } else if (right->IsStackSlot()) { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ orp(kScratchRegister, ToOperand(right)); |
| } else { |
| __ orl(kScratchRegister, ToOperand(right)); |
| } |
| DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); |
| } else { |
| // Test the non-zero operand for negative sign. |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ orp(kScratchRegister, ToRegister(right)); |
| } else { |
| __ orl(kScratchRegister, ToRegister(right)); |
| } |
| DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); |
| } |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoBitI(LBitI* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| DCHECK(left->Equals(instr->result())); |
| DCHECK(left->IsRegister()); |
| |
| if (right->IsConstantOperand()) { |
| int32_t right_operand = |
| ToRepresentation(LConstantOperand::cast(right), |
| instr->hydrogen()->right()->representation()); |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ andl(ToRegister(left), Immediate(right_operand)); |
| break; |
| case Token::BIT_OR: |
| __ orl(ToRegister(left), Immediate(right_operand)); |
| break; |
| case Token::BIT_XOR: |
| if (right_operand == int32_t(~0)) { |
| __ notl(ToRegister(left)); |
| } else { |
| __ xorl(ToRegister(left), Immediate(right_operand)); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (right->IsStackSlot()) { |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| if (instr->IsInteger32()) { |
| __ andl(ToRegister(left), ToOperand(right)); |
| } else { |
| __ andp(ToRegister(left), ToOperand(right)); |
| } |
| break; |
| case Token::BIT_OR: |
| if (instr->IsInteger32()) { |
| __ orl(ToRegister(left), ToOperand(right)); |
| } else { |
| __ orp(ToRegister(left), ToOperand(right)); |
| } |
| break; |
| case Token::BIT_XOR: |
| if (instr->IsInteger32()) { |
| __ xorl(ToRegister(left), ToOperand(right)); |
| } else { |
| __ xorp(ToRegister(left), ToOperand(right)); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| DCHECK(right->IsRegister()); |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| if (instr->IsInteger32()) { |
| __ andl(ToRegister(left), ToRegister(right)); |
| } else { |
| __ andp(ToRegister(left), ToRegister(right)); |
| } |
| break; |
| case Token::BIT_OR: |
| if (instr->IsInteger32()) { |
| __ orl(ToRegister(left), ToRegister(right)); |
| } else { |
| __ orp(ToRegister(left), ToRegister(right)); |
| } |
| break; |
| case Token::BIT_XOR: |
| if (instr->IsInteger32()) { |
| __ xorl(ToRegister(left), ToRegister(right)); |
| } else { |
| __ xorp(ToRegister(left), ToRegister(right)); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoShiftI(LShiftI* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| DCHECK(left->Equals(instr->result())); |
| DCHECK(left->IsRegister()); |
| if (right->IsRegister()) { |
| DCHECK(ToRegister(right).is(rcx)); |
| |
| switch (instr->op()) { |
| case Token::ROR: |
| __ rorl_cl(ToRegister(left)); |
| break; |
| case Token::SAR: |
| __ sarl_cl(ToRegister(left)); |
| break; |
| case Token::SHR: |
| __ shrl_cl(ToRegister(left)); |
| if (instr->can_deopt()) { |
| __ testl(ToRegister(left), ToRegister(left)); |
| DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); |
| } |
| break; |
| case Token::SHL: |
| __ shll_cl(ToRegister(left)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| int32_t value = ToInteger32(LConstantOperand::cast(right)); |
| uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); |
| switch (instr->op()) { |
| case Token::ROR: |
| if (shift_count != 0) { |
| __ rorl(ToRegister(left), Immediate(shift_count)); |
| } |
| break; |
| case Token::SAR: |
| if (shift_count != 0) { |
| __ sarl(ToRegister(left), Immediate(shift_count)); |
| } |
| break; |
| case Token::SHR: |
| if (shift_count != 0) { |
| __ shrl(ToRegister(left), Immediate(shift_count)); |
| } else if (instr->can_deopt()) { |
| __ testl(ToRegister(left), ToRegister(left)); |
| DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); |
| } |
| break; |
| case Token::SHL: |
| if (shift_count != 0) { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| if (SmiValuesAre32Bits()) { |
| __ shlp(ToRegister(left), Immediate(shift_count)); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| if (instr->can_deopt()) { |
| if (shift_count != 1) { |
| __ shll(ToRegister(left), Immediate(shift_count - 1)); |
| } |
| __ Integer32ToSmi(ToRegister(left), ToRegister(left)); |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } else { |
| __ shll(ToRegister(left), Immediate(shift_count)); |
| } |
| } |
| } else { |
| __ shll(ToRegister(left), Immediate(shift_count)); |
| } |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoSubI(LSubI* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| DCHECK(left->Equals(instr->result())); |
| |
| if (right->IsConstantOperand()) { |
| int32_t right_operand = |
| ToRepresentation(LConstantOperand::cast(right), |
| instr->hydrogen()->right()->representation()); |
| __ subl(ToRegister(left), Immediate(right_operand)); |
| } else if (right->IsRegister()) { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ subp(ToRegister(left), ToRegister(right)); |
| } else { |
| __ subl(ToRegister(left), ToRegister(right)); |
| } |
| } else { |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ subp(ToRegister(left), ToOperand(right)); |
| } else { |
| __ subl(ToRegister(left), ToOperand(right)); |
| } |
