blob: 71ac22ac38e66e51c34830438ca0445e8d0e42ed [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/global-handles.h"
#include "src/api-inl.h"
#include "src/cancelable-task.h"
#include "src/objects-inl.h"
#include "src/objects/slots.h"
#include "src/task-utils.h"
#include "src/v8.h"
#include "src/visitors.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
class GlobalHandles::Node {
public:
// State transition diagram:
// FREE -> NORMAL <-> WEAK -> PENDING -> NEAR_DEATH -> { NORMAL, WEAK, FREE }
enum State {
FREE = 0,
NORMAL, // Normal global handle.
WEAK, // Flagged as weak but not yet finalized.
PENDING, // Has been recognized as only reachable by weak handles.
NEAR_DEATH, // Callback has informed the handle is near death.
NUMBER_OF_NODE_STATES
};
// Maps handle location (slot) to the containing node.
static Node* FromLocation(Address* location) {
DCHECK_EQ(offsetof(Node, object_), 0);
return reinterpret_cast<Node*>(location);
}
Node() {
DCHECK_EQ(offsetof(Node, class_id_), Internals::kNodeClassIdOffset);
DCHECK_EQ(offsetof(Node, flags_), Internals::kNodeFlagsOffset);
STATIC_ASSERT(static_cast<int>(NodeState::kMask) ==
Internals::kNodeStateMask);
STATIC_ASSERT(WEAK == Internals::kNodeStateIsWeakValue);
STATIC_ASSERT(PENDING == Internals::kNodeStateIsPendingValue);
STATIC_ASSERT(NEAR_DEATH == Internals::kNodeStateIsNearDeathValue);
STATIC_ASSERT(static_cast<int>(IsIndependent::kShift) ==
Internals::kNodeIsIndependentShift);
STATIC_ASSERT(static_cast<int>(IsActive::kShift) ==
Internals::kNodeIsActiveShift);
}
#ifdef ENABLE_HANDLE_ZAPPING
~Node() {
// TODO(1428): if it's a weak handle we should have invoked its callback.
// Zap the values for eager trapping.
object_ = kGlobalHandleZapValue;
class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
index_ = 0;
set_independent(false);
set_active(false);
set_in_new_space_list(false);
data_.next_free = nullptr;
weak_callback_ = nullptr;
}
#endif
void Initialize(int index, Node** first_free) {
object_ = kGlobalHandleZapValue;
index_ = static_cast<uint8_t>(index);
DCHECK(static_cast<int>(index_) == index);
set_state(FREE);
set_in_new_space_list(false);
data_.next_free = *first_free;
*first_free = this;
}
void Acquire(ObjectPtr object) {
DCHECK(state() == FREE);
object_ = object.ptr();
class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
set_independent(false);
set_active(false);
set_state(NORMAL);
data_.parameter = nullptr;
weak_callback_ = nullptr;
IncreaseBlockUses();
}
void Zap() {
DCHECK(IsInUse());
// Zap the values for eager trapping.
object_ = kGlobalHandleZapValue;
}
void Release() {
DCHECK(IsInUse());
set_state(FREE);
// Zap the values for eager trapping.
object_ = kGlobalHandleZapValue;
class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
set_independent(false);
set_active(false);
weak_callback_ = nullptr;
DecreaseBlockUses();
}
// Object slot accessors.
ObjectPtr object() const { return ObjectPtr(object_); }
FullObjectSlot location() { return FullObjectSlot(&object_); }
const char* label() { return state() == NORMAL ? data_.label : nullptr; }
Handle<Object> handle() { return Handle<Object>(&object_); }
// Wrapper class ID accessors.
bool has_wrapper_class_id() const {
return class_id_ != v8::HeapProfiler::kPersistentHandleNoClassId;
}
uint16_t wrapper_class_id() const { return class_id_; }
// State and flag accessors.
State state() const {
return NodeState::decode(flags_);
}
void set_state(State state) {
flags_ = NodeState::update(flags_, state);
}
bool is_independent() { return IsIndependent::decode(flags_); }
void set_independent(bool v) { flags_ = IsIndependent::update(flags_, v); }
bool is_active() {
return IsActive::decode(flags_);
}
void set_active(bool v) {
flags_ = IsActive::update(flags_, v);
}
bool is_in_new_space_list() {
return IsInNewSpaceList::decode(flags_);
}
void set_in_new_space_list(bool v) {
flags_ = IsInNewSpaceList::update(flags_, v);
}
WeaknessType weakness_type() const {
return NodeWeaknessType::decode(flags_);
}
void set_weakness_type(WeaknessType weakness_type) {
flags_ = NodeWeaknessType::update(flags_, weakness_type);
}
bool IsNearDeath() const {
// Check for PENDING to ensure correct answer when processing callbacks.
