blob: 408b70cd19ed732e4010d647587ccc01e0d0c929 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/function-body-decoder.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
#include "src/utils/ostreams.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/leb-helper.h"
#include "src/wasm/local-decl-encoder.h"
#include "src/wasm/signature-map.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "src/zone/zone.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
#include "test/unittests/test-utils.h"
#include "testing/gmock-support.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace function_body_decoder_unittest {
#define B1(a) WASM_BLOCK(a)
#define B2(a, b) WASM_BLOCK(a, b)
#define B3(a, b, c) WASM_BLOCK(a, b, c)
#define WASM_IF_OP kExprIf, kLocalVoid
#define WASM_LOOP_OP kExprLoop, kLocalVoid
#define EXPECT_OK(result) \
do { \
if (!result.ok()) { \
GTEST_NONFATAL_FAILURE_(result.error().message().c_str()); \
return; \
} \
} while (false)
static const byte kCodeGetLocal0[] = {kExprLocalGet, 0};
static const byte kCodeGetLocal1[] = {kExprLocalGet, 1};
static const byte kCodeSetLocal0[] = {WASM_SET_LOCAL(0, WASM_ZERO)};
static const byte kCodeTeeLocal0[] = {WASM_TEE_LOCAL(0, WASM_ZERO)};
static const ValueType kValueTypes[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64,
kWasmExternRef};
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
static const WasmOpcode kInt32BinopOpcodes[] = {
kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU,
kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor,
kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS,
kExprI32LeS, kExprI32LtU, kExprI32LeU};
#define WASM_BRV_IF_ZERO(depth, val) \
val, WASM_ZERO, kExprBrIf, static_cast<byte>(depth)
constexpr size_t kMaxByteSizedLeb128 = 127;
using F = std::pair<ValueType, bool>;
// A helper for tests that require a module environment for functions,
// globals, or memories.
class TestModuleBuilder {
public:
explicit TestModuleBuilder(ModuleOrigin origin = kWasmOrigin)
: allocator(), mod(std::make_unique<Zone>(&allocator, ZONE_NAME)) {
mod.origin = origin;
}
byte AddGlobal(ValueType type, bool mutability = true) {
mod.globals.push_back(
{type, mutability, WasmInitExpr(), {0}, false, false});
CHECK_LE(mod.globals.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.globals.size() - 1);
}
byte AddSignature(const FunctionSig* sig) {
mod.add_signature(sig);
CHECK_LE(mod.types.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.types.size() - 1);
}
byte AddFunction(const FunctionSig* sig, bool declared = true) {
mod.functions.push_back({sig, // sig
0, // func_index
0, // sig_index
{0, 0}, // code
false, // import
false, // export
declared}); // declared
CHECK_LE(mod.functions.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.functions.size() - 1);
}
byte AddImport(const FunctionSig* sig) {
byte result = AddFunction(sig);
mod.functions[result].imported = true;
return result;
}
byte AddException(WasmExceptionSig* sig) {
mod.exceptions.emplace_back(sig);
CHECK_LE(mod.types.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.exceptions.size() - 1);
}
byte AddTable(ValueType type, uint32_t initial_size, bool has_maximum_size,
uint32_t maximum_size) {
CHECK(type == kWasmExternRef || type == kWasmFuncRef);
mod.tables.emplace_back();
WasmTable& table = mod.tables.back();
table.type = type;
table.initial_size = initial_size;
table.has_maximum_size = has_maximum_size;
table.maximum_size = maximum_size;
return static_cast<byte>(mod.tables.size() - 1);
}
byte AddStruct(std::initializer_list<F> fields) {
StructType::Builder type_builder(mod.signature_zone.get(),
static_cast<uint32_t>(fields.size()));
for (F field : fields) {
type_builder.AddField(field.first, field.second);
}
mod.add_struct_type(type_builder.Build());
return static_cast<byte>(mod.type_kinds.size() - 1);
}
byte AddArray(ValueType type, bool mutability) {
ArrayType* array = mod.signature_zone->New<ArrayType>(type, mutability);
mod.add_array_type(array);
return static_cast<byte>(mod.type_kinds.size() - 1);
}
void InitializeMemory() {
mod.has_memory = true;
mod.initial_pages = 1;
mod.maximum_pages = 100;
}
byte InitializeTable(wasm::ValueType type) {
mod.tables.emplace_back();
mod.tables.back().type = type;
return static_cast<byte>(mod.tables.size() - 1);
}
byte AddPassiveElementSegment(wasm::ValueType type) {
mod.elem_segments.emplace_back(false);
auto& init = mod.elem_segments.back();
init.type = type;
// Add 5 empty elements.
for (uint32_t j = 0; j < 5; j++) {
init.entries.push_back(WasmElemSegment::kNullIndex);
}
return static_cast<byte>(mod.elem_segments.size() - 1);
}
byte AddDeclarativeElementSegment() {
mod.elem_segments.emplace_back(true);
mod.elem_segments.back().entries.push_back(WasmElemSegment::kNullIndex);
return static_cast<byte>(mod.elem_segments.size() - 1);
}
// Set the number of data segments as declared by the DataCount section.
void SetDataSegmentCount(uint32_t data_segment_count) {
// The Data section occurs after the Code section, so we don't need to
// update mod.data_segments, as it is always empty.
mod.num_declared_data_segments = data_segment_count;
}
WasmModule* module() { return &mod; }
private:
AccountingAllocator allocator;
WasmModule mod;
};
class FunctionBodyDecoderTest : public TestWithZone {
public:
using LocalsDecl = std::pair<uint32_t, ValueType>;
// All features are disabled by default and must be activated with
// a WASM_FEATURE_SCOPE in individual tests.
WasmFeatures enabled_features_ = WasmFeatures::None();
FunctionBodyDecoderTest() : local_decls(zone()) {}
TestSignatures sigs;
TestModuleBuilder builder;
WasmModule* module = builder.module();
LocalDeclEncoder local_decls;
void AddLocals(ValueType type, uint32_t count) {
local_decls.AddLocals(count, type);
}
enum AppendEnd : bool { kAppendEnd, kOmitEnd };
Vector<const byte> PrepareBytecode(Vector<const byte> code,
AppendEnd append_end) {
size_t locals_size = local_decls.Size();
size_t total_size =
code.size() + locals_size + (append_end == kAppendEnd ? 1 : 0);
byte* buffer = zone()->NewArray<byte>(total_size);
// Prepend the local decls to the code.
local_decls.Emit(buffer);
// Emit the code.
if (code.size() > 0) {
memcpy(buffer + locals_size, code.begin(), code.size());
}
if (append_end == kAppendEnd) {
// Append an extra end opcode.
buffer[total_size - 1] = kExprEnd;
}
return {buffer, total_size};
}
template <size_t N>
Vector<const byte> CodeToVector(const byte (&code)[N]) {
return ArrayVector(code);
}
Vector<const byte> CodeToVector(
const std::initializer_list<const byte>& code) {
return VectorOf(&*code.begin(), code.size());
}
Vector<const byte> CodeToVector(Vector<const byte> vec) { return vec; }
// Prepends local variable declarations and renders nice error messages for
// verification failures.
template <typename Code = std::initializer_list<const byte>>
void Validate(bool expected_success, const FunctionSig* sig, Code&& raw_code,
AppendEnd append_end = kAppendEnd,
const char* message = nullptr) {
Vector<const byte> code =
PrepareBytecode(CodeToVector(std::forward<Code>(raw_code)), append_end);
// Validate the code.