| } |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } |
| } |
| |
| |
| void LCodeGen::DoConstantI(LConstantI* instr) { |
| Register dst = ToRegister(instr->result()); |
| if (instr->value() == 0) { |
| __ xorl(dst, dst); |
| } else { |
| __ movl(dst, Immediate(instr->value())); |
| } |
| } |
| |
| |
| void LCodeGen::DoConstantS(LConstantS* instr) { |
| __ Move(ToRegister(instr->result()), instr->value()); |
| } |
| |
| |
| void LCodeGen::DoConstantD(LConstantD* instr) { |
| __ Move(ToDoubleRegister(instr->result()), instr->bits()); |
| } |
| |
| |
| void LCodeGen::DoConstantE(LConstantE* instr) { |
| __ LoadAddress(ToRegister(instr->result()), instr->value()); |
| } |
| |
| |
| void LCodeGen::DoConstantT(LConstantT* instr) { |
| Handle<Object> object = instr->value(isolate()); |
| AllowDeferredHandleDereference smi_check; |
| __ Move(ToRegister(instr->result()), object); |
| } |
| |
| |
| Operand LCodeGen::BuildSeqStringOperand(Register string, |
| LOperand* index, |
| String::Encoding encoding) { |
| if (index->IsConstantOperand()) { |
| int offset = ToInteger32(LConstantOperand::cast(index)); |
| if (encoding == String::TWO_BYTE_ENCODING) { |
| offset *= kUC16Size; |
| } |
| STATIC_ASSERT(kCharSize == 1); |
| return FieldOperand(string, SeqString::kHeaderSize + offset); |
| } |
| return FieldOperand( |
| string, ToRegister(index), |
| encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2, |
| SeqString::kHeaderSize); |
| } |
| |
| |
| void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { |
| String::Encoding encoding = instr->hydrogen()->encoding(); |
| Register result = ToRegister(instr->result()); |
| Register string = ToRegister(instr->string()); |
| |
| if (FLAG_debug_code) { |
| __ Push(string); |
| __ movp(string, FieldOperand(string, HeapObject::kMapOffset)); |
| __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset)); |
| |
| __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask)); |
| static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
| static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
| __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING |
| ? one_byte_seq_type : two_byte_seq_type)); |
| __ Check(equal, kUnexpectedStringType); |
| __ Pop(string); |
| } |
| |
| Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); |
| if (encoding == String::ONE_BYTE_ENCODING) { |
| __ movzxbl(result, operand); |
| } else { |
| __ movzxwl(result, operand); |
| } |
| } |
| |
| |
| void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { |
| String::Encoding encoding = instr->hydrogen()->encoding(); |
| Register string = ToRegister(instr->string()); |
| |
| if (FLAG_debug_code) { |
| Register value = ToRegister(instr->value()); |
| Register index = ToRegister(instr->index()); |
| static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
| static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
| int encoding_mask = |
| instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING |
| ? one_byte_seq_type : two_byte_seq_type; |
| __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); |
| } |
| |
| Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); |
| if (instr->value()->IsConstantOperand()) { |
| int value = ToInteger32(LConstantOperand::cast(instr->value())); |
| DCHECK_LE(0, value); |
| if (encoding == String::ONE_BYTE_ENCODING) { |
| DCHECK_LE(value, String::kMaxOneByteCharCode); |
| __ movb(operand, Immediate(value)); |
| } else { |
| DCHECK_LE(value, String::kMaxUtf16CodeUnit); |
| __ movw(operand, Immediate(value)); |
| } |
| } else { |
| Register value = ToRegister(instr->value()); |
| if (encoding == String::ONE_BYTE_ENCODING) { |
| __ movb(operand, value); |
| } else { |
| __ movw(operand, value); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoAddI(LAddI* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| |
| Representation target_rep = instr->hydrogen()->representation(); |
| bool is_p = target_rep.IsSmi() || target_rep.IsExternal(); |
| |
| if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) { |
| if (right->IsConstantOperand()) { |
| // No support for smi-immediates for 32-bit SMI. |
| DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits()); |
| int32_t offset = |
| ToRepresentation(LConstantOperand::cast(right), |
| instr->hydrogen()->right()->representation()); |
| if (is_p) { |
| __ leap(ToRegister(instr->result()), |
| MemOperand(ToRegister(left), offset)); |
| } else { |
| __ leal(ToRegister(instr->result()), |
| MemOperand(ToRegister(left), offset)); |
| } |
| } else { |
| Operand address(ToRegister(left), ToRegister(right), times_1, 0); |
| if (is_p) { |
| __ leap(ToRegister(instr->result()), address); |
| } else { |
| __ leal(ToRegister(instr->result()), address); |
| } |
| } |
| } else { |
| if (right->IsConstantOperand()) { |
| // No support for smi-immediates for 32-bit SMI. |
| DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits()); |
| int32_t right_operand = |
| ToRepresentation(LConstantOperand::cast(right), |
| instr->hydrogen()->right()->representation()); |
| if (is_p) { |
| __ addp(ToRegister(left), Immediate(right_operand)); |
| } else { |
| __ addl(ToRegister(left), Immediate(right_operand)); |
| } |
| } else if (right->IsRegister()) { |
| if (is_p) { |
| __ addp(ToRegister(left), ToRegister(right)); |
| } else { |
| __ addl(ToRegister(left), ToRegister(right)); |
| } |
| } else { |
| if (is_p) { |