return state() == PENDING || state() == NEAR_DEATH;
}
bool IsWeak() const { return state() == WEAK; }
bool IsInUse() const { return state() != FREE; }
bool IsPhantomCallback() const {
return weakness_type() == PHANTOM_WEAK ||
weakness_type() == PHANTOM_WEAK_2_EMBEDDER_FIELDS;
}
bool IsPhantomResetHandle() const {
return weakness_type() == PHANTOM_WEAK_RESET_HANDLE;
}
bool IsPendingPhantomCallback() const {
return state() == PENDING && IsPhantomCallback();
}
bool IsPendingPhantomResetHandle() const {
return state() == PENDING && IsPhantomResetHandle();
}
bool IsRetainer() const {
return state() != FREE &&
!(state() == NEAR_DEATH && weakness_type() != FINALIZER_WEAK);
}
bool IsStrongRetainer() const { return state() == NORMAL; }
bool IsWeakRetainer() const {
return state() == WEAK || state() == PENDING ||
(state() == NEAR_DEATH && weakness_type() == FINALIZER_WEAK);
}
void MarkPending() {
DCHECK(state() == WEAK);
set_state(PENDING);
}
// Callback parameter accessors.
void set_parameter(void* parameter) {
DCHECK(IsInUse());
data_.parameter = parameter;
}
void* parameter() const {
DCHECK(IsInUse());
return data_.parameter;
}
// Accessors for next free node in the free list.
Node* next_free() {
DCHECK(state() == FREE);
return data_.next_free;
}
void set_next_free(Node* value) {
DCHECK(state() == FREE);
data_.next_free = value;
}
void MakeWeak(void* parameter,
WeakCallbackInfo<void>::Callback phantom_callback,
v8::WeakCallbackType type) {
DCHECK_NOT_NULL(phantom_callback);
DCHECK(IsInUse());
CHECK_NE(object_, kGlobalHandleZapValue);
set_state(WEAK);
switch (type) {
case v8::WeakCallbackType::kParameter:
set_weakness_type(PHANTOM_WEAK);
break;
case v8::WeakCallbackType::kInternalFields:
set_weakness_type(PHANTOM_WEAK_2_EMBEDDER_FIELDS);
break;
case v8::WeakCallbackType::kFinalizer:
set_weakness_type(FINALIZER_WEAK);
break;
}
set_parameter(parameter);
weak_callback_ = phantom_callback;
}
void MakeWeak(Address** location_addr) {
DCHECK(IsInUse());
CHECK_NE(object_, kGlobalHandleZapValue);
set_state(WEAK);
set_weakness_type(PHANTOM_WEAK_RESET_HANDLE);
set_parameter(location_addr);
weak_callback_ = nullptr;
}
void* ClearWeakness() {
DCHECK(IsInUse());
void* p = parameter();
set_state(NORMAL);
set_parameter(nullptr);
return p;
}
void AnnotateStrongRetainer(const char* label) {
DCHECK_EQ(state(), NORMAL);
data_.label = label;
}
void CollectPhantomCallbackData(
std::vector<PendingPhantomCallback>* pending_phantom_callbacks) {
DCHECK(weakness_type() == PHANTOM_WEAK ||
weakness_type() == PHANTOM_WEAK_2_EMBEDDER_FIELDS);
DCHECK(state() == PENDING);
DCHECK_NOT_NULL(weak_callback_);
void* embedder_fields[v8::kEmbedderFieldsInWeakCallback] = {nullptr,
nullptr};
if (weakness_type() != PHANTOM_WEAK && object()->IsJSObject()) {
JSObject jsobject = JSObject::cast(object());
int field_count = jsobject->GetEmbedderFieldCount();
for (int i = 0; i < v8::kEmbedderFieldsInWeakCallback; ++i) {
if (field_count == i) break;
void* pointer;
if (EmbedderDataSlot(jsobject, i).ToAlignedPointer(&pointer)) {
embedder_fields[i] = pointer;
}
}
}
// Zap with something dangerous.
location().store(reinterpret_cast<Object*>(0x6057CA11));
pending_phantom_callbacks->push_back(PendingPhantomCallback(
this, weak_callback_, parameter(), embedder_fields));
DCHECK(IsInUse());
set_state(NEAR_DEATH);
}
void ResetPhantomHandle() {
DCHECK(weakness_type() == PHANTOM_WEAK_RESET_HANDLE);
DCHECK(state() == PENDING);
DCHECK_NULL(weak_callback_);
Address** handle = reinterpret_cast<Address**>(parameter());
*handle = nullptr;
Release();
}
bool PostGarbageCollectionProcessing(Isolate* isolate) {
// Handles only weak handles (not phantom) that are dying.
if (state() != Node::PENDING) return false;
if (weak_callback_ == nullptr) {
Release();
return false;
}
set_state(NEAR_DEATH);
// Check that we are not passing a finalized external string to
// the callback.
