blob: 050db749dfd8e82921afd131e78c32ad6e281396 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/api-arguments.h"
#include "src/code-factory.h"
#include "src/counters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/heap/heap-inl.h"
#include "src/macro-assembler-inl.h"
#include "src/objects-inl.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/smi.h"
#include "src/register-configuration.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
__ Mov(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_InternalArrayConstructor");
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ LoadTaggedPointerField(
x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
__ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- x1 : target function (preserved for callee)
// -- x3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push another copy as a parameter to the runtime call.
__ Push(x1, x3);
__ PushArgument(x1);
__ CallRuntime(function_id, 1);
__ Mov(x2, x0);
// Restore target function and new target.
__ Pop(x3, x1);
}
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ JumpCodeObject(x2);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubHelper");
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label already_aligned;
Register argc = x0;
if (__ emit_debug_code()) {
// Check that FrameScope pushed the context on to the stack already.
__ Peek(x2, 0);
__ Cmp(x2, cp);
__ Check(eq, AbortReason::kUnexpectedValue);
}
// Push number of arguments.
__ SmiTag(x11, argc);
__ Push(x11, padreg);
// Add a slot for the receiver, and round up to maintain alignment.
Register slot_count = x2;
Register slot_count_without_rounding = x12;
__ Add(slot_count_without_rounding, argc, 2);
__ Bic(slot_count, slot_count_without_rounding, 1);
__ Claim(slot_count);
// Preserve the incoming parameters on the stack.
__ LoadRoot(x10, RootIndex::kTheHoleValue);
// Compute a pointer to the slot immediately above the location on the
// stack to which arguments will be later copied.
__ SlotAddress(x2, argc);
// Poke the hole (receiver) in the highest slot.
__ Str(x10, MemOperand(x2));
__ Tbnz(slot_count_without_rounding, 0, &already_aligned);
// Store padding, if needed.
__ Str(padreg, MemOperand(x2, 1 * kSystemPointerSize));
__ Bind(&already_aligned);
// Copy arguments to the expression stack.
{
Register count = x2;
Register dst = x10;
Register src = x11;
__ Mov(count, argc);
__ SlotAddress(dst, 0);
__ Add(src, fp, StandardFrameConstants::kCallerSPOffset);
__ CopyDoubleWords(dst, src, count);
}
// ----------- S t a t e -------------
// -- x0: number of arguments (untagged)
// -- x1: constructor function
// -- x3: new target
// If argc is odd:
// -- sp[0*kSystemPointerSize]: argument n - 1
// -- ...
// -- sp[(n-1)*kSystemPointerSize]: argument 0
// -- sp[(n+0)*kSystemPointerSize]: the hole (receiver)
// -- sp[(n+1)*kSystemPointerSize]: padding
// -- sp[(n+2)*kSystemPointerSize]: padding
// -- sp[(n+3)*kSystemPointerSize]: number of arguments (tagged)
// -- sp[(n+4)*kSystemPointerSize]: context (pushed by FrameScope)
// If argc is even:
// -- sp[0*kSystemPointerSize]: argument n - 1
// -- ...
// -- sp[(n-1)*kSystemPointerSize]: argument 0
// -- sp[(n+0)*kSystemPointerSize]: the hole (receiver)
// -- sp[(n+1)*kSystemPointerSize]: padding
// -- sp[(n+2)*kSystemPointerSize]: number of arguments (tagged)
// -- sp[(n+3)*kSystemPointerSize]: context (pushed by FrameScope)
// -----------------------------------
// Call the function.
ParameterCount actual(argc);
__ InvokeFunction(x1, x3, actual, CALL_FUNCTION);
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame. Use fp relative
// addressing to avoid the circular dependency between padding existence and
// argc parity.
__ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(x1, TurboAssembler::kCountExcludesReceiver);
__ Ret();
}
void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Label* stack_overflow) {
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
// Check the stack for overflow.
// We are not trying to catch interruptions (e.g. debug break and
// preemption) here, so the "real stack limit" is checked.
__ LoadRoot(scratch, RootIndex::kRealStackLimit);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ Sub(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ Cmp(scratch, Operand(num_args, LSL, kSystemPointerSizeLog2));
__ B(le, stack_overflow);
#if defined(V8_OS_WIN)
// Simulate _chkstk to extend stack guard page on Windows ARM64.
const int kPageSize = 4096;
Label chkstk, chkstk_done;
Register probe = temps.AcquireX();
__ Sub(scratch, sp, Operand(num_args, LSL, kSystemPointerSizeLog2));
__ Mov(probe, sp);
// Loop start of stack probe.
__ Bind(&chkstk);
__ Sub(probe, probe, kPageSize);
__ Cmp(probe, scratch);
__ B(lo, &chkstk_done);
__ Ldrb(xzr, MemOperand(probe));
__ B(&chkstk);
__ Bind(&chkstk_done);
#endif
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- lr : return address
// -- cp : context pointer
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubGeneric");
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
if (__ emit_debug_code()) {
// Check that FrameScope pushed the context on to the stack already.
__ Peek(x2, 0);
__ Cmp(x2, cp);
__ Check(eq, AbortReason::kUnexpectedValue);
}
// Preserve the incoming parameters on the stack.
__ SmiTag(x0);
__ Push(x0, x1, padreg, x3);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: new target
// -- sp[1*kSystemPointerSize]: padding
// -- x1 and sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- sp[4*kSystemPointerSize]: context (pushed by FrameScope)
// -----------------------------------
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(w4);
__ JumpIfIsInRange(w4, kDefaultDerivedConstructor, kDerivedConstructor,
&not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
x4, x5);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ B(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ Bind(&not_create_implicit_receiver);
__ LoadRoot(x0, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- x0: receiver
// -- Slot 4 / sp[0*kSystemPointerSize]: new target
// -- Slot 3 / sp[1*kSystemPointerSize]: padding
// -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
// -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kSystemPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ Bind(&post_instantiation_deopt_entry);
// Restore new target from the top of the stack.
__ Peek(x3, 0 * kSystemPointerSize);
// Restore constructor function and argument count.
__ Ldr(x1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ SmiUntag(x12, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Copy arguments to the expression stack. The called function pops the
// receiver along with its arguments, so we need an extra receiver on the
// stack, in case we have to return it later.
// Overwrite the new target with a receiver.
__ Poke(x0, 0);
// Push two further copies of the receiver. One will be popped by the called
// function. The second acts as padding if the number of arguments plus
// receiver is odd - pushing receiver twice avoids branching. It also means
// that we don't have to handle the even and odd cases specially on
// InvokeFunction's return, as top of stack will be the receiver in either
// case.
