blob: 4b36f96d20158f386788f7802cbc8ad96215ea78 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/crankshaft/x64/lithium-codegen-x64.h"
#include "src/base/bits.h"
#include "src/builtins/builtins-constructor.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator final : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() {}
void BeforeCall(int call_size) const override {}
void AfterCall() const override {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetTotalFrameSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
#ifdef _MSC_VER
void LCodeGen::MakeSureStackPagesMapped(int offset) {
const int kPageSize = 4 * KB;
for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
__ movp(Operand(rsp, offset), rax);
}
}
#endif
void LCodeGen::SaveCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ Movsd(MemOperand(rsp, count * kDoubleSize),
XMMRegister::from_code(save_iterator.Current()));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ Movsd(XMMRegister::from_code(save_iterator.Current()),
MemOperand(rsp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
DCHECK(!frame_is_built_);
frame_is_built_ = true;
if (info()->IsStub()) {
__ StubPrologue(StackFrame::STUB);
} else {
__ Prologue(info()->GeneratePreagedPrologue());
}
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ subp(rsp, Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
__ Push(rax);
__ Set(rax, slots);
__ Set(kScratchRegister, kSlotsZapValue);
Label loop;
__ bind(&loop);
__ movp(MemOperand(rsp, rax, times_pointer_size, 0),
kScratchRegister);
__ decl(rax);
__ j(not_zero, &loop);
__ Pop(rax);
} else {
__ subp(rsp, Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
}
return !is_aborted();
}
void LCodeGen::DoPrologue(LPrologue* instr) {
Comment(";;; Prologue begin");
// Possibly allocate a local context.
if (info_->scope()->NeedsContext()) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is still in rdi.
int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
if (info()->scope()->is_script_scope()) {
__ Push(rdi);
__ Push(info()->scope()->scope_info());
__ CallRuntime(Runtime::kNewScriptContext);
deopt_mode = Safepoint::kLazyDeopt;
} else {
if (slots <=
ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) {
Callable callable = CodeFactory::FastNewFunctionContext(
isolate(), info()->scope()->scope_type());
__ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
__ Call(callable.code(), RelocInfo::CODE_TARGET);
// Result of FastNewFunctionContextStub is always in new space.
need_write_barrier = false;
} else {
__ Push(rdi);
__ Push(Smi::FromInt(info()->scope()->scope_type()));
__ CallRuntime(Runtime::kNewFunctionContext);
}
}
RecordSafepoint(deopt_mode);
// Context is returned in rax. It replaces the context passed to us.
// It's saved in the stack and kept live in rsi.
__ movp(rsi, rax);
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
// Copy any necessary parameters into the context.
int num_parameters = info()->scope()->num_parameters();
int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? info()->scope()->receiver()
: info()->scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ movp(rax, Operand(rbp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ movp(Operand(rsi, context_offset), rax);
// Update the write barrier. This clobbers rax and rbx.
if (need_write_barrier) {
__ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
Comment(";;; Prologue end");
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ subp(rsp, Immediate(slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
instr->hydrogen_value()->representation().IsInteger32() &&
instr->result()->IsRegister()) {
__ AssertZeroExtended(ToRegister(instr->result()));
}
if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
// We sign extend the dehoisted key at the definition point when the pointer
// size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
// points and MustSignExtendResult is always false. We can't use
// STATIC_ASSERT here as the pointer size is 32-bit for x32.
DCHECK(kPointerSize == kInt64Size);
if (instr->result()->IsRegister()) {
Register result_reg = ToRegister(instr->result());
__ movsxlq(result_reg, result_reg);
} else {
// Sign extend the 32bit result in the stack slots.
DCHECK(instr->result()->IsStackSlot());
Operand src = ToOperand(instr->result());
__ movsxlq(kScratchRegister, src);
__ movq(src, kScratchRegister);
}
}
}
bool LCodeGen::GenerateJumpTable() {
if (jump_table_.length() == 0) return !is_aborted();
Label needs_frame;
Comment(";;; -------------------- Jump table --------------------");
for (int i = 0; i < jump_table_.length(); i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
Address entry = table_entry->address;
DeoptComment(table_entry->deopt_info);
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
__ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
__ call(&needs_frame);
} else {
if (info()->saves_caller_doubles()) {
DCHECK(info()->IsStub());
RestoreCallerDoubles();
}
__ call(entry, RelocInfo::RUNTIME_ENTRY);
}
}
if (needs_frame.is_linked()) {
__ bind(&needs_frame);
/* stack layout
3: return address <-- rsp
2: garbage
1: garbage
0: garbage
*/
// Reserve space for stub marker.
__ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize));
__ Push(MemOperand(
rsp, TypedFrameConstants::kFrameTypeSize)); // Copy return address.
__ Push(kScratchRegister);
/* stack layout
3: return address
2: garbage
1: return address
0: entry address <-- rsp
*/
// Create a stack frame.