DCHECK(!object()->IsExternalOneByteString() ||
ExternalOneByteString::cast(object())->resource() != nullptr);
DCHECK(!object()->IsExternalTwoByteString() ||
ExternalTwoByteString::cast(object())->resource() != nullptr);
if (weakness_type() != FINALIZER_WEAK) {
return false;
}
// Leaving V8.
VMState<EXTERNAL> vmstate(isolate);
HandleScope handle_scope(isolate);
void* embedder_fields[v8::kEmbedderFieldsInWeakCallback] = {nullptr,
nullptr};
v8::WeakCallbackInfo<void> data(reinterpret_cast<v8::Isolate*>(isolate),
parameter(), embedder_fields, nullptr);
weak_callback_(data);
// Absence of explicit cleanup or revival of weak handle
// in most of the cases would lead to memory leak.
CHECK(state() != NEAR_DEATH);
return true;
}
inline GlobalHandles* GetGlobalHandles();
private:
inline NodeBlock* FindBlock();
inline void IncreaseBlockUses();
inline void DecreaseBlockUses();
// Storage for object pointer.
// Placed first to avoid offset computation.
// The stored data is equivalent to an ObjectPtr. It is stored as a plain
// Address for convenience (smallest number of casts), and because it is a
// private implementation detail: the public interface provides type safety.
Address object_;
// Next word stores class_id, index, state, and independent.
// Note: the most aligned fields should go first.
// Wrapper class ID.
uint16_t class_id_;
// Index in the containing handle block.
uint8_t index_;
// This stores three flags (independent, partially_dependent and
// in_new_space_list) and a State.
class NodeState : public BitField<State, 0, 3> {};
class IsIndependent : public BitField<bool, 3, 1> {};
// The following two fields are mutually exclusive
class IsActive : public BitField<bool, 4, 1> {};
class IsInNewSpaceList : public BitField<bool, 5, 1> {};
class NodeWeaknessType : public BitField<WeaknessType, 6, 2> {};
uint8_t flags_;
// Handle specific callback - might be a weak reference in disguise.
WeakCallbackInfo<void>::Callback weak_callback_;
// The meaning of this field depends on node state:
// state == FREE: it stores the next free node pointer.
// state == NORMAL: it stores the strong retainer label.
// otherwise: it stores the parameter for the weak callback.
union {
Node* next_free;
const char* label;
void* parameter;
} data_;
DISALLOW_COPY_AND_ASSIGN(Node);
};
class GlobalHandles::NodeBlock {
public:
static const int kSize = 256;
explicit NodeBlock(GlobalHandles* global_handles, NodeBlock* next)
: next_(next),
used_nodes_(0),
next_used_(nullptr),
prev_used_(nullptr),
global_handles_(global_handles) {}
void PutNodesOnFreeList(Node** first_free) {
for (int i = kSize - 1; i >= 0; --i) {
nodes_[i].Initialize(i, first_free);
}
}
Node* node_at(int index) {
DCHECK(0 <= index && index < kSize);
return &nodes_[index];
}
void IncreaseUses() {
DCHECK_LT(used_nodes_, kSize);
if (used_nodes_++ == 0) {
NodeBlock* old_first = global_handles_->first_used_block_;
global_handles_->first_used_block_ = this;
next_used_ = old_first;
prev_used_ = nullptr;
if (old_first == nullptr) return;
old_first->prev_used_ = this;
}
}
void DecreaseUses() {
DCHECK_GT(used_nodes_, 0);
if (--used_nodes_ == 0) {
if (next_used_ != nullptr) next_used_->prev_used_ = prev_used_;
if (prev_used_ != nullptr) prev_used_->next_used_ = next_used_;
if (this == global_handles_->first_used_block_) {
global_handles_->first_used_block_ = next_used_;
}
}
}
GlobalHandles* global_handles() { return global_handles_; }
// Next block in the list of all blocks.
NodeBlock* next() const { return next_; }
// Next/previous block in the list of blocks with used nodes.
