blob: 449262f79816086840258d23fd9374befb53f7b8 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_FACTORY_H_
#define V8_HEAP_FACTORY_H_
// Clients of this interface shouldn't depend on lots of heap internals.
// Do not include anything from src/heap here!
#include "src/builtins/builtins.h"
#include "src/execution/messages.h"
#include "src/function-kind.h"
#include "src/globals.h"
#include "src/handles/handles.h"
#include "src/handles/maybe-handles.h"
#include "src/heap/heap.h"
#include "src/objects/code.h"
#include "src/objects/dictionary.h"
#include "src/objects/js-array.h"
#include "src/objects/js-regexp.h"
#include "src/objects/string.h"
namespace v8 {
namespace internal {
// Forward declarations.
class AliasedArgumentsEntry;
class ObjectBoilerplateDescription;
class BreakPoint;
class BreakPointInfo;
class CallableTask;
class CallbackTask;
class CallHandlerInfo;
class Expression;
class EmbedderDataArray;
class ArrayBoilerplateDescription;
class CoverageInfo;
class DebugInfo;
class EnumCache;
class FinalizationGroupCleanupJobTask;
class FreshlyAllocatedBigInt;
class Isolate;
class JSDataView;
class JSGeneratorObject;
class JSMap;
class JSMapIterator;
class JSModuleNamespace;
class JSPromise;
class JSProxy;
class JSSet;
class JSSetIterator;
class JSTypedArray;
class JSWeakMap;
class LoadHandler;
class ModuleInfo;
class NativeContext;
class NewFunctionArgs;
class PreparseData;
class PromiseResolveThenableJobTask;
class RegExpMatchInfo;
class ScriptContextTable;
class StackFrameInfo;
class StackTraceFrame;
class StoreHandler;
class TemplateObjectDescription;
class UncompiledDataWithoutPreparseData;
class UncompiledDataWithPreparseData;
class WasmCapiFunctionData;
class WasmExportedFunctionData;
class WeakCell;
struct SourceRange;
template <typename T>
class ZoneVector;
enum class SharedFlag : uint32_t;
enum FunctionMode {
kWithNameBit = 1 << 0,
kWithHomeObjectBit = 1 << 1,
kWithWritablePrototypeBit = 1 << 2,
kWithReadonlyPrototypeBit = 1 << 3,
kWithPrototypeBits = kWithWritablePrototypeBit | kWithReadonlyPrototypeBit,
// Without prototype.
FUNCTION_WITHOUT_PROTOTYPE = 0,
METHOD_WITH_NAME = kWithNameBit,
METHOD_WITH_HOME_OBJECT = kWithHomeObjectBit,
METHOD_WITH_NAME_AND_HOME_OBJECT = kWithNameBit | kWithHomeObjectBit,
// With writable prototype.
FUNCTION_WITH_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit,
FUNCTION_WITH_NAME_AND_WRITEABLE_PROTOTYPE =
kWithWritablePrototypeBit | kWithNameBit,
FUNCTION_WITH_HOME_OBJECT_AND_WRITEABLE_PROTOTYPE =
kWithWritablePrototypeBit | kWithHomeObjectBit,
FUNCTION_WITH_NAME_AND_HOME_OBJECT_AND_WRITEABLE_PROTOTYPE =
kWithWritablePrototypeBit | kWithNameBit | kWithHomeObjectBit,
// With readonly prototype.
FUNCTION_WITH_READONLY_PROTOTYPE = kWithReadonlyPrototypeBit,
FUNCTION_WITH_NAME_AND_READONLY_PROTOTYPE =
kWithReadonlyPrototypeBit | kWithNameBit,
};
// Interface for handle based allocation.
class V8_EXPORT_PRIVATE Factory {
public:
Handle<Oddball> NewOddball(
Handle<Map> map, const char* to_string, Handle<Object> to_number,
const char* type_of, byte kind,
AllocationType allocation = AllocationType::kReadOnly);
// Marks self references within code generation.
Handle<Oddball> NewSelfReferenceMarker(
AllocationType allocation = AllocationType::kOld);
// Allocates a fixed array-like object with given map and initialized with
// undefined values.
template <typename T = FixedArray>
Handle<T> NewFixedArrayWithMap(
RootIndex map_root_index, int length,
AllocationType allocation = AllocationType::kYoung);
// Allocates a weak fixed array-like object with given map and initialized
// with undefined values.
template <typename T = WeakFixedArray>
Handle<T> NewWeakFixedArrayWithMap(
RootIndex map_root_index, int length,
AllocationType allocation = AllocationType::kYoung);
// Allocates a fixed array initialized with undefined values.
Handle<FixedArray> NewFixedArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates a fixed array which may contain in-place weak references. The
// array is initialized with undefined values
Handle<WeakFixedArray> NewWeakFixedArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates a property array initialized with undefined values.
Handle<PropertyArray> NewPropertyArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Tries allocating a fixed array initialized with undefined values.
// In case of an allocation failure (OOM) an empty handle is returned.
// The caller has to manually signal an
// v8::internal::Heap::FatalProcessOutOfMemory typically by calling
// NewFixedArray as a fallback.