__ movp(MemOperand(rsp, 3 * kPointerSize), rbp);
__ leap(rbp, MemOperand(rsp, 3 * kPointerSize));
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
DCHECK(info()->IsStub());
__ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
/* stack layout
3: old rbp
2: stub marker
1: return address
0: entry address <-- rsp
*/
__ ret(0);
}
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(value->position());
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
// Build the frame in such a way that esi isn't trashed.
__ pushq(rbp); // Caller's frame pointer.
__ Push(Smi::FromInt(StackFrame::STUB));
__ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
__ bind(code->done());
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
frame_is_built_ = false;
__ movp(rsp, rbp);
__ popq(rbp);
}
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
safepoints_.Emit(masm(), GetTotalFrameSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::from_code(index);
}
XMMRegister LCodeGen::ToDoubleRegister(int index) const {
return XMMRegister::from_code(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsExternal();
}
bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
return op->IsConstantOperand() &&
chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
}
bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasExternalReferenceValue());
return constant->ExternalReferenceValue();
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize + kPCOnStackSize;
}
Operand LCodeGen::ToOperand(LOperand* op) const {
// Does not handle registers. In X64 assembler, plain registers are not
// representable as an Operand.
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(rbp, FrameSlotToFPOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
WriteTranslation(environment->outer(), translation);
WriteTranslationFrame(environment, translation);
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(
environment, translation, value, environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
int index = op->index();
if (is_tagged) {
translation->StoreStackSlot(index);
} else if (is_uint32) {
translation->StoreUint32StackSlot(index);
} else {
translation->StoreInt32StackSlot(index);
}
} else if (op->IsDoubleStackSlot()) {
int index = op->index();
translation->StoreDoubleStackSlot(index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
XMMRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode,
int argc) {
DCHECK(instr != NULL);
__ call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr,
SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
DCHECK(instr->HasPointerMap());
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
if (!ToRegister(context).is(rsi)) {
__ movp(rsi, ToRegister(context));
}
} else if (context->IsStackSlot()) {
__ movp(rsi, ToOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, environment->zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
DeoptimizeReason deopt_reason,
Deoptimizer::BailoutType bailout_type) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (DeoptEveryNTimes()) {
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
__ pushfq();
__ pushq(rax);
Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
__ movl(rax, count_operand);
__ subl(rax, Immediate(1));
__ j(not_zero, &no_deopt, Label::kNear);
if (FLAG_trap_on_deopt) __ int3();
__ movl(rax, Immediate(FLAG_deopt_every_n_times));
__ movl(count_operand, rax);
__ popq(rax);
__ popfq();
DCHECK(frame_is_built_);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ movl(count_operand, rax);
__ popq(rax);
__ popfq();
}
if (info()->ShouldTrapOnDeopt()) {
Label done;
if (cc != no_condition) {
__ j(NegateCondition(cc), &done, Label::kNear);
}
__ int3();
__ bind(&done);
}
Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
DCHECK(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (cc == no_condition && frame_is_built_ &&
!info()->saves_caller_doubles()) {
DeoptComment(deopt_info);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (FLAG_trace_deopt || isolate()->is_profiling() ||
jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
if (cc == no_condition) {
__ jmp(&jump_table_.last().label);
} else {
__ j(cc, &jump_table_.last().label);
}
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
DeoptimizeReason deopt_reason) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode, int argc) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
DCHECK(kind == expected_safepoint_kind_);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ testl(dividend, dividend);
__ j(not_sign, &dividend_is_not_negative, Label::kNear);
// Note that this is correct even for kMinInt operands.
__ negl(dividend);
__ andl(dividend, Immediate(mask));
__ negl(dividend);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
__ jmp(&done, Label::kNear);
}
__ bind(&dividend_is_not_negative);
__ andl(dividend, Immediate(mask));
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(rax));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
__ TruncatingDiv(dividend, Abs(divisor));
__ imull(rdx, rdx, Immediate(Abs(divisor)));
__ movl(rax, dividend);
__ subl(rax, rdx);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ j(not_zero, &remainder_not_zero, Label::kNear);
__ cmpl(dividend, Immediate(0));
DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
DCHECK(left_reg.is(rax));
Register right_reg = ToRegister(instr->right());
DCHECK(!right_reg.is(rax));
DCHECK(!right_reg.is(rdx));
Register result_reg = ToRegister(instr->result());
DCHECK(result_reg.is(rdx));
Label done;
// Check for x % 0, idiv would signal a divide error. We have to
// deopt in this case because we can't return a NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(right_reg, right_reg);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for kMinInt % -1, idiv would signal a divide error. We
// have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ cmpl(left_reg, Immediate(kMinInt));
__ j(not_zero, &no_overflow_possible, Label::kNear);
__ cmpl(right_reg, Immediate(-1));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero);
} else {
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ Set(result_reg, 0);
__ jmp(&done, Label::kNear);
}
__ bind(&no_overflow_possible);
}
// Sign extend dividend in eax into edx:eax, since we are using only the low
// 32 bits of the values.