FunctionBody body(sig, 0, code.begin(), code.end());
WasmFeatures unused_detected_features = WasmFeatures::None();
DecodeResult result =
VerifyWasmCode(zone()->allocator(), enabled_features_, module,
&unused_detected_features, body);
std::ostringstream str;
if (result.failed()) {
str << "Verification failed: pc = +" << result.error().offset()
<< ", msg = " << result.error().message();
} else {
str << "Verification succeeded, expected failure";
}
EXPECT_EQ(result.ok(), expected_success) << str.str();
if (result.failed() && message) {
EXPECT_THAT(result.error().message(), ::testing::HasSubstr(message));
}
}
template <typename Code = std::initializer_list<const byte>>
void ExpectValidates(const FunctionSig* sig, Code&& raw_code,
AppendEnd append_end = kAppendEnd,
const char* message = nullptr) {
Validate(true, sig, std::forward<Code>(raw_code), append_end, message);
}
template <typename Code = std::initializer_list<const byte>>
void ExpectFailure(const FunctionSig* sig, Code&& raw_code,
AppendEnd append_end = kAppendEnd,
const char* message = nullptr) {
Validate(false, sig, std::forward<Code>(raw_code), append_end, message);
}
void TestBinop(WasmOpcode opcode, const FunctionSig* success) {
// op(local[0], local[1])
byte code[] = {WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
ExpectValidates(success, code);
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
for (size_t k = 0; k < arraysize(kValueTypes); k++) {
ValueType types[] = {kValueTypes[i], kValueTypes[j], kValueTypes[k]};
if (types[0] != success->GetReturn(0) ||
types[1] != success->GetParam(0) ||
types[2] != success->GetParam(1)) {
// Test signature mismatch.
FunctionSig sig(1, 2, types);
ExpectFailure(&sig, code);
}
}
}
}
}
void TestUnop(WasmOpcode opcode, const FunctionSig* success) {
TestUnop(opcode, success->GetReturn(), success->GetParam(0));
}
void TestUnop(WasmOpcode opcode, ValueType ret_type, ValueType param_type) {
// Return(op(local[0]))
byte code[] = {WASM_UNOP(opcode, WASM_GET_LOCAL(0))};
{
ValueType types[] = {ret_type, param_type};
FunctionSig sig(1, 1, types);
ExpectValidates(&sig, code);
}
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[j]};
if (types[0] != ret_type || types[1] != param_type) {
// Test signature mismatch.
FunctionSig sig(1, 1, types);
ExpectFailure(&sig, code);
}
}
}
}
};
TEST_F(FunctionBodyDecoderTest, Int32Const1) {
byte code[] = {kExprI32Const, 0};
for (int i = -64; i <= 63; i++) {
code[1] = static_cast<byte>(i & 0x7F);
ExpectValidates(sigs.i_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, RefFunc) {
WASM_FEATURE_SCOPE(reftypes);
builder.AddFunction(sigs.v_ii());
builder.AddFunction(sigs.ii_v());
ExpectValidates(sigs.a_v(), {kExprRefFunc, 1});
}
TEST_F(FunctionBodyDecoderTest, EmptyFunction) {
ExpectValidates(sigs.v_v(), {});
ExpectFailure(sigs.i_i(), {});
}
TEST_F(FunctionBodyDecoderTest, IncompleteIf1) {
byte code[] = {kExprIf};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru) {
ExpectValidates(sigs.i_i(), {WASM_I32V_1(0)});
}
TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru2) {
ExpectFailure(sigs.i_i(), {WASM_I32V_1(0), WASM_I32V_1(1)});
}
TEST_F(FunctionBodyDecoderTest, Int32Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
// TODO(binji): expand test for other sized int32s; 1 through 5 bytes.
ExpectValidates(sigs.i_i(), {WASM_I32V(i)});
}
}
TEST_F(FunctionBodyDecoderTest, Int64Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
ExpectValidates(sigs.l_l(),
{WASM_I64V((static_cast<uint64_t>(i) << 32) | i)});
}
}
TEST_F(FunctionBodyDecoderTest, Float32Const) {
byte code[] = {kExprF32Const, 0, 0, 0, 0};
Address ptr = reinterpret_cast<Address>(code + 1);
for (int i = 0; i < 30; i++) {
base::WriteLittleEndianValue<float>(ptr, i * -7.75f);
ExpectValidates(sigs.f_ff(), code);
}
}
TEST_F(FunctionBodyDecoderTest, Float64Const) {
byte code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0};
Address ptr = reinterpret_cast<Address>(code + 1);
for (int i = 0; i < 30; i++) {
base::WriteLittleEndianValue<double>(ptr, i * 33.45);
ExpectValidates(sigs.d_dd(), code);
}
}
TEST_F(FunctionBodyDecoderTest, Int32Const_off_end) {
byte code[] = {kExprI32Const, 0xAA, 0xBB, 0xCC, 0x44};
for (size_t size = 1; size <= 4; ++size) {
ExpectFailure(sigs.i_i(), VectorOf(code, size), kAppendEnd);
// Should also fail without the trailing 'end' opcode.
ExpectFailure(sigs.i_i(), VectorOf(code, size), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_param) {
ExpectValidates(sigs.i_i(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_local) {
AddLocals(kWasmI32, 1);
ExpectValidates(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TooManyLocals) {
AddLocals(kWasmI32, 4034986500);
ExpectFailure(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_param_n) {
for (const FunctionSig* sig : {sigs.i_i(), sigs.i_ii(), sigs.i_iii()}) {
ExpectValidates(sig, kCodeGetLocal0);
}
}
TEST_F(FunctionBodyDecoderTest, GetLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI32, 1);
for (byte j = 0; j < i; j++) {
ExpectValidates(sigs.i_v(), {kExprLocalGet, j});
}
}
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_fail_no_params) {
ExpectFailure(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal1_fail_no_locals) {
ExpectFailure(sigs.i_i(), kCodeGetLocal1);
}
TEST_F(FunctionBodyDecoderTest, GetLocal_off_end) {
ExpectFailure(sigs.i_i(), {kExprLocalGet});
}
TEST_F(FunctionBodyDecoderTest, NumLocalBelowLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1);
ExpectValidates(sigs.v_v(), {WASM_NOP});
}
TEST_F(FunctionBodyDecoderTest, NumLocalAtLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals);
ExpectValidates(sigs.v_v(), {WASM_NOP});
}
TEST_F(FunctionBodyDecoderTest, NumLocalAboveLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals + 1);
ExpectFailure(sigs.v_v(), {WASM_NOP});
}
TEST_F(FunctionBodyDecoderTest, GetLocal_varint) {
const int kMaxLocals = kV8MaxWasmFunctionLocals - 1;
AddLocals(kWasmI32, kMaxLocals);
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_1(66)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_2(7777)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_3(8888)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(9999)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_5(kMaxLocals - 1)});
ExpectFailure(sigs.i_i(), {kExprLocalGet, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals - 1)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals)});
ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals + 1)});
ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals)});
ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals + 1)});
}
TEST_F(FunctionBodyDecoderTest, GetLocal_toomany) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 100);
AddLocals(kWasmI32, 100);
ExpectValidates(sigs.i_v(), {kExprLocalGet, U32V_1(66)});
ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_1(66)});
}
TEST_F(FunctionBodyDecoderTest, Binops_off_end) {
byte code1[] = {0}; // [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code1[0] = kInt32BinopOpcodes[i];
ExpectFailure(sigs.i_i(), code1);
}
byte code3[] = {kExprLocalGet, 0, 0}; // [expr] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code3[2] = kInt32BinopOpcodes[i];
ExpectFailure(sigs.i_i(), code3);
}
byte code4[] = {kExprLocalGet, 0, 0, 0}; // [expr] [opcode] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code4[2] = kInt32BinopOpcodes[i];
code4[3] = kInt32BinopOpcodes[i];
ExpectFailure(sigs.i_i(), code4);
}
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock1) {
ExpectFailure(sigs.i_i(), {WASM_ZERO, kExprBlock, kLocalI32, WASM_ZERO,
kExprI32Add, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock2) {
ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprBlock, kLocalI32,
kExprI32Add, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock3) {
ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprIf, kLocalI32,
kExprI32Add, kExprElse, kExprI32Add, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, Nop) {
ExpectValidates(sigs.v_v(), {kExprNop});
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_void) {
ExpectFailure(sigs.i_i(), {WASM_SET_LOCAL(0, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_param) {
ExpectFailure(sigs.i_i(), kCodeSetLocal0);
ExpectFailure(sigs.f_ff(), kCodeSetLocal0);
ExpectFailure(sigs.d_dd(), kCodeSetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocal0_param) {
ExpectValidates(sigs.i_i(), kCodeTeeLocal0);
ExpectFailure(sigs.f_ff(), kCodeTeeLocal0);