V8_WARN_UNUSED_RESULT
MaybeHandle<FixedArray> TryNewFixedArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocate a new fixed array with non-existing entries (the hole).
Handle<FixedArray> NewFixedArrayWithHoles(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates an uninitialized fixed array. It must be filled by the caller.
Handle<FixedArray> NewUninitializedFixedArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates a closure feedback cell array whose feedback cells are
// initialized with undefined values.
Handle<ClosureFeedbackCellArray> NewClosureFeedbackCellArray(
int num_slots, AllocationType allocation = AllocationType::kYoung);
// Allocates a feedback vector whose slots are initialized with undefined
// values.
Handle<FeedbackVector> NewFeedbackVector(
Handle<SharedFunctionInfo> shared,
Handle<ClosureFeedbackCellArray> closure_feedback_cell_array,
AllocationType allocation = AllocationType::kYoung);
// Allocates a clean embedder data array with given capacity.
Handle<EmbedderDataArray> NewEmbedderDataArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates a fixed array for name-value pairs of boilerplate properties and
// calculates the number of properties we need to store in the backing store.
Handle<ObjectBoilerplateDescription> NewObjectBoilerplateDescription(
int boilerplate, int all_properties, int index_keys, bool has_seen_proto);
// Allocate a new uninitialized fixed double array.
// The function returns a pre-allocated empty fixed array for length = 0,
// so the return type must be the general fixed array class.
Handle<FixedArrayBase> NewFixedDoubleArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocate a new fixed double array with hole values.
Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
int size, AllocationType allocation = AllocationType::kYoung);
// Allocates a FeedbackMedata object and zeroes the data section.
Handle<FeedbackMetadata> NewFeedbackMetadata(
int slot_count, int feedback_cell_count,
AllocationType allocation = AllocationType::kOld);
Handle<FrameArray> NewFrameArray(
int number_of_frames, AllocationType allocation = AllocationType::kYoung);
Handle<OrderedHashSet> NewOrderedHashSet();
Handle<OrderedHashMap> NewOrderedHashMap();
Handle<OrderedNameDictionary> NewOrderedNameDictionary();
Handle<SmallOrderedHashSet> NewSmallOrderedHashSet(
int capacity = kSmallOrderedHashSetMinCapacity,
AllocationType allocation = AllocationType::kYoung);
Handle<SmallOrderedHashMap> NewSmallOrderedHashMap(
int capacity = kSmallOrderedHashMapMinCapacity,
AllocationType allocation = AllocationType::kYoung);
Handle<SmallOrderedNameDictionary> NewSmallOrderedNameDictionary(
int capacity = kSmallOrderedHashMapMinCapacity,
AllocationType allocation = AllocationType::kYoung);
// Create a new PrototypeInfo struct.
Handle<PrototypeInfo> NewPrototypeInfo();
// Create a new EnumCache struct.
Handle<EnumCache> NewEnumCache(Handle<FixedArray> keys,
Handle<FixedArray> indices);
// Create a new Tuple2 struct.
Handle<Tuple2> NewTuple2(Handle<Object> value1, Handle<Object> value2,
AllocationType allocation);
// Create a new Tuple3 struct.
Handle<Tuple3> NewTuple3(Handle<Object> value1, Handle<Object> value2,
Handle<Object> value3, AllocationType allocation);
// Create a new ArrayBoilerplateDescription struct.
Handle<ArrayBoilerplateDescription> NewArrayBoilerplateDescription(
ElementsKind elements_kind, Handle<FixedArrayBase> constant_values);
// Create a new TemplateObjectDescription struct.
Handle<TemplateObjectDescription> NewTemplateObjectDescription(
Handle<FixedArray> raw_strings, Handle<FixedArray> cooked_strings);
// Create a pre-tenured empty AccessorPair.
Handle<AccessorPair> NewAccessorPair();
// Finds the internalized copy for string in the string table.
// If not found, a new string is added to the table and returned.
Handle<String> InternalizeUtf8String(const Vector<const char>& str);
Handle<String> InternalizeUtf8String(const char* str) {
return InternalizeUtf8String(CStrVector(str));
}
template <typename Char>
EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE)
Handle<String> InternalizeString(const Vector<const Char>& str,
bool convert_encoding = false);
template <typename SeqString>
Handle<String> InternalizeString(Handle<SeqString>, int from, int length,
bool convert_encoding = false);
template <class StringTableKey>
Handle<String> InternalizeStringWithKey(StringTableKey* key);
// Internalized strings are created in the old generation (data space).
inline Handle<String> InternalizeString(Handle<String> string);
inline Handle<Name> InternalizeName(Handle<Name> name);
// String creation functions. Most of the string creation functions take
// an AllocationType argument to optionally request that they be
// allocated in the old generation. Otherwise the default is
// AllocationType::kYoung.
//
// Creates a new String object. There are two String encodings: one-byte and
// two-byte. One should choose between the three string factory functions
// based on the encoding of the string buffer that the string is
// initialized from.
// - ...FromOneByte initializes the string from a buffer that is Latin1
// encoded (it does not check that the buffer is Latin1 encoded) and
// the result will be Latin1 encoded.