__ cdq();
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
__ testl(left_reg, left_reg);
__ j(not_sign, &positive_left, Label::kNear);
__ idivl(right_reg);
__ testl(result_reg, result_reg);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
__ jmp(&done, Label::kNear);
__ bind(&positive_left);
}
__ idivl(right_reg);
__ bind(&done);
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
if (divisor == 1) return;
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ sarl(dividend, Immediate(shift));
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
__ negl(dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ sarl(dividend, Immediate(shift));
return;
}
Label not_kmin_int, done;
__ j(no_overflow, &not_kmin_int, Label::kNear);
__ movl(dividend, Immediate(kMinInt / divisor));
__ jmp(&done, Label::kNear);
__ bind(&not_kmin_int);
__ sarl(dividend, Immediate(shift));
__ bind(&done);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(rdx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ testl(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ negl(rdx);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp3());
DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
Label needs_adjustment, done;
__ cmpl(dividend, Immediate(0));
__ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ negl(rdx);
__ jmp(&done, Label::kNear);
__ bind(&needs_adjustment);
__ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
__ TruncatingDiv(temp, Abs(divisor));
if (divisor < 0) __ negl(rdx);
__ decl(rdx);
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
DCHECK(dividend.is(rax));
DCHECK(remainder.is(rdx));
DCHECK(result.is(rax));
DCHECK(!divisor.is(rax));
DCHECK(!divisor.is(rdx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(divisor, divisor);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ testl(dividend, dividend);
__ j(not_zero, &dividend_not_zero, Label::kNear);
__ testl(divisor, divisor);
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
__ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmpl(dividend, Immediate(kMinInt));
__ j(not_zero, &dividend_not_min_int, Label::kNear);
__ cmpl(divisor, Immediate(-1));
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
__ bind(&dividend_not_min_int);
}
// Sign extend to rdx (= remainder).
__ cdq();
__ idivl(divisor);
Label done;
__ testl(remainder, remainder);
__ j(zero, &done, Label::kNear);
__ xorl(remainder, divisor);
__ sarl(remainder, Immediate(31));
__ addl(result, remainder);
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ testl(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ cmpl(dividend, Immediate(kMinInt));
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ testl(dividend, Immediate(mask));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
}
__ Move(result, dividend);
int32_t shift = WhichPowerOf2Abs(divisor);
if (shift > 0) {
// The arithmetic shift is always OK, the 'if' is an optimization only.
if (shift > 1) __ sarl(result, Immediate(31));
__ shrl(result, Immediate(32 - shift));
__ addl(result, dividend);
__ sarl(result, Immediate(shift));
}
if (divisor < 0) __ negl(result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(rdx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ testl(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ negl(rdx);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ movl(rax, rdx);
__ imull(rax, rax, Immediate(divisor));
__ subl(rax, dividend);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
DCHECK(dividend.is(rax));
DCHECK(remainder.is(rdx));
DCHECK(ToRegister(instr->result()).is(rax));
DCHECK(!divisor.is(rax));
DCHECK(!divisor.is(rdx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(divisor, divisor);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ testl(dividend, dividend);
__ j(not_zero, &dividend_not_zero, Label::kNear);
__ testl(divisor, divisor);
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
__ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmpl(dividend, Immediate(kMinInt));
__ j(not_zero, &dividend_not_min_int, Label::kNear);
__ cmpl(divisor, Immediate(-1));
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
__ bind(&dividend_not_min_int);
}
// Sign extend to rdx (= remainder).
__ cdq();
__ idivl(divisor);
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
__ testl(remainder, remainder);
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
}
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->left());
LOperand* right = instr->right();
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ movp(kScratchRegister, left);
} else {
__ movl(kScratchRegister, left);
}
}
bool can_overflow =
instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right->IsConstantOperand()) {
int32_t right_value = ToInteger32(LConstantOperand::cast(right));
if (right_value == -1) {
__ negl(left);
} else if (right_value == 0) {
__ xorl(left, left);
} else if (right_value == 2) {
__ addl(left, left);
} else if (!can_overflow) {
// If the multiplication is known to not overflow, we
// can use operations that don't set the overflow flag
// correctly.
switch (right_value) {
case 1:
// Do nothing.
break;
case 3:
__ leal(left, Operand(left, left, times_2, 0));
break;
case 4:
__ shll(left, Immediate(2));
break;
case 5:
__ leal(left, Operand(left, left, times_4, 0));
break;
case 8:
__ shll(left, Immediate(3));
break;
case 9:
__ leal(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shll(left, Immediate(4));
break;
default:
__ imull(left, left, Immediate(right_value));
break;
}
} else {
__ imull(left, left, Immediate(right_value));
}
} else if (right->IsStackSlot()) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ SmiToInteger64(left, left);
__ imulp(left, ToOperand(right));
} else {
__ imull(left, ToOperand(right));
}
} else {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ SmiToInteger64(left, left);
__ imulp(left, ToRegister(right));
} else {
__ imull(left, ToRegister(right));
}
}
if (can_overflow) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
if (instr->hydrogen_value()->representation().IsSmi()) {
__ testp(left, left);
} else {
__ testl(left, left);
}
__ j(not_zero, &done, Label::kNear);
if (right->IsConstantOperand()) {
// Constant can't be represented as 32-bit Smi due to immediate size
// limit.