NodeBlock* next_used() const { return next_used_; }
NodeBlock* prev_used() const { return prev_used_; }
private:
Node nodes_[kSize];
NodeBlock* const next_;
int used_nodes_;
NodeBlock* next_used_;
NodeBlock* prev_used_;
GlobalHandles* global_handles_;
};
GlobalHandles* GlobalHandles::Node::GetGlobalHandles() {
return FindBlock()->global_handles();
}
GlobalHandles::NodeBlock* GlobalHandles::Node::FindBlock() {
intptr_t ptr = reinterpret_cast<intptr_t>(this);
ptr = ptr - index_ * sizeof(Node);
NodeBlock* block = reinterpret_cast<NodeBlock*>(ptr);
DCHECK(block->node_at(index_) == this);
return block;
}
void GlobalHandles::Node::IncreaseBlockUses() {
NodeBlock* node_block = FindBlock();
node_block->IncreaseUses();
GlobalHandles* global_handles = node_block->global_handles();
global_handles->isolate()->counters()->global_handles()->Increment();
global_handles->number_of_global_handles_++;
}
void GlobalHandles::Node::DecreaseBlockUses() {
NodeBlock* node_block = FindBlock();
GlobalHandles* global_handles = node_block->global_handles();
data_.next_free = global_handles->first_free_;
global_handles->first_free_ = this;
node_block->DecreaseUses();
global_handles->isolate()->counters()->global_handles()->Decrement();
global_handles->number_of_global_handles_--;
}
class GlobalHandles::NodeIterator {
public:
explicit NodeIterator(GlobalHandles* global_handles)
: block_(global_handles->first_used_block_),
index_(0) {}
bool done() const { return block_ == nullptr; }
Node* node() const {
DCHECK(!done());
return block_->node_at(index_);
}
void Advance() {
DCHECK(!done());
if (++index_ < NodeBlock::kSize) return;
index_ = 0;
block_ = block_->next_used();
}
private:
NodeBlock* block_;
int index_;
DISALLOW_COPY_AND_ASSIGN(NodeIterator);
};
GlobalHandles::GlobalHandles(Isolate* isolate)
: isolate_(isolate),
first_block_(nullptr),
first_used_block_(nullptr),
first_free_(nullptr),
number_of_global_handles_(0),
post_gc_processing_count_(0),
number_of_phantom_handle_resets_(0) {}
GlobalHandles::~GlobalHandles() {
NodeBlock* block = first_block_;
while (block != nullptr) {
NodeBlock* tmp = block->next();
delete block;
block = tmp;
}
first_block_ = nullptr;
}
Handle<Object> GlobalHandles::Create(ObjectPtr value) {
if (first_free_ == nullptr) {
first_block_ = new NodeBlock(this, first_block_);
first_block_->PutNodesOnFreeList(&first_free_);
}
DCHECK_NOT_NULL(first_free_);
// Take the first node in the free list.
Node* result = first_free_;
first_free_ = result->next_free();
result->Acquire(value);
if (Heap::InNewSpace(value) && !result->is_in_new_space_list()) {
new_space_nodes_.push_back(result);
result->set_in_new_space_list(true);
}
return result->handle();
}
Handle<Object> GlobalHandles::Create(Object* value) {
return Create(ObjectPtr(reinterpret_cast<Address>(value)));
}
Handle<Object> GlobalHandles::Create(Address value) {
return Create(ObjectPtr(value));
}
Handle<Object> GlobalHandles::CopyGlobal(Address* location) {
DCHECK_NOT_NULL(location);
GlobalHandles* global_handles =
Node::FromLocation(location)->GetGlobalHandles();
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
ObjectPtr(*location)->ObjectVerify(global_handles->isolate());
}
#endif // VERIFY_HEAP
return global_handles->Create(*location);
}
void GlobalHandles::Destroy(Address* location) {
if (location != nullptr) Node::FromLocation(location)->Release();
}
typedef v8::WeakCallbackInfo<void>::Callback GenericCallback;
void GlobalHandles::MakeWeak(Address* location, void* parameter,
GenericCallback phantom_callback,
v8::WeakCallbackType type) {
Node::FromLocation(location)->MakeWeak(parameter, phantom_callback, type);
}
void GlobalHandles::MakeWeak(Address** location_addr) {
Node::FromLocation(*location_addr)->MakeWeak(location_addr);
}
void* GlobalHandles::ClearWeakness(Address* location) {
return Node::FromLocation(location)->ClearWeakness();
}
void GlobalHandles::AnnotateStrongRetainer(Address* location,
const char* label) {
Node::FromLocation(location)->AnnotateStrongRetainer(label);
}
bool GlobalHandles::IsNearDeath(Address* location) {
return Node::FromLocation(location)->IsNearDeath();
}
bool GlobalHandles::IsWeak(Address* location) {
return Node::FromLocation(location)->IsWeak();
}
DISABLE_CFI_PERF
void GlobalHandles::IterateWeakRootsForFinalizers(RootVisitor* v) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
Node* node = it.node();
if (node->IsWeakRetainer() && node->state() == Node::PENDING) {
DCHECK(!node->IsPhantomCallback());
DCHECK(!node->IsPhantomResetHandle());
// Finalizers need to survive.