// - ...FromUtf8 initializes the string from a buffer that is UTF-8
// encoded. If the characters are all ASCII characters, the result
// will be Latin1 encoded, otherwise it will converted to two-byte.
// - ...FromTwoByte initializes the string from a buffer that is two-byte
// encoded. If the characters are all Latin1 characters, the result
// will be converted to Latin1, otherwise it will be left as two-byte.
//
// One-byte strings are pretenured when used as keys in the SourceCodeCache.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromOneByte(
const Vector<const uint8_t>& str,
AllocationType allocation = AllocationType::kYoung);
template <size_t N>
inline Handle<String> NewStringFromStaticChars(
const char (&str)[N],
AllocationType allocation = AllocationType::kYoung) {
DCHECK_EQ(N, strlen(str) + 1);
return NewStringFromOneByte(StaticCharVector(str), allocation)
.ToHandleChecked();
}
inline Handle<String> NewStringFromAsciiChecked(
const char* str, AllocationType allocation = AllocationType::kYoung) {
return NewStringFromOneByte(OneByteVector(str), allocation)
.ToHandleChecked();
}
// UTF8 strings are pretenured when used for regexp literal patterns and
// flags in the parser.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8(
const Vector<const char>& str,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int end,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte(
const Vector<const uc16>& str,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte(
const ZoneVector<uc16>* str,
AllocationType allocation = AllocationType::kYoung);
Handle<JSStringIterator> NewJSStringIterator(Handle<String> string);
Handle<String> NewOneByteInternalizedString(const Vector<const uint8_t>& str,
uint32_t hash_field);
Handle<SeqOneByteString> AllocateRawOneByteInternalizedString(
int length, uint32_t hash_field);
Handle<String> NewTwoByteInternalizedString(const Vector<const uc16>& str,
uint32_t hash_field);
Handle<SeqTwoByteString> AllocateRawTwoByteInternalizedString(
int length, uint32_t hash_field);
Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
uint32_t hash_field);
// Compute the matching internalized string map for a string if possible.
// Empty handle is returned if string is in new space or not flattened.
V8_WARN_UNUSED_RESULT MaybeHandle<Map> InternalizedStringMapForString(
Handle<String> string);
// Creates an internalized copy of an external string. |string| must be
// of type StringClass.
template <class StringClass>
Handle<StringClass> InternalizeExternalString(Handle<String> string);
// Allocates and partially initializes an one-byte or two-byte String. The
// characters of the string are uninitialized. Currently used in regexp code
// only, where they are pretenured.
V8_WARN_UNUSED_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
int length, AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
int length, AllocationType allocation = AllocationType::kYoung);
// Creates a single character string where the character has given code.
// A cache is used for Latin1 codes.
Handle<String> LookupSingleCharacterStringFromCode(uint16_t code);
// Create a new cons string object which consists of a pair of strings.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
Handle<String> right);
V8_WARN_UNUSED_RESULT Handle<String> NewConsString(Handle<String> left,
Handle<String> right,
int length, bool one_byte);
// Create or lookup a single characters tring made up of a utf16 surrogate
// pair.
Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail);
// Create a new string object which holds a proper substring of a string.
Handle<String> NewProperSubString(Handle<String> str, int begin, int end);
// Create a new string object which holds a substring of a string.
inline Handle<String> NewSubString(Handle<String> str, int begin, int end);
// Creates a new external String object. There are two String encodings
// in the system: one-byte and two-byte. Unlike other String types, it does
// not make sense to have a UTF-8 factory function for external strings,
// because we cannot change the underlying buffer. Note that these strings
// are backed by a string resource that resides outside the V8 heap.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource);
// Create a new external string object for one-byte encoded native script.
// It does not cache the resource data pointer.
Handle<ExternalOneByteString> NewNativeSourceString(
const ExternalOneByteString::Resource* resource);
// Create a symbol in old or read-only space.
Handle<Symbol> NewSymbol(AllocationType allocation = AllocationType::kOld);
Handle<Symbol> NewPrivateSymbol(
AllocationType allocation = AllocationType::kOld);
Handle<Symbol> NewPrivateNameSymbol(Handle<String> name);
// Create a global (but otherwise uninitialized) context.
Handle<NativeContext> NewNativeContext();
// Create a script context.
Handle<Context> NewScriptContext(Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info);
// Create an empty script context table.
Handle<ScriptContextTable> NewScriptContextTable();
// Create a module context.
Handle<Context> NewModuleContext(Handle<Module> module,
Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info);
// Create a function or eval context.
Handle<Context> NewFunctionContext(Handle<Context> outer,
Handle<ScopeInfo> scope_info);
// Create a catch context.
Handle<Context> NewCatchContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<Object> thrown_object);
// Create a 'with' context.
Handle<Context> NewWithContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension);
Handle<Context> NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped,
Handle<StringSet> whitelist);
// Create a block context.
Handle<Context> NewBlockContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info);
// Create a context that's used by builtin functions.
//
// These are similar to function context but don't have a previous
// context or any scope info. These are used to store spec defined
// context values.