__ Push(x0, x0);
// ----------- S t a t e -------------
// -- x3: new target
// -- x12: number of arguments (untagged)
// -- sp[0*kSystemPointerSize]: implicit receiver (overwrite if argc
// odd)
// -- sp[1*kSystemPointerSize]: implicit receiver
// -- sp[2*kSystemPointerSize]: implicit receiver
// -- sp[3*kSystemPointerSize]: padding
// -- x1 and sp[4*kSystemPointerSize]: constructor function
// -- sp[5*kSystemPointerSize]: number of arguments (tagged)
// -- sp[6*kSystemPointerSize]: context
// -----------------------------------
// Round the number of arguments down to the next even number, and claim
// slots for the arguments. If the number of arguments was odd, the last
// argument will overwrite one of the receivers pushed above.
__ Bic(x10, x12, 1);
// Check if we have enough stack space to push all arguments.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, x10, &stack_overflow);
__ B(&enough_stack_space);
__ Bind(&stack_overflow);
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&enough_stack_space);
__ Claim(x10);
// Copy the arguments.
{
Register count = x2;
Register dst = x10;
Register src = x11;
__ Mov(count, x12);
__ SlotAddress(dst, 0);
__ Add(src, fp, StandardFrameConstants::kCallerSPOffset);
__ CopyDoubleWords(dst, src, count);
}
// Call the function.
__ Mov(x0, x12);
ParameterCount actual(x0);
__ InvokeFunction(x1, x3, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: implicit receiver
// -- sp[1*kSystemPointerSize]: padding
// -- sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ CompareRoot(x0, RootIndex::kUndefinedValue);
__ B(eq, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(x0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ JumpIfObjectType(x0, x4, x5, FIRST_JS_RECEIVER_TYPE, &leave_frame, ge);
__ B(&use_receiver);
__ Bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ Bind(&use_receiver);
__ Peek(x0, 0 * kSystemPointerSize);
__ CompareRoot(x0, RootIndex::kTheHoleValue);
__ B(eq, &do_throw);
__ Bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(x1, TurboAssembler::kCountExcludesReceiver);
__ Ret();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
__ B(ne, &done);
__ LoadTaggedPointerField(
sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ Bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the value to pass to the generator
// -- x1 : the JSGeneratorObject to resume
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(x1);
// Store input value into generator object.
__ StoreTaggedField(
x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0, x3,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
__ LoadTaggedPointerField(cp,
FieldMemOperand(x4, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ Mov(x10, debug_hook);
__ Ldrsb(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(0), ne, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Mov(x10, debug_suspended_generator);
__ Ldr(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(x1), eq,
&prepare_step_in_suspended_generator);
__ Bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareRoot(sp, RootIndex::kRealStackLimit);
__ B(lo, &stack_overflow);
// Get number of arguments for generator function.
__ LoadTaggedPointerField(
x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldrh(w10, FieldMemOperand(
x10, SharedFunctionInfo::kFormalParameterCountOffset));
// Claim slots for arguments and receiver (rounded up to a multiple of two).
__ Add(x11, x10, 2);
__ Bic(x11, x11, 1);
__ Claim(x11);
// Store padding (which might be replaced by the receiver).
__ Sub(x11, x11, 1);
__ Poke(padreg, Operand(x11, LSL, kSystemPointerSizeLog2));
// Poke receiver into highest claimed slot.
__ LoadTaggedPointerField(
x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset));
__ Poke(x5, Operand(x10, LSL, kSystemPointerSizeLog2));
// ----------- S t a t e -------------
// -- x1 : the JSGeneratorObject to resume
// -- x4 : generator function
// -- x10 : argument count
// -- cp : generator context
// -- lr : return address
// -- sp[arg count] : generator receiver
// -- sp[0 .. arg count - 1] : claimed for args
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ LoadTaggedPointerField(
x5,
FieldMemOperand(x1, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label loop, done;
__ Cbz(x10, &done);
__ Mov(x12, 0);
__ Bind(&loop);
__ Sub(x10, x10, 1);
__ Add(x11, x5, Operand(x12, LSL, kTaggedSizeLog2));
__ LoadAnyTaggedField(x11, FieldMemOperand(x11, FixedArray::kHeaderSize));
__ Poke(x11, Operand(x10, LSL, kSystemPointerSizeLog2));
__ Add(x12, x12, 1);
__ Cbnz(x10, &loop);
__ Bind(&done);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ LoadTaggedPointerField(
x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, x3, x0);
__ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE);
__ Assert(eq, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ LoadTaggedPointerField(
x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldrh(w0, FieldMemOperand(
x0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Mov(x3, x1);
__ Mov(x1, x4);
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ LoadTaggedPointerField(x2, FieldMemOperand(x1, JSFunction::kCodeOffset));
__ JumpCodeObject(x2);
}
__ Bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push hole as receiver since we do not use it for stepping.
__ LoadRoot(x5, RootIndex::kTheHoleValue);
__ Push(x1, padreg, x4, x5);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(padreg, x1);
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ Bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, padreg);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(padreg, x1);
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable(); // This should be unreachable.
}
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** argv)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
//
// Input is either:
// x0: root_register_value.
// x1: new_target.
// x2: target.
// x3: receiver.
// x4: argc.
// x5: argv.
// or
// x0: root_register_value.
// x1: microtask_queue.
// Output:
// x0: result.
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtins::Name entry_trampoline) {
Label invoke, handler_entry, exit;
{
NoRootArrayScope no_root_array(masm);
// Enable instruction instrumentation. This only works on the simulator, and
// will have no effect on the model or real hardware.
__ EnableInstrumentation();
__ PushCalleeSavedRegisters();
// Set up the reserved register for 0.0.
__ Fmov(fp_zero, 0.0);
// Initialize the root register.
// C calling convention. The first argument is passed in x0.
__ Mov(kRootRegister, x0);
}
// Build an entry frame (see layout below).
int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, StackFrame::TypeToMarker(type));
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(x13, x12, xzr, x10);
// Set up fp.
__ Sub(fp, sp, EntryFrameConstants::kCallerFPOffset);
// Push the JS entry frame marker. Also set js_entry_sp if this is the
// outermost JS call.
Label done;
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ Mov(x10, js_entry_sp);
__ Ldr(x11, MemOperand(x10));
// Select between the inner and outermost frame marker, based on the JS entry
// sp. We assert that the inner marker is zero, so we can use xzr to save a
// move instruction.
DCHECK_EQ(StackFrame::INNER_JSENTRY_FRAME, 0);
__ Cmp(x11, 0); // If x11 is zero, this is the outermost frame.
__ Csel(x12, xzr, StackFrame::OUTERMOST_JSENTRY_FRAME, ne);
__ B(ne, &done);
__ Str(fp, MemOperand(x10));
__ Bind(&done);
__ Push(x12, padreg);
// The frame set up looks like this:
// sp[0] : padding.
// sp[1] : JS entry frame marker.
// sp[2] : C entry FP.
// sp[3] : stack frame marker.
// sp[4] : stack frame marker.
// sp[5] : bad frame pointer 0xFFF...FF <- fp points here.