ExpectFailure(sigs.d_dd(), kCodeTeeLocal0);
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_local) {
ExpectFailure(sigs.i_v(), kCodeSetLocal0);
ExpectFailure(sigs.v_v(), kCodeSetLocal0);
AddLocals(kWasmI32, 1);
ExpectFailure(sigs.i_v(), kCodeSetLocal0);
ExpectValidates(sigs.v_v(), kCodeSetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocal0_local) {
ExpectFailure(sigs.i_v(), kCodeTeeLocal0);
AddLocals(kWasmI32, 1);
ExpectValidates(sigs.i_v(), kCodeTeeLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI32, 1);
for (byte j = 0; j < i; j++) {
ExpectFailure(sigs.v_v(), {WASM_TEE_LOCAL(j, WASM_I32V_1(i))});
ExpectValidates(sigs.i_i(), {WASM_TEE_LOCAL(j, WASM_I32V_1(i))});
}
}
}
TEST_F(FunctionBodyDecoderTest, BlockN) {
constexpr size_t kMaxSize = 200;
byte buffer[kMaxSize + 3];
for (size_t i = 0; i <= kMaxSize; i++) {
memset(buffer, kExprNop, sizeof(buffer));
buffer[0] = kExprBlock;
buffer[1] = kLocalVoid;
buffer[i + 2] = kExprEnd;
ExpectValidates(sigs.v_i(), VectorOf(buffer, i + 3), kAppendEnd);
}
}
#define WASM_EMPTY_BLOCK kExprBlock, kLocalVoid, kExprEnd
TEST_F(FunctionBodyDecoderTest, Block0) {
ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK});
ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK});
}
TEST_F(FunctionBodyDecoderTest, Block0_fallthru1) {
ExpectValidates(sigs.v_v(), {WASM_BLOCK(WASM_EMPTY_BLOCK)});
ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_EMPTY_BLOCK)});
}
TEST_F(FunctionBodyDecoderTest, Block0Block0) {
ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK});
ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK});
}
TEST_F(FunctionBodyDecoderTest, Block0_end) {
ExpectFailure(sigs.v_v(), {WASM_EMPTY_BLOCK, kExprEnd});
}
#undef WASM_EMPTY_BLOCK
TEST_F(FunctionBodyDecoderTest, Block1) {
byte code[] = {WASM_BLOCK_I(WASM_GET_LOCAL(0))};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.v_i(), code);
ExpectFailure(sigs.d_dd(), code);
ExpectFailure(sigs.i_f(), code);
ExpectFailure(sigs.i_d(), code);
}
TEST_F(FunctionBodyDecoderTest, Block1_i) {
byte code[] = {WASM_BLOCK_I(WASM_ZERO)};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.f_ff(), code);
ExpectFailure(sigs.d_dd(), code);
ExpectFailure(sigs.l_ll(), code);
}
TEST_F(FunctionBodyDecoderTest, Block1_f) {
byte code[] = {WASM_BLOCK_F(WASM_F32(0))};
ExpectFailure(sigs.i_i(), code);
ExpectValidates(sigs.f_ff(), code);
ExpectFailure(sigs.d_dd(), code);
ExpectFailure(sigs.l_ll(), code);
}
TEST_F(FunctionBodyDecoderTest, Block1_continue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Block1_br) {
ExpectValidates(sigs.v_v(), {B1(WASM_BR(0))});
ExpectValidates(sigs.v_v(), {B1(WASM_BR(1))});
ExpectFailure(sigs.v_v(), {B1(WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, Block2_br) {
ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_BR(0))});
ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_NOP)});
ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Block2) {
ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_ZERO)});
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_NOP)});
ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Block2b) {
byte code[] = {WASM_BLOCK_I(WASM_SET_LOCAL(0, WASM_ZERO), WASM_ZERO)};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.f_ff(), code);
}
TEST_F(FunctionBodyDecoderTest, Block2_fallthru) {
ExpectValidates(sigs.i_i(), {B2(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO)),
WASM_I32V_1(23)});
}
TEST_F(FunctionBodyDecoderTest, Block3) {
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO),
WASM_I32V_1(11))});
}
TEST_F(FunctionBodyDecoderTest, Block5) {
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO)});
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_i(),
{WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, BlockType) {
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_GET_LOCAL(0))});
ExpectValidates(sigs.l_l(), {WASM_BLOCK_L(WASM_GET_LOCAL(0))});
ExpectValidates(sigs.f_f(), {WASM_BLOCK_F(WASM_GET_LOCAL(0))});
ExpectValidates(sigs.d_d(), {WASM_BLOCK_D(WASM_GET_LOCAL(0))});
}
TEST_F(FunctionBodyDecoderTest, BlockType_fail) {
ExpectFailure(sigs.i_i(), {WASM_BLOCK_L(WASM_I64V_1(0))});
ExpectFailure(sigs.i_i(), {WASM_BLOCK_F(WASM_F32(0.0))});
ExpectFailure(sigs.i_i(), {WASM_BLOCK_D(WASM_F64(1.1))});
ExpectFailure(sigs.l_l(), {WASM_BLOCK_I(WASM_ZERO)});
ExpectFailure(sigs.l_l(), {WASM_BLOCK_F(WASM_F32(0.0))});
ExpectFailure(sigs.l_l(), {WASM_BLOCK_D(WASM_F64(1.1))});
ExpectFailure(sigs.f_ff(), {WASM_BLOCK_I(WASM_ZERO)});
ExpectFailure(sigs.f_ff(), {WASM_BLOCK_L(WASM_I64V_1(0))});
ExpectFailure(sigs.f_ff(), {WASM_BLOCK_D(WASM_F64(1.1))});
ExpectFailure(sigs.d_dd(), {WASM_BLOCK_I(WASM_ZERO)});
ExpectFailure(sigs.d_dd(), {WASM_BLOCK_L(WASM_I64V_1(0))});
ExpectFailure(sigs.d_dd(), {WASM_BLOCK_F(WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, BlockF32) {
static const byte code[] = {WASM_BLOCK_F(kExprF32Const, 0, 0, 0, 0)};
ExpectValidates(sigs.f_ff(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.d_dd(), code);
}
TEST_F(FunctionBodyDecoderTest, BlockN_off_end) {
byte code[] = {WASM_BLOCK(kExprNop, kExprNop, kExprNop, kExprNop)};
ExpectValidates(sigs.v_v(), code);
for (size_t i = 1; i < arraysize(code); i++) {
ExpectFailure(sigs.v_v(), VectorOf(code, i), kAppendEnd);
ExpectFailure(sigs.v_v(), VectorOf(code, i), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, Block2_continue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(0))});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(1))});
ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, Block3_continue) {
ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(0)))});
ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(1)))});
ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(2)))});
ExpectFailure(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(3)))});
}
TEST_F(FunctionBodyDecoderTest, NestedBlock_return) {
ExpectValidates(sigs.i_i(), {B1(B1(WASM_RETURN1(WASM_ZERO))), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, BlockBrBinop) {
ExpectValidates(sigs.i_i(),
{WASM_I32_AND(WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(1))),
WASM_I32V_1(2))});
}
TEST_F(FunctionBodyDecoderTest, If_empty1) {
ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty2) {
ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty3) {
ExpectValidates(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, WASM_NOP, kExprElse, kExprEnd});
ExpectFailure(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, WASM_ZERO, kExprElse, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty4) {
ExpectValidates(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, kExprElse, WASM_NOP, kExprEnd});
ExpectFailure(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, kExprElse, WASM_ZERO, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty_stack) {
byte code[] = {kExprIf};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, If_incomplete1) {
byte code[] = {kExprI32Const, 0, kExprIf};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, If_incomplete2) {
byte code[] = {kExprI32Const, 0, kExprIf, kExprNop};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, If_else_else) {
byte code[] = {kExprI32Const, 0, WASM_IF_OP, kExprElse, kExprElse, kExprEnd};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, IfEmpty) {
ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, IfSet) {
ExpectValidates(sigs.v_i(),
{WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_ZERO))});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_ZERO),
WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfElseEmpty) {
ExpectValidates(sigs.v_i(),
{WASM_GET_LOCAL(0), WASM_IF_OP, kExprElse, kExprEnd});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfElseUnreachable1) {
ExpectValidates(
sigs.i_i(),
{WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_UNREACHABLE, WASM_GET_LOCAL(0))});
ExpectValidates(
sigs.i_i(),
{WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE)});
}
TEST_F(FunctionBodyDecoderTest, IfElseUnreachable2) {
static const byte code[] = {
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_UNREACHABLE, WASM_GET_LOCAL(0))};
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType types[] = {kWasmI32, kValueTypes[i]};
FunctionSig sig(1, 1, types);
Validate(kValueTypes[i] == kWasmI32, &sig, code);
}
}
TEST_F(FunctionBodyDecoderTest, OneArmedIfWithArity) {
static const byte code[] = {WASM_ZERO, kExprIf, kLocalI32, WASM_ONE,