Handle<Context> NewBuiltinContext(Handle<NativeContext> native_context,
int length);
Handle<Struct> NewStruct(InstanceType type,
AllocationType allocation = AllocationType::kYoung);
Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
int aliased_context_slot);
Handle<AccessorInfo> NewAccessorInfo();
Handle<Script> NewScript(Handle<String> source,
AllocationType allocation = AllocationType::kOld);
Handle<Script> NewScriptWithId(
Handle<String> source, int script_id,
AllocationType allocation = AllocationType::kOld);
Handle<Script> CloneScript(Handle<Script> script);
Handle<BreakPointInfo> NewBreakPointInfo(int source_position);
Handle<BreakPoint> NewBreakPoint(int id, Handle<String> condition);
Handle<StackTraceFrame> NewStackTraceFrame(Handle<FrameArray> frame_array,
int index);
Handle<StackFrameInfo> NewStackFrameInfo();
Handle<StackFrameInfo> NewStackFrameInfo(Handle<FrameArray> frame_array,
int index);
Handle<SourcePositionTableWithFrameCache>
NewSourcePositionTableWithFrameCache(
Handle<ByteArray> source_position_table,
Handle<SimpleNumberDictionary> stack_frame_cache);
// Allocate various microtasks.
Handle<CallableTask> NewCallableTask(Handle<JSReceiver> callable,
Handle<Context> context);
Handle<CallbackTask> NewCallbackTask(Handle<Foreign> callback,
Handle<Foreign> data);
Handle<PromiseResolveThenableJobTask> NewPromiseResolveThenableJobTask(
Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> then,
Handle<JSReceiver> thenable, Handle<Context> context);
Handle<FinalizationGroupCleanupJobTask> NewFinalizationGroupCleanupJobTask(
Handle<JSFinalizationGroup> finalization_group);
// Foreign objects are pretenured when allocated by the bootstrapper.
Handle<Foreign> NewForeign(
Address addr, AllocationType allocation = AllocationType::kYoung);
Handle<ByteArray> NewByteArray(
int length, AllocationType allocation = AllocationType::kYoung);
Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
int frame_size, int parameter_count,
Handle<FixedArray> constant_pool);
Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
ExternalArrayType array_type, void* external_pointer,
AllocationType allocation = AllocationType::kYoung);
Handle<FixedTypedArrayBase> NewFixedTypedArray(
size_t length, size_t byte_length, ExternalArrayType array_type,
bool initialize, AllocationType allocation = AllocationType::kYoung);
Handle<Cell> NewCell(Handle<Object> value);
Handle<PropertyCell> NewPropertyCell(
Handle<Name> name, AllocationType allocation = AllocationType::kOld);
Handle<FeedbackCell> NewNoClosuresCell(Handle<HeapObject> value);
Handle<FeedbackCell> NewOneClosureCell(Handle<HeapObject> value);
Handle<FeedbackCell> NewManyClosuresCell(Handle<HeapObject> value);
Handle<DescriptorArray> NewDescriptorArray(
int number_of_entries, int slack = 0,
AllocationType allocation = AllocationType::kYoung);
Handle<TransitionArray> NewTransitionArray(int number_of_transitions,
int slack = 0);
// Allocate a tenured AllocationSite. Its payload is null.
Handle<AllocationSite> NewAllocationSite(bool with_weak_next);
// Allocates and initializes a new Map.
Handle<Map> NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
int inobject_properties = 0);
// Initializes the fields of a newly created Map. Exposed for tests and
// heap setup; other code should just call NewMap which takes care of it.
Map InitializeMap(Map map, InstanceType type, int instance_size,
ElementsKind elements_kind, int inobject_properties);
// Allocate a block of memory of the given AllocationType (filled with a
// filler). Used as a fall-back for generated code when the space is full.
Handle<HeapObject> NewFillerObject(int size, bool double_align,
AllocationType allocation);
Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
Handle<WeakCell> NewWeakCell();
// Returns a deep copy of the JavaScript object.
// Properties and elements are copied too.
Handle<JSObject> CopyJSObject(Handle<JSObject> object);
// Same as above, but also takes an AllocationSite to be appended in an
// AllocationMemento.
Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
Handle<AllocationSite> site);
Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map);
Handle<FixedArray> CopyFixedArrayAndGrow(
Handle<FixedArray> array, int grow_by,
AllocationType allocation = AllocationType::kYoung);
Handle<WeakFixedArray> CopyWeakFixedArrayAndGrow(
Handle<WeakFixedArray> array, int grow_by,
AllocationType allocation = AllocationType::kYoung);
Handle<WeakArrayList> CopyWeakArrayListAndGrow(
Handle<WeakArrayList> array, int grow_by,
AllocationType allocation = AllocationType::kYoung);
Handle<PropertyArray> CopyPropertyArrayAndGrow(
Handle<PropertyArray> array, int grow_by,
AllocationType allocation = AllocationType::kYoung);
Handle<FixedArray> CopyFixedArrayUpTo(
Handle<FixedArray> array, int new_len,
AllocationType allocation = AllocationType::kYoung);
Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
// This method expects a COW array in new space, and creates a copy
// of it in old space.
Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
Handle<FixedDoubleArray> CopyFixedDoubleArray(Handle<FixedDoubleArray> array);
// Numbers (e.g. literals) are pretenured by the parser.
// The return value may be a smi or a heap number.