DCHECK(SmiValuesAre32Bits()
? !instr->hydrogen_value()->representation().IsSmi()
: SmiValuesAre31Bits());
if (ToInteger32(LConstantOperand::cast(right)) < 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
} else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
__ cmpl(kScratchRegister, Immediate(0));
DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
}
} else if (right->IsStackSlot()) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ orp(kScratchRegister, ToOperand(right));
} else {
__ orl(kScratchRegister, ToOperand(right));
}
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
} else {
// Test the non-zero operand for negative sign.
if (instr->hydrogen_value()->representation().IsSmi()) {
__ orp(kScratchRegister, ToRegister(right));
} else {
__ orl(kScratchRegister, ToRegister(right));
}
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
DCHECK(left->IsRegister());
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
switch (instr->op()) {
case Token::BIT_AND:
__ andl(ToRegister(left), Immediate(right_operand));
break;
case Token::BIT_OR:
__ orl(ToRegister(left), Immediate(right_operand));
break;
case Token::BIT_XOR:
if (right_operand == int32_t(~0)) {
__ notl(ToRegister(left));
} else {
__ xorl(ToRegister(left), Immediate(right_operand));
}
break;
default:
UNREACHABLE();
break;
}
} else if (right->IsStackSlot()) {
switch (instr->op()) {
case Token::BIT_AND:
if (instr->IsInteger32()) {
__ andl(ToRegister(left), ToOperand(right));
} else {
__ andp(ToRegister(left), ToOperand(right));
}
break;
case Token::BIT_OR:
if (instr->IsInteger32()) {
__ orl(ToRegister(left), ToOperand(right));
} else {
__ orp(ToRegister(left), ToOperand(right));
}
break;
case Token::BIT_XOR:
if (instr->IsInteger32()) {
__ xorl(ToRegister(left), ToOperand(right));
} else {
__ xorp(ToRegister(left), ToOperand(right));
}
break;
default:
UNREACHABLE();
break;
}
} else {
DCHECK(right->IsRegister());
switch (instr->op()) {
case Token::BIT_AND:
if (instr->IsInteger32()) {
__ andl(ToRegister(left), ToRegister(right));
} else {
__ andp(ToRegister(left), ToRegister(right));
}
break;
case Token::BIT_OR:
if (instr->IsInteger32()) {
__ orl(ToRegister(left), ToRegister(right));
} else {
__ orp(ToRegister(left), ToRegister(right));
}
break;
case Token::BIT_XOR:
if (instr->IsInteger32()) {
__ xorl(ToRegister(left), ToRegister(right));
} else {
__ xorp(ToRegister(left), ToRegister(right));
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
DCHECK(left->IsRegister());
if (right->IsRegister()) {
DCHECK(ToRegister(right).is(rcx));
switch (instr->op()) {
case Token::ROR:
__ rorl_cl(ToRegister(left));
break;
case Token::SAR:
__ sarl_cl(ToRegister(left));
break;
case Token::SHR:
__ shrl_cl(ToRegister(left));
if (instr->can_deopt()) {
__ testl(ToRegister(left), ToRegister(left));
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case Token::SHL:
__ shll_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int32_t value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ rorl(ToRegister(left), Immediate(shift_count));
}
break;
case Token::SAR:
if (shift_count != 0) {
__ sarl(ToRegister(left), Immediate(shift_count));
}
break;
case Token::SHR:
if (shift_count != 0) {
__ shrl(ToRegister(left), Immediate(shift_count));
} else if (instr->can_deopt()) {
__ testl(ToRegister(left), ToRegister(left));
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi()) {
if (SmiValuesAre32Bits()) {
__ shlp(ToRegister(left), Immediate(shift_count));
} else {
DCHECK(SmiValuesAre31Bits());
if (instr->can_deopt()) {
if (shift_count != 1) {
__ shll(ToRegister(left), Immediate(shift_count - 1));
}
__ Integer32ToSmi(ToRegister(left), ToRegister(left));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
} else {
__ shll(ToRegister(left), Immediate(shift_count));
}
}
} else {
__ shll(ToRegister(left), Immediate(shift_count));
}
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
__ subl(ToRegister(left), Immediate(right_operand));
} else if (right->IsRegister()) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ subp(ToRegister(left), ToRegister(right));
} else {
__ subl(ToRegister(left), ToRegister(right));
}
} else {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ subp(ToRegister(left), ToOperand(right));
} else {
__ subl(ToRegister(left), ToOperand(right));
}
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
Register dst = ToRegister(instr->result());
if (instr->value() == 0) {
__ xorl(dst, dst);
} else {
__ movl(dst, Immediate(instr->value()));
}