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ B(&invoke);
// Prevent the constant pool from being emitted between the record of the
// handler_entry position and the first instruction of the sequence here.
// There is no risk because Assembler::Emit() emits the instruction before
// checking for constant pool emission, but we do not want to depend on
// that.
{
Assembler::BlockPoolsScope block_pools(masm);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushTryHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ Mov(x10,
ExternalReference::Create(IsolateAddressId::kPendingExceptionAddress,
masm->isolate()));
}
__ Str(x0, MemOperand(x10));
__ LoadRoot(x0, RootIndex::kException);
__ B(&exit);
// Invoke: Link this frame into the handler chain.
__ Bind(&invoke);
// Push new stack handler.
static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize,
"Unexpected offset for StackHandlerConstants::kSize");
static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize,
"Unexpected offset for StackHandlerConstants::kNextOffset");
// Link the current handler as the next handler.
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress,
masm->isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(padreg, x10);
// Set this new handler as the current one.
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Mov(scratch, sp);
__ Str(scratch, MemOperand(x11));
}
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the B(&invoke) above, which
// restores all callee-saved registers (including cp and fp) to their
// saved values before returning a failure to C.
//
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->builtin_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Pop the stack handler and unlink this frame from the handler chain.
static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize,
"Unexpected offset for StackHandlerConstants::kNextOffset");
__ Pop(x10, padreg);
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress,
masm->isolate()));
__ Drop(StackHandlerConstants::kSlotCount - 2);
__ Str(x10, MemOperand(x11));
__ Bind(&exit);
// x0 holds the result.
// The stack pointer points to the top of the entry frame pushed on entry from
// C++ (at the beginning of this stub):
// sp[0] : padding.
// sp[1] : JS entry frame marker.
// sp[2] : C entry FP.
// sp[3] : stack frame marker.
// sp[4] : stack frame marker.
// sp[5] : bad frame pointer 0xFFF...FF <- fp points here.
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
{
Register c_entry_fp = x11;
__ PeekPair(x10, c_entry_fp, 1 * kSystemPointerSize);
__ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME);
__ B(ne, &non_outermost_js_2);
__ Mov(x12, js_entry_sp);
__ Str(xzr, MemOperand(x12));
__ Bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ Mov(x12, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Str(c_entry_fp, MemOperand(x12));
}
// Reset the stack to the callee saved registers.
static_assert(
EntryFrameConstants::kFixedFrameSize % (2 * kSystemPointerSize) == 0,
"Size of entry frame is not a multiple of 16 bytes");
__ Drop(EntryFrameConstants::kFixedFrameSize / kSystemPointerSize);
// Restore the callee-saved registers and return.
__ PopCalleeSavedRegisters();
__ Ret();
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtins::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kRunMicrotasksTrampoline);
}
// Input:
// x1: new.target.
// x2: function.
// x3: receiver.
// x4: argc.
// x5: argv.
// Output:
// x0: result.
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
Register new_target = x1;
Register function = x2;
Register receiver = x3;
Register argc = x4;
Register argv = x5;
Register scratch = x10;
Register slots_to_claim = x11;
{
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
__ Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress,
masm->isolate()));
__ Ldr(cp, MemOperand(scratch));
// Claim enough space for the arguments, the receiver and the function,
// including an optional slot of padding.
__ Add(slots_to_claim, argc, 3);
__ Bic(slots_to_claim, slots_to_claim, 1);
// Check if we have enough stack space to push all arguments.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, slots_to_claim, &stack_overflow);
__ B(&enough_stack_space);
__ Bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&enough_stack_space);
__ Claim(slots_to_claim);
// Store padding (which might be overwritten).
__ SlotAddress(scratch, slots_to_claim);
__ Str(padreg, MemOperand(scratch, -kSystemPointerSize));
// Store receiver and function on the stack.
__ SlotAddress(scratch, argc);
__ Stp(receiver, function, MemOperand(scratch));
// Copy arguments to the stack in a loop, in reverse order.
// x4: argc.
// x5: argv.
Label loop, done;
// Skip the argument set up if we have no arguments.
__ Cbz(argc, &done);
// scratch has been set to point to the location of the receiver, which
// marks the end of the argument copy.
__ Bind(&loop);
// Load the handle.
__ Ldr(x11, MemOperand(argv, kSystemPointerSize, PostIndex));
// Dereference the handle.
__ Ldr(x11, MemOperand(x11));
// Poke the result into the stack.
__ Str(x11, MemOperand(scratch, -kSystemPointerSize, PreIndex));
// Loop if we've not reached the end of copy marker.
__ Cmp(sp, scratch);
__ B(lt, &loop);
__ Bind(&done);
__ Mov(x0, argc);
__ Mov(x3, new_target);
__ Mov(x1, function);
// x0: argc.
// x1: function.
// x3: new.target.
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
// The original values have been saved in JSEntry.
__ LoadRoot(x19, RootIndex::kUndefinedValue);
__ Mov(x20, x19);
__ Mov(x21, x19);
__ Mov(x22, x19);
__ Mov(x23, x19);
__ Mov(x24, x19);
__ Mov(x25, x19);
__ Mov(x28, x19);
// Don't initialize the reserved registers.
// x26 : root register (kRootRegister).
// x27 : context pointer (cp).
// x29 : frame pointer (fp).
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS internal frame and remove the parameters (except function),
// and return.
}
// Result is in x0. Return.
__ Ret();
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// This expects two C++ function parameters passed by Invoke() in
// execution.cc.
// x0: root_register_value
// x1: microtask_queue
__ Mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), x1);
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void ReplaceClosureCodeWithOptimizedCode(
MacroAssembler* masm, Register optimized_code, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
// Store code entry in the closure.
__ StoreTaggedField(optimized_code,
FieldMemOperand(closure, JSFunction::kCodeOffset));
__ Mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_size = scratch;
// Get the arguments + receiver count.
__ Ldr(args_size,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ldr(args_size.W(),
FieldMemOperand(args_size, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
// Drop receiver + arguments.
if (__ emit_debug_code()) {
__ Tst(args_size, kSystemPointerSize - 1);
__ Check(eq, AbortReason::kUnexpectedValue);
}
__ Lsr(args_size, args_size, kSystemPointerSizeLog2);
__ DropArguments(args_size);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ CompareAndBranch(smi_entry, Operand(Smi::FromEnum(marker)), ne, &no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- x3 : new target (preserved for callee if needed, and caller)
// -- x1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(!AreAliased(feedback_vector, x1, x3, scratch1, scratch2, scratch3));
Label optimized_code_slot_is_weak_ref, fallthrough;
Register closure = x1;
Register optimized_code_entry = scratch1;
__ LoadAnyTaggedField(
optimized_code_entry,
FieldMemOperand(feedback_vector,
FeedbackVector::kOptimizedCodeWeakOrSmiOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret is at a weak reference to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ CompareAndBranch(optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kNone)), eq,
&fallthrough);
// TODO(v8:8394): The logging of first execution will break if
// feedback vectors are not allocated. We need to find a different way of
// logging these events if required.