| __ addp(ToRegister(left), ToOperand(right)); |
| } else { |
| __ addl(ToRegister(left), ToOperand(right)); |
| } |
| } |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoMathMinMax(LMathMinMax* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| DCHECK(left->Equals(instr->result())); |
| HMathMinMax::Operation operation = instr->hydrogen()->operation(); |
| if (instr->hydrogen()->representation().IsSmiOrInteger32()) { |
| Label return_left; |
| Condition condition = (operation == HMathMinMax::kMathMin) |
| ? less_equal |
| : greater_equal; |
| Register left_reg = ToRegister(left); |
| if (right->IsConstantOperand()) { |
| Immediate right_imm = Immediate( |
| ToRepresentation(LConstantOperand::cast(right), |
| instr->hydrogen()->right()->representation())); |
| DCHECK(SmiValuesAre32Bits() |
| ? !instr->hydrogen()->representation().IsSmi() |
| : SmiValuesAre31Bits()); |
| __ cmpl(left_reg, right_imm); |
| __ j(condition, &return_left, Label::kNear); |
| __ movl(left_reg, right_imm); |
| } else if (right->IsRegister()) { |
| Register right_reg = ToRegister(right); |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ cmpp(left_reg, right_reg); |
| } else { |
| __ cmpl(left_reg, right_reg); |
| } |
| __ j(condition, &return_left, Label::kNear); |
| __ movp(left_reg, right_reg); |
| } else { |
| Operand right_op = ToOperand(right); |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ cmpp(left_reg, right_op); |
| } else { |
| __ cmpl(left_reg, right_op); |
| } |
| __ j(condition, &return_left, Label::kNear); |
| __ movp(left_reg, right_op); |
| } |
| __ bind(&return_left); |
| } else { |
| DCHECK(instr->hydrogen()->representation().IsDouble()); |
| Label not_nan, distinct, return_left, return_right; |
| Condition condition = (operation == HMathMinMax::kMathMin) ? below : above; |
| XMMRegister left_reg = ToDoubleRegister(left); |
| XMMRegister right_reg = ToDoubleRegister(right); |
| __ Ucomisd(left_reg, right_reg); |
| __ j(parity_odd, ¬_nan, Label::kNear); // Both are not NaN. |
| |
| // One of the numbers is NaN. Find which one and return it. |
| __ Ucomisd(left_reg, left_reg); |
| __ j(parity_even, &return_left, Label::kNear); // left is NaN. |
| __ jmp(&return_right, Label::kNear); // right is NaN. |
| |
| __ bind(¬_nan); |
| __ j(not_equal, &distinct, Label::kNear); // left != right. |
| |
| // left == right |
| XMMRegister xmm_scratch = double_scratch0(); |
| __ Xorpd(xmm_scratch, xmm_scratch); |
| __ Ucomisd(left_reg, xmm_scratch); |
| __ j(not_equal, &return_left, Label::kNear); // left == right != 0. |
| |
| // At this point, both left and right are either +0 or -0. |
| if (operation == HMathMinMax::kMathMin) { |
| __ Orpd(left_reg, right_reg); |
| } else { |
| __ Andpd(left_reg, right_reg); |
| } |
| __ jmp(&return_left, Label::kNear); |
| |
| __ bind(&distinct); |
| __ j(condition, &return_left, Label::kNear); |
| |
| __ bind(&return_right); |
| __ Movapd(left_reg, right_reg); |
| |
| __ bind(&return_left); |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
| XMMRegister left = ToDoubleRegister(instr->left()); |
| XMMRegister right = ToDoubleRegister(instr->right()); |
| XMMRegister result = ToDoubleRegister(instr->result()); |
| switch (instr->op()) { |
| case Token::ADD: |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(masm(), AVX); |
| __ vaddsd(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ addsd(left, right); |
| } |
| break; |
| case Token::SUB: |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(masm(), AVX); |
| __ vsubsd(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ subsd(left, right); |
| } |
| break; |
| case Token::MUL: |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(masm(), AVX); |
| __ vmulsd(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ mulsd(left, right); |
| } |
| break; |
| case Token::DIV: |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(masm(), AVX); |
| __ vdivsd(result, left, right); |
| } else { |
| DCHECK(result.is(left)); |
| __ divsd(left, right); |
| } |
| // Don't delete this mov. It may improve performance on some CPUs, |
| // when there is a (v)mulsd depending on the result |
| __ Movapd(result, result); |
| break; |
| case Token::MOD: { |
| DCHECK(left.is(xmm0)); |
| DCHECK(right.is(xmm1)); |
| DCHECK(result.is(xmm0)); |
| __ PrepareCallCFunction(2); |
| __ CallCFunction( |
| ExternalReference::mod_two_doubles_operation(isolate()), 2); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
| DCHECK(ToRegister(instr->context()).is(rsi)); |
| DCHECK(ToRegister(instr->left()).is(rdx)); |
| DCHECK(ToRegister(instr->right()).is(rax)); |
| DCHECK(ToRegister(instr->result()).is(rax)); |
| |
| Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); |
| CallCode(code, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| template<class InstrType> |
| void LCodeGen::EmitBranch(InstrType instr, Condition cc) { |
| int left_block = instr->TrueDestination(chunk_); |
| int right_block = instr->FalseDestination(chunk_); |
| |
| int next_block = GetNextEmittedBlock(); |
| |
| if (right_block == left_block || cc == no_condition) { |
| EmitGoto(left_block); |
| } else if (left_block == next_block) { |
| __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); |
| } else if (right_block == next_block) { |
| __ j(cc, chunk_->GetAssemblyLabel(left_block)); |
| } else { |
| __ j(cc, chunk_->GetAssemblyLabel(left_block)); |
| if (cc != always) { |