kExprEnd};
ExpectFailure(sigs.i_v(), code, kAppendEnd,
"start-arity and end-arity of one-armed if must match");
}
TEST_F(FunctionBodyDecoderTest, IfBreak) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0), WASM_BR(0))});
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0), WASM_BR(1))});
ExpectFailure(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0), WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, IfElseBreak) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_BR(0))});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_BR(1))});
ExpectFailure(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, Block_else) {
byte code[] = {kExprI32Const, 0, kExprBlock, kExprElse, kExprEnd};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, IfNop) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0), WASM_NOP)});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, If_end) {
ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd});
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_falloff1) {
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, kExprIf});
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP});
ExpectFailure(sigs.v_i(),
{kExprLocalGet, 0, WASM_IF_OP, kExprNop, kExprElse});
}
TEST_F(FunctionBodyDecoderTest, IfElseNop) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_ZERO),
WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfBlock1) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0),
B1(WASM_SET_LOCAL(0, WASM_ZERO)), WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfBlock1b) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0),
B1(WASM_SET_LOCAL(0, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, IfBlock2a) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0),
B2(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, IfBlock2b) {
ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_GET_LOCAL(0),
B2(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO)),
WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfElseSet) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_I32V_1(1)))});
}
TEST_F(FunctionBodyDecoderTest, Loop0) {
ExpectValidates(sigs.v_v(), {WASM_LOOP_OP, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, Loop1) {
static const byte code[] = {WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO))};
ExpectValidates(sigs.v_i(), code);
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.f_ff(), code);
}
TEST_F(FunctionBodyDecoderTest, Loop2) {
ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO))});
}
TEST_F(FunctionBodyDecoderTest, Loop1_continue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Loop1_break) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(1))});
}
TEST_F(FunctionBodyDecoderTest, Loop2_continue) {
ExpectValidates(sigs.v_i(),
{WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO), WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Loop2_break) {
ExpectValidates(sigs.v_i(),
{WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO), WASM_BR(1))});
}
TEST_F(FunctionBodyDecoderTest, InfiniteLoop1) {
ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO});
ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO});
ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BRV(1, WASM_ZERO))});
}
TEST_F(FunctionBodyDecoderTest, InfiniteLoop2) {
ExpectFailure(sigs.i_i(), {WASM_LOOP(WASM_BR(0), WASM_ZERO), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Loop2_unreachable) {
ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BR(0), WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, LoopType) {
ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_GET_LOCAL(0))});
ExpectValidates(sigs.l_l(), {WASM_LOOP_L(WASM_GET_LOCAL(0))});
ExpectValidates(sigs.f_f(), {WASM_LOOP_F(WASM_GET_LOCAL(0))});
ExpectValidates(sigs.d_d(), {WASM_LOOP_D(WASM_GET_LOCAL(0))});
}
TEST_F(FunctionBodyDecoderTest, LoopType_void) {
ExpectFailure(sigs.v_v(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.v_v(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.v_v(), {WASM_LOOP_F(WASM_F32(0.0))});
ExpectFailure(sigs.v_v(), {WASM_LOOP_D(WASM_F64(1.1))});
}
TEST_F(FunctionBodyDecoderTest, LoopType_fail) {
ExpectFailure(sigs.i_i(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.i_i(), {WASM_LOOP_F(WASM_F32(0.0))});
ExpectFailure(sigs.i_i(), {WASM_LOOP_D(WASM_F64(1.1))});
ExpectFailure(sigs.l_l(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.l_l(), {WASM_LOOP_F(WASM_F32(0.0))});
ExpectFailure(sigs.l_l(), {WASM_LOOP_D(WASM_F64(1.1))});
ExpectFailure(sigs.f_ff(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.f_ff(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.f_ff(), {WASM_LOOP_D(WASM_F64(1.1))});
ExpectFailure(sigs.d_dd(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.d_dd(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.d_dd(), {WASM_LOOP_F(WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid1) {
static const byte code[] = {kExprNop};
ExpectValidates(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.i_f(), code);
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid2) {
static const byte code[] = {WASM_BLOCK(WASM_BR(0))};
ExpectValidates(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.i_f(), code);
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid3) {
ExpectFailure(sigs.v_v(), {kExprI32Const, 0});
ExpectFailure(sigs.v_v(), {kExprI64Const, 0});
ExpectFailure(sigs.v_v(), {kExprF32Const, 0, 0, 0, 0});
ExpectFailure(sigs.v_v(), {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0});
ExpectFailure(sigs.v_v(), {kExprRefNull});
ExpectFailure(sigs.v_v(), {kExprRefFunc, 0});
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0});
}
TEST_F(FunctionBodyDecoderTest, Unreachable1) {
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_UNREACHABLE});
ExpectValidates(sigs.i_i(), {WASM_UNREACHABLE, WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Unreachable2) {
ExpectFailure(sigs.v_v(), {B2(WASM_UNREACHABLE, WASM_ZERO)});
ExpectFailure(sigs.v_v(), {B2(WASM_BR(0), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, UnreachableLoop1) {
ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_ZERO)});
ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_ZERO)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_binop1) {
ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_ZERO, WASM_UNREACHABLE)});
ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_binop2) {
ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_F32(0.0), WASM_UNREACHABLE)});
ExpectFailure(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_select1) {
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_ZERO)});
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_ZERO, WASM_UNREACHABLE, WASM_ZERO)});
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_ZERO, WASM_ZERO, WASM_UNREACHABLE)});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_select2) {
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_F32(0.0), WASM_UNREACHABLE, WASM_ZERO)});
ExpectFailure(sigs.i_i(),
{WASM_SELECT(WASM_UNREACHABLE, WASM_F32(0.0), WASM_ZERO)});
ExpectFailure(sigs.i_i(),
{WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, If1) {
ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(9),
WASM_I32V_1(8))});
ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(9),
WASM_GET_LOCAL(0))});
ExpectValidates(
sigs.i_i(),
{WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_I32V_1(8))});
}
TEST_F(FunctionBodyDecoderTest, If_off_end) {
static const byte kCode[] = {
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))};
for (size_t len = 3; len < arraysize(kCode); len++) {
ExpectFailure(sigs.i_i(), VectorOf(kCode, len), kAppendEnd);
ExpectFailure(sigs.i_i(), VectorOf(kCode, len), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, If_type1) {
// float|double ? 1 : 2
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(0), WASM_I32V_1(2))};
ExpectValidates(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type2) {
// 1 ? float|double : 2
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_I32V_1(1), WASM_GET_LOCAL(0), WASM_I32V_1(1))};
ExpectValidates(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type3) {
// stmt ? 0 : 1
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_NOP, WASM_I32V_1(0), WASM_I32V_1(1))};
ExpectFailure(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type4) {
// 0 ? stmt : 1
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_NOP, WASM_I32V_1(1))};