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ Cmp(
optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
__ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
}
__ B(&fallthrough);
}
}
{
// Optimized code slot is a weak reference.
__ bind(&optimized_code_slot_is_weak_ref);
__ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ LoadTaggedPointerField(
scratch2,
FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ Ldr(
scratch2.W(),
FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
__ Tbnz(scratch2.W(), Code::kMarkedForDeoptimizationBit,
&found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
__ LoadCodeObjectEntry(x2, optimized_code_entry);
__ Jump(x2);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Label* if_return) {
Register bytecode_size_table = scratch1;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ Mov(bytecode_size_table, ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ Cmp(bytecode, Operand(0x3));
__ B(hi, &process_bytecode);
__ Tst(bytecode, Operand(0x1));
__ B(ne, &extra_wide);
// Load the next bytecode and update table to the wide scaled table.
__ Add(bytecode_offset, bytecode_offset, Operand(1));
__ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ Add(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ B(&process_bytecode);
__ Bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ Add(bytecode_offset, bytecode_offset, Operand(1));
__ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ Add(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ Bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ Cmp(x1, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ B(if_return, eq);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// Otherwise, load the size of the current bytecode and advance the offset.
__ Ldr(scratch1.W(), MemOperand(bytecode_size_table, bytecode, LSL, 2));
__ Add(bytecode_offset, bytecode_offset, scratch1);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// - x1: the JS function object being called.
// - x3: the incoming new target or generator object
// - cp: our context.
// - fp: our caller's frame pointer.
// - lr: return address.
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
Register closure = x1;
Register feedback_vector = x2;
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ LoadTaggedPointerField(
x0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
kInterpreterBytecodeArrayRegister,
FieldMemOperand(x0, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, x11);
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x0, x0,
BYTECODE_ARRAY_TYPE);
__ B(ne, &compile_lazy);
// Load the feedback vector from the closure.
__ LoadTaggedPointerField(
feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadTaggedPointerField(
feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
Label push_stack_frame;
// Check if feedback vector is valid. If valid, check for optimized code
// and update invocation count. Otherwise, setup the stack frame.
__ LoadTaggedPointerField(
x7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
__ Ldrh(x7, FieldMemOperand(x7, Map::kInstanceTypeOffset));
__ Cmp(x7, FEEDBACK_VECTOR_TYPE);
__ B(ne, &push_stack_frame);
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, x7, x4, x5);
// Increment invocation count for the function.
// MaybeTailCallOptimizedCodeSlot preserves feedback_vector, so safe to reuse
__ Ldr(w10, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ Add(w10, w10, Operand(1));
__ Str(w10, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
__ Bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ Push(lr, fp, cp, closure);
__ Add(fp, sp, StandardFrameConstants::kFixedFrameSizeFromFp);
// Reset code age.
// Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
// 8-bit fields next to each other, so we could just optimize by writing a
// 16-bit. These static asserts guard our assumption is valid.
STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
BytecodeArray::kOSRNestingLevelOffset + kCharSize);
STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
__ Strh(wzr, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kOSRNestingLevelOffset));
// Load the initial bytecode offset.
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(x0, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, x0);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ Sub(x10, sp, Operand(x11));
__ CompareRoot(x10, RootIndex::kRealStackLimit);
__ B(hs, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
// Note: there should always be at least one stack slot for the return
// register in the register file.
Label loop_header;
__ LoadRoot(x10, RootIndex::kUndefinedValue);
__ Lsr(x11, x11, kSystemPointerSizeLog2);
// Round up the number of registers to a multiple of 2, to align the stack
// to 16 bytes.
__ Add(x11, x11, 1);
__ Bic(x11, x11, 1);
__ PushMultipleTimes(x10, x11);
__ Bind(&loop_header);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in x3.
Label no_incoming_new_target_or_generator_register;
__ Ldrsw(x10,
FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ Cbz(x10, &no_incoming_new_target_or_generator_register);
__ Str(x3, MemOperand(fp, x10, LSL, kSystemPointerSizeLog2));
__ Bind(&no_incoming_new_target_or_generator_register);
// Load accumulator with undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Mov(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2));
__ Ldr(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, x1));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, x1, x2,
&do_return);
__ B(&do_dispatch);
__ bind(&do_return);
// The return value is in x0.
LeaveInterpreterFrame(masm, x2);
__ Ret();
__ bind(&compile_lazy);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
__ Unreachable(); // Should not return.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register first_arg_index,
Register spread_arg_out,
ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
Register last_arg_addr = x10;
Register stack_addr = x11;
Register slots_to_claim = x12;
Register slots_to_copy = x13; // May include receiver, unlike num_args.
DCHECK(!AreAliased(num_args, first_arg_index, last_arg_addr, stack_addr,
slots_to_claim, slots_to_copy));
// spread_arg_out may alias with the first_arg_index input.
DCHECK(!AreAliased(spread_arg_out, last_arg_addr, stack_addr, slots_to_claim,
slots_to_copy));
// Add one slot for the receiver.
__ Add(slots_to_claim, num_args, 1);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Exclude final spread from slots to claim and the number of arguments.
__ Sub(slots_to_claim, slots_to_claim, 1);
__ Sub(num_args, num_args, 1);
}
// Add a stack check before pushing arguments.
Label stack_overflow, done;
Generate_StackOverflowCheck(masm, slots_to_claim, &stack_overflow);
__ B(&done);
__ Bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&done);
// Round up to an even number of slots and claim them.
__ Add(slots_to_claim, slots_to_claim, 1);
__ Bic(slots_to_claim, slots_to_claim, 1);
__ Claim(slots_to_claim);
{
// Store padding, which may be overwritten.
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Sub(scratch, slots_to_claim, 1);
__ Poke(padreg, Operand(scratch, LSL, kSystemPointerSizeLog2));
}
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// Store "undefined" as the receiver arg if we need to.
Register receiver = x14;
__ LoadRoot(receiver, RootIndex::kUndefinedValue);
__ SlotAddress(stack_addr, num_args);
__ Str(receiver, MemOperand(stack_addr));
__ Mov(slots_to_copy, num_args);
} else {
// If we're not given an explicit receiver to store, we'll need to copy it
// together with the rest of the arguments.
__ Add(slots_to_copy, num_args, 1);
}
__ Sub(last_arg_addr, first_arg_index,
Operand(slots_to_copy, LSL, kSystemPointerSizeLog2));
__ Add(last_arg_addr, last_arg_addr, kSystemPointerSize);
// Load the final spread argument into spread_arg_out, if necessary.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Ldr(spread_arg_out, MemOperand(last_arg_addr, -kSystemPointerSize));
}
// Copy the rest of the arguments.