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ Move(ToRegister(instr->result()), instr->value());
}
void LCodeGen::DoConstantD(LConstantD* instr) {
__ Move(ToDoubleRegister(instr->result()), instr->bits());
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ LoadAddress(ToRegister(instr->result()), instr->value());
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ Move(ToRegister(instr->result()), object);
}
Operand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldOperand(string, SeqString::kHeaderSize + offset);
}
return FieldOperand(
string, ToRegister(index),
encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register result = ToRegister(instr->result());
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
__ Push(string);
__ movp(string, FieldOperand(string, HeapObject::kMapOffset));
__ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
__ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(equal, kUnexpectedStringType);
__ Pop(string);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ movzxbl(result, operand);
} else {
__ movzxwl(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
Register value = ToRegister(instr->value());
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (instr->value()->IsConstantOperand()) {
int value = ToInteger32(LConstantOperand::cast(instr->value()));
DCHECK_LE(0, value);
if (encoding == String::ONE_BYTE_ENCODING) {
DCHECK_LE(value, String::kMaxOneByteCharCode);
__ movb(operand, Immediate(value));
} else {
DCHECK_LE(value, String::kMaxUtf16CodeUnit);
__ movw(operand, Immediate(value));
}
} else {
Register value = ToRegister(instr->value());
if (encoding == String::ONE_BYTE_ENCODING) {
__ movb(operand, value);
} else {
__ movw(operand, value);
}
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
Representation target_rep = instr->hydrogen()->representation();
bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
if (right->IsConstantOperand()) {
// No support for smi-immediates for 32-bit SMI.
DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
int32_t offset =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
if (is_p) {
__ leap(ToRegister(instr->result()),
MemOperand(ToRegister(left), offset));
} else {
__ leal(ToRegister(instr->result()),
MemOperand(ToRegister(left), offset));
}
} else {
Operand address(ToRegister(left), ToRegister(right), times_1, 0);
if (is_p) {
__ leap(ToRegister(instr->result()), address);
} else {
__ leal(ToRegister(instr->result()), address);
}
}
} else {
if (right->IsConstantOperand()) {
// No support for smi-immediates for 32-bit SMI.
DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
if (is_p) {
__ addp(ToRegister(left), Immediate(right_operand));
} else {
__ addl(ToRegister(left), Immediate(right_operand));
}
} else if (right->IsRegister()) {
if (is_p) {
__ addp(ToRegister(left), ToRegister(right));
} else {
__ addl(ToRegister(left), ToRegister(right));
}
} else {
if (is_p) {
__ addp(ToRegister(left), ToOperand(right));
} else {
__ addl(ToRegister(left), ToOperand(right));
}
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Label return_left;
Condition condition = (operation == HMathMinMax::kMathMin)
? less_equal
: greater_equal;
Register left_reg = ToRegister(left);
if (right->IsConstantOperand()) {
Immediate right_imm = Immediate(
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation()));
DCHECK(SmiValuesAre32Bits()
? !instr->hydrogen()->representation().IsSmi()
: SmiValuesAre31Bits());
__ cmpl(left_reg, right_imm);
__ j(condition, &return_left, Label::kNear);
__ movl(left_reg, right_imm);
} else if (right->IsRegister()) {
Register right_reg = ToRegister(right);
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmpp(left_reg, right_reg);
} else {
__ cmpl(left_reg, right_reg);
}
__ j(condition, &return_left, Label::kNear);
__ movp(left_reg, right_reg);
} else {
Operand right_op = ToOperand(right);
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmpp(left_reg, right_op);
} else {
__ cmpl(left_reg, right_op);
}
__ j(condition, &return_left, Label::kNear);
__ movp(left_reg, right_op);
}
__ bind(&return_left);
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
Label not_nan, distinct, return_left, return_right;
Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
XMMRegister left_reg = ToDoubleRegister(left);
XMMRegister right_reg = ToDoubleRegister(right);
__ Ucomisd(left_reg, right_reg);
__ j(parity_odd, &not_nan, Label::kNear); // Both are not NaN.
// One of the numbers is NaN. Find which one and return it.