ExpectFailure(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type5) {
// 0 ? 1 : stmt
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_ZERO, WASM_I32V_1(1), WASM_NOP)};
ExpectFailure(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, Int64Local_param) {
ExpectValidates(sigs.l_l(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, Int64Locals) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI64, 1);
for (byte j = 0; j < i; j++) {
ExpectValidates(sigs.l_v(), {WASM_GET_LOCAL(j)});
}
}
}
TEST_F(FunctionBodyDecoderTest, Int32Binops) {
TestBinop(kExprI32Add, sigs.i_ii());
TestBinop(kExprI32Sub, sigs.i_ii());
TestBinop(kExprI32Mul, sigs.i_ii());
TestBinop(kExprI32DivS, sigs.i_ii());
TestBinop(kExprI32DivU, sigs.i_ii());
TestBinop(kExprI32RemS, sigs.i_ii());
TestBinop(kExprI32RemU, sigs.i_ii());
TestBinop(kExprI32And, sigs.i_ii());
TestBinop(kExprI32Ior, sigs.i_ii());
TestBinop(kExprI32Xor, sigs.i_ii());
TestBinop(kExprI32Shl, sigs.i_ii());
TestBinop(kExprI32ShrU, sigs.i_ii());
TestBinop(kExprI32ShrS, sigs.i_ii());
TestBinop(kExprI32Eq, sigs.i_ii());
TestBinop(kExprI32LtS, sigs.i_ii());
TestBinop(kExprI32LeS, sigs.i_ii());
TestBinop(kExprI32LtU, sigs.i_ii());
TestBinop(kExprI32LeU, sigs.i_ii());
}
TEST_F(FunctionBodyDecoderTest, DoubleBinops) {
TestBinop(kExprF64Add, sigs.d_dd());
TestBinop(kExprF64Sub, sigs.d_dd());
TestBinop(kExprF64Mul, sigs.d_dd());
TestBinop(kExprF64Div, sigs.d_dd());
TestBinop(kExprF64Eq, sigs.i_dd());
TestBinop(kExprF64Lt, sigs.i_dd());
TestBinop(kExprF64Le, sigs.i_dd());
}
TEST_F(FunctionBodyDecoderTest, FloatBinops) {
TestBinop(kExprF32Add, sigs.f_ff());
TestBinop(kExprF32Sub, sigs.f_ff());
TestBinop(kExprF32Mul, sigs.f_ff());
TestBinop(kExprF32Div, sigs.f_ff());
TestBinop(kExprF32Eq, sigs.i_ff());
TestBinop(kExprF32Lt, sigs.i_ff());
TestBinop(kExprF32Le, sigs.i_ff());
}
TEST_F(FunctionBodyDecoderTest, TypeConversions) {
TestUnop(kExprI32SConvertF32, kWasmI32, kWasmF32);
TestUnop(kExprI32SConvertF64, kWasmI32, kWasmF64);
TestUnop(kExprI32UConvertF32, kWasmI32, kWasmF32);
TestUnop(kExprI32UConvertF64, kWasmI32, kWasmF64);
TestUnop(kExprF64SConvertI32, kWasmF64, kWasmI32);
TestUnop(kExprF64UConvertI32, kWasmF64, kWasmI32);
TestUnop(kExprF64ConvertF32, kWasmF64, kWasmF32);
TestUnop(kExprF32SConvertI32, kWasmF32, kWasmI32);
TestUnop(kExprF32UConvertI32, kWasmF32, kWasmI32);
TestUnop(kExprF32ConvertF64, kWasmF32, kWasmF64);
}
TEST_F(FunctionBodyDecoderTest, MacrosStmt) {
builder.InitializeMemory();
ExpectValidates(sigs.v_i(), {WASM_SET_LOCAL(0, WASM_I32V_3(87348))});
ExpectValidates(
sigs.v_i(),
{WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(24), WASM_I32V_1(40))});
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_GET_LOCAL(0), WASM_NOP)});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_NOP});
ExpectValidates(sigs.v_v(), {B1(WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, MacrosContinue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_CONTINUE(0))});
}
TEST_F(FunctionBodyDecoderTest, MacrosVariadic) {
ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {B3(WASM_NOP, WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, MacrosNestedBlocks) {
ExpectValidates(sigs.v_v(), {B2(WASM_NOP, B2(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.v_v(), {B3(WASM_NOP, // --
B2(WASM_NOP, WASM_NOP), // --
B2(WASM_NOP, WASM_NOP))}); // --
ExpectValidates(sigs.v_v(), {B1(B1(B2(WASM_NOP, WASM_NOP)))});
}
TEST_F(FunctionBodyDecoderTest, MultipleReturn) {
static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32,
kWasmI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
ExpectValidates(&sig_ii_v, {WASM_RETURNN(2, WASM_ZERO, WASM_ONE)});
ExpectFailure(&sig_ii_v, {WASM_RETURNN(1, WASM_ZERO)});
FunctionSig sig_iii_v(3, 0, kIntTypes5);
ExpectValidates(&sig_iii_v,
{WASM_RETURNN(3, WASM_ZERO, WASM_ONE, WASM_I32V_1(44))});
ExpectFailure(&sig_iii_v, {WASM_RETURNN(2, WASM_ZERO, WASM_ONE)});
}
TEST_F(FunctionBodyDecoderTest, MultipleReturn_fallthru) {
static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32,
kWasmI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
ExpectValidates(&sig_ii_v, {WASM_ZERO, WASM_ONE});
ExpectFailure(&sig_ii_v, {WASM_ZERO});
FunctionSig sig_iii_v(3, 0, kIntTypes5);
ExpectValidates(&sig_iii_v, {WASM_ZERO, WASM_ONE, WASM_I32V_1(44)});
ExpectFailure(&sig_iii_v, {WASM_ZERO, WASM_ONE});
}
TEST_F(FunctionBodyDecoderTest, MacrosInt32) {
ExpectValidates(sigs.i_i(),
{WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_I32V_1(12))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(13))});
ExpectValidates(sigs.i_i(),
{WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_I32V_1(14))});
ExpectValidates(sigs.i_i(),
{WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I32V_1(15))});
ExpectValidates(sigs.i_i(),
{WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(16))});
ExpectValidates(sigs.i_i(),
{WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_I32V_1(17))});
ExpectValidates(sigs.i_i(),
{WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_I32V_1(18))});
ExpectValidates(sigs.i_i(),
{WASM_I32_AND(WASM_GET_LOCAL(0), WASM_I32V_1(19))});
ExpectValidates(sigs.i_i(),
{WASM_I32_IOR(WASM_GET_LOCAL(0), WASM_I32V_1(20))});
ExpectValidates(sigs.i_i(),
{WASM_I32_XOR(WASM_GET_LOCAL(0), WASM_I32V_1(21))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_I32V_1(22))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_I32V_1(23))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_I32V_1(24))});
ExpectValidates(sigs.i_i(),
{WASM_I32_ROR(WASM_GET_LOCAL(0), WASM_I32V_1(24))});
ExpectValidates(sigs.i_i(),
{WASM_I32_ROL(WASM_GET_LOCAL(0), WASM_I32V_1(24))});
ExpectValidates(sigs.i_i(),
{WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(25))});
ExpectValidates(sigs.i_i(),
{WASM_I32_NE(WASM_GET_LOCAL(0), WASM_I32V_1(25))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V_1(26))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V_1(27))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LTU(WASM_GET_LOCAL(0), WASM_I32V_1(28))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LEU(WASM_GET_LOCAL(0), WASM_I32V_1(29))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GTS(WASM_GET_LOCAL(0), WASM_I32V_1(26))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GES(WASM_GET_LOCAL(0), WASM_I32V_1(27))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GTU(WASM_GET_LOCAL(0), WASM_I32V_1(28))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GEU(WASM_GET_LOCAL(0), WASM_I32V_1(29))});
}
TEST_F(FunctionBodyDecoderTest, MacrosInt64) {
ExpectValidates(sigs.l_ll(),
{WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_I64V_1(12))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_I64V_1(13))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_MUL(WASM_GET_LOCAL(0), WASM_I64V_1(14))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(15))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(16))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_I64V_1(17))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_I64V_1(18))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_AND(WASM_GET_LOCAL(0), WASM_I64V_1(19))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_I64V_1(20))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_I64V_1(21))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(22))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(23))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(24))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_I64V_1(24))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_I64V_1(24))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_I64V_1(26))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LES(WASM_GET_LOCAL(0), WASM_I64V_1(27))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_I64V_1(28))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_I64V_1(29))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_I64V_1(26))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GES(WASM_GET_LOCAL(0), WASM_I64V_1(27))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_I64V_1(28))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_I64V_1(29))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_I64V_1(25))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_NE(WASM_GET_LOCAL(0), WASM_I64V_1(25))});
}
TEST_F(FunctionBodyDecoderTest, AllSimpleExpressions) {
WASM_FEATURE_SCOPE(reftypes);
// Test all simple expressions which are described by a signature.
