blob: 96437396c1fc75662e42024962586f79cee499af [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_HEAP_INL_H_
#define V8_HEAP_HEAP_INL_H_
#include <cmath>
#include "src/base/platform/platform.h"
#include "src/counters.h"
#include "src/heap/heap.h"
#include "src/heap/incremental-marking-inl.h"
#include "src/heap/mark-compact.h"
#include "src/heap/remembered-set.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/store-buffer.h"
#include "src/isolate.h"
#include "src/list-inl.h"
#include "src/log.h"
#include "src/msan.h"
#include "src/objects-inl.h"
#include "src/type-feedback-vector-inl.h"
namespace v8 {
namespace internal {
void PromotionQueue::insert(HeapObject* target, int32_t size,
bool was_marked_black) {
if (emergency_stack_ != NULL) {
emergency_stack_->Add(Entry(target, size, was_marked_black));
return;
}
if ((rear_ - 1) < limit_) {
RelocateQueueHead();
emergency_stack_->Add(Entry(target, size, was_marked_black));
return;
}
struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_);
entry->obj_ = target;
entry->size_ = size;
entry->was_marked_black_ = was_marked_black;
// Assert no overflow into live objects.
#ifdef DEBUG
SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
reinterpret_cast<Address>(rear_));
#endif
}
#define ROOT_ACCESSOR(type, name, camel_name) \
type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)
#undef STRUCT_MAP_ACCESSOR
#define STRING_ACCESSOR(name, str) \
String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); }
INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
#undef STRING_ACCESSOR
#define SYMBOL_ACCESSOR(name) \
Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR
#define SYMBOL_ACCESSOR(name, description) \
Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR
#define ROOT_ACCESSOR(type, name, camel_name) \
void Heap::set_##name(type* value) { \
/* The deserializer makes use of the fact that these common roots are */ \
/* never in new space and never on a page that is being compacted. */ \
DCHECK(!deserialization_complete() || \
RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex)); \
DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
roots_[k##camel_name##RootIndex] = value; \
}
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
template <>
bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
// TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
return chars == str.length();
}
template <>
bool inline Heap::IsOneByte(String* str, int chars) {
return str->IsOneByteRepresentation();
}
AllocationResult Heap::AllocateInternalizedStringFromUtf8(
Vector<const char> str, int chars, uint32_t hash_field) {
if (IsOneByte(str, chars)) {
return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
hash_field);
}
return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
}
template <typename T>
AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
uint32_t hash_field) {
if (IsOneByte(t, chars)) {
return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
}
return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
}
AllocationResult Heap::AllocateOneByteInternalizedString(
Vector<const uint8_t> str, uint32_t hash_field) {
CHECK_GE(String::kMaxLength, str.length());
// Compute map and object size.
Map* map = one_byte_internalized_string_map();
int size = SeqOneByteString::SizeFor(str.length());
// Allocate string.
HeapObject* result = nullptr;
{
AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
if (!allocation.To(&result)) return allocation;
}
// String maps are all immortal immovable objects.
result->set_map_no_write_barrier(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
// Fill in the characters.
MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
str.length());
return answer;
}
AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
uint32_t hash_field) {
CHECK_GE(String::kMaxLength, str.length());
// Compute map and object size.
Map* map = internalized_string_map();
int size = SeqTwoByteString::SizeFor(str.length());
// Allocate string.
HeapObject* result = nullptr;
{
AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
// Fill in the characters.
MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
str.length() * kUC16Size);
return answer;
}
AllocationResult Heap::CopyFixedArray(FixedArray* src) {
if (src->length() == 0) return src;
return CopyFixedArrayWithMap(src, src->map());
}
AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
if (src->length() == 0) return src;
return CopyFixedDoubleArrayWithMap(src, src->map());
}
AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
AllocationAlignment alignment) {
DCHECK(AllowHandleAllocation::IsAllowed());
DCHECK(AllowHeapAllocation::IsAllowed());
DCHECK(gc_state_ == NOT_IN_GC);
#ifdef DEBUG
if (FLAG_gc_interval >= 0 && !always_allocate() &&
Heap::allocation_timeout_-- <= 0) {
return AllocationResult::Retry(space);
}
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
bool large_object = size_in_bytes > Page::kMaxRegularHeapObjectSize;
HeapObject* object = nullptr;
AllocationResult allocation;
if (NEW_SPACE == space) {
if (large_object) {
space = LO_SPACE;
} else {
allocation = new_space_.AllocateRaw(size_in_bytes, alignment);
if (allocation.To(&object)) {
OnAllocationEvent(object, size_in_bytes);
}
return allocation;
}
}
// Here we only allocate in the old generation.
if (OLD_SPACE == space) {
if (large_object) {
allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
} else {
allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
}
} else if (CODE_SPACE == space) {
if (size_in_bytes <= code_space()->AreaSize()) {
allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
} else {
allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
}
} else if (LO_SPACE == space) {
DCHECK(large_object);
allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
} else if (MAP_SPACE == space) {
allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
} else {
// NEW_SPACE is not allowed here.