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::IterateWeakRootsForPhantomHandles(
WeakSlotCallbackWithHeap should_reset_handle) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
Node* node = it.node();
if (node->IsWeakRetainer() &&
should_reset_handle(isolate()->heap(), node->location())) {
if (node->IsPhantomResetHandle()) {
node->MarkPending();
node->ResetPhantomHandle();
++number_of_phantom_handle_resets_;
} else if (node->IsPhantomCallback()) {
node->MarkPending();
node->CollectPhantomCallbackData(&pending_phantom_callbacks_);
}
}
}
}
void GlobalHandles::IdentifyWeakHandles(
WeakSlotCallbackWithHeap should_reset_handle) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
Node* node = it.node();
if (node->IsWeak() &&
should_reset_handle(isolate()->heap(), node->location())) {
if (!node->IsPhantomCallback() && !node->IsPhantomResetHandle()) {
node->MarkPending();
}
}
}
}
void GlobalHandles::IterateNewSpaceStrongAndDependentRoots(RootVisitor* v) {
for (Node* node : new_space_nodes_) {
if (node->IsStrongRetainer() ||
(node->IsWeakRetainer() && !node->is_independent() &&
node->is_active())) {
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
void GlobalHandles::IterateNewSpaceStrongAndDependentRootsAndIdentifyUnmodified(
RootVisitor* v, size_t start, size_t end) {
for (size_t i = start; i < end; ++i) {
Node* node = new_space_nodes_[i];
if (node->IsWeak() && !JSObject::IsUnmodifiedApiObject(node->location())) {
node->set_active(true);
}
if (node->IsStrongRetainer() ||
(node->IsWeakRetainer() && !node->is_independent() &&
node->is_active())) {
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
void GlobalHandles::IdentifyWeakUnmodifiedObjects(
WeakSlotCallback is_unmodified) {
for (Node* node : new_space_nodes_) {
if (node->IsWeak() && !is_unmodified(node->location())) {
node->set_active(true);
}
}
}
void GlobalHandles::MarkNewSpaceWeakUnmodifiedObjectsPending(
WeakSlotCallbackWithHeap is_dead) {
for (Node* node : new_space_nodes_) {
DCHECK(node->is_in_new_space_list());
if ((node->is_independent() || !node->is_active()) && node->IsWeak() &&
is_dead(isolate_->heap(), node->location())) {
if (!node->IsPhantomCallback() && !node->IsPhantomResetHandle()) {
node->MarkPending();
}
}
}
}
void GlobalHandles::IterateNewSpaceWeakUnmodifiedRootsForFinalizers(
RootVisitor* v) {
for (Node* node : new_space_nodes_) {
DCHECK(node->is_in_new_space_list());
if ((node->is_independent() || !node->is_active()) &&
node->IsWeakRetainer() && (node->state() == Node::PENDING)) {
DCHECK(!node->IsPhantomCallback());
DCHECK(!node->IsPhantomResetHandle());
// Finalizers need to survive.
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
void GlobalHandles::IterateNewSpaceWeakUnmodifiedRootsForPhantomHandles(
RootVisitor* v, WeakSlotCallbackWithHeap should_reset_handle) {
for (Node* node : new_space_nodes_) {
DCHECK(node->is_in_new_space_list());
if ((node->is_independent() || !node->is_active()) &&
node->IsWeakRetainer() && (node->state() != Node::PENDING)) {
DCHECK(node->IsPhantomResetHandle() || node->IsPhantomCallback());
if (should_reset_handle(isolate_->heap(), node->location())) {
if (node->IsPhantomResetHandle()) {
node->MarkPending();
node->ResetPhantomHandle();
++number_of_phantom_handle_resets_;
} else if (node->IsPhantomCallback()) {
node->MarkPending();
node->CollectPhantomCallbackData(&pending_phantom_callbacks_);
} else {
UNREACHABLE();
}
} else {
// Node survived and needs to be visited.