#define DECODE_TEST(name, opcode, sig) \
{ \
const FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \
if (sig->parameter_count() == 1) { \
TestUnop(kExpr##name, sig); \
} else { \
TestBinop(kExpr##name, sig); \
} \
}
FOREACH_SIMPLE_OPCODE(DECODE_TEST);
#undef DECODE_TEST
}
TEST_F(FunctionBodyDecoderTest, MemorySize) {
builder.InitializeMemory();
byte code[] = {kExprMemorySize, 0};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.f_ff(), code);
}
TEST_F(FunctionBodyDecoderTest, LoadMemOffset) {
builder.InitializeMemory();
for (int offset = 0; offset < 128; offset += 7) {
byte code[] = {kExprI32Const, 0, kExprI32LoadMem, ZERO_ALIGNMENT,
static_cast<byte>(offset)};
ExpectValidates(sigs.i_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, LoadMemAlignment) {
builder.InitializeMemory();
struct {
WasmOpcode instruction;
uint32_t maximum_aligment;
} values[] = {
{kExprI32LoadMem8U, 0}, // --
{kExprI32LoadMem8S, 0}, // --
{kExprI32LoadMem16U, 1}, // --
{kExprI32LoadMem16S, 1}, // --
{kExprI64LoadMem8U, 0}, // --
{kExprI64LoadMem8S, 0}, // --
{kExprI64LoadMem16U, 1}, // --
{kExprI64LoadMem16S, 1}, // --
{kExprI64LoadMem32U, 2}, // --
{kExprI64LoadMem32S, 2}, // --
{kExprI32LoadMem, 2}, // --
{kExprI64LoadMem, 3}, // --
{kExprF32LoadMem, 2}, // --
{kExprF64LoadMem, 3}, // --
};
for (size_t i = 0; i < arraysize(values); i++) {
for (byte alignment = 0; alignment <= 4; alignment++) {
byte code[] = {WASM_ZERO, static_cast<byte>(values[i].instruction),
alignment, ZERO_OFFSET, WASM_DROP};
Validate(alignment <= values[i].maximum_aligment, sigs.v_i(), code);
}
}
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset) {
builder.InitializeMemory();
for (byte offset = 0; offset < 128; offset += 7) {
byte code[] = {WASM_STORE_MEM_OFFSET(MachineType::Int32(), offset,
WASM_ZERO, WASM_ZERO)};
ExpectValidates(sigs.v_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset_void) {
builder.InitializeMemory();
ExpectFailure(sigs.i_i(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), 0,
WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, LoadMemOffset_varint) {
builder.InitializeMemory();
ExpectValidates(sigs.i_i(),
{WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_1(0x45)});
ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
U32V_2(0x3999)});
ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
U32V_3(0x344445)});
ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
U32V_4(0x36666667)});
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset_varint) {
builder.InitializeMemory();
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_1(0x33)});
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_2(0x1111)});
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_3(0x222222)});
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_4(0x44444444)});
}
TEST_F(FunctionBodyDecoderTest, AllLoadMemCombinations) {
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {WASM_LOAD_MEM(mem_type, WASM_ZERO)};
FunctionSig sig(1, 0, &local_type);
Validate(local_type == ValueType::For(mem_type), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, AllStoreMemCombinations) {
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {WASM_STORE_MEM(mem_type, WASM_ZERO, WASM_GET_LOCAL(0))};
FunctionSig sig(0, 1, &local_type);
Validate(local_type == ValueType::For(mem_type), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, SimpleCalls) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_v());
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
ExpectValidates(sig, {WASM_CALL_FUNCTION0(0)});
ExpectValidates(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(27))});
ExpectValidates(sig,
{WASM_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))});
}
TEST_F(FunctionBodyDecoderTest, CallsWithTooFewArguments) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
builder.AddFunction(sigs.f_ff());
ExpectFailure(sig, {WASM_CALL_FUNCTION0(0)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(2, WASM_GET_LOCAL(0))});
}
TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs2) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_i());
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(17))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F32(17.1))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(17.1))});
}
TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs3) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_f());
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(37.2))});
builder.AddFunction(sigs.i_d());
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I64V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_F32(17.6))});
}
TEST_F(FunctionBodyDecoderTest, SimpleReturnCalls) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_v());
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION0(0)});
ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(27))});
ExpectValidates(
sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))});
}
TEST_F(FunctionBodyDecoderTest, ReturnCallsWithTooFewArguments) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
builder.AddFunction(sigs.f_ff());
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION0(0)});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_ZERO)});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_GET_LOCAL(0))});
}
TEST_F(FunctionBodyDecoderTest, ReturnCallsWithMismatchedSigs) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_f());
builder.AddFunction(sigs.f_f());
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_F64(37.2))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F64(37.2))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F32(37.2))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(17))});
}
TEST_F(FunctionBodyDecoderTest, SimpleIndirectReturnCalls) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, true, 30);
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectValidates(
sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32),
WASM_I32V_2(72), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsOutOfBounds) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, false, 20);
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)});
builder.AddSignature(sigs.i_v());
ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)});
builder.AddSignature(sigs.i_i());
ExpectValidates(sig,
{WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithMismatchedSigs3) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmStmt);
byte sig0 = builder.AddSignature(sigs.i_f());
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2))});
byte sig1 = builder.AddFunction(sigs.i_d());
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithoutTableCrash) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32),
WASM_I32V_2(72), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IncompleteIndirectReturnCall) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmStmt);
static byte code[] = {kExprReturnCallIndirect};
ExpectFailure(sig, ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, MultiReturn) {
WASM_FEATURE_SCOPE(mv);
ValueType storage[] = {kWasmI32, kWasmI32};
FunctionSig sig_ii_v(2, 0, storage);
FunctionSig sig_v_ii(0, 2, storage);
builder.AddFunction(&sig_v_ii);
builder.AddFunction(&sig_ii_v);
ExpectValidates(&sig_ii_v, {WASM_CALL_FUNCTION0(1)});
ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), WASM_DROP, WASM_DROP});
ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), kExprCallFunction, 0});
}
TEST_F(FunctionBodyDecoderTest, MultiReturnType) {
WASM_FEATURE_SCOPE(mv);
for (size_t a = 0; a < arraysize(kValueTypes); a++) {
for (size_t b = 0; b < arraysize(kValueTypes); b++) {
for (size_t c = 0; c < arraysize(kValueTypes); c++) {
for (size_t d = 0; d < arraysize(kValueTypes); d++) {
ValueType storage_ab[] = {kValueTypes[a], kValueTypes[b]};
FunctionSig sig_ab_v(2, 0, storage_ab);
ValueType storage_cd[] = {kValueTypes[c], kValueTypes[d]};
FunctionSig sig_cd_v(2, 0, storage_cd);
TestModuleBuilder builder;
module = builder.module();
builder.AddFunction(&sig_cd_v);
ExpectValidates(&sig_cd_v, {WASM_CALL_FUNCTION0(0)});
if (IsSubtypeOf(kValueTypes[c], kValueTypes[a], module) &&
IsSubtypeOf(kValueTypes[d], kValueTypes[b], module)) {
ExpectValidates(&sig_ab_v, {WASM_CALL_FUNCTION0(0)});
} else {
ExpectFailure(&sig_ab_v, {WASM_CALL_FUNCTION0(0)});
}
}
}
}
}
}
TEST_F(FunctionBodyDecoderTest, SimpleIndirectCalls) {
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, false, 20);
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectValidates(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectValidates(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32),
WASM_I32V_2(72), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsOutOfBounds) {
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, false, 20);
ExpectFailure(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)});
builder.AddSignature(sigs.i_v());
ExpectValidates(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)});
builder.AddSignature(sigs.i_i());