__ Ucomisd(left_reg, left_reg);
__ j(parity_even, &return_left, Label::kNear); // left is NaN.
__ jmp(&return_right, Label::kNear); // right is NaN.
__ bind(&not_nan);
__ j(not_equal, &distinct, Label::kNear); // left != right.
// left == right
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(left_reg, xmm_scratch);
__ j(not_equal, &return_left, Label::kNear); // left == right != 0.
// At this point, both left and right are either +0 or -0.
if (operation == HMathMinMax::kMathMin) {
__ Orpd(left_reg, right_reg);
} else {
__ Andpd(left_reg, right_reg);
}
__ jmp(&return_left, Label::kNear);
__ bind(&distinct);
__ j(condition, &return_left, Label::kNear);
__ bind(&return_right);
__ Movapd(left_reg, right_reg);
__ bind(&return_left);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->left());
XMMRegister right = ToDoubleRegister(instr->right());
XMMRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vaddsd(result, left, right);
} else {
DCHECK(result.is(left));
__ addsd(left, right);
}
break;
case Token::SUB:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vsubsd(result, left, right);
} else {
DCHECK(result.is(left));
__ subsd(left, right);
}
break;
case Token::MUL:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vmulsd(result, left, right);
} else {
DCHECK(result.is(left));
__ mulsd(left, right);
}
break;
case Token::DIV:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vdivsd(result, left, right);
} else {
DCHECK(result.is(left));
__ divsd(left, right);
}
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a (v)mulsd depending on the result
__ Movapd(result, result);
break;
case Token::MOD: {
DCHECK(left.is(xmm0));
DCHECK(right.is(xmm1));
DCHECK(result.is(xmm0));
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()), 2);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->left()).is(rdx));
DCHECK(ToRegister(instr->right()).is(rax));
DCHECK(ToRegister(instr->result()).is(rax));
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cc == no_condition) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
if (cc != always) {
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
}
template <class InstrType>
void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
int true_block = instr->TrueDestination(chunk_);
__ j(cc, chunk_->GetAssemblyLabel(true_block));
}
template <class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
int false_block = instr->FalseDestination(chunk_);
__ j(cc, chunk_->GetAssemblyLabel(false_block));
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ int3();
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ testl(reg, reg);
EmitBranch(instr, not_zero);
} else if (r.IsSmi()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ testp(reg, reg);
EmitBranch(instr, not_zero);
} else if (r.IsDouble()) {
DCHECK(!info()->IsStub());
XMMRegister reg = ToDoubleRegister(instr->value());
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(reg, xmm_scratch);
EmitBranch(instr, not_equal);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(instr, equal);
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
__ SmiCompare(reg, Smi::kZero);
EmitBranch(instr, not_equal);
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, no_condition);
} else if (type.IsHeapNumber()) {
DCHECK(!info()->IsStub());
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
EmitBranch(instr, not_equal);
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
EmitBranch(instr, not_equal);
} else {
ToBooleanHints expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
if (expected & ToBooleanHint::kUndefined) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kBoolean) {
// true -> true.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ j(equal, instr->TrueLabel(chunk_));
// false -> false.
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kNull) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kSmallInteger) {
// Smis: 0 -> false, all other -> true.
__ Cmp(reg, Smi::kZero);
__ j(equal, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected & ToBooleanHint::kNeedsMap) {
// If we need a map later and have a Smi -> deopt.
__ testb(reg, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
}
const Register map = kScratchRegister;
if (expected & ToBooleanHint::kNeedsMap) {
__ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
if (expected & ToBooleanHint::kCanBeUndetectable) {
// Undetectable -> false.
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, instr->FalseLabel(chunk_));
}
}
if (expected & ToBooleanHint::kReceiver) {
// spec object -> true.
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kString) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, &not_string, Label::kNear);
__ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
__ j(not_zero, instr->TrueLabel(chunk_));
__ jmp(instr->FalseLabel(chunk_));
__ bind(&not_string);
}
if (expected & ToBooleanHint::kSymbol) {
// Symbol value -> true.
__ CmpInstanceType(map, SYMBOL_TYPE);
__ j(equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kSimdValue) {
// SIMD value -> true.
__ CmpInstanceType(map, SIMD128_VALUE_TYPE);
__ j(equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kHeapNumber) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &not_heap_number, Label::kNear);
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
__ j(zero, instr->FalseLabel(chunk_));
__ jmp(instr->TrueLabel(chunk_));
__ bind(&not_heap_number);
}
if (expected != ToBooleanHint::kAny) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject);
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::NE:
case Token::NE_STRICT:
cond = not_equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->is_double() ||
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cc = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
? instr->TrueDestination(chunk_)
: instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
__ j(parity_even, instr->FalseLabel(chunk_));
} else {
int32_t value;
if (right->IsConstantOperand()) {
value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
__ Cmp(ToRegister(left), Smi::FromInt(value));
} else {
__ cmpl(ToRegister(left), Immediate(value));
}
} else if (left->IsConstantOperand()) {
value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
if (right->IsRegister()) {
__ Cmp(ToRegister(right), Smi::FromInt(value));
} else {
__ Cmp(ToOperand(right), Smi::FromInt(value));
}
} else if (right->IsRegister()) {
__ cmpl(ToRegister(right), Immediate(value));
} else {
__ cmpl(ToOperand(right), Immediate(value));
}
// We commuted the operands, so commute the condition.