| __ jmp(chunk_->GetAssemblyLabel(right_block)); |
| } |
| } |
| } |
| |
| |
| template <class InstrType> |
| void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) { |
| int true_block = instr->TrueDestination(chunk_); |
| __ j(cc, chunk_->GetAssemblyLabel(true_block)); |
| } |
| |
| |
| template <class InstrType> |
| void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) { |
| int false_block = instr->FalseDestination(chunk_); |
| __ j(cc, chunk_->GetAssemblyLabel(false_block)); |
| } |
| |
| |
| void LCodeGen::DoDebugBreak(LDebugBreak* instr) { |
| __ int3(); |
| } |
| |
| |
| void LCodeGen::DoBranch(LBranch* instr) { |
| Representation r = instr->hydrogen()->value()->representation(); |
| if (r.IsInteger32()) { |
| DCHECK(!info()->IsStub()); |
| Register reg = ToRegister(instr->value()); |
| __ testl(reg, reg); |
| EmitBranch(instr, not_zero); |
| } else if (r.IsSmi()) { |
| DCHECK(!info()->IsStub()); |
| Register reg = ToRegister(instr->value()); |
| __ testp(reg, reg); |
| EmitBranch(instr, not_zero); |
| } else if (r.IsDouble()) { |
| DCHECK(!info()->IsStub()); |
| XMMRegister reg = ToDoubleRegister(instr->value()); |
| XMMRegister xmm_scratch = double_scratch0(); |
| __ Xorpd(xmm_scratch, xmm_scratch); |
| __ Ucomisd(reg, xmm_scratch); |
| EmitBranch(instr, not_equal); |
| } else { |
| DCHECK(r.IsTagged()); |
| Register reg = ToRegister(instr->value()); |
| HType type = instr->hydrogen()->value()->type(); |
| if (type.IsBoolean()) { |
| DCHECK(!info()->IsStub()); |
| __ CompareRoot(reg, Heap::kTrueValueRootIndex); |
| EmitBranch(instr, equal); |
| } else if (type.IsSmi()) { |
| DCHECK(!info()->IsStub()); |
| __ SmiCompare(reg, Smi::kZero); |
| EmitBranch(instr, not_equal); |
| } else if (type.IsJSArray()) { |
| DCHECK(!info()->IsStub()); |
| EmitBranch(instr, no_condition); |
| } else if (type.IsHeapNumber()) { |
| DCHECK(!info()->IsStub()); |
| XMMRegister xmm_scratch = double_scratch0(); |
| __ Xorpd(xmm_scratch, xmm_scratch); |
| __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); |
| EmitBranch(instr, not_equal); |
| } else if (type.IsString()) { |
| DCHECK(!info()->IsStub()); |
| __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); |
| EmitBranch(instr, not_equal); |
| } else { |
| ToBooleanHints expected = instr->hydrogen()->expected_input_types(); |
| // Avoid deopts in the case where we've never executed this path before. |
| if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; |
| |
| if (expected & ToBooleanHint::kUndefined) { |
| // undefined -> false. |
| __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); |
| __ j(equal, instr->FalseLabel(chunk_)); |
| } |
| if (expected & ToBooleanHint::kBoolean) { |
| // true -> true. |
| __ CompareRoot(reg, Heap::kTrueValueRootIndex); |
| __ j(equal, instr->TrueLabel(chunk_)); |
| // false -> false. |
| __ CompareRoot(reg, Heap::kFalseValueRootIndex); |
| __ j(equal, instr->FalseLabel(chunk_)); |
| } |
| if (expected & ToBooleanHint::kNull) { |
| // 'null' -> false. |
| __ CompareRoot(reg, Heap::kNullValueRootIndex); |
| __ j(equal, instr->FalseLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kSmallInteger) { |
| // Smis: 0 -> false, all other -> true. |
| __ Cmp(reg, Smi::kZero); |
| __ j(equal, instr->FalseLabel(chunk_)); |
| __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); |
| } else if (expected & ToBooleanHint::kNeedsMap) { |
| // If we need a map later and have a Smi -> deopt. |
| __ testb(reg, Immediate(kSmiTagMask)); |
| DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi); |
| } |
| |
| const Register map = kScratchRegister; |
| if (expected & ToBooleanHint::kNeedsMap) { |
| __ movp(map, FieldOperand(reg, HeapObject::kMapOffset)); |
| |
| if (expected & ToBooleanHint::kCanBeUndetectable) { |
| // Undetectable -> false. |
| __ testb(FieldOperand(map, Map::kBitFieldOffset), |
| Immediate(1 << Map::kIsUndetectable)); |
| __ j(not_zero, instr->FalseLabel(chunk_)); |
| } |
| } |
| |
| if (expected & ToBooleanHint::kReceiver) { |
| // spec object -> true. |
| __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); |
| __ j(above_equal, instr->TrueLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kString) { |
| // String value -> false iff empty. |
| Label not_string; |
| __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); |
| __ j(above_equal, ¬_string, Label::kNear); |
| __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); |
| __ j(not_zero, instr->TrueLabel(chunk_)); |
| __ jmp(instr->FalseLabel(chunk_)); |
| __ bind(¬_string); |
| } |
| |
| if (expected & ToBooleanHint::kSymbol) { |
| // Symbol value -> true. |
| __ CmpInstanceType(map, SYMBOL_TYPE); |
| __ j(equal, instr->TrueLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kSimdValue) { |
| // SIMD value -> true. |
| __ CmpInstanceType(map, SIMD128_VALUE_TYPE); |
| __ j(equal, instr->TrueLabel(chunk_)); |
| } |
| |
| if (expected & ToBooleanHint::kHeapNumber) { |
| // heap number -> false iff +0, -0, or NaN. |
| Label not_heap_number; |
| __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); |
| __ j(not_equal, ¬_heap_number, Label::kNear); |
| XMMRegister xmm_scratch = double_scratch0(); |
| __ Xorpd(xmm_scratch, xmm_scratch); |
| __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); |
| __ j(zero, instr->FalseLabel(chunk_)); |
| __ jmp(instr->TrueLabel(chunk_)); |
| __ bind(¬_heap_number); |
| } |
| |