__ SlotAddress(stack_addr, 0);
__ CopyDoubleWords(stack_addr, last_arg_addr, slots_to_copy);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- x1 : the target to call (can be any Object).
// -----------------------------------
// Push the arguments. num_args may be updated according to mode.
// spread_arg_out will be updated to contain the last spread argument, when
// mode == InterpreterPushArgsMode::kWithFinalSpread.
Register num_args = x0;
Register first_arg_index = x2;
Register spread_arg_out =
(mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
receiver_mode, mode);
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- x0 : argument count (not including receiver)
// -- x3 : new target
// -- x1 : constructor to call
// -- x2 : allocation site feedback if available, undefined otherwise
// -- x4 : address of the first argument
// -----------------------------------
__ AssertUndefinedOrAllocationSite(x2);
// Push the arguments. num_args may be updated according to mode.
// spread_arg_out will be updated to contain the last spread argument, when
// mode == InterpreterPushArgsMode::kWithFinalSpread.
Register num_args = x0;
Register first_arg_index = x4;
Register spread_arg_out =
(mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
ConvertReceiverMode::kNullOrUndefined, mode);
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(x1);
// Tail call to the array construct stub (still in the caller
// context at this point).
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
__ Jump(code, RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ Ldr(x1, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(x1, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister,
INTERPRETER_DATA_TYPE);
__ B(ne, &builtin_trampoline);
__ Ldr(x1,
FieldMemOperand(x1, InterpreterData::kInterpreterTrampolineOffset));
__ Add(x1, x1, Operand(Code::kHeaderSize - kHeapObjectTag));
__ B(&trampoline_loaded);
__ Bind(&builtin_trampoline);
__ Mov(x1, ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()));
__ Ldr(x1, MemOperand(x1));
__ Bind(&trampoline_loaded);
__ Add(lr, x1, Operand(interpreter_entry_return_pc_offset->value()));
// Initialize the dispatch table register.
__ Mov(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(
kInterpreterBytecodeArrayRegister,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ Ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2));
__ Ldr(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, x1));
__ Jump(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Load the current bytecode.
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, x1, x2,
&if_return);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(x2, kInterpreterBytecodeOffsetRegister);
__ Str(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x1 : new target (preserved for callee)
// -- x3 : target function (preserved for callee)
// -----------------------------------
Register argc = x0;
Register new_target = x1;
Register target = x3;
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push argument count, a copy of the target function and the new target,
// together with some padding to maintain 16-byte alignment.
__ SmiTag(argc);
__ Push(argc, new_target, target, padreg);
// Push another copy of new target as a parameter to the runtime call and
// copy the rest of the arguments from caller (stdlib, foreign, heap).
Label args_done;
Register undef = x10;
Register scratch1 = x12;
Register scratch2 = x13;
Register scratch3 = x14;
__ LoadRoot(undef, RootIndex::kUndefinedValue);
Label at_least_one_arg;
Label three_args;
DCHECK_EQ(0, Smi::kZero.ptr());
__ Cbnz(argc, &at_least_one_arg);
// No arguments.
__ Push(new_target, undef, undef, undef);
__ B(&args_done);
__ Bind(&at_least_one_arg);
// Load two arguments, though we may only use one (for the one arg case).
__ Ldp(scratch2, scratch1,
MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
// Set flags for determining the value of smi-tagged argc.
// lt => 1, eq => 2, gt => 3.
__ Cmp(argc, Smi::FromInt(2));
__ B(gt, &three_args);
// One or two arguments.
// If there is one argument (flags are lt), scratch2 contains that argument,
// and scratch1 must be undefined.
__ CmovX(scratch1, scratch2, lt);
__ CmovX(scratch2, undef, lt);
__ Push(new_target, scratch1, scratch2, undef);
__ B(&args_done);
// Three arguments.
__ Bind(&three_args);
__ Ldr(scratch3, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
2 * kSystemPointerSize));
__ Push(new_target, scratch3, scratch1, scratch2);
__ Bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(x0, &failed);
// Peek the argument count from the stack, untagging at the same time.
__ SmiUntag(x4, MemOperand(sp, 3 * kSystemPointerSize));
__ Drop(4);
scope.GenerateLeaveFrame();
// Drop arguments and receiver.
__ DropArguments(x4, TurboAssembler::kCountExcludesReceiver);
__ Ret();
__ Bind(&failed);
// Restore target function and new target.
__ Pop(padreg, target, new_target, argc);
__ SmiUntag(argc);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
__ LoadTaggedPointerField(
x4, FieldMemOperand(new_target, JSFunction::kCodeOffset));
__ JumpCodeObject(x4);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
int frame_size = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp +
(allocatable_register_count +
BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count)) *
kSystemPointerSize;
// Set up frame pointer.
__ Add(fp, sp, frame_size);
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ Str(x0,
MemOperand(fp, BuiltinContinuationFrameConstants::kCallerSPOffset));
}
// Restore registers in pairs.
int offset = -BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
allocatable_register_count * kSystemPointerSize;
for (int i = allocatable_register_count - 1; i > 0; i -= 2) {
int code1 = config->GetAllocatableGeneralCode(i);
int code2 = config->GetAllocatableGeneralCode(i - 1);
Register reg1 = Register::from_code(code1);
Register reg2 = Register::from_code(code2);
__ Ldp(reg1, reg2, MemOperand(fp, offset));
offset += 2 * kSystemPointerSize;
}
// Restore first register separately, if number of registers is odd.
if (allocatable_register_count % 2 != 0) {
int code = config->GetAllocatableGeneralCode(0);
__ Ldr(Register::from_code(code), MemOperand(fp, offset));
}
if (java_script_builtin) __ SmiUntag(kJavaScriptCallArgCountRegister);
// Load builtin object.
UseScratchRegisterScope temps(masm);
Register builtin = temps.AcquireX();
__ Ldr(builtin,
MemOperand(fp, BuiltinContinuationFrameConstants::kBuiltinOffset));
// Restore fp, lr.
__ Mov(sp, fp);
__ Pop(fp, lr);
// Call builtin.
__ JumpCodeObject(builtin);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Pop TOS register and padding.
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code());
__ Pop(x0, padreg);
__ Ret();
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ Ldr(x0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(x0, MemOperand(x0, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ PushArgument(x0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ CompareAndBranch(x0, Smi::zero(), ne, &skip);
__ Ret();
__ Bind(&skip);
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ LeaveFrame(StackFrame::STUB);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ LoadTaggedPointerField(
x1, FieldMemOperand(x0, Code::kDeoptimizationDataOffset));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ SmiUntagField(
x1, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Add(x0, x0, x1);
__ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : argArray (if argc == 2)
// -- sp[8] : thisArg (if argc >= 1)
// -- sp[16] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply");
Register argc = x0;
Register arg_array = x2;
Register receiver = x1;
Register this_arg = x0;
Register undefined_value = x3;
Register null_value = x4;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
__ LoadRoot(null_value, RootIndex::kNullValue);
// 1. Load receiver into x1, argArray into x2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Register saved_argc = x10;
Register scratch = x11;
// Push two undefined values on the stack, to put it in a consistent state
// so that we can always read three arguments from it.