Handle<Object> NewNumber(double value,
AllocationType allocation = AllocationType::kYoung);
Handle<Object> NewNumberFromInt(
int32_t value, AllocationType allocation = AllocationType::kYoung);
Handle<Object> NewNumberFromUint(
uint32_t value, AllocationType allocation = AllocationType::kYoung);
inline Handle<Object> NewNumberFromSize(
size_t value, AllocationType allocation = AllocationType::kYoung);
inline Handle<Object> NewNumberFromInt64(
int64_t value, AllocationType allocation = AllocationType::kYoung);
inline Handle<HeapNumber> NewHeapNumber(
double value, AllocationType allocation = AllocationType::kYoung);
inline Handle<HeapNumber> NewHeapNumberFromBits(
uint64_t bits, AllocationType allocation = AllocationType::kYoung);
// Creates heap number object with not yet set value field.
Handle<HeapNumber> NewHeapNumber(
AllocationType allocation = AllocationType::kYoung);
Handle<MutableHeapNumber> NewMutableHeapNumber(
AllocationType allocation = AllocationType::kYoung);
inline Handle<MutableHeapNumber> NewMutableHeapNumber(
double value, AllocationType allocation = AllocationType::kYoung);
inline Handle<MutableHeapNumber> NewMutableHeapNumberFromBits(
uint64_t bits, AllocationType allocation = AllocationType::kYoung);
inline Handle<MutableHeapNumber> NewMutableHeapNumberWithHoleNaN(
AllocationType allocation = AllocationType::kYoung);
// Allocates a new BigInt with {length} digits. Only to be used by
// MutableBigInt::New*.
Handle<FreshlyAllocatedBigInt> NewBigInt(
int length, AllocationType allocation = AllocationType::kYoung);
Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
// Allocates and initializes a new JavaScript object based on a
// constructor.
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObject(
Handle<JSFunction> constructor,
AllocationType allocation = AllocationType::kYoung);
// JSObject without a prototype.
Handle<JSObject> NewJSObjectWithNullProto(
AllocationType allocation = AllocationType::kYoung);
// Global objects are pretenured and initialized based on a constructor.
Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
// Allocates and initializes a new JavaScript object based on a map.
// Passing an allocation site means that a memento will be created that
// points to the site.
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObjectFromMap(
Handle<Map> map, AllocationType allocation = AllocationType::kYoung,
Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
Handle<JSObject> NewSlowJSObjectFromMap(
Handle<Map> map,
int number_of_slow_properties = NameDictionary::kInitialCapacity,
AllocationType allocation = AllocationType::kYoung);
// Allocates and initializes a new JavaScript object with the given
// {prototype} and {properties}. The newly created object will be
// in dictionary properties mode. The {elements} can either be the
// empty fixed array, in which case the resulting object will have
// fast elements, or a NumberDictionary, in which case the resulting
// object will have dictionary elements.
Handle<JSObject> NewSlowJSObjectWithPropertiesAndElements(
Handle<HeapObject> prototype, Handle<NameDictionary> properties,
Handle<FixedArrayBase> elements,
AllocationType allocation = AllocationType::kYoung);
// JS arrays are pretenured when allocated by the parser.
// Create a JSArray with a specified length and elements initialized
// according to the specified mode.
Handle<JSArray> NewJSArray(
ElementsKind elements_kind, int length, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
AllocationType allocation = AllocationType::kYoung);
Handle<JSArray> NewJSArray(
int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
AllocationType allocation = AllocationType::kYoung) {
if (capacity != 0) {
elements_kind = GetHoleyElementsKind(elements_kind);
}
return NewJSArray(elements_kind, 0, capacity,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, allocation);
}
// Create a JSArray with the given elements.
Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
AllocationType allocation = AllocationType::kYoung);
inline Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
AllocationType allocation = AllocationType::kYoung);
void NewJSArrayStorage(
Handle<JSArray> array, int length, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
Handle<JSWeakMap> NewJSWeakMap();
Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
Handle<JSModuleNamespace> NewJSModuleNamespace();
Handle<Module> NewModule(Handle<SharedFunctionInfo> code);
Handle<JSArrayBuffer> NewJSArrayBuffer(
SharedFlag shared, AllocationType allocation = AllocationType::kYoung);
static void TypeAndSizeForElementsKind(ElementsKind kind,
ExternalArrayType* array_type,
size_t* element_size);
Handle<JSTypedArray> NewJSTypedArray(
ExternalArrayType type,
AllocationType allocation = AllocationType::kYoung);
Handle<JSTypedArray> NewJSTypedArray(
ElementsKind elements_kind,
AllocationType allocation = AllocationType::kYoung);
// Creates a new JSTypedArray with the specified buffer.
Handle<JSTypedArray> NewJSTypedArray(
ExternalArrayType type, Handle<JSArrayBuffer> buffer, size_t byte_offset,
size_t length, AllocationType allocation = AllocationType::kYoung);
// Creates a new on-heap JSTypedArray.
Handle<JSTypedArray> NewJSTypedArray(
ElementsKind elements_kind, size_t number_of_elements,
AllocationType allocation = AllocationType::kYoung);
Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t byte_length);
Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done);
Handle<JSAsyncFromSyncIterator> NewJSAsyncFromSyncIterator(
Handle<JSReceiver> sync_iterator, Handle<Object> next);
Handle<JSMap> NewJSMap();
Handle<JSSet> NewJSSet();
// Allocates a bound function.