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
}
void GlobalHandles::InvokeSecondPassPhantomCallbacksFromTask() {
DCHECK(second_pass_callbacks_task_posted_);
second_pass_callbacks_task_posted_ = false;
TRACE_EVENT0("v8", "V8.GCPhantomHandleProcessingCallback");
isolate()->heap()->CallGCPrologueCallbacks(
GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
InvokeSecondPassPhantomCallbacks();
isolate()->heap()->CallGCEpilogueCallbacks(
GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
}
void GlobalHandles::InvokeSecondPassPhantomCallbacks() {
while (!second_pass_callbacks_.empty()) {
auto callback = second_pass_callbacks_.back();
second_pass_callbacks_.pop_back();
DCHECK_NULL(callback.node());
// Fire second pass callback
callback.Invoke(isolate());
}
}
int GlobalHandles::PostScavengeProcessing(
const int initial_post_gc_processing_count) {
int freed_nodes = 0;
for (Node* node : new_space_nodes_) {
DCHECK(node->is_in_new_space_list());
if (!node->IsRetainer()) {
// Free nodes do not have weak callbacks. Do not use them to compute
// the freed_nodes.
continue;
}
// Skip dependent or unmodified handles. Their weak callbacks might expect
// to be
// called between two global garbage collection callbacks which
// are not called for minor collections.
if (!node->is_independent() && (node->is_active())) {
node->set_active(false);
continue;
}
node->set_active(false);
if (node->PostGarbageCollectionProcessing(isolate_)) {
if (initial_post_gc_processing_count != post_gc_processing_count_) {
// Weak callback triggered another GC and another round of
// PostGarbageCollection processing. The current node might
// have been deleted in that round, so we need to bail out (or
// restart the processing).
return freed_nodes;
}
}
if (!node->IsRetainer()) {
freed_nodes++;
}
}
return freed_nodes;
}
int GlobalHandles::PostMarkSweepProcessing(
const int initial_post_gc_processing_count) {
int freed_nodes = 0;
for (NodeIterator it(this); !it.done(); it.Advance()) {
if (!it.node()->IsRetainer()) {
// Free nodes do not have weak callbacks. Do not use them to compute
// the freed_nodes.
continue;
}
it.node()->set_active(false);
if (it.node()->PostGarbageCollectionProcessing(isolate_)) {
if (initial_post_gc_processing_count != post_gc_processing_count_) {
// See the comment above.
return freed_nodes;
}
}
if (!it.node()->IsRetainer()) {
freed_nodes++;
}
}
return freed_nodes;
}
void GlobalHandles::UpdateListOfNewSpaceNodes() {
size_t last = 0;
for (Node* node : new_space_nodes_) {
DCHECK(node->is_in_new_space_list());
if (node->IsRetainer()) {
if (Heap::InNewSpace(node->object())) {
new_space_nodes_[last++] = node;
isolate_->heap()->IncrementNodesCopiedInNewSpace();
} else {
node->set_in_new_space_list(false);
isolate_->heap()->IncrementNodesPromoted();
}
} else {
node->set_in_new_space_list(false);
isolate_->heap()->IncrementNodesDiedInNewSpace();
}
}
DCHECK_LE(last, new_space_nodes_.size());
new_space_nodes_.resize(last);
new_space_nodes_.shrink_to_fit();
}
int GlobalHandles::InvokeFirstPassWeakCallbacks() {
int freed_nodes = 0;
std::vector<PendingPhantomCallback> pending_phantom_callbacks;
pending_phantom_callbacks.swap(pending_phantom_callbacks_);
{
// The initial pass callbacks must simply clear the nodes.
for (auto callback : pending_phantom_callbacks) {
// Skip callbacks that have already been processed once.
if (callback.node() == nullptr) continue;
callback.Invoke(isolate());
if (callback.callback()) second_pass_callbacks_.push_back(callback);
freed_nodes++;
}
}
return freed_nodes;
}
void GlobalHandles::InvokeOrScheduleSecondPassPhantomCallbacks(
bool synchronous_second_pass) {
if (!second_pass_callbacks_.empty()) {
if (FLAG_optimize_for_size || FLAG_predictable || synchronous_second_pass) {
isolate()->heap()->CallGCPrologueCallbacks(
GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
InvokeSecondPassPhantomCallbacks();
isolate()->heap()->CallGCEpilogueCallbacks(
GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
} else if (!second_pass_callbacks_task_posted_) {
second_pass_callbacks_task_posted_ = true;
auto taskrunner = V8::GetCurrentPlatform()->GetForegroundTaskRunner(
reinterpret_cast<v8::Isolate*>(isolate()));
taskrunner->PostTask(MakeCancelableTask(
isolate(), [this] { InvokeSecondPassPhantomCallbacksFromTask(); }));
}
}
}
void GlobalHandles::PendingPhantomCallback::Invoke(Isolate* isolate) {
Data::Callback* callback_addr = nullptr;
if (node_ != nullptr) {
// Initialize for first pass callback.