| if (expected != ToBooleanHint::kAny) { |
| // We've seen something for the first time -> deopt. |
| // This can only happen if we are not generic already. |
| DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject); |
| } |
| } |
| } |
| } |
| |
| |
| void LCodeGen::EmitGoto(int block) { |
| if (!IsNextEmittedBlock(block)) { |
| __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block))); |
| } |
| } |
| |
| |
| void LCodeGen::DoGoto(LGoto* instr) { |
| EmitGoto(instr->block_id()); |
| } |
| |
| |
| inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
| Condition cond = no_condition; |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: |
| cond = equal; |
| break; |
| case Token::NE: |
| case Token::NE_STRICT: |
| cond = not_equal; |
| break; |
| case Token::LT: |
| cond = is_unsigned ? below : less; |
| break; |
| case Token::GT: |
| cond = is_unsigned ? above : greater; |
| break; |
| case Token::LTE: |
| cond = is_unsigned ? below_equal : less_equal; |
| break; |
| case Token::GTE: |
| cond = is_unsigned ? above_equal : greater_equal; |
| break; |
| case Token::IN: |
| case Token::INSTANCEOF: |
| default: |
| UNREACHABLE(); |
| } |
| return cond; |
| } |
| |
| |
| void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { |
| LOperand* left = instr->left(); |
| LOperand* right = instr->right(); |
| bool is_unsigned = |
| instr->is_double() || |
| instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || |
| instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); |
| Condition cc = TokenToCondition(instr->op(), is_unsigned); |
| |
| if (left->IsConstantOperand() && right->IsConstantOperand()) { |
| // We can statically evaluate the comparison. |
| double left_val = ToDouble(LConstantOperand::cast(left)); |
| double right_val = ToDouble(LConstantOperand::cast(right)); |
| int next_block = Token::EvalComparison(instr->op(), left_val, right_val) |
| ? instr->TrueDestination(chunk_) |
| : instr->FalseDestination(chunk_); |
| EmitGoto(next_block); |
| } else { |
| if (instr->is_double()) { |
| // Don't base result on EFLAGS when a NaN is involved. Instead |
| // jump to the false block. |
| __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); |
| __ j(parity_even, instr->FalseLabel(chunk_)); |
| } else { |
| int32_t value; |
| if (right->IsConstantOperand()) { |
| value = ToInteger32(LConstantOperand::cast(right)); |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| __ Cmp(ToRegister(left), Smi::FromInt(value)); |
| } else { |
| __ cmpl(ToRegister(left), Immediate(value)); |
| } |
| } else if (left->IsConstantOperand()) { |
| value = ToInteger32(LConstantOperand::cast(left)); |
| if (instr->hydrogen_value()->representation().IsSmi()) { |
| if (right->IsRegister()) { |
| __ Cmp(ToRegister(right), Smi::FromInt(value)); |
| } else { |
| __ Cmp(ToOperand(right), Smi::FromInt(value)); |
| } |
| } else if (right->IsRegister()) { |
| __ cmpl(ToRegister(right), Immediate(value)); |
| } else { |
| __ cmpl(ToOperand(right), Immediate(value)); |
| } |
| // We commuted the operands, so commute the condition. |
| cc = CommuteCondition(cc); |
| } else if (instr->hydrogen_value()->representation().IsSmi()) { |
| if (right->IsRegister()) { |
| __ cmpp(ToRegister(left), ToRegister(right)); |
| } else { |
| __ cmpp(ToRegister(left), ToOperand(right)); |
| } |
| } else { |
| if (right->IsRegister()) { |
| __ cmpl(ToRegister(left), ToRegister(right)); |
| } else { |
| __ cmpl(ToRegister(left), ToOperand(right)); |
| } |
| } |
| } |
| EmitBranch(instr, cc); |
| } |
| } |
| |
| |
| void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
| Register left = ToRegister(instr->left()); |
| |
| if (instr->right()->IsConstantOperand()) { |
| Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right())); |
| __ Cmp(left, right); |
| } else { |
| Register right = ToRegister(instr->right()); |
| __ cmpp(left, right); |
| } |
| EmitBranch(instr, equal); |
| } |
| |
| |
| void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { |
| if (instr->hydrogen()->representation().IsTagged()) { |
| Register input_reg = ToRegister(instr->object()); |
| __ Cmp(input_reg, factory()->the_hole_value()); |
| EmitBranch(instr, equal); |
| return; |
| } |
| |
| XMMRegister input_reg = ToDoubleRegister(instr->object()); |
| __ Ucomisd(input_reg, input_reg); |
| EmitFalseBranch(instr, parity_odd); |
| |
| __ subp(rsp, Immediate(kDoubleSize)); |
| __ Movsd(MemOperand(rsp, 0), input_reg); |
| __ addp(rsp, Immediate(kDoubleSize)); |
| |
| int offset = sizeof(kHoleNanUpper32); |
| __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32)); |
| EmitBranch(instr, equal); |
| } |
| |
| |
| Condition LCodeGen::EmitIsString(Register input, |
| Register temp1, |
| Label* is_not_string, |
| SmiCheck check_needed = INLINE_SMI_CHECK) { |
| if (check_needed == INLINE_SMI_CHECK) { |
| __ JumpIfSmi(input, is_not_string); |
| } |
| |
| Condition cond = masm_->IsObjectStringType(input, temp1, temp1); |
| |
| return cond; |
| } |
| |
| |
| void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { |
| Register reg = ToRegister(instr->value()); |
| Register temp = ToRegister(instr->temp()); |
| |
| SmiCheck check_needed = |
| instr->hydrogen()->value()->type().IsHeapObject() |
| ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
| |
| Condition true_cond = EmitIsString( |
| reg, temp, instr->FalseLabel(chunk_), check_needed); |
| |
| EmitBranch(instr, true_cond); |