ExpectValidates(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs3) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmStmt);
byte sig0 = builder.AddSignature(sigs.i_f());
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2))});
byte sig1 = builder.AddFunction(sigs.i_d());
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithoutTableCrash) {
const FunctionSig* sig = sigs.i_i();
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72),
WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IncompleteIndirectCall) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmStmt);
static byte code[] = {kExprCallIndirect};
ExpectFailure(sig, ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, IncompleteStore) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeMemory();
builder.InitializeTable(wasm::kWasmStmt);
static byte code[] = {kExprI32StoreMem};
ExpectFailure(sig, ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, IncompleteS8x16Shuffle) {
WASM_FEATURE_SCOPE(simd);
const FunctionSig* sig = sigs.i_i();
builder.InitializeMemory();
builder.InitializeTable(wasm::kWasmStmt);
static byte code[] = {kSimdPrefix,
static_cast<byte>(kExprS8x16Shuffle & 0xff)};
ExpectFailure(sig, ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, SimpleImportCalls) {
const FunctionSig* sig = sigs.i_i();
byte f0 = builder.AddImport(sigs.i_v());
byte f1 = builder.AddImport(sigs.i_i());
byte f2 = builder.AddImport(sigs.i_ii());
ExpectValidates(sig, {WASM_CALL_FUNCTION0(f0)});
ExpectValidates(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(22))});
ExpectValidates(sig,
{WASM_CALL_FUNCTION(f2, WASM_I32V_1(32), WASM_I32V_2(72))});
}
TEST_F(FunctionBodyDecoderTest, ImportCallsWithMismatchedSigs3) {
const FunctionSig* sig = sigs.i_i();
byte f0 = builder.AddImport(sigs.i_f());
ExpectFailure(sig, {WASM_CALL_FUNCTION0(f0)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_F64(37.2))});
byte f1 = builder.AddImport(sigs.i_d());
ExpectFailure(sig, {WASM_CALL_FUNCTION0(f1)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I64V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_F32(17.6))});
}
TEST_F(FunctionBodyDecoderTest, Int32Globals) {
const FunctionSig* sig = sigs.i_i();
builder.AddGlobal(kWasmI32);
ExpectValidates(sig, {WASM_GET_GLOBAL(0)});
ExpectFailure(sig, {WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0))});
ExpectValidates(sig, {WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, ImmutableGlobal) {
const FunctionSig* sig = sigs.v_v();
uint32_t g0 = builder.AddGlobal(kWasmI32, true);
uint32_t g1 = builder.AddGlobal(kWasmI32, false);
ExpectValidates(sig, {WASM_SET_GLOBAL(g0, WASM_ZERO)});
ExpectFailure(sig, {WASM_SET_GLOBAL(g1, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Int32Globals_fail) {
const FunctionSig* sig = sigs.i_i();
builder.AddGlobal(kWasmI64);
builder.AddGlobal(kWasmI64);
builder.AddGlobal(kWasmF32);
builder.AddGlobal(kWasmF64);
ExpectFailure(sig, {WASM_GET_GLOBAL(0)});
ExpectFailure(sig, {WASM_GET_GLOBAL(1)});
ExpectFailure(sig, {WASM_GET_GLOBAL(2)});
ExpectFailure(sig, {WASM_GET_GLOBAL(3)});
ExpectFailure(sig, {WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_ZERO});
ExpectFailure(sig, {WASM_SET_GLOBAL(1, WASM_GET_LOCAL(0)), WASM_ZERO});
ExpectFailure(sig, {WASM_SET_GLOBAL(2, WASM_GET_LOCAL(0)), WASM_ZERO});
ExpectFailure(sig, {WASM_SET_GLOBAL(3, WASM_GET_LOCAL(0)), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Int64Globals) {
const FunctionSig* sig = sigs.l_l();
builder.AddGlobal(kWasmI64);
builder.AddGlobal(kWasmI64);
ExpectValidates(sig, {WASM_GET_GLOBAL(0)});
ExpectValidates(sig, {WASM_GET_GLOBAL(1)});
ExpectValidates(sig,
{WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(0)});
ExpectValidates(sig,
{WASM_SET_GLOBAL(1, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(0)});
}
TEST_F(FunctionBodyDecoderTest, Float32Globals) {
const FunctionSig* sig = sigs.f_ff();
builder.AddGlobal(kWasmF32);
ExpectValidates(sig, {WASM_GET_GLOBAL(0)});
ExpectValidates(sig,
{WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(0)});
}
TEST_F(FunctionBodyDecoderTest, Float64Globals) {
const FunctionSig* sig = sigs.d_dd();
builder.AddGlobal(kWasmF64);
ExpectValidates(sig, {WASM_GET_GLOBAL(0)});
ExpectValidates(sig,
{WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(0)});
}
TEST_F(FunctionBodyDecoderTest, AllGetGlobalCombinations) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType global_type = kValueTypes[j];
FunctionSig sig(1, 0, &local_type);
TestModuleBuilder builder;
module = builder.module();
builder.AddGlobal(global_type);
Validate(IsSubtypeOf(global_type, local_type, module), &sig,
{WASM_GET_GLOBAL(0)});
}
}
}
TEST_F(FunctionBodyDecoderTest, AllSetGlobalCombinations) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType global_type = kValueTypes[j];
FunctionSig sig(0, 1, &local_type);
TestModuleBuilder builder;
module = builder.module();
builder.AddGlobal(global_type);
Validate(IsSubtypeOf(local_type, global_type, module), &sig,
{WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0))});
}
}
}
TEST_F(FunctionBodyDecoderTest, TableSet) {
WASM_FEATURE_SCOPE(reftypes);
byte tab_ref1 = builder.AddTable(kWasmExternRef, 10, true, 20);
byte tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30);
byte tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20);
byte tab_ref2 = builder.AddTable(kWasmExternRef, 10, false, 20);
ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32};
FunctionSig sig(0, 3, sig_types);
byte local_ref = 0;
byte local_func = 1;
byte local_int = 2;
ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(6),
WASM_GET_LOCAL(local_ref))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(5),
WASM_GET_LOCAL(local_func))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(7),
WASM_GET_LOCAL(local_func))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(8),
WASM_GET_LOCAL(local_ref))});
// Only values of the correct type can be set to a table.
ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(4),
WASM_GET_LOCAL(local_func))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(9),
WASM_GET_LOCAL(local_ref))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(3),
WASM_GET_LOCAL(local_ref))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(2),
WASM_GET_LOCAL(local_func))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(9),
WASM_GET_LOCAL(local_int))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(3),
WASM_GET_LOCAL(local_int))});
// Out-of-bounds table index should fail.
byte oob_tab = 37;
ExpectFailure(
&sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(9), WASM_GET_LOCAL(local_ref))});
ExpectFailure(&sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(3),
WASM_GET_LOCAL(local_func))});
}
TEST_F(FunctionBodyDecoderTest, TableGet) {
WASM_FEATURE_SCOPE(reftypes);
byte tab_ref1 = builder.AddTable(kWasmExternRef, 10, true, 20);
byte tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30);
byte tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20);
byte tab_ref2 = builder.AddTable(kWasmExternRef, 10, false, 20);
ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32};
FunctionSig sig(0, 3, sig_types);
byte local_ref = 0;
byte local_func = 1;
byte local_int = 2;
ExpectValidates(
&sig,
{WASM_SET_LOCAL(local_ref, WASM_TABLE_GET(tab_ref1, WASM_I32V(6)))});
ExpectValidates(
&sig,
{WASM_SET_LOCAL(local_ref, WASM_TABLE_GET(tab_ref2, WASM_I32V(8)))});
ExpectValidates(
&sig,
{WASM_SET_LOCAL(local_func, WASM_TABLE_GET(tab_func1, WASM_I32V(5)))});
ExpectValidates(
&sig,
{WASM_SET_LOCAL(local_func, WASM_TABLE_GET(tab_func2, WASM_I32V(7)))});
ExpectValidates(
&sig, {WASM_SET_LOCAL(local_ref, WASM_SEQ(WASM_I32V(6), kExprTableGet,
U32V_2(tab_ref1)))});
// We cannot store references as any other type.
ExpectFailure(&sig, {WASM_SET_LOCAL(local_func,
WASM_TABLE_GET(tab_ref1, WASM_I32V(4)))});
ExpectFailure(&sig, {WASM_SET_LOCAL(
local_ref, WASM_TABLE_GET(tab_func1, WASM_I32V(9)))});
ExpectFailure(&sig, {WASM_SET_LOCAL(
local_ref, WASM_TABLE_GET(tab_func2, WASM_I32V(3)))});
ExpectFailure(&sig, {WASM_SET_LOCAL(local_func,
WASM_TABLE_GET(tab_ref2, WASM_I32V(2)))});
ExpectFailure(&sig, {WASM_SET_LOCAL(local_int,
WASM_TABLE_GET(tab_ref1, WASM_I32V(9)))});
ExpectFailure(&sig, {WASM_SET_LOCAL(
local_int, WASM_TABLE_GET(tab_func1, WASM_I32V(3)))});
// Out-of-bounds table index should fail.
byte oob_tab = 37;
ExpectFailure(
&sig, {WASM_SET_LOCAL(local_ref, WASM_TABLE_GET(oob_tab, WASM_I32V(9)))});
ExpectFailure(&sig, {WASM_SET_LOCAL(local_func,
WASM_TABLE_GET(oob_tab, WASM_I32V(3)))});
}
TEST_F(FunctionBodyDecoderTest, MultiTableCallIndirect) {
WASM_FEATURE_SCOPE(reftypes);
byte tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20);
byte tab_func = builder.AddTable(kWasmFuncRef, 20, true, 30);
ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32};
FunctionSig sig(0, 3, sig_types);
byte sig_index = builder.AddSignature(sigs.i_v());
// We can store funcref values as externref, but not the other way around.