DCHECK(node_->state() == Node::NEAR_DEATH);
callback_addr = &callback_;
}
Data data(reinterpret_cast<v8::Isolate*>(isolate), parameter_,
embedder_fields_, callback_addr);
Data::Callback callback = callback_;
callback_ = nullptr;
callback(data);
if (node_ != nullptr) {
// Transition to second pass. It is required that the first pass callback
// resets the handle using |v8::PersistentBase::Reset|. Also see comments on
// |v8::WeakCallbackInfo|.
CHECK_WITH_MSG(Node::FREE == node_->state(),
"Handle not reset in first callback. See comments on "
"|v8::WeakCallbackInfo|.");
node_ = nullptr;
}
}
int GlobalHandles::PostGarbageCollectionProcessing(
GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) {
// Process weak global handle callbacks. This must be done after the
// GC is completely done, because the callbacks may invoke arbitrary
// API functions.
DCHECK(isolate_->heap()->gc_state() == Heap::NOT_IN_GC);
const int initial_post_gc_processing_count = ++post_gc_processing_count_;
int freed_nodes = 0;
bool synchronous_second_pass =
isolate_->heap()->IsTearingDown() ||
(gc_callback_flags &
(kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage |
kGCCallbackFlagSynchronousPhantomCallbackProcessing)) != 0;
InvokeOrScheduleSecondPassPhantomCallbacks(synchronous_second_pass);
if (initial_post_gc_processing_count != post_gc_processing_count_) {
// If the callbacks caused a nested GC, then return. See comment in
// PostScavengeProcessing.
return freed_nodes;
}
if (Heap::IsYoungGenerationCollector(collector)) {
freed_nodes += PostScavengeProcessing(initial_post_gc_processing_count);
} else {
freed_nodes += PostMarkSweepProcessing(initial_post_gc_processing_count);
}
if (initial_post_gc_processing_count != post_gc_processing_count_) {
// If the callbacks caused a nested GC, then return. See comment in
// PostScavengeProcessing.
return freed_nodes;
}
if (initial_post_gc_processing_count == post_gc_processing_count_) {
UpdateListOfNewSpaceNodes();
}
return freed_nodes;
}
void GlobalHandles::IterateStrongRoots(RootVisitor* v) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
if (it.node()->IsStrongRetainer()) {
v->VisitRootPointer(Root::kGlobalHandles, it.node()->label(),
it.node()->location());
}
}
}
void GlobalHandles::IterateWeakRoots(RootVisitor* v) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
if (it.node()->IsWeak()) {
v->VisitRootPointer(Root::kGlobalHandles, it.node()->label(),
it.node()->location());
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::IterateAllRoots(RootVisitor* v) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
if (it.node()->IsRetainer()) {
v->VisitRootPointer(Root::kGlobalHandles, it.node()->label(),
it.node()->location());
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::IterateAllNewSpaceRoots(RootVisitor* v) {
for (Node* node : new_space_nodes_) {
if (node->IsRetainer()) {
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::IterateNewSpaceRoots(RootVisitor* v, size_t start,
size_t end) {
for (size_t i = start; i < end; ++i) {
Node* node = new_space_nodes_[i];
if (node->IsRetainer()) {
v->VisitRootPointer(Root::kGlobalHandles, node->label(),
node->location());
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::ApplyPersistentHandleVisitor(
v8::PersistentHandleVisitor* visitor, GlobalHandles::Node* node) {
v8::Value* value = ToApi<v8::Value>(node->handle());
visitor->VisitPersistentHandle(
reinterpret_cast<v8::Persistent<v8::Value>*>(&value),
node->wrapper_class_id());
}
DISABLE_CFI_PERF
void GlobalHandles::IterateAllRootsWithClassIds(
v8::PersistentHandleVisitor* visitor) {
for (NodeIterator it(this); !it.done(); it.Advance()) {
if (it.node()->IsRetainer() && it.node()->has_wrapper_class_id()) {
ApplyPersistentHandleVisitor(visitor, it.node());