| } |
| |
| |
| void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
| Condition is_smi; |
| if (instr->value()->IsRegister()) { |
| Register input = ToRegister(instr->value()); |
| is_smi = masm()->CheckSmi(input); |
| } else { |
| Operand input = ToOperand(instr->value()); |
| is_smi = masm()->CheckSmi(input); |
| } |
| EmitBranch(instr, is_smi); |
| } |
| |
| |
| void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
| Register input = ToRegister(instr->value()); |
| Register temp = ToRegister(instr->temp()); |
| |
| if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
| __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
| } |
| __ movp(temp, FieldOperand(input, HeapObject::kMapOffset)); |
| __ testb(FieldOperand(temp, Map::kBitFieldOffset), |
| Immediate(1 << Map::kIsUndetectable)); |
| EmitBranch(instr, not_zero); |
| } |
| |
| |
| void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { |
| DCHECK(ToRegister(instr->context()).is(rsi)); |
| DCHECK(ToRegister(instr->left()).is(rdx)); |
| DCHECK(ToRegister(instr->right()).is(rax)); |
| |
| Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code(); |
| CallCode(code, RelocInfo::CODE_TARGET, instr); |
| __ CompareRoot(rax, Heap::kTrueValueRootIndex); |
| EmitBranch(instr, equal); |
| } |
| |
| |
| static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == FIRST_TYPE) return to; |
| DCHECK(from == to || to == LAST_TYPE); |
| return from; |
| } |
| |
| |
| static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == to) return equal; |
| if (to == LAST_TYPE) return above_equal; |
| if (from == FIRST_TYPE) return below_equal; |
| UNREACHABLE(); |
| return equal; |
| } |
| |
| |
| void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
| Register input = ToRegister(instr->value()); |
| |
| if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
| __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
| } |
| |
| __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister); |
| EmitBranch(instr, BranchCondition(instr->hydrogen())); |
| } |
| |
| // Branches to a label or falls through with the answer in the z flag. |
| // Trashes the temp register. |
| void LCodeGen::EmitClassOfTest(Label* is_true, |
| Label* is_false, |
| Handle<String> class_name, |
| Register input, |
| Register temp, |
| Register temp2) { |
| DCHECK(!input.is(temp)); |
| DCHECK(!input.is(temp2)); |
| DCHECK(!temp.is(temp2)); |
| |
| __ JumpIfSmi(input, is_false); |
| |
| __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp); |
| STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); |
| if (String::Equals(isolate()->factory()->Function_string(), class_name)) { |
| __ j(above_equal, is_true); |
| } else { |
| __ j(above_equal, is_false); |
| } |
| |
| // Check if the constructor in the map is a function. |
| __ GetMapConstructor(temp, temp, kScratchRegister); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE); |
| if (String::Equals(class_name, isolate()->factory()->Object_string())) { |
| __ j(not_equal, is_true); |
| } else { |
| __ j(not_equal, is_false); |
| } |
| |
| // temp now contains the constructor function. Grab the |
| // instance class name from there. |
| __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); |
| __ movp(temp, FieldOperand(temp, |
| SharedFunctionInfo::kInstanceClassNameOffset)); |
| // The class name we are testing against is internalized since it's a literal. |
| // The name in the constructor is internalized because of the way the context |
| // is booted. This routine isn't expected to work for random API-created |
| // classes and it doesn't have to because you can't access it with natives |
| // syntax. Since both sides are internalized it is sufficient to use an |
| // identity comparison. |
| DCHECK(class_name->IsInternalizedString()); |
| __ Cmp(temp, class_name); |
| // End with the answer in the z flag. |
| } |
| |
| |
| void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
| Register input = ToRegister(instr->value()); |
| Register temp = ToRegister(instr->temp()); |
| Register temp2 = ToRegister(instr->temp2()); |
| Handle<String> class_name = instr->hydrogen()->class_name(); |
| |
| EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), |
| class_name, input, temp, temp2); |
| |
| EmitBranch(instr, equal); |
| } |
| |
| |
| void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
| Register reg = ToRegister(instr->value()); |
| |
| __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); |
| EmitBranch(instr, equal); |
| } |
| |
| |
| void LCodeGen::DoHasInPrototypeChainAndBranch( |
| LHasInPrototypeChainAndBranch* instr) { |
| Register const object = ToRegister(instr->object()); |
| Register const object_map = kScratchRegister; |
| Register const object_prototype = object_map; |
| Register const prototype = ToRegister(instr->prototype()); |
| |
| // The {object} must be a spec object. It's sufficient to know that {object} |
| // is not a smi, since all other non-spec objects have {null} prototypes and |
| // will be ruled out below. |
| if (instr->hydrogen()->ObjectNeedsSmiCheck()) { |
| Condition is_smi = __ CheckSmi(object); |
| EmitFalseBranch(instr, is_smi); |
| } |
| |
| // Loop through the {object}s prototype chain looking for the {prototype}. |
| __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset)); |
| Label loop; |
| __ bind(&loop); |
| |
| // Deoptimize if the object needs to be access checked. |