UNREACHABLE();
}
if (allocation.To(&object)) {
OnAllocationEvent(object, size_in_bytes);
} else {
old_gen_exhausted_ = true;
}
if (!old_gen_exhausted_ && incremental_marking()->black_allocation() &&
space != OLD_SPACE) {
Marking::MarkBlack(Marking::MarkBitFrom(object));
MemoryChunk::IncrementLiveBytesFromGC(object, size_in_bytes);
}
return allocation;
}
void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
HeapProfiler* profiler = isolate_->heap_profiler();
if (profiler->is_tracking_allocations()) {
profiler->AllocationEvent(object->address(), size_in_bytes);
}
if (FLAG_verify_predictable) {
++allocations_count_;
// Advance synthetic time by making a time request.
MonotonicallyIncreasingTimeInMs();
UpdateAllocationsHash(object);
UpdateAllocationsHash(size_in_bytes);
if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
PrintAlloctionsHash();
}
}
if (FLAG_trace_allocation_stack_interval > 0) {
if (!FLAG_verify_predictable) ++allocations_count_;
if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
}
}
}
void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
int size_in_bytes) {
HeapProfiler* heap_profiler = isolate_->heap_profiler();
if (heap_profiler->is_tracking_object_moves()) {
heap_profiler->ObjectMoveEvent(source->address(), target->address(),
size_in_bytes);
}
if (target->IsSharedFunctionInfo()) {
LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
target->address()));
}
if (FLAG_verify_predictable) {
++allocations_count_;
// Advance synthetic time by making a time request.
MonotonicallyIncreasingTimeInMs();
UpdateAllocationsHash(source);
UpdateAllocationsHash(target);
UpdateAllocationsHash(size_in_bytes);
if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
PrintAlloctionsHash();
}
}
}
void Heap::UpdateAllocationsHash(HeapObject* object) {
Address object_address = object->address();
MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
AllocationSpace allocation_space = memory_chunk->owner()->identity();
STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
uint32_t value =
static_cast<uint32_t>(object_address - memory_chunk->address()) |
(static_cast<uint32_t>(allocation_space) << kPageSizeBits);
UpdateAllocationsHash(value);
}
void Heap::UpdateAllocationsHash(uint32_t value) {
uint16_t c1 = static_cast<uint16_t>(value);
uint16_t c2 = static_cast<uint16_t>(value >> 16);
raw_allocations_hash_ =
StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
raw_allocations_hash_ =
StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
}
void Heap::RegisterExternalString(String* string) {
external_string_table_.AddString(string);
}
void Heap::FinalizeExternalString(String* string) {
DCHECK(string->IsExternalString());
v8::String::ExternalStringResourceBase** resource_addr =
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
kHeapObjectTag);
// Dispose of the C++ object if it has not already been disposed.
if (*resource_addr != NULL) {
(*resource_addr)->Dispose();
*resource_addr = NULL;
}
}
bool Heap::InNewSpace(Object* object) {
bool result = new_space_.Contains(object);
DCHECK(!result || // Either not in new space
gc_state_ != NOT_IN_GC || // ... or in the middle of GC
InToSpace(object)); // ... or in to-space (where we allocate).
return result;
}
bool Heap::InFromSpace(Object* object) {
return new_space_.FromSpaceContains(object);
}
bool Heap::InToSpace(Object* object) {
return new_space_.ToSpaceContains(object);
}
bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
bool Heap::InNewSpaceSlow(Address address) {
return new_space_.ContainsSlow(address);
}
bool Heap::InOldSpaceSlow(Address address) {
return old_space_->ContainsSlow(address);
}
bool Heap::OldGenerationAllocationLimitReached() {
if (!incremental_marking()->IsStopped()) return false;
return OldGenerationSpaceAvailable() < 0;
}
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
Page* page = Page::FromAddress(old_address);
Address age_mark = new_space_.age_mark();
return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
(!page->ContainsLimit(age_mark) || old_address < age_mark);
}
void Heap::RecordWrite(Object* object, int offset, Object* o) {
if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) {
return;
}
RememberedSet<OLD_TO_NEW>::Insert(
Page::FromAddress(reinterpret_cast<Address>(object)),
HeapObject::cast(object)->address() + offset);
}
void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) {
if (InNewSpace(array)) return;
Page* page = Page::FromAddress(reinterpret_cast<Address>(array));
for (int i = 0; i < length; i++) {
if (!InNewSpace(array->get(offset + i))) continue;
RememberedSet<OLD_TO_NEW>::Insert(
page,
reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i)));
}
}
bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
// Object migration is governed by the following rules:
//
// 1) Objects in new-space can be migrated to the old space
// that matches their target space or they stay in new-space.