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::IterateAllRootsInNewSpaceWithClassIds(
v8::PersistentHandleVisitor* visitor) {
for (Node* node : new_space_nodes_) {
if (node->IsRetainer() && node->has_wrapper_class_id()) {
ApplyPersistentHandleVisitor(visitor, node);
}
}
}
DISABLE_CFI_PERF
void GlobalHandles::IterateWeakRootsInNewSpaceWithClassIds(
v8::PersistentHandleVisitor* visitor) {
for (Node* node : new_space_nodes_) {
if (node->has_wrapper_class_id() && node->IsWeak()) {
ApplyPersistentHandleVisitor(visitor, node);
}
}
}
void GlobalHandles::RecordStats(HeapStats* stats) {
*stats->global_handle_count = 0;
*stats->weak_global_handle_count = 0;
*stats->pending_global_handle_count = 0;
*stats->near_death_global_handle_count = 0;
*stats->free_global_handle_count = 0;
for (NodeIterator it(this); !it.done(); it.Advance()) {
*stats->global_handle_count += 1;
if (it.node()->state() == Node::WEAK) {
*stats->weak_global_handle_count += 1;
} else if (it.node()->state() == Node::PENDING) {
*stats->pending_global_handle_count += 1;
} else if (it.node()->state() == Node::NEAR_DEATH) {
*stats->near_death_global_handle_count += 1;
} else if (it.node()->state() == Node::FREE) {
*stats->free_global_handle_count += 1;
}
}
}
#ifdef DEBUG
void GlobalHandles::PrintStats() {
int total = 0;
int weak = 0;
int pending = 0;
int near_death = 0;
int destroyed = 0;
for (NodeIterator it(this); !it.done(); it.Advance()) {
total++;
if (it.node()->state() == Node::WEAK) weak++;
if (it.node()->state() == Node::PENDING) pending++;
if (it.node()->state() == Node::NEAR_DEATH) near_death++;
if (it.node()->state() == Node::FREE) destroyed++;
}
PrintF("Global Handle Statistics:\n");
PrintF(" allocated memory = %" PRIuS "B\n", total * sizeof(Node));
PrintF(" # weak = %d\n", weak);
PrintF(" # pending = %d\n", pending);
PrintF(" # near_death = %d\n", near_death);
PrintF(" # free = %d\n", destroyed);
PrintF(" # total = %d\n", total);
}
void GlobalHandles::Print() {
PrintF("Global handles:\n");
for (NodeIterator it(this); !it.done(); it.Advance()) {
PrintF(" handle %p to %p%s\n", it.node()->location().ToVoidPtr(),
reinterpret_cast<void*>(it.node()->object()->ptr()),
it.node()->IsWeak() ? " (weak)" : "");
}
}
#endif
void GlobalHandles::TearDown() {}
EternalHandles::EternalHandles() : size_(0) {}
EternalHandles::~EternalHandles() {
for (Address* block : blocks_) delete[] block;
}
void EternalHandles::IterateAllRoots(RootVisitor* visitor) {
int limit = size_;
for (Address* block : blocks_) {
DCHECK_GT(limit, 0);
visitor->VisitRootPointers(Root::kEternalHandles, nullptr,
FullObjectSlot(block),
FullObjectSlot(block + Min(limit, kSize)));
limit -= kSize;
}
}
void EternalHandles::IterateNewSpaceRoots(RootVisitor* visitor) {
for (int index : new_space_indices_) {
visitor->VisitRootPointer(Root::kEternalHandles, nullptr,
FullObjectSlot(GetLocation(index)));
}
}
void EternalHandles::PostGarbageCollectionProcessing() {
size_t last = 0;
for (int index : new_space_indices_) {
if (Heap::InNewSpace(ObjectPtr(*GetLocation(index)))) {
new_space_indices_[last++] = index;
}
}
DCHECK_LE(last, new_space_indices_.size());
new_space_indices_.resize(last);
}
void EternalHandles::Create(Isolate* isolate, Object* object, int* index) {
DCHECK_EQ(kInvalidIndex, *index);
if (object == nullptr) return;
Object* the_hole = ReadOnlyRoots(isolate).the_hole_value();
DCHECK_NE(the_hole, object);
int block = size_ >> kShift;
int offset = size_ & kMask;
// Need to resize.
if (offset == 0) {
Address* next_block = new Address[kSize];
MemsetPointer(FullObjectSlot(next_block), the_hole, kSize);
blocks_.push_back(next_block);
}
DCHECK_EQ(the_hole->ptr(), blocks_[block][offset]);
blocks_[block][offset] = object->ptr();
if (Heap::InNewSpace(object)) {
new_space_indices_.push_back(size_);
}
*index = size_++;
}
} // namespace internal
} // namespace v8