| __ testb(FieldOperand(object_map, Map::kBitFieldOffset), |
| Immediate(1 << Map::kIsAccessCheckNeeded)); |
| DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck); |
| // Deoptimize for proxies. |
| __ CmpInstanceType(object_map, JS_PROXY_TYPE); |
| DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy); |
| |
| __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset)); |
| __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); |
| EmitFalseBranch(instr, equal); |
| __ cmpp(object_prototype, prototype); |
| EmitTrueBranch(instr, equal); |
| __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset)); |
| __ jmp(&loop); |
| } |
| |
| |
| void LCodeGen::DoCmpT(LCmpT* instr) { |
| DCHECK(ToRegister(instr->context()).is(rsi)); |
| Token::Value op = instr->op(); |
| |
| Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| |
| Condition condition = TokenToCondition(op, false); |
| Label true_value, done; |
| __ testp(rax, rax); |
| __ j(condition, &true_value, Label::kNear); |
| __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); |
| __ jmp(&done, Label::kNear); |
| __ bind(&true_value); |
| __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoReturn(LReturn* instr) { |
| if (FLAG_trace && info()->IsOptimizing()) { |
| // Preserve the return value on the stack and rely on the runtime call |
| // to return the value in the same register. We're leaving the code |
| // managed by the register allocator and tearing down the frame, it's |
| // safe to write to the context register. |
| __ Push(rax); |
| __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kTraceExit); |
| } |
| if (info()->saves_caller_doubles()) { |
| RestoreCallerDoubles(); |
| } |
| if (NeedsEagerFrame()) { |
| __ movp(rsp, rbp); |
| __ popq(rbp); |
| } |
| if (instr->has_constant_parameter_count()) { |
| __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize, |
| rcx); |
| } else { |
| DCHECK(info()->IsStub()); // Functions would need to drop one more value. |
| Register reg = ToRegister(instr->parameter_count()); |
| // The argument count parameter is a smi |
| __ SmiToInteger32(reg, reg); |
| Register return_addr_reg = reg.is(rcx) ? rbx : rcx; |
| __ PopReturnAddressTo(return_addr_reg); |
| __ shlp(reg, Immediate(kPointerSizeLog2)); |
| __ addp(rsp, reg); |
| __ jmp(return_addr_reg); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| __ movp(result, ContextOperand(context, instr->slot_index())); |
| } |
| |
| |
| void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register value = ToRegister(instr->value()); |
| Operand target = ContextOperand(context, instr->slot_index()); |
| |
| __ movp(target, value); |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| SmiCheck check_needed = |
| instr->hydrogen()->value()->type().IsHeapObject() |
| ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
| int offset = Context::SlotOffset(instr->slot_index()); |
| Register scratch = ToRegister(instr->temp()); |
| __ RecordWriteContextSlot(context, |
| offset, |
| value, |
| scratch, |
| kSaveFPRegs, |
| EMIT_REMEMBERED_SET, |
| check_needed); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
| HObjectAccess access = instr->hydrogen()->access(); |
| int offset = access.offset(); |
| |
| if (access.IsExternalMemory()) { |
| Register result = ToRegister(instr->result()); |
| if (instr->object()->IsConstantOperand()) { |
| DCHECK(result.is(rax)); |
| __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object()))); |
| } else { |
| Register object = ToRegister(instr->object()); |
| __ Load(result, MemOperand(object, offset), access.representation()); |
| } |
| return; |
| } |
| |
| Register object = ToRegister(instr->object()); |
| if (instr->hydrogen()->representation().IsDouble()) { |
| DCHECK(access.IsInobject()); |
| XMMRegister result = ToDoubleRegister(instr->result()); |
| __ Movsd(result, FieldOperand(object, offset)); |
| return; |
| } |
| |
| Register result = ToRegister(instr->result()); |
| if (!access.IsInobject()) { |
| __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset)); |
| object = result; |
| } |
| |
| Representation representation = access.representation(); |
| if (representation.IsSmi() && SmiValuesAre32Bits() && |
| instr->hydrogen()->representation().IsInteger32()) { |
| if (FLAG_debug_code) { |
| Register scratch = kScratchRegister; |
| __ Load(scratch, FieldOperand(object, offset), representation); |
| __ AssertSmi(scratch); |
| } |
| |
| // Read int value directly from upper half of the smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| DCHECK(kSmiTagSize + kSmiShiftSize == 32); |
| offset += kPointerSize / 2; |
| representation = Representation::Integer32(); |
| } |
| __ Load(result, FieldOperand(object, offset), representation); |
| } |
| |
| |
| void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
| Register function = ToRegister(instr->function()); |
| Register result = ToRegister(instr->result()); |
| |
| // Get the prototype or initial map from the function. |
| __ movp(result, |
| FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check that the function has a prototype or an initial map. |
| __ CompareRoot(result, Heap::kTheHoleValueRootIndex); |
| DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| __ CmpObjectType(result, MAP_TYPE, kScratchRegister); |
| __ j(not_equal, &done, Label::kNear); |
| |
| // Get the prototype from the initial map. |