MaybeHandle<JSBoundFunction> NewJSBoundFunction(
Handle<JSReceiver> target_function, Handle<Object> bound_this,
Vector<Handle<Object>> bound_args);
// Allocates a Harmony proxy.
Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
Handle<JSReceiver> handler);
// Reinitialize an JSGlobalProxy based on a constructor. The object
// must have the same size as objects allocated using the
// constructor. The object is reinitialized and behaves as an
// object that has been freshly allocated using the constructor.
void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
Handle<JSFunction> constructor);
Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size);
// Creates a new JSFunction according to the given args. This is the function
// you'll probably want to use when creating a JSFunction from the runtime.
Handle<JSFunction> NewFunction(const NewFunctionArgs& args);
// For testing only. Creates a sloppy function without code.
Handle<JSFunction> NewFunctionForTest(Handle<String> name);
// Function creation from SharedFunctionInfo.
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
Handle<Context> context, Handle<FeedbackCell> feedback_cell,
AllocationType allocation = AllocationType::kOld);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> function_info, Handle<Context> context,
Handle<FeedbackCell> feedback_cell,
AllocationType allocation = AllocationType::kOld);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
Handle<Context> context,
AllocationType allocation = AllocationType::kOld);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> function_info, Handle<Context> context,
AllocationType allocation = AllocationType::kOld);
// The choke-point for JSFunction creation. Handles allocation and
// initialization. All other utility methods call into this.
Handle<JSFunction> NewFunction(
Handle<Map> map, Handle<SharedFunctionInfo> info, Handle<Context> context,
AllocationType allocation = AllocationType::kOld);
// Create a serialized scope info.
Handle<ScopeInfo> NewScopeInfo(int length);
Handle<ModuleInfo> NewModuleInfo();
Handle<PreparseData> NewPreparseData(int data_length, int children_length);
Handle<UncompiledDataWithoutPreparseData>
NewUncompiledDataWithoutPreparseData(Handle<String> inferred_name,
int32_t start_position,
int32_t end_position,
int32_t function_literal_id);
Handle<UncompiledDataWithPreparseData> NewUncompiledDataWithPreparseData(
Handle<String> inferred_name, int32_t start_position,
int32_t end_position, int32_t function_literal_id, Handle<PreparseData>);
// Create an External object for V8's external API.
Handle<JSObject> NewExternal(void* value);
// Creates a new CodeDataContainer for a Code object.
Handle<CodeDataContainer> NewCodeDataContainer(int flags,
AllocationType allocation);
// Allocates a new code object and initializes it as the trampoline to the
// given off-heap entry point.
Handle<Code> NewOffHeapTrampolineFor(Handle<Code> code,
Address off_heap_entry);
Handle<Code> CopyCode(Handle<Code> code);
Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>);
// Interface for creating error objects.
Handle<Object> NewError(Handle<JSFunction> constructor,
Handle<String> message);
Handle<Object> NewInvalidStringLengthError();
inline Handle<Object> NewURIError();
Handle<Object> NewError(Handle<JSFunction> constructor,
MessageTemplate template_index,
Handle<Object> arg0 = Handle<Object>(),
Handle<Object> arg1 = Handle<Object>(),
Handle<Object> arg2 = Handle<Object>());
#define DECLARE_ERROR(NAME) \
Handle<Object> New##NAME(MessageTemplate template_index, \
Handle<Object> arg0 = Handle<Object>(), \
Handle<Object> arg1 = Handle<Object>(), \
Handle<Object> arg2 = Handle<Object>());
DECLARE_ERROR(Error)
DECLARE_ERROR(EvalError)
DECLARE_ERROR(RangeError)
DECLARE_ERROR(ReferenceError)
DECLARE_ERROR(SyntaxError)
DECLARE_ERROR(TypeError)
DECLARE_ERROR(WasmCompileError)
DECLARE_ERROR(WasmLinkError)
DECLARE_ERROR(WasmRuntimeError)
#undef DECLARE_ERROR
Handle<String> NumberToString(Handle<Object> number, bool check_cache = true);
Handle<String> NumberToString(Smi number, bool check_cache = true);
inline Handle<String> Uint32ToString(uint32_t value, bool check_cache = true);
#define ROOT_ACCESSOR(Type, name, CamelName) inline Handle<Type> name();
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
// Allocates a new SharedFunctionInfo object.
Handle<SharedFunctionInfo> NewSharedFunctionInfoForApiFunction(
MaybeHandle<String> maybe_name,
Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmCapiFunction(
Handle<WasmCapiFunctionData> data);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForBuiltin(
MaybeHandle<String> name, int builtin_index,
FunctionKind kind = kNormalFunction);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForLiteral(
FunctionLiteral* literal, Handle<Script> script, bool is_toplevel);
static bool IsFunctionModeWithPrototype(FunctionMode function_mode) {
return (function_mode & kWithPrototypeBits) != 0;
}
static bool IsFunctionModeWithWritablePrototype(FunctionMode function_mode) {
return (function_mode & kWithWritablePrototypeBit) != 0;
}
static bool IsFunctionModeWithName(FunctionMode function_mode) {
return (function_mode & kWithNameBit) != 0;
}
static bool IsFunctionModeWithHomeObject(FunctionMode function_mode) {
return (function_mode & kWithHomeObjectBit) != 0;
}
Handle<Map> CreateSloppyFunctionMap(
FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function);
Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode,
Handle<JSFunction> empty_function);
Handle<Map> CreateClassFunctionMap(Handle<JSFunction> empty_function);
// Allocates a new JSMessageObject object.