ExpectValidates(sigs.i_v(),
{kExprI32Const, 0, kExprCallIndirect, sig_index, tab_func});
ExpectFailure(sigs.i_v(),
{kExprI32Const, 0, kExprCallIndirect, sig_index, tab_ref});
}
TEST_F(FunctionBodyDecoderTest, WasmMemoryGrow) {
builder.InitializeMemory();
byte code[] = {WASM_GET_LOCAL(0), kExprMemoryGrow, 0};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.i_d(), code);
}
TEST_F(FunctionBodyDecoderTest, AsmJsMemoryGrow) {
module->origin = kAsmJsSloppyOrigin;
builder.InitializeMemory();
byte code[] = {WASM_GET_LOCAL(0), kExprMemoryGrow, 0};
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, AsmJsBinOpsCheckOrigin) {
ValueType float32int32float32[] = {kWasmF32, kWasmI32, kWasmF32};
FunctionSig sig_f_if(1, 2, float32int32float32);
ValueType float64int32float64[] = {kWasmF64, kWasmI32, kWasmF64};
FunctionSig sig_d_id(1, 2, float64int32float64);
struct {
WasmOpcode op;
const FunctionSig* sig;
} AsmJsBinOps[] = {
{kExprF64Atan2, sigs.d_dd()},
{kExprF64Pow, sigs.d_dd()},
{kExprF64Mod, sigs.d_dd()},
{kExprI32AsmjsDivS, sigs.i_ii()},
{kExprI32AsmjsDivU, sigs.i_ii()},
{kExprI32AsmjsRemS, sigs.i_ii()},
{kExprI32AsmjsRemU, sigs.i_ii()},
{kExprI32AsmjsStoreMem8, sigs.i_ii()},
{kExprI32AsmjsStoreMem16, sigs.i_ii()},
{kExprI32AsmjsStoreMem, sigs.i_ii()},
{kExprF32AsmjsStoreMem, &sig_f_if},
{kExprF64AsmjsStoreMem, &sig_d_id},
};
{
TestModuleBuilder builder(kAsmJsSloppyOrigin);
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) {
TestBinop(AsmJsBinOps[i].op, AsmJsBinOps[i].sig);
}
}
{
TestModuleBuilder builder;
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) {
ExpectFailure(AsmJsBinOps[i].sig,
{WASM_BINOP(AsmJsBinOps[i].op, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1))});
}
}
}
TEST_F(FunctionBodyDecoderTest, AsmJsUnOpsCheckOrigin) {
ValueType float32int32[] = {kWasmF32, kWasmI32};
FunctionSig sig_f_i(1, 1, float32int32);
ValueType float64int32[] = {kWasmF64, kWasmI32};
FunctionSig sig_d_i(1, 1, float64int32);
struct {
WasmOpcode op;
const FunctionSig* sig;
} AsmJsUnOps[] = {{kExprF64Acos, sigs.d_d()},
{kExprF64Asin, sigs.d_d()},
{kExprF64Atan, sigs.d_d()},
{kExprF64Cos, sigs.d_d()},
{kExprF64Sin, sigs.d_d()},
{kExprF64Tan, sigs.d_d()},
{kExprF64Exp, sigs.d_d()},
{kExprF64Log, sigs.d_d()},
{kExprI32AsmjsLoadMem8S, sigs.i_i()},
{kExprI32AsmjsLoadMem8U, sigs.i_i()},
{kExprI32AsmjsLoadMem16S, sigs.i_i()},
{kExprI32AsmjsLoadMem16U, sigs.i_i()},
{kExprI32AsmjsLoadMem, sigs.i_i()},
{kExprF32AsmjsLoadMem, &sig_f_i},
{kExprF64AsmjsLoadMem, &sig_d_i},
{kExprI32AsmjsSConvertF32, sigs.i_f()},
{kExprI32AsmjsUConvertF32, sigs.i_f()},
{kExprI32AsmjsSConvertF64, sigs.i_d()},
{kExprI32AsmjsUConvertF64, sigs.i_d()}};
{
TestModuleBuilder builder(kAsmJsSloppyOrigin);
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) {
TestUnop(AsmJsUnOps[i].op, AsmJsUnOps[i].sig);
}
}
{
TestModuleBuilder builder;
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) {
ExpectFailure(AsmJsUnOps[i].sig,
{WASM_UNOP(AsmJsUnOps[i].op, WASM_GET_LOCAL(0))});
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakEnd) {
ExpectValidates(
sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(WASM_BRV(0, WASM_ZERO), WASM_ZERO))});
ExpectValidates(
sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(WASM_ZERO, WASM_BRV(0, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, BreakIfBinop) {
ExpectValidates(sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(
WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO), WASM_ZERO))});
ExpectValidates(sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(
WASM_ZERO, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))});
ExpectValidates(
sigs.f_ff(),
{WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, BreakIfBinop_fail) {
ExpectFailure(
sigs.f_ff(),
{WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))});
ExpectFailure(
sigs.i_i(),
{WASM_BLOCK_I(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, BreakIfUnrNarrow) {
ExpectFailure(
sigs.f_ff(),
{WASM_BLOCK_I(WASM_BRV_IF(0, WASM_UNREACHABLE, WASM_UNREACHABLE),
WASM_RETURN0),
WASM_F32(0.0)});
}
TEST_F(FunctionBodyDecoderTest, BreakNesting1) {
for (int i = 0; i < 5; i++) {
// (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p)
byte code[] = {WASM_BLOCK_I(
WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(i + 1, WASM_ZERO)),
WASM_SET_LOCAL(0, WASM_I32V_1(1))),
WASM_ZERO)};
Validate(i < 3, sigs.i_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BreakNesting2) {
for (int i = 0; i < 7; i++) {
byte code[] = {B1(WASM_LOOP(WASM_IF(WASM_ZERO, WASM_BR(i)), WASM_NOP))};
Validate(i <= 3, sigs.v_v(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BreakNesting3) {
for (int i = 0; i < 7; i++) {
// (block[1] (loop[1] (block[1] (if 0 break[N])
byte code[] = {
WASM_BLOCK(WASM_LOOP(B1(WASM_IF(WASM_ZERO, WASM_BR(i + 1)))))};
Validate(i < 4, sigs.v_v(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BreaksWithMultipleTypes) {
ExpectFailure(sigs.i_i(),
{B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_F32(7.7))});
ExpectFailure(sigs.i_i(), {B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))});
ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(8)),
WASM_BRV_IF_ZERO(0, WASM_I32V_1(0)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))});
ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(9)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)),
WASM_BRV_IF_ZERO(0, WASM_I32V_1(11)))});
}
TEST_F(FunctionBodyDecoderTest, BreakNesting_6_levels) {
for (int mask = 0; mask < 64; mask++) {
for (int i = 0; i < 14; i++) {
byte code[] = {WASM_BLOCK(WASM_BLOCK(
WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BR(i)))))))};
int depth = 6;
int m = mask;
for (size_t pos = 0; pos < sizeof(code) - 1; pos++) {
if (code[pos] != kExprBlock) continue;
if (m & 1) {
code[pos] = kExprLoop;
code[pos + 1] = kLocalVoid;
}
m >>= 1;
}
Validate(i <= depth, sigs.v_v(), code);
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheck) {
for (const FunctionSig* sig :
{sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()}) {
// unify X and X => OK
byte code[] = {WASM_BLOCK_T(
sig->GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(0))};
ExpectValidates(sig, code);
}
// unify i32 and f32 => fail
ExpectFailure(sigs.i_i(),
{WASM_BLOCK_I(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)),
WASM_F32(1.2))});
// unify f64 and f64 => OK
ExpectValidates(
sigs.d_dd(),
{WASM_BLOCK_D(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_F64(1.2))});
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll1) {
WASM_FEATURE_SCOPE(reftypes);
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_BLOCK_T(
sig.GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(1))};
Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code);