| __ movp(result, FieldOperand(result, Map::kPrototypeOffset)); |
| |
| // All done. |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoLoadRoot(LLoadRoot* instr) { |
| Register result = ToRegister(instr->result()); |
| __ LoadRoot(result, instr->index()); |
| } |
| |
| |
| void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
| Register arguments = ToRegister(instr->arguments()); |
| Register result = ToRegister(instr->result()); |
| |
| if (instr->length()->IsConstantOperand() && |
| instr->index()->IsConstantOperand()) { |
| int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index())); |
| int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length())); |
| if (const_index >= 0 && const_index < const_length) { |
| StackArgumentsAccessor args(arguments, const_length, |
| ARGUMENTS_DONT_CONTAIN_RECEIVER); |
| __ movp(result, args.GetArgumentOperand(const_index)); |
| } else if (FLAG_debug_code) { |
| __ int3(); |
| } |
| } else { |
| Register length = ToRegister(instr->length()); |
| // There are two words between the frame pointer and the last argument. |
| // Subtracting from length accounts for one of them add one more. |
| if (instr->index()->IsRegister()) { |
| __ subl(length, ToRegister(instr->index())); |
| } else { |
| __ subl(length, ToOperand(instr->index())); |
| } |
| StackArgumentsAccessor args(arguments, length, |
| ARGUMENTS_DONT_CONTAIN_RECEIVER); |
| __ movp(result, args.GetArgumentOperand(0)); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { |
| ElementsKind elements_kind = instr->elements_kind(); |
| LOperand* key = instr->key(); |
| if (kPointerSize == kInt32Size && !key->IsConstantOperand()) { |
| Register key_reg = ToRegister(key); |
| Representation key_representation = |
| instr->hydrogen()->key()->representation(); |
| if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) { |
| __ SmiToInteger64(key_reg, key_reg); |
| } else if (instr->hydrogen()->IsDehoisted()) { |
| // Sign extend key because it could be a 32 bit negative value |
| // and the dehoisted address computation happens in 64 bits |
| __ movsxlq(key_reg, key_reg); |
| } |
| } |
| Operand operand(BuildFastArrayOperand( |
| instr->elements(), |
| key, |
| instr->hydrogen()->key()->representation(), |
| elements_kind, |
| instr->base_offset())); |
| |
| if (elements_kind == FLOAT32_ELEMENTS) { |
| XMMRegister result(ToDoubleRegister(instr->result())); |
| __ Cvtss2sd(result, operand); |
| } else if (elements_kind == FLOAT64_ELEMENTS) { |
| __ Movsd(ToDoubleRegister(instr->result()), operand); |
| } else { |
| Register result(ToRegister(instr->result())); |
| switch (elements_kind) { |
| case INT8_ELEMENTS: |
| __ movsxbl(result, operand); |
| break; |
| case UINT8_ELEMENTS: |
| case UINT8_CLAMPED_ELEMENTS: |
| __ movzxbl(result, operand); |
| break; |
| case INT16_ELEMENTS: |
| __ movsxwl(result, operand); |
| break; |
| case UINT16_ELEMENTS: |
| __ movzxwl(result, operand); |
| break; |
| case INT32_ELEMENTS: |
| __ movl(result, operand); |
| break; |
| case UINT32_ELEMENTS: |
| __ movl(result, operand); |
| if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { |
| __ testl(result, result); |
| DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); |
| } |
| break; |
| case FLOAT32_ELEMENTS: |
| case FLOAT64_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_SMI_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case FAST_HOLEY_ELEMENTS: |
| case FAST_HOLEY_SMI_ELEMENTS: |
| case FAST_HOLEY_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
| case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: |
| case FAST_STRING_WRAPPER_ELEMENTS: |
| case SLOW_STRING_WRAPPER_ELEMENTS: |
| case NO_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { |
| XMMRegister result(ToDoubleRegister(instr->result())); |
| LOperand* key = instr->key(); |
| if (kPointerSize == kInt32Size && !key->IsConstantOperand() && |
| instr->hydrogen()->IsDehoisted()) { |
| // Sign extend key because it could be a 32 bit negative value |
| // and the dehoisted address computation happens in 64 bits |
| __ movsxlq(ToRegister(key), ToRegister(key)); |
| } |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| Operand hole_check_operand = BuildFastArrayOperand( |
| instr->elements(), |
| key, |
| instr->hydrogen()->key()->representation(), |
| FAST_DOUBLE_ELEMENTS, |
| instr->base_offset() + sizeof(kHoleNanLower32)); |
| __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32)); |
| DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); |
| } |
| |
| Operand double_load_operand = BuildFastArrayOperand( |
| instr->elements(), |
| key, |
| instr->hydrogen()->key()->representation(), |
| FAST_DOUBLE_ELEMENTS, |
| instr->base_offset()); |
| __ Movsd(result, double_load_operand); |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { |
| HLoadKeyed* hinstr = instr->hydrogen(); |
| Register result = ToRegister(instr->result()); |
| LOperand* key = instr->key(); |
| bool requires_hole_check = hinstr->RequiresHoleCheck(); |
| Representation representation = hinstr->representation(); |
| int offset = instr->base_offset(); |
| |
| if (kPointerSize == kInt32Size && !key->IsConstantOperand() && |
| instr->hydrogen()->IsDehoisted()) { |
| // Sign extend key because it could be a 32 bit negative value |
| // and the dehoisted address computation happens in 64 bits |
| __ movsxlq(ToRegister(key), ToRegister(key)); |
| } |
| |