// 2) Objects in old-space stay in the same space when migrating.
// 3) Fillers (two or more words) can migrate due to left-trimming of
// fixed arrays in new-space or old space.
// 4) Fillers (one word) can never migrate, they are skipped by
// incremental marking explicitly to prevent invalid pattern.
//
// Since this function is used for debugging only, we do not place
// asserts here, but check everything explicitly.
if (obj->map() == one_pointer_filler_map()) return false;
InstanceType type = obj->map()->instance_type();
MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
AllocationSpace src = chunk->owner()->identity();
switch (src) {
case NEW_SPACE:
return dst == src || dst == OLD_SPACE;
case OLD_SPACE:
return dst == src &&
(dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString());
case CODE_SPACE:
return dst == src && type == CODE_TYPE;
case MAP_SPACE:
case LO_SPACE:
return false;
}
UNREACHABLE();
return false;
}
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
static_cast<size_t>(byte_size / kPointerSize));
}
void Heap::UpdateNewSpaceAllocationCounter() {
new_space_allocation_counter_ = NewSpaceAllocationCounter();
}
size_t Heap::NewSpaceAllocationCounter() {
return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
}
template <Heap::FindMementoMode mode>
AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
// Check if there is potentially a memento behind the object. If
// the last word of the memento is on another page we return
// immediately.
Address object_address = object->address();
Address memento_address = object_address + object->Size();
Address last_memento_word_address = memento_address + kPointerSize;
if (!Page::OnSamePage(object_address, last_memento_word_address)) {
return nullptr;
}
HeapObject* candidate = HeapObject::FromAddress(memento_address);
Map* candidate_map = candidate->map();
// This fast check may peek at an uninitialized word. However, the slow check
// below (memento_address == top) ensures that this is safe. Mark the word as
// initialized to silence MemorySanitizer warnings.
MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
if (candidate_map != allocation_memento_map()) {
return nullptr;
}
AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
// Depending on what the memento is used for, we might need to perform
// additional checks.
Address top;
switch (mode) {
case Heap::kForGC:
return memento_candidate;
case Heap::kForRuntime:
if (memento_candidate == nullptr) return nullptr;
// Either the object is the last object in the new space, or there is
// another object of at least word size (the header map word) following
// it, so suffices to compare ptr and top here.
top = NewSpaceTop();
DCHECK(memento_address == top ||
memento_address + HeapObject::kHeaderSize <= top ||
!Page::OnSamePage(memento_address, top - 1));
if ((memento_address != top) && memento_candidate->IsValid()) {
return memento_candidate;
}
return nullptr;
default:
UNREACHABLE();
}
UNREACHABLE();
return nullptr;
}
template <Heap::UpdateAllocationSiteMode mode>
void Heap::UpdateAllocationSite(HeapObject* object,
HashMap* pretenuring_feedback) {
DCHECK(InFromSpace(object));
if (!FLAG_allocation_site_pretenuring ||
!AllocationSite::CanTrack(object->map()->instance_type()))
return;
AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object);
if (memento_candidate == nullptr) return;
if (mode == kGlobal) {
DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_);
// Entering global pretenuring feedback is only used in the scavenger, where
// we are allowed to actually touch the allocation site.
if (!memento_candidate->IsValid()) return;
AllocationSite* site = memento_candidate->GetAllocationSite();
DCHECK(!site->IsZombie());
// For inserting in the global pretenuring storage we need to first
// increment the memento found count on the allocation site.
if (site->IncrementMementoFoundCount()) {
global_pretenuring_feedback_->LookupOrInsert(site,
ObjectHash(site->address()));
}
} else {
DCHECK_EQ(mode, kCached);
DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_);
// Entering cached feedback is used in the parallel case. We are not allowed
// to dereference the allocation site and rather have to postpone all checks
// till actually merging the data.