__ Push(undefined_value, undefined_value);
// The state of the stack (with arrows pointing to the slots we will read)
// is as follows:
//
// argc = 0 argc = 1 argc = 2
// -> sp[16]: receiver -> sp[24]: receiver -> sp[32]: receiver
// -> sp[8]: undefined -> sp[16]: this_arg -> sp[24]: this_arg
// -> sp[0]: undefined -> sp[8]: undefined -> sp[16]: arg_array
// sp[0]: undefined sp[8]: undefined
// sp[0]: undefined
//
// There are now always three arguments to read, in the slots starting from
// slot argc.
__ SlotAddress(scratch, argc);
__ Mov(saved_argc, argc);
__ Ldp(arg_array, this_arg, MemOperand(scratch)); // Overwrites argc.
__ Ldr(receiver, MemOperand(scratch, 2 * kSystemPointerSize));
__ Drop(2); // Drop the undefined values we pushed above.
__ DropArguments(saved_argc, TurboAssembler::kCountExcludesReceiver);
__ PushArgument(this_arg);
}
// ----------- S t a t e -------------
// -- x2 : argArray
// -- x1 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ Cmp(arg_array, null_value);
__ Ccmp(arg_array, undefined_value, ZFlag, ne);
__ B(eq, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ Bind(&no_arguments);
{
__ Mov(x0, 0);
DCHECK(receiver.Is(x1));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
Register argc = x0;
Register function = x1;
ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall");
// 1. Get the callable to call (passed as receiver) from the stack.
__ Peek(function, Operand(argc, LSL, kXRegSizeLog2));
// 2. Handle case with no arguments.
{
Label non_zero;
Register scratch = x10;
__ Cbnz(argc, &non_zero);
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
// Overwrite receiver with undefined, which will be the new receiver.
// We do not need to overwrite the padding slot above it with anything.
__ Poke(scratch, 0);
// Call function. The argument count is already zero.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
__ Bind(&non_zero);
}
// 3. Overwrite the receiver with padding. If argc is odd, this is all we
// need to do.
Label arguments_ready;
__ Poke(padreg, Operand(argc, LSL, kXRegSizeLog2));
__ Tbnz(argc, 0, &arguments_ready);
// 4. If argc is even:
// Copy arguments two slots higher in memory, overwriting the original
// receiver and padding.
{
Register copy_from = x10;
Register copy_to = x11;
Register count = x12;
Register last_arg_slot = x13;
__ Mov(count, argc);
__ Sub(last_arg_slot, argc, 1);
__ SlotAddress(copy_from, last_arg_slot);
__ Add(copy_to, copy_from, 2 * kSystemPointerSize);
__ CopyDoubleWords(copy_to, copy_from, count,
TurboAssembler::kSrcLessThanDst);
// Drop two slots. These are copies of the last two arguments.
__ Drop(2);
}
// 5. Adjust argument count to make the original first argument the new
// receiver and call the callable.
__ Bind(&arguments_ready);
__ Sub(argc, argc, 1);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : argumentsList (if argc == 3)
// -- sp[8] : thisArgument (if argc >= 2)
// -- sp[16] : target (if argc >= 1)
// -- sp[24] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectApply");
Register argc = x0;
Register arguments_list = x2;
Register target = x1;
Register this_argument = x4;
Register undefined_value = x3;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load target into x1 (if present), argumentsList into x2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
// Push four undefined values on the stack, to put it in a consistent state
// so that we can always read the three arguments we need from it. The
// fourth value is used for stack alignment.
__ Push(undefined_value, undefined_value, undefined_value, undefined_value);
// The state of the stack (with arrows pointing to the slots we will read)
// is as follows:
//
// argc = 0 argc = 1 argc = 2
// sp[32]: receiver sp[40]: receiver sp[48]: receiver
// -> sp[24]: undefined -> sp[32]: target -> sp[40]: target
// -> sp[16]: undefined -> sp[24]: undefined -> sp[32]: this_argument
// -> sp[8]: undefined -> sp[16]: undefined -> sp[24]: undefined
// sp[0]: undefined sp[8]: undefined sp[16]: undefined
// sp[0]: undefined sp[8]: undefined
// sp[0]: undefined
// argc = 3
// sp[56]: receiver
// -> sp[48]: target
// -> sp[40]: this_argument
// -> sp[32]: arguments_list
// sp[24]: undefined
// sp[16]: undefined
// sp[8]: undefined
// sp[0]: undefined
//
// There are now always three arguments to read, in the slots starting from
// slot (argc + 1).
Register scratch = x10;
__ SlotAddress(scratch, argc);
__ Ldp(arguments_list, this_argument,
MemOperand(scratch, 1 * kSystemPointerSize));
__ Ldr(target, MemOperand(scratch, 3 * kSystemPointerSize));
__ Drop(4); // Drop the undefined values we pushed above.
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
__ PushArgument(this_argument);
}
// ----------- S t a t e -------------
// -- x2 : argumentsList
// -- x1 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : new.target (optional)
// -- sp[8] : argumentsList
// -- sp[16] : target
// -- sp[24] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectConstruct");
Register argc = x0;
Register arguments_list = x2;
Register target = x1;
Register new_target = x3;
Register undefined_value = x4;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load target into x1 (if present), argumentsList into x2 (if present),
// new.target into x3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
// Push four undefined values on the stack, to put it in a consistent state
// so that we can always read the three arguments we need from it. The
// fourth value is used for stack alignment.
__ Push(undefined_value, undefined_value, undefined_value, undefined_value);
// The state of the stack (with arrows pointing to the slots we will read)
// is as follows:
//
// argc = 0 argc = 1 argc = 2
// sp[32]: receiver sp[40]: receiver sp[48]: receiver
// -> sp[24]: undefined -> sp[32]: target -> sp[40]: target
// -> sp[16]: undefined -> sp[24]: undefined -> sp[32]: arguments_list
// -> sp[8]: undefined -> sp[16]: undefined -> sp[24]: undefined
// sp[0]: undefined sp[8]: undefined sp[16]: undefined
// sp[0]: undefined sp[8]: undefined
// sp[0]: undefined
// argc = 3
// sp[56]: receiver
// -> sp[48]: target
// -> sp[40]: arguments_list
// -> sp[32]: new_target
// sp[24]: undefined
// sp[16]: undefined
// sp[8]: undefined
// sp[0]: undefined
//
// There are now always three arguments to read, in the slots starting from
// slot (argc + 1).