Handle<JSMessageObject> NewJSMessageObject(
MessageTemplate message, Handle<Object> argument, int start_position,
int end_position, Handle<SharedFunctionInfo> shared_info,
int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames);
Handle<ClassPositions> NewClassPositions(int start, int end);
Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
Handle<CoverageInfo> NewCoverageInfo(const ZoneVector<SourceRange>& slots);
// Return a map for given number of properties using the map cache in the
// native context.
Handle<Map> ObjectLiteralMapFromCache(Handle<NativeContext> native_context,
int number_of_properties);
Handle<LoadHandler> NewLoadHandler(int data_count);
Handle<StoreHandler> NewStoreHandler(int data_count);
Handle<RegExpMatchInfo> NewRegExpMatchInfo();
// Creates a new FixedArray that holds the data associated with the
// atom regexp and stores it in the regexp.
void SetRegExpAtomData(Handle<JSRegExp> regexp, JSRegExp::Type type,
Handle<String> source, JSRegExp::Flags flags,
Handle<Object> match_pattern);
// Creates a new FixedArray that holds the data associated with the
// irregexp regexp and stores it in the regexp.
void SetRegExpIrregexpData(Handle<JSRegExp> regexp, JSRegExp::Type type,
Handle<String> source, JSRegExp::Flags flags,
int capture_count);
// Returns the value for a known global constant (a property of the global
// object which is neither configurable nor writable) like 'undefined'.
// Returns a null handle when the given name is unknown.
Handle<Object> GlobalConstantFor(Handle<Name> name);
// Converts the given boolean condition to JavaScript boolean value.
Handle<Object> ToBoolean(bool value);
// Converts the given ToPrimitive hint to it's string representation.
Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint);
Handle<JSPromise> NewJSPromiseWithoutHook(
AllocationType allocation = AllocationType::kYoung);
Handle<JSPromise> NewJSPromise(
AllocationType allocation = AllocationType::kYoung);
Handle<CallHandlerInfo> NewCallHandlerInfo(bool has_no_side_effect = false);
HeapObject NewForTest(Handle<Map> map, AllocationType allocation) {
return New(map, allocation);
}
// Allows creation of Code objects. It provides two build methods, one of
// which tries to gracefully handle allocation failure.
class V8_EXPORT_PRIVATE CodeBuilder final {
public:
CodeBuilder(Isolate* isolate, const CodeDesc& desc, Code::Kind kind);
// Builds a new code object (fully initialized). All header fields of the
// returned object are immutable and the code object is write protected.
V8_WARN_UNUSED_RESULT Handle<Code> Build();
// Like Build, builds a new code object. May return an empty handle if the
// allocation fails.
V8_WARN_UNUSED_RESULT MaybeHandle<Code> TryBuild();
// Sets the self-reference object in which a reference to the code object is
// stored. This allows generated code to reference its own Code object by
// using this handle.
CodeBuilder& set_self_reference(Handle<Object> self_reference) {
DCHECK(!self_reference.is_null());
self_reference_ = self_reference;
return *this;
}
CodeBuilder& set_builtin_index(int32_t builtin_index) {
builtin_index_ = builtin_index;
return *this;
}
CodeBuilder& set_source_position_table(Handle<ByteArray> table) {
DCHECK(!table.is_null());
source_position_table_ = table;
return *this;
}
CodeBuilder& set_deoptimization_data(
Handle<DeoptimizationData> deopt_data) {
DCHECK(!deopt_data.is_null());
deoptimization_data_ = deopt_data;
return *this;
}
CodeBuilder& set_immovable() {
is_movable_ = false;
return *this;
}
CodeBuilder& set_is_turbofanned() {
is_turbofanned_ = true;
return *this;
}
// Indicates the CodeDataContainer should be allocated in read-only space.
// As an optimization, if the kind-specific flags match that of a canonical
// container, it will be used instead.
CodeBuilder& set_read_only_data_container(int32_t flags) {
read_only_data_container_ = true;
kind_specific_flags_ = flags;
return *this;
}
CodeBuilder& set_stack_slots(int stack_slots) {
stack_slots_ = stack_slots;
return *this;
}
private:
MaybeHandle<Code> BuildInternal(bool retry_allocation_or_fail);
Isolate* const isolate_;
const CodeDesc& code_desc_;
const Code::Kind kind_;
MaybeHandle<Object> self_reference_;
int32_t builtin_index_ = Builtins::kNoBuiltinId;
int32_t kind_specific_flags_ = 0;
Handle<ByteArray> source_position_table_;
Handle<DeoptimizationData> deoptimization_data_ =
DeoptimizationData::Empty(isolate_);
bool read_only_data_container_ = false;
bool is_movable_ = true;
bool is_turbofanned_ = false;
int stack_slots_ = 0;
};
private:
Isolate* isolate() {
// Downcast to the privately inherited sub-class using c-style casts to
// avoid undefined behavior (as static_cast cannot cast across private
// bases).