cc = CommuteCondition(cc);
} else if (instr->hydrogen_value()->representation().IsSmi()) {
if (right->IsRegister()) {
__ cmpp(ToRegister(left), ToRegister(right));
} else {
__ cmpp(ToRegister(left), ToOperand(right));
}
} else {
if (right->IsRegister()) {
__ cmpl(ToRegister(left), ToRegister(right));
} else {
__ cmpl(ToRegister(left), ToOperand(right));
}
}
}
EmitBranch(instr, cc);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
if (instr->right()->IsConstantOperand()) {
Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
__ Cmp(left, right);
} else {
Register right = ToRegister(instr->right());
__ cmpp(left, right);
}
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ Cmp(input_reg, factory()->the_hole_value());
EmitBranch(instr, equal);
return;
}
XMMRegister input_reg = ToDoubleRegister(instr->object());
__ Ucomisd(input_reg, input_reg);
EmitFalseBranch(instr, parity_odd);
__ subp(rsp, Immediate(kDoubleSize));
__ Movsd(MemOperand(rsp, 0), input_reg);
__ addp(rsp, Immediate(kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
EmitBranch(instr, equal);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
return cond;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Condition true_cond = EmitIsString(
reg, temp, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Condition is_smi;
if (instr->value()->IsRegister()) {
Register input = ToRegister(instr->value());
is_smi = masm()->CheckSmi(input);
} else {
Operand input = ToOperand(instr->value());
is_smi = masm()->CheckSmi(input);
}
EmitBranch(instr, is_smi);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
__ testb(FieldOperand(temp, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
EmitBranch(instr, not_zero);
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->left()).is(rdx));
DCHECK(ToRegister(instr->right()).is(rax));
Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
EmitBranch(instr, equal);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
DCHECK(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return equal;
if (to == LAST_TYPE) return above_equal;
if (from == FIRST_TYPE) return below_equal;
UNREACHABLE();
return equal;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register input = ToRegister(instr->value());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
EmitBranch(instr, BranchCondition(instr->hydrogen()));
}
// Branches to a label or falls through with the answer in the z flag.
// Trashes the temp register.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String> class_name,
Register input,
Register temp,
Register temp2) {
DCHECK(!input.is(temp));
DCHECK(!input.is(temp2));
DCHECK(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
__ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
__ j(above_equal, is_true);
} else {
__ j(above_equal, is_false);
}
// Check if the constructor in the map is a function.
__ GetMapConstructor(temp, temp, kScratchRegister);
// Objects with a non-function constructor have class 'Object'.
__ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
if (String::Equals(class_name, isolate()->factory()->Object_string())) {
__ j(not_equal, is_true);
} else {
__ j(not_equal, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ movp(temp, FieldOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is internalized since it's a literal.
// The name in the constructor is internalized because of the way the context
// is booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are internalized it is sufficient to use an
// identity comparison.
DCHECK(class_name->IsInternalizedString());
__ Cmp(temp, class_name);
// End with the answer in the z flag.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
Register temp2 = ToRegister(instr->temp2());
Handle<String> class_name = instr->hydrogen()->class_name();
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
class_name, input, temp, temp2);
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->value());
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
EmitBranch(instr, equal);
}
void LCodeGen::DoHasInPrototypeChainAndBranch(
LHasInPrototypeChainAndBranch* instr) {
Register const object = ToRegister(instr->object());
Register const object_map = kScratchRegister;
Register const object_prototype = object_map;
Register const prototype = ToRegister(instr->prototype());
// The {object} must be a spec object. It's sufficient to know that {object}
// is not a smi, since all other non-spec objects have {null} prototypes and
// will be ruled out below.
if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
Condition is_smi = __ CheckSmi(object);
EmitFalseBranch(instr, is_smi);
}
// Loop through the {object}s prototype chain looking for the {prototype}.
__ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
Label loop;
__ bind(&loop);
// Deoptimize if the object needs to be access checked.
__ testb(FieldOperand(object_map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck);
// Deoptimize for proxies.
__ CmpInstanceType(object_map, JS_PROXY_TYPE);
DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy);
__ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
__ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
EmitFalseBranch(instr, equal);
__ cmpp(object_prototype, prototype);
EmitTrueBranch(instr, equal);
__ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
__ jmp(&loop);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
Token::Value op = instr->op();
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = TokenToCondition(op, false);
Label true_value, done;
__ testp(rax, rax);
__ j(condition, &true_value, Label::kNear);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace && info()->IsOptimizing()) {
// Preserve the return value on the stack and rely on the runtime call
// to return the value in the same register. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ Push(rax);
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit);
}
if (info()->saves_caller_doubles()) {
RestoreCallerDoubles();
}
if (NeedsEagerFrame()) {
__ movp(rsp, rbp);
__ popq(rbp);
}
if (instr->has_constant_parameter_count()) {
__ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
rcx);
} else {
DCHECK(info()->IsStub()); // Functions would need to drop one more value.