Address key = memento_candidate->GetAllocationSiteUnchecked();
HashMap::Entry* e =
pretenuring_feedback->LookupOrInsert(key, ObjectHash(key));
DCHECK(e != nullptr);
(*bit_cast<intptr_t*>(&e->value))++;
}
}
void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) {
global_pretenuring_feedback_->Remove(
site, static_cast<uint32_t>(bit_cast<uintptr_t>(site)));
}
bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
const v8::GCCallbackFlags callbackFlags) {
const char* collector_reason = NULL;
GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
}
Isolate* Heap::isolate() {
return reinterpret_cast<Isolate*>(
reinterpret_cast<intptr_t>(this) -
reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
}
void Heap::ExternalStringTable::AddString(String* string) {
DCHECK(string->IsExternalString());
if (heap_->InNewSpace(string)) {
new_space_strings_.Add(string);
} else {
old_space_strings_.Add(string);
}
}
void Heap::ExternalStringTable::Iterate(ObjectVisitor* v) {
if (!new_space_strings_.is_empty()) {
Object** start = &new_space_strings_[0];
v->VisitPointers(start, start + new_space_strings_.length());
}
if (!old_space_strings_.is_empty()) {
Object** start = &old_space_strings_[0];
v->VisitPointers(start, start + old_space_strings_.length());
}
}
// Verify() is inline to avoid ifdef-s around its calls in release
// mode.
void Heap::ExternalStringTable::Verify() {
#ifdef DEBUG
for (int i = 0; i < new_space_strings_.length(); ++i) {
Object* obj = Object::cast(new_space_strings_[i]);
DCHECK(heap_->InNewSpace(obj));
DCHECK(obj != heap_->the_hole_value());
}
for (int i = 0; i < old_space_strings_.length(); ++i) {
Object* obj = Object::cast(old_space_strings_[i]);
DCHECK(!heap_->InNewSpace(obj));
DCHECK(obj != heap_->the_hole_value());
}
#endif
}
void Heap::ExternalStringTable::AddOldString(String* string) {
DCHECK(string->IsExternalString());
DCHECK(!heap_->InNewSpace(string));
old_space_strings_.Add(string);
}
void Heap::ExternalStringTable::ShrinkNewStrings(int position) {
new_space_strings_.Rewind(position);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
}
// static
int DescriptorLookupCache::Hash(Object* source, Name* name) {
DCHECK(name->IsUniqueName());
// Uses only lower 32 bits if pointers are larger.
uint32_t source_hash =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
kPointerSizeLog2;
uint32_t name_hash = name->hash_field();
return (source_hash ^ name_hash) % kLength;
}
int DescriptorLookupCache::Lookup(Map* source, Name* name) {
int index = Hash(source, name);
Key& key = keys_[index];
if ((key.source == source) && (key.name == name)) return results_[index];
return kAbsent;
}
void DescriptorLookupCache::Update(Map* source, Name* name, int result) {
DCHECK(result != kAbsent);
int index = Hash(source, name);
Key& key = keys_[index];
key.source = source;
key.name = name;
results_[index] = result;
}
void Heap::ClearInstanceofCache() {
set_instanceof_cache_function(Smi::FromInt(0));
}
Oddball* Heap::ToBoolean(bool condition) {
return condition ? true_value() : false_value();
}
void Heap::CompletelyClearInstanceofCache() {
set_instanceof_cache_map(Smi::FromInt(0));
set_instanceof_cache_function(Smi::FromInt(0));
}
uint32_t Heap::HashSeed() {
uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
DCHECK(FLAG_randomize_hashes || seed == 0);
return seed;
}
int Heap::NextScriptId() {
int last_id = last_script_id()->value();
if (last_id == Smi::kMaxValue) {
last_id = 1;
} else {
last_id++;
}
set_last_script_id(Smi::FromInt(last_id));
return last_id;
}
void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
}
void Heap::SetConstructStubDeoptPCOffset(int pc_offset) {
DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
}
void Heap::SetGetterStubDeoptPCOffset(int pc_offset) {
DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
}
void Heap::SetSetterStubDeoptPCOffset(int pc_offset) {
DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
}
AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
: heap_(isolate->heap()) {
heap_->always_allocate_scope_count_.Increment(1);
}
AlwaysAllocateScope::~AlwaysAllocateScope() {
heap_->always_allocate_scope_count_.Increment(-1);
}
void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsHeapObject()) {
HeapObject* object = HeapObject::cast(*current);
CHECK(object->GetIsolate()->heap()->Contains(object));
CHECK(object->map()->IsMap());
}
}
}
void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
CHECK((*current)->IsSmi());
}
}
} // namespace internal
} // namespace v8
#endif // V8_HEAP_HEAP_INL_H_