Register scratch = x10;
__ SlotAddress(scratch, argc);
__ Ldp(new_target, arguments_list,
MemOperand(scratch, 1 * kSystemPointerSize));
__ Ldr(target, MemOperand(scratch, 3 * kSystemPointerSize));
__ Cmp(argc, 2);
__ CmovX(new_target, target, ls); // target if argc <= 2.
__ Drop(4); // Drop the undefined values we pushed above.
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
// Push receiver (undefined).
__ PushArgument(undefined_value);
}
// ----------- S t a t e -------------
// -- x2 : argumentsList
// -- x1 : target
// -- x3 : new.target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
namespace {
void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ Push(lr, fp);
__ Mov(x11, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
__ Push(x11, x1); // x1: function
__ SmiTag(x11, x0); // x0: number of arguments.
__ Push(x11, padreg);
__ Add(fp, sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp);
}
void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then drop the parameters and the receiver.
__ Ldr(x10, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Mov(sp, fp);
__ Pop(fp, lr);
// Drop actual parameters and receiver.
__ SmiUntag(x10);
__ DropArguments(x10, TurboAssembler::kCountExcludesReceiver);
}
// Prepares the stack for copying the varargs. First we claim the necessary
// slots, taking care of potential padding. Then we copy the existing arguments
// one slot up or one slot down, as needed.
void Generate_PrepareForCopyingVarargs(MacroAssembler* masm, Register argc,
Register len) {
Label len_odd, exit;
Register slots_to_copy = x10; // If needed.
__ Add(slots_to_copy, argc, 1);
__ Add(argc, argc, len);
__ Tbnz(len, 0, &len_odd);
__ Claim(len);
__ B(&exit);
__ Bind(&len_odd);
// Claim space we need. If argc is even, slots_to_claim = len + 1, as we need
// one extra padding slot. If argc is odd, we know that the original arguments
// will have a padding slot we can reuse (since len is odd), so
// slots_to_claim = len - 1.
{
Register scratch = x11;
Register slots_to_claim = x12;
__ Add(slots_to_claim, len, 1);
__ And(scratch, argc, 1);
__ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1));
__ Claim(slots_to_claim);
}
Label copy_down;
__ Tbz(slots_to_copy, 0, &copy_down);
// Copy existing arguments one slot up.
{
Register src = x11;
Register dst = x12;
Register scratch = x13;
__ Sub(scratch, argc, 1);
__ SlotAddress(src, scratch);
__ SlotAddress(dst, argc);
__ CopyDoubleWords(dst, src, slots_to_copy,
TurboAssembler::kSrcLessThanDst);
}
__ B(&exit);
// Copy existing arguments one slot down and add padding.
__ Bind(&copy_down);
{
Register src = x11;
Register dst = x12;
Register scratch = x13;
__ Add(src, len, 1);
__ Mov(dst, len); // CopySlots will corrupt dst.
__ CopySlots(dst, src, slots_to_copy);
__ Add(scratch, argc, 1);
__ Poke(padreg,
Operand(scratch, LSL, kSystemPointerSizeLog2)); // Store padding.
}
__ Bind(&exit);
}
} // namespace
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- x1 : target
// -- x0 : number of parameters on the stack (not including the receiver)
// -- x2 : arguments list (a FixedArray)
// -- x4 : len (number of elements to push from args)
// -- x3 : new.target (for [[Construct]])
// -----------------------------------
if (masm->emit_debug_code()) {
// Allow x2 to be a FixedArray, or a FixedDoubleArray if x4 == 0.
Label ok, fail;
__ AssertNotSmi(x2, AbortReason::kOperandIsNotAFixedArray);
__ LoadTaggedPointerField(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
__ Ldrh(x13, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Cmp(x13, FIXED_ARRAY_TYPE);
__ B(eq, &ok);
__ Cmp(x13, FIXED_DOUBLE_ARRAY_TYPE);
__ B(ne, &fail);
__ Cmp(x4, 0);
__ B(eq, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
Register arguments_list = x2;
Register argc = x0;
Register len = x4;
Label stack_overflow;
Generate_StackOverflowCheck(masm, len, &stack_overflow);
// Skip argument setup if we don't need to push any varargs.
Label done;
__ Cbz(len, &done);
Generate_PrepareForCopyingVarargs(masm, argc, len);
// Push varargs.
{
Label loop;
Register src = x10;
Register the_hole_value = x11;
Register undefined_value = x12;
Register scratch = x13;
__ Add(src, arguments_list, FixedArray::kHeaderSize - kHeapObjectTag);
__ LoadRoot(the_hole_value, RootIndex::kTheHoleValue);
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// We do not use the CompareRoot macro as it would do a LoadRoot behind the
// scenes and we want to avoid that in a loop.
// TODO(all): Consider using Ldp and Stp.
__ Bind(&loop);
__ Sub(len, len, 1);
__ LoadAnyTaggedField(scratch, MemOperand(src, kTaggedSize, PostIndex));
__ Cmp(scratch, the_hole_value);
__ Csel(scratch, scratch, undefined_value, ne);
__ Poke(scratch, Operand(len, LSL, kSystemPointerSizeLog2));
__ Cbnz(len, &loop);
}
__ Bind(&done);
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x3 : the new.target (for [[Construct]] calls)
// -- x1 : the target to call (can be any Object)
// -- x2 : start index (to support rest parameters)
// -----------------------------------
Register argc = x0;
Register start_index = x2;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(x3, &new_target_not_constructor);
__ LoadTaggedPointerField(x5, FieldMemOperand(x3, HeapObject::kMapOffset));
__ Ldrb(x5, FieldMemOperand(x5, Map::kBitFieldOffset));
__ TestAndBranchIfAnySet(x5, Map::IsConstructorBit::kMask,
&new_target_constructor);
__ Bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ PushArgument(x3);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ Bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
// args_fp will point to the frame that contains the actual arguments, which
// will be the current frame unless we have an arguments adaptor frame, in
// which case args_fp points to the arguments adaptor frame.
Register args_fp = x5;
Register len = x6;
{
Label arguments_adaptor, arguments_done;
Register scratch = x10;
__ Ldr(args_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(x4, MemOperand(args_fp,
CommonFrameConstants::kContextOrFrameTypeOffset));
__ Cmp(x4, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
__ B(eq, &arguments_adaptor);
{
__ Ldr(scratch,
MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ LoadTaggedPointerField(
scratch,
FieldMemOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
__ Ldrh(len,
FieldMemOperand(scratch,
SharedFunctionInfo::kFormalParameterCountOffset));
__ Mov(args_fp, fp);
}
__ B(&arguments_done);
__ Bind(&arguments_adaptor);
{
// Just load the length from ArgumentsAdaptorFrame.
__ SmiUntag(
len,
MemOperand(args_fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ Bind(&arguments_done);
}
Label stack_done, stack_overflow;
__ Subs(len, len, start_index);
__ B(le, &stack_done);
// Check for stack overflow.