Register reg = ToRegister(instr->parameter_count());
// The argument count parameter is a smi
__ SmiToInteger32(reg, reg);
Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
__ PopReturnAddressTo(return_addr_reg);
__ shlp(reg, Immediate(kPointerSizeLog2));
__ addp(rsp, reg);
__ jmp(return_addr_reg);
}
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ movp(result, ContextOperand(context, instr->slot_index()));
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Operand target = ContextOperand(context, instr->slot_index());
__ movp(target, value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
int offset = Context::SlotOffset(instr->slot_index());
Register scratch = ToRegister(instr->temp());
__ RecordWriteContextSlot(context,
offset,
value,
scratch,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
Register result = ToRegister(instr->result());
if (instr->object()->IsConstantOperand()) {
DCHECK(result.is(rax));
__ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
} else {
Register object = ToRegister(instr->object());
__ Load(result, MemOperand(object, offset), access.representation());
}
return;
}
Register object = ToRegister(instr->object());
if (instr->hydrogen()->representation().IsDouble()) {
DCHECK(access.IsInobject());
XMMRegister result = ToDoubleRegister(instr->result());
__ Movsd(result, FieldOperand(object, offset));
return;
}
Register result = ToRegister(instr->result());
if (!access.IsInobject()) {
__ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
object = result;
}
Representation representation = access.representation();
if (representation.IsSmi() && SmiValuesAre32Bits() &&
instr->hydrogen()->representation().IsInteger32()) {
if (FLAG_debug_code) {
Register scratch = kScratchRegister;
__ Load(scratch, FieldOperand(object, offset), representation);
__ AssertSmi(scratch);
}
// Read int value directly from upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
DCHECK(kSmiTagSize + kSmiShiftSize == 32);
offset += kPointerSize / 2;
representation = Representation::Integer32();
}
__ Load(result, FieldOperand(object, offset), representation);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Get the prototype or initial map from the function.
__ movp(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
// If the function does not have an initial map, we're done.
Label done;
__ CmpObjectType(result, MAP_TYPE, kScratchRegister);
__ j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
__ movp(result, FieldOperand(result, Map::kPrototypeOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
Register result = ToRegister(instr->result());
__ LoadRoot(result, instr->index());
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register result = ToRegister(instr->result());
if (instr->length()->IsConstantOperand() &&
instr->index()->IsConstantOperand()) {
int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
if (const_index >= 0 && const_index < const_length) {
StackArgumentsAccessor args(arguments, const_length,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(result, args.GetArgumentOperand(const_index));
} else if (FLAG_debug_code) {
__ int3();
}
} else {
Register length = ToRegister(instr->length());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
if (instr->index()->IsRegister()) {
__ subl(length, ToRegister(instr->index()));
} else {
__ subl(length, ToOperand(instr->index()));
}
StackArgumentsAccessor args(arguments, length,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(result, args.GetArgumentOperand(0));
}
}
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
Register key_reg = ToRegister(key);
Representation key_representation =
instr->hydrogen()->key()->representation();
if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
__ SmiToInteger64(key_reg, key_reg);
} else if (instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(key_reg, key_reg);
}
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == FLOAT32_ELEMENTS) {
XMMRegister result(ToDoubleRegister(instr->result()));
__ Cvtss2sd(result, operand);
} else if (elements_kind == FLOAT64_ELEMENTS) {
__ Movsd(ToDoubleRegister(instr->result()), operand);
} else {
Register result(ToRegister(instr->result()));
switch (elements_kind) {
case INT8_ELEMENTS:
__ movsxbl(result, operand);
break;
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ movzxbl(result, operand);
break;
case INT16_ELEMENTS:
__ movsxwl(result, operand);
break;
case UINT16_ELEMENTS:
__ movzxwl(result, operand);
break;
case INT32_ELEMENTS:
__ movl(result, operand);
break;
case UINT32_ELEMENTS:
__ movl(result, operand);
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
__ testl(result, result);
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
XMMRegister result(ToDoubleRegister(instr->result()));
LOperand* key = instr->key();
if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(ToRegister(key), ToRegister(key));
}
if (instr->hydrogen()->RequiresHoleCheck()) {
Operand hole_check_operand = BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset() + sizeof(kHoleNanLower32));
__ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
}
Operand double_load_operand = BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
__ Movsd(result, double_load_operand);
}
void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
HLoadKeyed* hinstr = instr->hydrogen();
Register result = ToRegister(instr->result());
LOperand* key = instr->key();
bool requires_hole_check = hinstr->RequiresHoleCheck();
Representation representation = hinstr->representation();
int offset = instr->base_offset();
if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(ToRegister(key), ToRegister(key));
}