// NOLINTNEXTLINE (google-readability-casting)
return (Isolate*)this; // NOLINT(readability/casting)
}
HeapObject AllocateRawWithImmortalMap(
int size, AllocationType allocation, Map map,
AllocationAlignment alignment = kWordAligned);
HeapObject AllocateRawWithAllocationSite(
Handle<Map> map, AllocationType allocation,
Handle<AllocationSite> allocation_site);
// Allocate memory for an uninitialized array (e.g., a FixedArray or similar).
HeapObject AllocateRawArray(int size, AllocationType allocation);
HeapObject AllocateRawFixedArray(int length, AllocationType allocation);
HeapObject AllocateRawWeakArrayList(int length, AllocationType allocation);
Handle<FixedArray> NewFixedArrayWithFiller(RootIndex map_root_index,
int length, Object filler,
AllocationType allocation);
// Allocates new context with given map, sets length and initializes the
// after-header part with uninitialized values and leaves the context header
// uninitialized.
Handle<Context> NewContext(RootIndex map_root_index, int size,
int variadic_part_length,
AllocationType allocation);
template <typename T>
Handle<T> AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
AllocationType allocation);
// Creates a heap object based on the map. The fields of the heap object are
// not initialized, it's the responsibility of the caller to do that.
HeapObject New(Handle<Map> map, AllocationType allocation);
template <typename T>
Handle<T> CopyArrayWithMap(Handle<T> src, Handle<Map> map);
template <typename T>
Handle<T> CopyArrayAndGrow(Handle<T> src, int grow_by,
AllocationType allocation);
template <bool is_one_byte, typename T>
Handle<String> AllocateInternalizedStringImpl(T t, int chars,
uint32_t hash_field);
Handle<String> AllocateTwoByteInternalizedString(
const Vector<const uc16>& str, uint32_t hash_field);
MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length,
AllocationType allocation);
// Attempt to find the number in a small cache. If we finds it, return
// the string representation of the number. Otherwise return undefined.
Handle<Object> NumberToStringCacheGet(Object number, int hash);
// Update the cache with a new number-string pair.
Handle<String> NumberToStringCacheSet(Handle<Object> number, int hash,
const char* string, bool check_cache);
// Create a JSArray with no elements and no length.
Handle<JSArray> NewJSArray(
ElementsKind elements_kind,
AllocationType allocation = AllocationType::kYoung);
Handle<SharedFunctionInfo> NewSharedFunctionInfo(
MaybeHandle<String> name, MaybeHandle<HeapObject> maybe_function_data,
int maybe_builtin_index, FunctionKind kind = kNormalFunction);
void InitializeAllocationMemento(AllocationMemento memento,
AllocationSite allocation_site);
// Initializes a JSObject based on its map.
void InitializeJSObjectFromMap(Handle<JSObject> obj,
Handle<Object> properties, Handle<Map> map);
// Initializes JSObject body starting at given offset.
void InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map,
int start_offset);
};
// Utility class to simplify argument handling around JSFunction creation.
class NewFunctionArgs final {
public:
static NewFunctionArgs ForWasm(
Handle<String> name,
Handle<WasmExportedFunctionData> exported_function_data, Handle<Map> map);
V8_EXPORT_PRIVATE static NewFunctionArgs ForBuiltin(Handle<String> name,
Handle<Map> map,
int builtin_id);
static NewFunctionArgs ForFunctionWithoutCode(Handle<String> name,
Handle<Map> map,
LanguageMode language_mode);
static NewFunctionArgs ForBuiltinWithPrototype(
Handle<String> name, Handle<HeapObject> prototype, InstanceType type,
int instance_size, int inobject_properties, int builtin_id,
MutableMode prototype_mutability);
static NewFunctionArgs ForBuiltinWithoutPrototype(Handle<String> name,
int builtin_id,
LanguageMode language_mode);
Handle<Map> GetMap(Isolate* isolate) const;
private:
NewFunctionArgs() = default; // Use the static factory constructors.
void SetShouldCreateAndSetInitialMap();
void SetShouldSetPrototype();
void SetShouldSetLanguageMode();
// Sentinel value.
static const int kUninitialized = -1;
Handle<String> name_;
MaybeHandle<Map> maybe_map_;
MaybeHandle<WasmExportedFunctionData> maybe_exported_function_data_;
bool should_create_and_set_initial_map_ = false;
InstanceType type_;
int instance_size_ = kUninitialized;
int inobject_properties_ = kUninitialized;
bool should_set_prototype_ = false;
MaybeHandle<HeapObject> maybe_prototype_;
bool should_set_language_mode_ = false;
LanguageMode language_mode_;
int maybe_builtin_id_ = kUninitialized;
MutableMode prototype_mutability_;
friend class Factory;
};
} // namespace internal
} // namespace v8
#endif // V8_HEAP_FACTORY_H_