Generate_StackOverflowCheck(masm, x6, &stack_overflow);
Generate_PrepareForCopyingVarargs(masm, argc, len);
// Push varargs.
{
Register dst = x13;
__ Add(args_fp, args_fp, 2 * kSystemPointerSize);
__ SlotAddress(dst, 0);
__ CopyDoubleWords(dst, args_fp, len);
}
__ B(&stack_done);
__ Bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&stack_done);
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
ASM_LOCATION("Builtins::Generate_CallFunction");
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(x1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ LoadTaggedPointerField(
x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kFlagsOffset));
__ TestAndBranchIfAnySet(w3, SharedFunctionInfo::IsClassConstructorBit::kMask,
&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadTaggedPointerField(cp,
FieldMemOperand(x1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ TestAndBranchIfAnySet(w3,
SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask,
&done_convert);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
} else {
Label convert_to_object, convert_receiver;
__ Peek(x3, Operand(x0, LSL, kXRegSizeLog2));
__ JumpIfSmi(x3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE);
__ B(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(x3, RootIndex::kUndefinedValue, &convert_global_proxy);
__ JumpIfNotRoot(x3, RootIndex::kNullValue, &convert_to_object);
__ Bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
}
__ B(&convert_receiver);
}
__ Bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(x0);
__ Push(padreg, x0, x1, cp);
__ Mov(x0, x3);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Mov(x3, x0);
__ Pop(cp, x1, x0, padreg);
__ SmiUntag(x0);
}
__ LoadTaggedPointerField(
x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Bind(&convert_receiver);
}
__ Poke(x3, Operand(x0, LSL, kXRegSizeLog2));
}
__ Bind(&done_convert);
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ Ldrh(x2,
FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(x0);
ParameterCount expected(x2);
__ InvokeFunctionCode(x1, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ Bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x3 : new.target (only in case of [[Construct]])
// -----------------------------------
Register bound_argc = x4;
Register bound_argv = x2;
// Load [[BoundArguments]] into x2 and length of that into x4.
Label no_bound_arguments;
__ LoadTaggedPointerField(
bound_argv, FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntagField(bound_argc,
FieldMemOperand(bound_argv, FixedArray::kLengthOffset));
__ Cbz(bound_argc, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x2 : the [[BoundArguments]] (implemented as FixedArray)
// -- x3 : new.target (only in case of [[Construct]])
// -- x4 : the number of [[BoundArguments]]
// -----------------------------------
Register argc = x0;
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
Label done;
__ LoadRoot(x10, RootIndex::kRealStackLimit);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, sp, x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(bound_argc, LSL, kSystemPointerSizeLog2));
__ B(hs, &done);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&done);
}
// Check if we need padding.
Label copy_args, copy_bound_args;
Register total_argc = x15;
Register slots_to_claim = x12;
__ Add(total_argc, argc, bound_argc);
__ Mov(slots_to_claim, bound_argc);
__ Tbz(bound_argc, 0, &copy_args);
// Load receiver before we start moving the arguments. We will only
// need this in this path because the bound arguments are odd.
Register receiver = x14;
__ Peek(receiver, Operand(argc, LSL, kSystemPointerSizeLog2));
// Claim space we need. If argc is even, slots_to_claim = bound_argc + 1,
// as we need one extra padding slot. If argc is odd, we know that the
// original arguments will have a padding slot we can reuse (since
// bound_argc is odd), so slots_to_claim = bound_argc - 1.
{
Register scratch = x11;
__ Add(slots_to_claim, bound_argc, 1);
__ And(scratch, total_argc, 1);
__ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1));
}
// Copy bound arguments.
__ Bind(&copy_args);
// Skip claim and copy of existing arguments in the special case where we
// do not need to claim any slots (this will be the case when
// bound_argc == 1 and the existing arguments have padding we can reuse).
__ Cbz(slots_to_claim, &copy_bound_args);
__ Claim(slots_to_claim);
{
Register count = x10;
// Relocate arguments to a lower address.
__ Mov(count, argc);
__ CopySlots(0, slots_to_claim, count);
__ Bind(&copy_bound_args);
// Copy [[BoundArguments]] to the stack (below the arguments). The first
// element of the array is copied to the highest address.
{
Label loop;
Register counter = x10;
Register scratch = x11;
Register copy_to = x12;
__ Add(bound_argv, bound_argv,
FixedArray::kHeaderSize - kHeapObjectTag);
__ SlotAddress(copy_to, argc);
__ Add(argc, argc,
bound_argc); // Update argc to include bound arguments.
__ Lsl(counter, bound_argc, kTaggedSizeLog2);
__ Bind(&loop);
__ Sub(counter, counter, kTaggedSize);
__ LoadAnyTaggedField(scratch, MemOperand(bound_argv, counter));
// Poke into claimed area of stack.
__ Str(scratch, MemOperand(copy_to, kSystemPointerSize, PostIndex));
__ Cbnz(counter, &loop);
}
{
Label done;
Register scratch = x10;
__ Tbz(bound_argc, 0, &done);
// Store receiver.
__ Add(scratch, sp, Operand(total_argc, LSL, kSystemPointerSizeLog2));
__ Str(receiver, MemOperand(scratch, kSystemPointerSize, PostIndex));
__ Tbnz(total_argc, 0, &done);
// Store padding.
__ Str(padreg, MemOperand(scratch));
__ Bind(&done);
}
}
}
__ Bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(x1);
// Patch the receiver to [[BoundThis]].
__ LoadAnyTaggedField(x10,
FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset));
__ Poke(x10, Operand(x0, LSL, kSystemPointerSizeLog2));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(x1, &non_callable);
__ Bind(&non_smi);
__ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x4, Map::IsCallableBit::kMask, &non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ Cmp(x5, JS_PROXY_TYPE);
__ B(ne, &non_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ Bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ Poke(x1, Operand(x0, LSL, kXRegSizeLog2));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (checked to be a JSFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(x1);
__ AssertFunction(x1);
// Calling convention for function specific ConstructStubs require
// x2 to contain either an AllocationSite or undefined.
__ LoadRoot(x2, RootIndex::kUndefinedValue);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ LoadTaggedPointerField(
x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset));
__ TestAndBranchIfAllClear(
w4, SharedFunctionInfo::ConstructAsBuiltinBit::kMask, &call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(x1);
__ AssertBoundFunction(x1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ Cmp(x1, x3);
__ B(ne, &done);
__ LoadTaggedPointerField(
x3, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ LoadTaggedPointerField(
x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (can be any Object)
// -- x3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(x1, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ LoadTaggedPointerField(x4, FieldMemOperand(x1, HeapObject::kMapOffset));
__ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x2, Map::IsConstructorBit::kMask,
&non_constructor);
// Dispatch based on instance type.
__ CompareInstanceType(x4, x5, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ Cmp(x5, JS_PROXY_TYPE);
__ B(ne, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ Poke(x1, Operand(x0, LSL, kXRegSizeLog2));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {