blob: 1387c6d82ec9068c61c881f82a500369f40aee10 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODE_STUB_ASSEMBLER_H_
#define V8_CODE_STUB_ASSEMBLER_H_
#include <functional>
#include "src/bailout-reason.h"
#include "src/base/macros.h"
#include "src/compiler/code-assembler.h"
#include "src/frames.h"
#include "src/globals.h"
#include "src/message-template.h"
#include "src/objects.h"
#include "src/objects/arguments.h"
#include "src/objects/bigint.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/smi.h"
#include "src/roots.h"
#include "torque-generated/builtins-base-from-dsl-gen.h"
namespace v8 {
namespace internal {
class CallInterfaceDescriptor;
class CodeStubArguments;
class CodeStubAssembler;
class StatsCounter;
class StubCache;
enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
#define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
V(PromiseSpeciesProtector, promise_species_protector, \
PromiseSpeciesProtector) \
V(TypedArraySpeciesProtector, typed_array_species_protector, \
TypedArraySpeciesProtector) \
V(RegExpSpeciesProtector, regexp_species_protector, RegExpSpeciesProtector)
#define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \
V(AccessorInfoMap, accessor_info_map, AccessorInfoMap) \
V(AccessorPairMap, accessor_pair_map, AccessorPairMap) \
V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \
V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \
AllocationSiteWithoutWeakNextMap) \
V(BooleanMap, boolean_map, BooleanMap) \
V(CodeMap, code_map, CodeMap) \
V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \
V(EmptyPropertyDictionary, empty_property_dictionary, \
EmptyPropertyDictionary) \
V(EmptySlowElementDictionary, empty_slow_element_dictionary, \
EmptySlowElementDictionary) \
V(empty_string, empty_string, EmptyString) \
V(FalseValue, false_value, False) \
V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap) \
V(FixedArrayMap, fixed_array_map, FixedArrayMap) \
V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \
V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap) \
V(FunctionTemplateInfoMap, function_template_info_map, \
FunctionTemplateInfoMap) \
V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \
V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \
V(HeapNumberMap, heap_number_map, HeapNumberMap) \
V(iterator_symbol, iterator_symbol, IteratorSymbol) \
V(length_string, length_string, LengthString) \
V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \
V(MetaMap, meta_map, MetaMap) \
V(MinusZeroValue, minus_zero_value, MinusZero) \
V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap) \
V(NanValue, nan_value, Nan) \
V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \
V(NullValue, null_value, Null) \
V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \
V(PreparseDataMap, preparse_data_map, PreparseDataMap) \
V(prototype_string, prototype_string, PrototypeString) \
V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap) \
V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \
V(SymbolMap, symbol_map, SymbolMap) \
V(TheHoleValue, the_hole_value, TheHole) \
V(TransitionArrayMap, transition_array_map, TransitionArrayMap) \
V(TrueValue, true_value, True) \
V(Tuple2Map, tuple2_map, Tuple2Map) \
V(Tuple3Map, tuple3_map, Tuple3Map) \
V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map, \
ArrayBoilerplateDescriptionMap) \
V(UncompiledDataWithoutPreparseDataMap, \
uncompiled_data_without_preparse_data_map, \
UncompiledDataWithoutPreparseDataMap) \
V(UncompiledDataWithPreparseDataMap, uncompiled_data_with_preparse_data_map, \
UncompiledDataWithPreparseDataMap) \
V(UndefinedValue, undefined_value, Undefined) \
V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap)
#define HEAP_IMMOVABLE_OBJECT_LIST(V) \
HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)
#ifdef DEBUG
#define CSA_CHECK(csa, x) \
(csa)->Check( \
[&]() -> compiler::Node* { \
return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
}, \
#x, __FILE__, __LINE__)
#else
#define CSA_CHECK(csa, x) (csa)->FastCheck(x)
#endif
#ifdef DEBUG
// Add stringified versions to the given values, except the first. That is,
// transform
// x, a, b, c, d, e, f
// to
// a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
//
// __VA_ARGS__ is ignored to allow the caller to pass through too many
// parameters, and the first element is ignored to support having no extra
// values without empty __VA_ARGS__ (which cause all sorts of problems with
// extra commas).
#define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5
// Stringify the given variable number of arguments. The arguments are trimmed
// to 5 if there are too many, and padded with nullptr if there are not enough.
#define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...) \
CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
nullptr, nullptr)
#define CSA_ASSERT_GET_FIRST(x, ...) (x)
#define CSA_ASSERT_GET_FIRST_STR(x, ...) #x
// CSA_ASSERT(csa, <condition>, <extra values to print...>)
// We have to jump through some hoops to allow <extra values to print...> to be
// empty.
#define CSA_ASSERT(csa, ...) \
(csa)->Assert( \
[&]() -> compiler::Node* { \
return implicit_cast<compiler::SloppyTNode<Word32T>>( \
EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__))); \
}, \
EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
// CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
// <extra values to print...>)
#define CSA_ASSERT_BRANCH(csa, ...) \
(csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)), \
EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
__LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
#define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \
(csa)->Assert( \
[&]() -> compiler::Node* { \
compiler::Node* const argc = \
(csa)->Parameter(Descriptor::kJSActualArgumentsCount); \
return (csa)->Op(argc, (csa)->Int32Constant(expected)); \
}, \
"argc " #op " " #expected, __FILE__, __LINE__, \
SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \
"argc")
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
#define CSA_DEBUG_INFO(name) \
{ #name, __FILE__, __LINE__ }
#define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
#define VARIABLE(name, ...) \
Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
#define VARIABLE_CONSTRUCTOR(name, ...) \
name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
#define TYPED_VARIABLE_DEF(type, name, ...) \
TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
#else // DEBUG
#define CSA_ASSERT(csa, ...) ((void)0)
#define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
#define BIND(label) Bind(label)
#define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
#define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
#define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
#endif // DEBUG
#define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
#ifdef ENABLE_SLOW_DCHECKS
#define CSA_SLOW_ASSERT(csa, ...) \
if (FLAG_enable_slow_asserts) { \
CSA_ASSERT(csa, __VA_ARGS__); \
}
#else
#define CSA_SLOW_ASSERT(csa, ...) ((void)0)
#endif
// Provides JavaScript-specific "macro-assembler" functionality on top of the
// CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
// it's possible to add JavaScript-specific useful CodeAssembler "macros"
// without modifying files in the compiler directory (and requiring a review
// from a compiler directory OWNER).
class V8_EXPORT_PRIVATE CodeStubAssembler
: public compiler::CodeAssembler,
public BaseBuiltinsFromDSLAssembler {
public:
using Node = compiler::Node;
template <class T>
using TNode = compiler::TNode<T>;
template <class T>
using SloppyTNode = compiler::SloppyTNode<T>;
template <typename T>
using LazyNode = std::function<TNode<T>()>;
explicit CodeStubAssembler(compiler::CodeAssemblerState* state);
enum AllocationFlag : uint8_t {
kNone = 0,
kDoubleAlignment = 1,
kPretenured = 1 << 1,
kAllowLargeObjectAllocation = 1 << 2,
};
enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
typedef base::Flags<AllocationFlag> AllocationFlags;
enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
// On 32-bit platforms, there is a slight performance advantage to doing all
// of the array offset/index arithmetic with SMIs, since it's possible
// to save a few tag/untag operations without paying an extra expense when
// calculating array offset (the smi math can be folded away) and there are
// fewer live ranges. Thus only convert indices to untagged value on 64-bit
// platforms.
ParameterMode OptimalParameterMode() const {
return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
}
MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
: MachineRepresentation::kTaggedSigned;
}
MachineRepresentation OptimalParameterRepresentation() const {
return ParameterRepresentation(OptimalParameterMode());
}
TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) value = SmiUntag(value);
return UncheckedCast<IntPtrT>(value);
}
Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) return SmiTag(value);
return value;
}
Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
}
TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) return SmiTag(value);
return UncheckedCast<Smi>(value);
}
Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) return SmiUntag(value);
return value;
}
bool ToParameterConstant(Node* node, intptr_t* out, ParameterMode mode) {
if (mode == ParameterMode::SMI_PARAMETERS) {
Smi constant;
if (ToSmiConstant(node, &constant)) {
*out = static_cast<intptr_t>(constant->value());
return true;
}
} else {
DCHECK_EQ(mode, ParameterMode::INTPTR_PARAMETERS);
intptr_t constant;
if (ToIntPtrConstant(node, constant)) {
*out = constant;
return true;
}
}
return false;
}
#if defined(V8_HOST_ARCH_32_BIT)
TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; }
TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) {
return SmiToIntPtr(source);
}
TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; }
TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) {
return SmiFromIntPtr(source);
}
#elif defined(V8_HOST_ARCH_64_BIT)
TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); }
TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; }
TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); }
TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; }
#else
#error Unknown architecture.
#endif
TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
GotoIf(TaggedIsNotSmi(value), fail);
return UncheckedCast<Smi>(value);
}
TNode<Smi> TaggedToPositiveSmi(TNode<Object> value, Label* fail) {
GotoIfNot(TaggedIsPositiveSmi(value), fail);
return UncheckedCast<Smi>(value);
}
TNode<String> TaggedToDirectString(TNode<Object> value, Label* fail);
TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) {
GotoIfNot(IsNumber(value), fail);
return UncheckedCast<Number>(value);
}
TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
GotoIf(TaggedIsSmi(value), fail);
return UncheckedCast<HeapObject>(value);
}
TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsJSArray(heap_object), fail);
return UncheckedCast<JSArray>(heap_object);
}
TNode<JSArrayBuffer> HeapObjectToJSArrayBuffer(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsJSArrayBuffer(heap_object), fail);
return UncheckedCast<JSArrayBuffer>(heap_object);
}
TNode<JSArray> TaggedToFastJSArray(TNode<Context> context,
TNode<Object> value, Label* fail) {
GotoIf(TaggedIsSmi(value), fail);
TNode<HeapObject> heap_object = CAST(value);
GotoIfNot(IsFastJSArray(heap_object, context), fail);
return UncheckedCast<JSArray>(heap_object);
}
TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsJSDataView(heap_object), fail);
return CAST(heap_object);
}
TNode<JSProxy> HeapObjectToJSProxy(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsJSProxy(heap_object), fail);
return CAST(heap_object);
}
TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsCallable(heap_object), fail);
return CAST(heap_object);
}
TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) {
GotoIfNot(IsString(heap_object), fail);
return CAST(heap_object);
}
TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsConstructor(heap_object), fail);
return CAST(heap_object);
}
Node* MatchesParameterMode(Node* value, ParameterMode mode);
#define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
Node* OpName(Node* a, Node* b, ParameterMode mode) { \
if (mode == SMI_PARAMETERS) { \
return SmiOpName(CAST(a), CAST(b)); \
} else { \
DCHECK_EQ(INTPTR_PARAMETERS, mode); \
return IntPtrOpName(a, b); \
} \
}
PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
SmiLessThanOrEqual)
PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
SmiGreaterThanOrEqual)
PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
SmiAboveOrEqual)
#undef PARAMETER_BINOP
uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; }
uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; }
intptr_t ConstexprIntPtrAdd(intptr_t a, intptr_t b) { return a + b; }
uintptr_t ConstexprUintPtrAdd(uintptr_t a, uintptr_t b) { return a + b; }
intptr_t ConstexprWordNot(intptr_t a) { return ~a; }
uintptr_t ConstexprWordNot(uintptr_t a) { return ~a; }
TNode<Object> NoContextConstant();
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
name##Constant();
HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
std::declval<Heap>().rootAccessorName())>::type>::type> \
name##Constant();
HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
TNode<BoolT> Is##name(SloppyTNode<Object> value); \
TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST
Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
ParameterMode mode);
// Round the 32bits payload of the provided word up to the next power of two.
TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
// Select the maximum of the two provided IntPtr values.
TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
SloppyTNode<IntPtrT> right);
// Select the minimum of the two provided IntPtr values.
TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
SloppyTNode<IntPtrT> right);
// Float64 operations.
TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
// Select the minimum of the two provided Number values.
TNode<Number> NumberMax(SloppyTNode<Number> left, SloppyTNode<Number> right);
// Select the minimum of the two provided Number values.
TNode<Number> NumberMin(SloppyTNode<Number> left, SloppyTNode<Number> right);
// After converting an index to an integer, calculate a relative index: if
// index < 0, max(length + index, 0); else min(index, length)
TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
TNode<Object> index,
TNode<IntPtrT> length);
// Returns true iff the given value fits into smi range and is >= 0.
TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);
// Tag an IntPtr as a Smi value.
TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
// Untag a Smi value as an IntPtr.
TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);
// Smi conversions.
TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);
// Smi operations.
#define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \
TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
if (SmiValuesAre32Bits()) { \
return BitcastWordToTaggedSigned( \
IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
} else { \
DCHECK(SmiValuesAre31Bits()); \
if (kSystemPointerSize == kInt64Size) { \
CSA_ASSERT(this, IsValidSmi(a)); \
CSA_ASSERT(this, IsValidSmi(b)); \
} \
return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr( \
Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
TruncateIntPtrToInt32(BitcastTaggedToWord(b))))); \
} \
}
SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
#undef SMI_ARITHMETIC_BINOP
TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); }
TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b,
Label* if_overflow);
TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
}
TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
return BitcastWordToTaggedSigned(
WordAnd(WordShr(BitcastTaggedToWord(a), shift),
BitcastTaggedToWord(SmiConstant(-1))));
}
TNode<Smi> SmiSar(TNode<Smi> a, int shift) {
return BitcastWordToTaggedSigned(
WordAnd(WordSar(BitcastTaggedToWord(a), shift),
BitcastTaggedToWord(SmiConstant(-1))));
}
Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiShl(CAST(a), shift);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return WordShl(a, shift);
}
}
Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiShr(CAST(a), shift);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return WordShr(a, shift);
}
}
#define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \
TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
if (SmiValuesAre32Bits()) { \
return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
} else { \
DCHECK(SmiValuesAre31Bits()); \
if (kSystemPointerSize == kInt64Size) { \
CSA_ASSERT(this, IsValidSmi(a)); \
CSA_ASSERT(this, IsValidSmi(b)); \
} \
return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
TruncateIntPtrToInt32(BitcastTaggedToWord(b))); \
} \
}
SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
Uint32GreaterThanOrEqual)
SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
Int32LessThanOrEqual)
SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
Int32GreaterThanOrEqual)
#undef SMI_COMPARISON_OP
TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
// Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
// Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
// Tries to compute dividend / divisor for Smi inputs; branching to bailout
// if the division needs to be performed as a floating point operation.
TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);
// Compares two Smis a and b as if they were converted to strings and then
// compared lexicographically. Returns:
// -1 iff x < y.
// 0 iff x == y.
// 1 iff x > y.
TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y);
// Smi | HeapNumber operations.
TNode<Number> NumberInc(SloppyTNode<Number> value);
TNode<Number> NumberDec(SloppyTNode<Number> value);
TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
void GotoIfNotNumber(Node* value, Label* is_not_number);
void GotoIfNumber(Node* value, Label* is_number);
TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }
TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);
// Allocate an object of the given size.
TNode<HeapObject> AllocateInNewSpace(TNode<IntPtrT> size,
AllocationFlags flags = kNone);
TNode<HeapObject> AllocateInNewSpace(int size, AllocationFlags flags = kNone);
TNode<HeapObject> Allocate(TNode<IntPtrT> size,
AllocationFlags flags = kNone);
TNode<HeapObject> Allocate(int size, AllocationFlags flags = kNone);
TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous, int offset);
TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous,
TNode<IntPtrT> offset);
TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size);
typedef std::function<void(Label*, Label*)> BranchGenerator;
typedef std::function<Node*()> NodeGenerator;
void Assert(const BranchGenerator& branch, const char* message = nullptr,
const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
void Assert(const NodeGenerator& condition_body,
const char* message = nullptr, const char* file = nullptr,
int line = 0, Node* extra_node1 = nullptr,
const char* extra_node1_name = "", Node* extra_node2 = nullptr,
const char* extra_node2_name = "", Node* extra_node3 = nullptr,
const char* extra_node3_name = "", Node* extra_node4 = nullptr,
const char* extra_node4_name = "", Node* extra_node5 = nullptr,
const char* extra_node5_name = "");
void Check(const BranchGenerator& branch, const char* message = nullptr,
const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
void Check(const NodeGenerator& condition_body, const char* message = nullptr,
const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
void FailAssert(
const char* message = nullptr, const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
void FastCheck(TNode<BoolT> condition);
// The following Call wrappers call an object according to the semantics that
// one finds in the EcmaScript spec, operating on an Callable (e.g. a
// JSFunction or proxy) rather than a Code object.
template <class... TArgs>
TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
TNode<JSReceiver> receiver, TArgs... args) {
return UncheckedCast<Object>(CallJS(
CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
context, callable, receiver, args...));
}
template <class... TArgs>
TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
TNode<Object> receiver, TArgs... args) {
if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
return UncheckedCast<Object>(CallJS(
CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
context, callable, receiver, args...));
}
return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context,
callable, receiver, args...));
}
template <class... TArgs>
TNode<JSReceiver> ConstructWithTarget(TNode<Context> context,
TNode<JSReceiver> target,
TNode<JSReceiver> new_target,
TArgs... args) {
return CAST(ConstructJSWithTarget(CodeFactory::Construct(isolate()),
context, target, new_target,
implicit_cast<TNode<Object>>(args)...));
}
template <class... TArgs>
TNode<JSReceiver> Construct(TNode<Context> context,
TNode<JSReceiver> new_target, TArgs... args) {
return ConstructWithTarget(context, new_target, new_target, args...);
}
template <class A, class F, class G>
TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
const G& false_body) {
return UncheckedCast<A>(SelectImpl(
condition,
[&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); },
[&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); },
MachineRepresentationOf<A>::value));
}
template <class A>
TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
TNode<A> false_value) {
return Select<A>(condition, [=] { return true_value; },
[=] { return false_value; });
}
TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition,
int true_value, int false_value);
TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition,
int true_value, int false_value);
TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition);
TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
Smi false_value);
TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
Smi false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
}
TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
int false_value) {
return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
}
TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
int false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value),
Smi::FromInt(false_value));
}
TNode<String> SingleCharacterStringConstant(char const* single_char) {
DCHECK_EQ(strlen(single_char), 1);
return HeapConstant(
isolate()->factory()->LookupSingleCharacterStringFromCode(
single_char[0]));
}
TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);
// Check a value for smi-ness
TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
// Check that the value is a non-negative smi.
TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
// Check that a word has a word-aligned address.
TNode<BoolT> WordIsAligned(SloppyTNode<WordT> word, size_t alignment);
TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);
#if DEBUG
void Bind(Label* label, AssemblerDebugInfo debug_info);
#endif // DEBUG
void Bind(Label* label);
template <class... T>
void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label,
TNode<T>*... phis) {
CodeAssembler::Bind(label, phis...);
}
void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
Label* if_false) {
Branch(SmiEqual(a, b), if_true, if_false);
}
void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
Label* if_false) {
Branch(SmiLessThan(a, b), if_true, if_false);
}
void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
Label* if_false) {
Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
}
void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
Branch(Float64Equal(value, value), if_false, if_true);
}
// Branches to {if_true} if ToBoolean applied to {value} yields true,
// otherwise goes to {if_false}.
void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
// Branches to {if_true} when --force-slow-path flag has been passed.
// It's used for testing to ensure that slow path implementation behave
// equivalent to corresponding fast paths (where applicable).
//
// Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
void GotoIfForceSlowPath(Label* if_true);
// Branches to {if_true} when Debug::ExecutionMode is DebugInfo::kSideEffect.
void GotoIfDebugExecutionModeChecksSideEffects(Label* if_true);
// Load value from current parent frame by given offset in bytes.
Node* LoadFromParentFrame(int offset,
MachineType rep = MachineType::AnyTagged());
// Load an object pointer from a buffer that isn't in the heap.
Node* LoadBufferObject(Node* buffer, int offset,
MachineType rep = MachineType::AnyTagged());
TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) {
return UncheckedCast<RawPtrT>(
LoadBufferObject(buffer, offset, MachineType::Pointer()));
}
TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) {
return CAST(LoadBufferObject(buffer, offset, MachineType::TaggedSigned()));
}
// Load a field from an object on the heap.
Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
MachineType rep);
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
return UncheckedCast<T>(
LoadObjectField(object, offset, MachineTypeOf<T>::value));
}
TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
return UncheckedCast<Object>(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
Node* LoadObjectField(SloppyTNode<HeapObject> object,
SloppyTNode<IntPtrT> offset, MachineType rep);
TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
SloppyTNode<IntPtrT> offset) {
return UncheckedCast<Object>(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) {
return UncheckedCast<T>(
LoadObjectField(object, offset, MachineTypeOf<T>::value));
}
// Load a SMI field and untag it.
TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
int offset);
// Load a SMI field, untag it, and convert to Word32.
TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
// Load a SMI and untag it.
TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,
int offset) {
return UncheckedCast<MaybeObject>(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
// Reference is the CSA-equivalent of a Torque reference value,
// representing an inner pointer into a HeapObject.
struct Reference {
TNode<HeapObject> object;
TNode<IntPtrT> offset;
std::tuple<TNode<HeapObject>, TNode<IntPtrT>> Flatten() const {
return std::make_tuple(object, offset);
}
};
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value,
int>::type = 0>
TNode<T> LoadReference(Reference reference) {
return CAST(LoadObjectField(reference.object, reference.offset,
MachineTypeOf<T>::value));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
TNode<T> LoadReference(Reference reference) {
return UncheckedCast<T>(LoadObjectField(reference.object, reference.offset,
MachineTypeOf<T>::value));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value,
int>::type = 0>
void StoreReference(Reference reference, TNode<T> value) {
int const_offset;
if (std::is_same<T, Smi>::value) {
StoreObjectFieldNoWriteBarrier(reference.object, reference.offset, value);
} else if (std::is_same<T, Map>::value &&
ToInt32Constant(reference.offset, const_offset) &&
const_offset == HeapObject::kMapOffset) {
StoreMap(reference.object, value);
} else {
StoreObjectField(reference.object, reference.offset, value);
}
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
void StoreReference(Reference reference, TNode<T> value) {
StoreObjectFieldNoWriteBarrier<T>(reference.object, reference.offset,
value);
}
// Tag a smi and store it.
void StoreAndTagSmi(Node* base, int offset, Node* value);
// Load the floating point value of a HeapNumber.
TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
// Load the Map of an HeapObject.
TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
// Load the instance type of an HeapObject.
TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
// Compare the instance the type of the object against the provided one.
TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
InstanceType type);
TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
InstanceType type);
TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
InstanceType type);
// Load the properties backing store of a JSObject.
TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
// Load the elements backing store of a JSObject.
TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object) {
return LoadJSObjectElements(object);
}
// Load the length of a JSArray instance.
TNode<Object> LoadJSArgumentsObjectWithLength(
SloppyTNode<JSArgumentsObjectWithLength> array);
// Load the length of a JSArray instance.
TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
// Load the length of a fast JSArray instance. Returns a positive Smi.
TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
// Load the length of a fixed array base instance.
TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
// Load the length of a fixed array base instance.
TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
SloppyTNode<FixedArrayBase> array);
// Load the length of a WeakFixedArray.
TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(
SloppyTNode<WeakFixedArray> array);
// Load the number of descriptors in DescriptorArray.
TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array);
// Load the bit field of a Map.
TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
// Load bit field 2 of a map.
TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
// Load bit field 3 of a map.
TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
// Load the instance type of a map.
TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
// Load the ElementsKind of a map.
TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> object);
// Load the instance descriptors of a map.
TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
// Load the prototype of a map.
TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map);
// Load the prototype info of a map. The result has to be checked if it is a
// prototype info object or not.
TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
Label* if_has_no_proto_info);
// Load the instance size of a Map.
TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
// Load the inobject properties start of a Map (valid only for JSObjects).
TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
// Load the constructor function index of a Map (only for primitive maps).
TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
// Load the constructor of a Map (equivalent to Map::GetConstructor()).
TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
// Load the EnumLength of a Map.
Node* LoadMapEnumLength(SloppyTNode<Map> map);
// Load the back-pointer of a Map.
TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map);
// Checks that |map| has only simple properties, returns bitfield3.
TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map,
TNode<Int32T> instance_type,
Label* bailout);
// Load the identity hash of a JSRececiver.
TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
Label* if_no_hash = nullptr);
// This is only used on a newly allocated PropertyArray which
// doesn't have an existing hash.
void InitializePropertyArrayLength(Node* property_array, Node* length,
ParameterMode mode);
// Check if the map is set for slow properties.
TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);
// Load the hash field of a name as an uint32 value.
TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
// Load the hash value of a name as an uint32 value.
// If {if_hash_not_computed} label is specified then it also checks if
// hash is actually computed.
TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
Label* if_hash_not_computed = nullptr);
// Load length field of a String object as Smi value.
TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> string);
// Load length field of a String object as intptr_t value.
TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> string);
// Load length field of a String object as uint32_t value.
TNode<Uint32T> LoadStringLengthAsWord32(SloppyTNode<String> string);
// Loads a pointer to the sequential String char array.
Node* PointerToSeqStringData(Node* seq_string);
// Load value field of a JSValue object.
Node* LoadJSValueValue(Node* object);
// Figures out whether the value of maybe_object is:
// - a SMI (jump to "if_smi", "extracted" will be the SMI value)
// - a cleared weak reference (jump to "if_cleared", "extracted" will be
// untouched)
// - a weak reference (jump to "if_weak", "extracted" will be the object
// pointed to)
// - a strong reference (jump to "if_strong", "extracted" will be the object
// pointed to)
void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
Label* if_cleared, Label* if_weak, Label* if_strong,
TVariable<Object>* extracted);
// See MaybeObject for semantics of these functions.
TNode<BoolT> IsStrong(TNode<MaybeObject> value);
// This variant is for overzealous checking.
TNode<BoolT> IsStrong(TNode<Object> value) {
return IsStrong(ReinterpretCast<MaybeObject>(value));
}
TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value,
Label* if_not_strong);
TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value);
TNode<BoolT> IsCleared(TNode<MaybeObject> value);
TNode<BoolT> IsNotCleared(TNode<MaybeObject> value);
// Removes the weak bit + asserts it was set.
TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value);
TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value,
Label* if_cleared);
TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object,
TNode<Object> value);
TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object,
TNode<Object> value);
TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object,
TNode<Object> value);
TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);
void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Array is any array-like type that has a fixed header followed by
// tagged elements.
template <typename Array>
TNode<IntPtrT> LoadArrayLength(TNode<Array> array);
// Array is any array-like type that has a fixed header followed by
// tagged elements.
template <typename Array>
TNode<MaybeObject> LoadArrayElement(
TNode<Array> array, int array_header_size, Node* index,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
TNode<Object> LoadFixedArrayElement(
TNode<FixedArray> object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe,
CheckBounds check_bounds = CheckBounds::kAlways);
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
TNode<Object> UnsafeLoadFixedArrayElement(
TNode<FixedArray> object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return LoadFixedArrayElement(object, index, additional_offset,
parameter_mode, needs_poisoning,
CheckBounds::kDebugOnly);
}
TNode<Object> LoadFixedArrayElement(
TNode<FixedArray> object, TNode<IntPtrT> index,
LoadSensitivity needs_poisoning,
CheckBounds check_bounds = CheckBounds::kAlways) {
return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS,
needs_poisoning, check_bounds);
}
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object,
TNode<IntPtrT> index,
LoadSensitivity needs_poisoning) {
return LoadFixedArrayElement(object, index, needs_poisoning,
CheckBounds::kDebugOnly);
}
TNode<Object> LoadFixedArrayElement(
TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return LoadFixedArrayElement(object, index, additional_offset,
INTPTR_PARAMETERS, needs_poisoning);
}
TNode<Object> LoadFixedArrayElement(
TNode<FixedArray> object, int index, int additional_offset = 0,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return LoadFixedArrayElement(object, IntPtrConstant(index),
additional_offset, INTPTR_PARAMETERS,
needs_poisoning);
}
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
TNode<Object> UnsafeLoadFixedArrayElement(
TNode<FixedArray> object, int index, int additional_offset = 0,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return LoadFixedArrayElement(object, IntPtrConstant(index),
additional_offset, INTPTR_PARAMETERS,
needs_poisoning, CheckBounds::kDebugOnly);
}
TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
TNode<Smi> index) {
return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS);
}
TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object,
SloppyTNode<IntPtrT> index);
TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);
// Load an element from an array and untag it and return it as Word32.
// Array is any array-like type that has a fixed header followed by
// tagged elements.
template <typename Array>
TNode<Int32T> LoadAndUntagToWord32ArrayElement(
TNode<Array> array, int array_header_size, Node* index,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Load an array element from a FixedArray, untag it and return it as Word32.
TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
TNode<FixedArray> object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
TNode<FixedArray> object, int index, int additional_offset = 0) {
return LoadAndUntagToWord32FixedArrayElement(
object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS);
}
// Load an array element from a WeakFixedArray.
TNode<MaybeObject> LoadWeakFixedArrayElement(
TNode<WeakFixedArray> object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
TNode<MaybeObject> LoadWeakFixedArrayElement(
TNode<WeakFixedArray> object, int index, int additional_offset = 0,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return LoadWeakFixedArrayElement(object, IntPtrConstant(index),
additional_offset, INTPTR_PARAMETERS,
needs_poisoning);
}
// Load an array element from a FixedDoubleArray.
TNode<Float64T> LoadFixedDoubleArrayElement(
SloppyTNode<FixedDoubleArray> object, Node* index,
MachineType machine_type, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
Label* if_hole = nullptr);
Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
TNode<Smi> index,
Label* if_hole = nullptr) {
return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
SMI_PARAMETERS, if_hole);
}
Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
TNode<IntPtrT> index,
Label* if_hole = nullptr) {
return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
INTPTR_PARAMETERS, if_hole);
}
// Load an array element from a FixedArray, FixedDoubleArray or a
// NumberDictionary (depending on the |elements_kind|) and return
// it as a tagged value. Assumes that the |index| passed a length
// check before. Bails out to |if_accessor| if the element that
// was found is an accessor, or to |if_hole| if the element at
// the given |index| is not found in |elements|.
TNode<Object> LoadFixedArrayBaseElementAsTagged(
TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);
// Load a feedback slot from a FeedbackVector.
TNode<MaybeObject> LoadFeedbackVectorSlot(
Node* object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
TNode<Smi> index,
Label* if_hole = nullptr);
TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
TNode<IntPtrT> index,
Label* if_hole = nullptr);
// Load Float64 value by |base| + |offset| address. If the value is a double
// hole then jump to |if_hole|. If |machine_type| is None then only the hole
// check is generated.
TNode<Float64T> LoadDoubleWithHoleCheck(
SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
MachineType machine_type = MachineType::Float64());
TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
TNode<FixedTypedArrayBase> typed_array);
TNode<RawPtrT> LoadFixedTypedArrayOnHeapBackingStore(
TNode<FixedTypedArrayBase> typed_array);
Node* LoadFixedTypedArrayElementAsTagged(
Node* data_pointer, Node* index_node, ElementsKind elements_kind,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind);
// Parts of the above, factored out for readability:
Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
Node* offset);
// 64-bit platforms only:
TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value);
TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value);
// 32-bit platforms only:
TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high);
TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high);
void StoreFixedTypedArrayElementFromTagged(
TNode<Context> context, TNode<FixedTypedArrayBase> elements,
TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
ParameterMode parameter_mode);
// Context manipulation
TNode<Object> LoadContextElement(SloppyTNode<Context> context,
int slot_index);
TNode<Object> LoadContextElement(SloppyTNode<Context> context,
SloppyTNode<IntPtrT> slot_index);
TNode<Object> LoadContextElement(TNode<Context> context,
TNode<Smi> slot_index);
void StoreContextElement(SloppyTNode<Context> context, int slot_index,
SloppyTNode<Object> value);
void StoreContextElement(SloppyTNode<Context> context,
SloppyTNode<IntPtrT> slot_index,
SloppyTNode<Object> value);
void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
int slot_index,
SloppyTNode<Object> value);
TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
// Calling this is only valid if there's a module context in the chain.
TNode<Context> LoadModuleContext(SloppyTNode<Context> context);
void GotoIfContextElementEqual(Node* value, Node* native_context,
int slot_index, Label* if_equal) {
GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
if_equal);
}
TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
SloppyTNode<Context> native_context);
TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
SloppyTNode<Context> native_context);
TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map);
void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
TNode<Map> map, Label* runtime);
// Load the "prototype" property of a JSFunction.
Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);
TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray(
SloppyTNode<SharedFunctionInfo> shared);
void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
TNode<Word32T> value);
// Store the floating point value of a HeapNumber.
void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
SloppyTNode<Float64T> value);
void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object,
SloppyTNode<Float64T> value);
// Store a field to an object on the heap.
void StoreObjectField(Node* object, int offset, Node* value);
void StoreObjectField(Node* object, Node* offset, Node* value);
void StoreObjectFieldNoWriteBarrier(
Node* object, int offset, Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
void StoreObjectFieldNoWriteBarrier(
Node* object, Node* offset, Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
template <class T = Object>
void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object,
TNode<IntPtrT> offset, TNode<T> value) {
StoreObjectFieldNoWriteBarrier(object, offset, value,
MachineRepresentationOf<T>::value);
}
template <class T = Object>
void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, int offset,
TNode<T> value) {
StoreObjectFieldNoWriteBarrier(object, offset, value,
MachineRepresentationOf<T>::value);
}
// Store the Map of an HeapObject.
void StoreMap(Node* object, Node* map);
void StoreMapNoWriteBarrier(Node* object, RootIndex map_root_index);
void StoreMapNoWriteBarrier(Node* object, Node* map);
void StoreObjectFieldRoot(Node* object, int offset, RootIndex root);
// Store an array element to a FixedArray.
void StoreFixedArrayElement(
TNode<FixedArray> object, int index, SloppyTNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
CheckBounds check_bounds = CheckBounds::kAlways) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
barrier_mode, 0, INTPTR_PARAMETERS,
check_bounds);
}
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
void UnsafeStoreFixedArrayElement(
TNode<FixedArray> object, int index, SloppyTNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
return StoreFixedArrayElement(object, index, value, barrier_mode,
CheckBounds::kDebugOnly);
}
void StoreFixedArrayElement(TNode<FixedArray> object, int index,
TNode<Smi> value,
CheckBounds check_bounds = CheckBounds::kAlways) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
SKIP_WRITE_BARRIER, 0, INTPTR_PARAMETERS,
check_bounds);
}
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
void UnsafeStoreFixedArrayElement(TNode<FixedArray> object, int index,
TNode<Smi> value) {
return StoreFixedArrayElement(object, index, value,
CheckBounds::kDebugOnly);
}
void StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length);
void StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements);
void StoreFixedArrayOrPropertyArrayElement(
Node* array, Node* index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
void StoreFixedArrayElement(
TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
CheckBounds check_bounds = CheckBounds::kAlways) {
if (NeedsBoundsCheck(check_bounds)) {
FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode);
}
StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
additional_offset, parameter_mode);
}
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
void UnsafeStoreFixedArrayElement(
TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS) {
return StoreFixedArrayElement(array, index, value, barrier_mode,
additional_offset, parameter_mode,
CheckBounds::kDebugOnly);
}
void StorePropertyArrayElement(
TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS) {
StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
additional_offset, parameter_mode);
}
void StoreFixedArrayElementSmi(
TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
StoreFixedArrayElement(array, index, value, barrier_mode, 0,
SMI_PARAMETERS);
}
void StoreFixedArrayElement(TNode<FixedArray> array, TNode<IntPtrT> index,
TNode<Smi> value) {
StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0);
}
void StoreFixedArrayElement(TNode<FixedArray> array, TNode<Smi> index,
TNode<Smi> value) {
StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0,
SMI_PARAMETERS);
}
void StoreFixedDoubleArrayElement(
TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
CheckBounds check_bounds = CheckBounds::kAlways);
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
void UnsafeStoreFixedDoubleArrayElement(
TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
ParameterMode parameter_mode = INTPTR_PARAMETERS) {
return StoreFixedDoubleArrayElement(object, index, value, parameter_mode,
CheckBounds::kDebugOnly);
}
void StoreFixedDoubleArrayElementSmi(TNode<FixedDoubleArray> object,
TNode<Smi> index,
TNode<Float64T> value) {
StoreFixedDoubleArrayElement(object, index, value, SMI_PARAMETERS);
}
void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array, Node* index,
ParameterMode mode = INTPTR_PARAMETERS);
void StoreFixedDoubleArrayHoleSmi(TNode<FixedDoubleArray> array,
TNode<Smi> index) {
StoreFixedDoubleArrayHole(array, index, SMI_PARAMETERS);
}
void StoreFeedbackVectorSlot(
Node* object, Node* index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout);
// EnsureArrayPushable verifies that receiver with this map is:
// 1. Is not a prototype.
// 2. Is not a dictionary.
// 3. Has a writeable length property.
// It returns ElementsKind as a node for further division into cases.
TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout);
void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
Label* bailout, Node* elements, Node* index,
Node* value);
// Consumes args into the array, and returns tagged new length.
TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
CodeStubArguments* args,
TVariable<IntPtrT>* arg_index, Label* bailout);
// Pushes value onto the end of array.
void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
Label* bailout);
void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
Node* value);
Node* AllocateCellWithValue(Node* value,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
Node* AllocateSmiCell(int value = 0) {
return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
}
Node* LoadCellValue(Node* cell);
void StoreCellValue(Node* cell, Node* value,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
// Allocate a HeapNumber without initializing its value.
TNode<HeapNumber> AllocateHeapNumber();
// Allocate a HeapNumber with a specific value.
TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value);
TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
return AllocateHeapNumberWithValue(Float64Constant(value));
}
// Allocate a MutableHeapNumber with a specific value.
TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue(
SloppyTNode<Float64T> value);
// Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
// Does not initialize the digits.
TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
// Like above, but allowing custom bitfield initialization.
TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield);
void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
TNode<UintPtrT> digit);
TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint);
TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);
// Allocate a SeqOneByteString with the given length.
TNode<String> AllocateSeqOneByteString(uint32_t length,
AllocationFlags flags = kNone);
TNode<String> AllocateSeqOneByteString(Node* context, TNode<Uint32T> length,
AllocationFlags flags = kNone);
// Allocate a SeqTwoByteString with the given length.
TNode<String> AllocateSeqTwoByteString(uint32_t length,
AllocationFlags flags = kNone);
TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Uint32T> length,
AllocationFlags flags = kNone);
// Allocate a SlicedOneByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length,
TNode<String> parent,
TNode<Smi> offset);
// Allocate a SlicedTwoByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length,
TNode<String> parent,
TNode<Smi> offset);
// Allocate an appropriate one- or two-byte ConsString with the first and
// second parts specified by |left| and |right|.
TNode<String> AllocateConsString(TNode<Uint32T> length, TNode<String> left,
TNode<String> right, Variable* var_feedback);
TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
TNode<NameDictionary> AllocateNameDictionary(
TNode<IntPtrT> at_least_space_for);
TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
TNode<IntPtrT> capacity);
TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
Label* large_object_fallback);
template <typename CollectionType>
Node* AllocateOrderedHashTable();
// Builds code that finds OrderedHashTable entry for a key with hash code
// {hash} with using the comparison code generated by {key_compare}. The code
// jumps to {entry_found} if the key is found, or to {not_found} if the key
// was not found. In the {entry_found} branch, the variable
// entry_start_position will be bound to the index of the entry (relative to
// OrderedHashTable::kHashTableStartIndex).
//
// The {CollectionType} template parameter stands for the particular instance
// of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet.
template <typename CollectionType>
void FindOrderedHashTableEntry(
Node* table, Node* hash,
const std::function<void(Node*, Label*, Label*)>& key_compare,
Variable* entry_start_position, Label* entry_found, Label* not_found);
template <typename CollectionType>
TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity);
Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
void InitializeStructBody(Node* object, Node* map, Node* size,
int start_offset = Struct::kHeaderSize);
Node* AllocateJSObjectFromMap(
Node* map, Node* properties = nullptr, Node* elements = nullptr,
AllocationFlags flags = kNone,
SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
void InitializeJSObjectFromMap(
Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
Node* elements = nullptr,
SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
Node* instance_size);
void InitializeJSObjectBodyNoSlackTracking(
Node* object, Node* map, Node* instance_size,
int start_offset = JSObject::kHeaderSize);
TNode<BoolT> IsValidFastJSArrayCapacity(Node* capacity,
ParameterMode capacity_mode);
//
// Allocate and return a JSArray with initialized header fields and its
// uninitialized elements.
// The ParameterMode argument is only used for the capacity parameter.
std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
AllocateUninitializedJSArrayWithElements(
ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
Node* allocation_site, Node* capacity,
ParameterMode capacity_mode = INTPTR_PARAMETERS,
AllocationFlags allocation_flags = kNone);
// Allocate a JSArray and fill elements with the hole.
// The ParameterMode argument is only used for the capacity parameter.
TNode<JSArray> AllocateJSArray(
ElementsKind kind, TNode<Map> array_map, Node* capacity,
TNode<Smi> length, Node* allocation_site = nullptr,
ParameterMode capacity_mode = INTPTR_PARAMETERS,
AllocationFlags allocation_flags = kNone);
TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
TNode<Smi> capacity, TNode<Smi> length) {
return AllocateJSArray(kind, array_map, capacity, length, nullptr,
SMI_PARAMETERS);
}
TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
TNode<IntPtrT> capacity, TNode<Smi> length) {
return AllocateJSArray(kind, array_map, capacity, length, nullptr,
INTPTR_PARAMETERS);
}
// Allocate a JSArray and initialize the header fields.
TNode<JSArray> AllocateJSArray(TNode<Map> array_map,
TNode<FixedArrayBase> elements,
TNode<Smi> length,
Node* allocation_site = nullptr);
enum class HoleConversionMode { kDontConvert, kConvertToUndefined };
// Clone a fast JSArray |array| into a new fast JSArray.
// |convert_holes| tells the function to convert holes into undefined or not.
// If |convert_holes| is set to kConvertToUndefined, but the function did not
// find any hole in |array|, the resulting array will have the same elements
// kind as |array|. If the function did find a hole, it will convert holes in
// |array| to undefined in the resulting array, who will now have
// PACKED_ELEMENTS kind.
// If |convert_holes| is set kDontConvert, holes are also copied to the
// resulting array, who will have the same elements kind as |array|. The
// function generates significantly less code in this case.
Node* CloneFastJSArray(
Node* context, Node* array, ParameterMode mode = INTPTR_PARAMETERS,
Node* allocation_site = nullptr,
HoleConversionMode convert_holes = HoleConversionMode::kDontConvert);
Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
ParameterMode mode = INTPTR_PARAMETERS,
Node* capacity = nullptr,
Node* allocation_site = nullptr);
TNode<FixedArrayBase> AllocateFixedArray(
ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone,
SloppyTNode<Map> fixed_array_map = nullptr);
TNode<FixedArrayBase> AllocateFixedArray(
ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags,
SloppyTNode<Map> fixed_array_map = nullptr) {
return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags,
fixed_array_map);
}
TNode<FixedArray> AllocateUninitializedFixedArray(intptr_t capacity) {
return UncheckedCast<FixedArray>(AllocateFixedArray(
PACKED_ELEMENTS, IntPtrConstant(capacity), AllocationFlag::kNone));
}
TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
TNode<FixedArray> result = UncheckedCast<FixedArray>(
AllocateFixedArray(PACKED_ELEMENTS, capacity,
AllocationFlag::kAllowLargeObjectAllocation));
FillFixedArrayWithSmiZero(result, capacity);
return result;
}
TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
TNode<IntPtrT> capacity) {
TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity,
AllocationFlag::kAllowLargeObjectAllocation));
FillFixedDoubleArrayWithZero(result, capacity);
return result;
}
TNode<FixedArray> AllocateFixedArrayWithHoles(TNode<IntPtrT> capacity,
AllocationFlags flags) {
TNode<FixedArray> result = UncheckedCast<FixedArray>(
AllocateFixedArray(PACKED_ELEMENTS, capacity, flags));
FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0),
capacity, RootIndex::kTheHoleValue);
return result;
}
TNode<FixedDoubleArray> AllocateFixedDoubleArrayWithHoles(
TNode<IntPtrT> capacity, AllocationFlags flags) {
TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, flags));
FillFixedArrayWithValue(PACKED_DOUBLE_ELEMENTS, result, IntPtrConstant(0),
capacity, RootIndex::kTheHoleValue);
return result;
}
Node* AllocatePropertyArray(Node* capacity,
ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone);
// Perform CreateArrayIterator (ES #sec-createarrayiterator).
TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context,
TNode<Object> object,
IterationKind mode);
Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);
TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context,
TNode<Object> originalArray,
TNode<Number> len);
void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
Node* to_index, RootIndex value_root_index,
ParameterMode mode = INTPTR_PARAMETERS);
// Uses memset to effectively initialize the given FixedArray with zeroes.
void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
TNode<IntPtrT> length);
void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
TNode<IntPtrT> length);
void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
Node* to_index,
ParameterMode mode = INTPTR_PARAMETERS);
enum class DestroySource { kNo, kYes };
// Specify DestroySource::kYes if {from_array} is being supplanted by
// {to_array}. This offers a slight performance benefit by simply copying the
// array word by word. The source may be destroyed at the end of this macro.
//
// Otherwise, specify DestroySource::kNo for operations where an Object is
// being cloned, to ensure that MutableHeapNumbers are unique between the
// source and cloned object.
void CopyPropertyArrayValues(Node* from_array, Node* to_array, Node* length,
WriteBarrierMode barrier_mode,
ParameterMode mode,
DestroySource destroy_source);
// Copies all elements from |from_array| of |length| size to
// |to_array| of the same size respecting the elements kind.
void CopyFixedArrayElements(
ElementsKind kind, Node* from_array, Node* to_array, Node* length,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS) {
CopyFixedArrayElements(kind, from_array, kind, to_array,
IntPtrOrSmiConstant(0, mode), length, length,
barrier_mode, mode);
}
// Copies |element_count| elements from |from_array| starting from element
// zero to |to_array| of |capacity| size respecting both array's elements
// kinds.
void CopyFixedArrayElements(
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
Node* to_array, Node* element_count, Node* capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS) {
CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
IntPtrOrSmiConstant(0, mode), element_count,
capacity, barrier_mode, mode);
}
// Copies |element_count| elements from |from_array| starting from element
// |first_element| to |to_array| of |capacity| size respecting both array's
// elements kinds.
// |convert_holes| tells the function whether to convert holes to undefined.
// |var_holes_converted| can be used to signify that the conversion happened
// (i.e. that there were holes). If |convert_holes_to_undefined| is
// HoleConversionMode::kConvertToUndefined, then it must not be the case that
// IsDoubleElementsKind(to_kind).
void CopyFixedArrayElements(
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
Node* to_array, Node* first_element, Node* element_count, Node* capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS,
HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
TVariable<BoolT>* var_holes_converted = nullptr);
void CopyFixedArrayElements(
ElementsKind from_kind, TNode<FixedArrayBase> from_array,
ElementsKind to_kind, TNode<FixedArrayBase> to_array,
TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
first_element, element_count, capacity, barrier_mode,
SMI_PARAMETERS);
}
void JumpIfPointersFromHereAreInteresting(TNode<Object> object,
Label* interesting);
// Efficiently copy elements within a single array. The regions
// [src_index, src_index + length) and [dst_index, dst_index + length)
// can be overlapping.
void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements,
TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index,
TNode<IntPtrT> length);
// Efficiently copy elements from one array to another. The ElementsKind
// needs to be the same. Copy from src_elements at
// [src_index, src_index + length) to dst_elements at
// [dst_index, dst_index + length).
// The function decides whether it can use memcpy. In case it cannot,
// |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is
// only safe when copying to new space, or when copying to old space and the
// array does not contain object pointers.
void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements,
TNode<IntPtrT> dst_index,
TNode<FixedArrayBase> src_elements,
TNode<IntPtrT> src_index, TNode<IntPtrT> length,
WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER);
TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
Label* cast_fail);
TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
Label* cast_fail) {
GotoIf(
WordNotEqual(LoadMap(base), LoadRoot(RootIndex::kFixedDoubleArrayMap)),
cast_fail);
return UncheckedCast<FixedDoubleArray>(base);
}
TNode<SloppyArgumentsElements> HeapObjectToSloppyArgumentsElements(
TNode<HeapObject> base, Label* cast_fail) {
GotoIf(WordNotEqual(LoadMap(base),
LoadRoot(RootIndex::kSloppyArgumentsElementsMap)),
cast_fail);
return UncheckedCast<SloppyArgumentsElements>(base);
}
TNode<Int32T> ConvertElementsKindToInt(TNode<Int32T> elements_kind) {
return UncheckedCast<Int32T>(elements_kind);
}
enum class ExtractFixedArrayFlag {
kFixedArrays = 1,
kFixedDoubleArrays = 2,
kDontCopyCOW = 4,
kNewSpaceAllocationOnly = 8,
kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
};
typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;
// Copy a portion of an existing FixedArray or FixedDoubleArray into a new
// array, including special appropriate handling for empty arrays and COW
// arrays. The result array will be of the same type as the original array.
//
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements.
// * |first| is the starting element index to copy from, if nullptr is passed
// then index zero is used by default.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|. If |count| is
// nullptr, then all of the elements from |start| to the end of |source| are
// copied.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
// the destination array's capacity.
// * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
// are detected and copied. Although it's always correct to pass
// kAllFixedArrays, the generated code is more compact and efficient if the
// caller can specify whether only FixedArrays or FixedDoubleArrays will be
// passed as the |source| parameter.
// * |parameter_mode| determines the parameter mode of |first|, |count| and
// |capacity|.
// * If |var_holes_converted| is given, any holes will be converted to
// undefined and the variable will be set according to whether or not there
// were any hole.
// * If |source_elements_kind| is given, the function will try to use the
// runtime elements kind of source to make copy faster. More specifically, it
// can skip write barriers.
TNode<FixedArrayBase> ExtractFixedArray(
Node* source, Node* first, Node* count = nullptr,
Node* capacity = nullptr,
ExtractFixedArrayFlags extract_flags =
ExtractFixedArrayFlag::kAllFixedArrays,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
TVariable<BoolT>* var_holes_converted = nullptr,
Node* source_elements_kind = nullptr);
TNode<FixedArrayBase> ExtractFixedArray(
TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count,
TNode<Smi> capacity,
ExtractFixedArrayFlags extract_flags =
ExtractFixedArrayFlag::kAllFixedArrays) {
return ExtractFixedArray(source, first, count, capacity, extract_flags,
SMI_PARAMETERS);
}
// Copy a portion of an existing FixedArray or FixedDoubleArray into a new
// FixedArray, including special appropriate handling for COW arrays.
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements. |source| is assumed to be non-empty.
// * |first| is the starting element index to copy from.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|.
// * |source_map| is the map of the |source|.
// * |from_kind| is the elements kind that is consistent with |source| being
// a FixedArray or FixedDoubleArray. This function only cares about double vs.
// non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does
// not care about holeyness. For example, when |source| is a FixedArray,
// PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS.
// * |allocation_flags| and |extract_flags| influence how the target
// FixedArray is allocated.
// * |parameter_mode| determines the parameter mode of |first|, |count| and
// |capacity|.
// * |convert_holes| is used to signify that the target array should use
// undefined in places of holes.
// * If |convert_holes| is true and |var_holes_converted| not nullptr, then
// |var_holes_converted| is used to signal whether any holes were found and
// converted. The caller should use this information to decide which map is
// compatible with the result array. For example, if the input was of
// HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be
// compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS.
TNode<FixedArray> ExtractToFixedArray(
Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
ElementsKind from_kind = PACKED_ELEMENTS,
AllocationFlags allocation_flags = AllocationFlag::kNone,
ExtractFixedArrayFlags extract_flags =
ExtractFixedArrayFlag::kAllFixedArrays,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
TVariable<BoolT>* var_holes_converted = nullptr,
Node* source_runtime_kind = nullptr);
// Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case
// where the source array has a hole, produce a FixedArray instead where holes
// are replaced with undefined.
// * |source| is a FixedDoubleArray from which to copy elements.
// * |first| is the starting element index to copy from.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|.
// * |source_map| is the map of |source|. It will be used as the map of the
// target array if the target can stay a FixedDoubleArray. Otherwise if the
// target array needs to be a FixedArray, the FixedArrayMap will be used.
// * |var_holes_converted| is used to signal whether a FixedAray
// is produced or not.
// * |allocation_flags| and |extract_flags| influence how the target array is
// allocated.
// * |parameter_mode| determines the parameter mode of |first|, |count| and
// |capacity|.
TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles(
Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags,
ExtractFixedArrayFlags extract_flags =
ExtractFixedArrayFlag::kAllFixedArrays,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Copy the entire contents of a FixedArray or FixedDoubleArray to a new
// array, including special appropriate handling for empty arrays and COW
// arrays.
//
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements.
// * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
// are detected and copied. Although it's always correct to pass
// kAllFixedArrays, the generated code is more compact and efficient if the
// caller can specify whether only FixedArrays or FixedDoubleArrays will be
// passed as the |source| parameter.
Node* CloneFixedArray(Node* source,
ExtractFixedArrayFlags flags =
ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
ParameterMode mode = OptimalParameterMode();
return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
nullptr, flags, mode);
}
// Copies |character_count| elements from |from_string| to |to_string|
// starting at the |from_index|'th character. |from_string| and |to_string|
// can either be one-byte strings or two-byte strings, although if
// |from_string| is two-byte, then |to_string| must be two-byte.
// |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
// |from_index| <= |from_index| + |character_count| <= from_string.length and
// 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
void CopyStringCharacters(Node* from_string, Node* to_string,
TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
TNode<IntPtrT> character_count,
String::Encoding from_encoding,
String::Encoding to_encoding);
// Loads an element from |array| of |from_kind| elements by given |offset|
// (NOTE: not index!), does a hole check if |if_hole| is provided and
// converts the value so that it becomes ready for storing to array of
// |to_kind| elements.
Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
ElementsKind from_kind,
ElementsKind to_kind, Label* if_hole);
Node* CalculateNewElementsCapacity(Node* old_capacity,
ParameterMode mode = INTPTR_PARAMETERS);
TNode<Smi> CalculateNewElementsCapacity(TNode<Smi> old_capacity) {
return CAST(CalculateNewElementsCapacity(old_capacity, SMI_PARAMETERS));
}
// Tries to grow the |elements| array of given |object| to store the |key|
// or bails out if the growing gap is too big. Returns new elements.
Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
Node* key, Label* bailout);
// Tries to grow the |capacity|-length |elements| array of given |object|
// to store the |key| or bails out if the growing gap is too big. Returns
// new elements.
Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
Node* key, Node* capacity, ParameterMode mode,
Label* bailout);
// Grows elements capacity of given object. Returns new elements.
Node* GrowElementsCapacity(Node* object, Node* elements,
ElementsKind from_kind, ElementsKind to_kind,
Node* capacity, Node* new_capacity,
ParameterMode mode, Label* bailout);
// Given a need to grow by |growth|, allocate an appropriate new capacity
// if necessary, and return a new elements FixedArray object. Label |bailout|
// is followed for allocation failure.
void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
Node* array, Node* length,
Variable* var_elements, Node* growth,
Label* bailout);
// Allocation site manipulation
void InitializeAllocationMemento(Node* base_allocation,
Node* base_allocation_size,
Node* allocation_site);
Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
Node* TruncateTaggedToFloat64(Node* context, Node* value);
Node* TruncateTaggedToWord32(Node* context, Node* value);
void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
Variable* var_word32, Label* if_bigint,
Variable* var_bigint);
void TaggedToWord32OrBigIntWithFeedback(
Node* context, Node* value, Label* if_number, Variable* var_word32,
Label* if_bigint, Variable* var_bigint, Variable* var_feedback);
// Truncate the floating point value of a HeapNumber to an Int32.
Node* TruncateHeapNumberValueToWord32(Node* object);
// Conversions.
void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& output,
Label* if_smi);
void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>& output,
Label* if_smi);
TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value);
TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
TNode<UintPtrT> TryNumberToUintPtr(TNode<Number> value, Label* if_negative);
TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value) {
return TryNumberToUintPtr(value, nullptr);
}
void TaggedToNumeric(Node* context, Node* value, Label* done,
Variable* var_numeric);
void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
Variable* var_numeric,
Variable* var_feedback);
TNode<WordT> TimesSystemPointerSize(SloppyTNode<WordT> value);
TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) {
return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) {
return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<WordT> TimesTaggedSize(SloppyTNode<WordT> value);
TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) {
return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) {
return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value);
TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
}
// Type conversions.
// Throws a TypeError for {method_name} if {value} is not coercible to Object,
// or returns the {value} converted to a String otherwise.
TNode<String> ToThisString(TNode<Context> context, TNode<Object> value,
TNode<String> method_name);
TNode<String> ToThisString(TNode<Context> context, TNode<Object> value,
char const* method_name) {
return ToThisString(context, value, StringConstant(method_name));
}
// Throws a TypeError for {method_name} if {value} is neither of the given
// {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
// returns the {value} (or wrapped value) otherwise.
Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is not of the given
// instance type. Returns {value}'s map.
Node* ThrowIfNotInstanceType(Node* context, Node* value,
InstanceType instance_type,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is not a JSReceiver.
// Returns the {value}'s map.
Node* ThrowIfNotJSReceiver(Node* context, Node* value,
MessageTemplate msg_template,
const char* method_name = nullptr);
void ThrowRangeError(Node* context, MessageTemplate message,
Node* arg0 = nullptr, Node* arg1 = nullptr,
Node* arg2 = nullptr);
void ThrowTypeError(Node* context, MessageTemplate message,
char const* arg0 = nullptr, char const* arg1 = nullptr);
void ThrowTypeError(Node* context, MessageTemplate message, Node* arg0,
Node* arg1 = nullptr, Node* arg2 = nullptr);
// Type checks.
// Check whether the map is for an object with special properties, such as a
// JSProxy or an object with interceptors.
TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object);
TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object);
TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object);
TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object);
TNode<BoolT> IsNoElementsProtectorCellInvalid();
TNode<BoolT> IsArrayIteratorProtectorCellInvalid();
TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object);
TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object);
TNode<BoolT> IsCallableMap(SloppyTNode<Map> map);
TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object);
TNode<BoolT> TaggedIsCallable(TNode<Object> object);
TNode<BoolT> IsCell(SloppyTNode<HeapObject> object);
TNode<BoolT> IsCode(SloppyTNode<HeapObject> object);
TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map);
TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object);
TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map);
TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object);
TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object);
TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map);
TNode<BoolT> IsPackedFrozenOrSealedElementsKindMap(SloppyTNode<Map> map);
TNode<BoolT> IsExtensibleNonPrototypeMap(TNode<Map> map);
TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object);
TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object);
TNode<BoolT> IsContext(SloppyTNode<HeapObject> object);
TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object);
TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object);
TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object,
ElementsKind kind);
TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object,
ElementsKind kind);
TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object);
TNode<BoolT> IsFixedTypedArray(SloppyTNode<HeapObject> object);
TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map);
TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object);
TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object);
TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object);
TNode<BoolT> IsHeapNumberInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsOddball(SloppyTNode<HeapObject> object);
TNode<BoolT> IsOddballInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSDataView(TNode<HeapObject> object);
TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map);
TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map);
TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map);
TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map);
TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map);
TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object);
TNode<BoolT> IsJSValueInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsJSValueMap(SloppyTNode<Map> map);
TNode<BoolT> IsJSValue(SloppyTNode<HeapObject> object);
TNode<BoolT> IsMap(SloppyTNode<HeapObject> object);
TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object);
TNode<BoolT> IsName(SloppyTNode<HeapObject> object);
TNode<BoolT> IsNameInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object);
TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object);
TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object);
TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object);
TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object);
TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object);
TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object);
TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object);
TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context,
SloppyTNode<Map> map);
TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
SloppyTNode<Map> map);
TNode<BoolT> IsFastAliasedArgumentsMap(TNode<Context> context,
TNode<Map> map);
TNode<BoolT> IsSlowAliasedArgumentsMap(TNode<Context> context,
TNode<Map> map);
TNode<BoolT> IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map);
TNode<BoolT> IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map);
TNode<BoolT> IsSequentialStringInstanceType(
SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsUncachedExternalStringInstanceType(
SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type);
TNode<BoolT> IsCustomElementsReceiverInstanceType(
TNode<Int32T> instance_type);
TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map);
// Returns true if the map corresponds to non-special fast or dictionary
// object.
TNode<BoolT> IsSimpleObjectMap(TNode<Map> map);
TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsString(SloppyTNode<HeapObject> object);
TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type);
TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object);
TNode<BoolT> IsInternalizedStringInstanceType(TNode<Int32T> instance_type);
TNode<BoolT> IsUniqueName(TNode<HeapObject> object);
TNode<BoolT> IsUniqueNameNoIndex(TNode<HeapObject> object);
TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map);
TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object);
TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object);
inline Node* IsSharedFunctionInfo(Node* object) {
return IsSharedFunctionInfoMap(LoadMap(object));
}
TNode<BoolT> IsPromiseResolveProtectorCellInvalid();
TNode<BoolT> IsPromiseThenProtectorCellInvalid();
TNode<BoolT> IsArraySpeciesProtectorCellInvalid();
TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid();
TNode<BoolT> IsRegExpSpeciesProtectorCellInvalid();
TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid();
TNode<BoolT> IsMockArrayBufferAllocatorFlag() {
TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load(
MachineType::Uint8(),
ExternalConstant(
ExternalReference::address_of_mock_arraybuffer_allocator_flag())));
return Word32NotEqual(Word32And(flag_value, Int32Constant(0xFF)),
Int32Constant(0));
}
// True iff |object| is a Smi or a HeapNumber.
TNode<BoolT> IsNumber(SloppyTNode<Object> object);
// True iff |object| is a Smi or a HeapNumber or a BigInt.
TNode<BoolT> IsNumeric(SloppyTNode<Object> object);
// True iff |number| is either a Smi, or a HeapNumber whose value is not
// within Smi range.
TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number);
TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number);
TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number);
// True iff {number} is non-negative and less or equal than 2**53-1.
TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number);
// True iff {number} represents an integer value.
TNode<BoolT> IsInteger(TNode<Object> number);
TNode<BoolT> IsInteger(TNode<HeapNumber> number);
// True iff abs({number}) <= 2**53 -1
TNode<BoolT> IsSafeInteger(TNode<Object> number);
TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number);
// True iff {number} represents a valid uint32t value.
TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number);
// True iff {number} is a positive number and a valid array index in the range
// [0, 2^32-1).
TNode<BoolT> IsNumberArrayIndex(TNode<Number> number);
Node* FixedArraySizeDoesntFitInNewSpace(
Node* element_count, int base_size = FixedArray::kHeaderSize,
ParameterMode mode = INTPTR_PARAMETERS);
// ElementsKind helpers:
TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) {
return Word32Equal(a, b);
}
bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; }
Node* IsFastElementsKind(Node* elements_kind);
bool IsFastElementsKind(ElementsKind kind) {
return v8::internal::IsFastElementsKind(kind);
}
TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) {
return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS));
}
TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind);
bool IsDoubleElementsKind(ElementsKind kind) {
return v8::internal::IsDoubleElementsKind(kind);
}
Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
Node* IsFastSmiElementsKind(Node* elements_kind);
Node* IsHoleyFastElementsKind(Node* elements_kind);
Node* IsElementsKindGreaterThan(Node* target_kind,
ElementsKind reference_kind);
TNode<BoolT> IsElementsKindLessThanOrEqual(TNode<Int32T> target_kind,
ElementsKind reference_kind);
// Check if reference_kind_a <= target_kind <= reference_kind_b
TNode<BoolT> IsElementsKindInRange(TNode<Int32T> target_kind,
ElementsKind lower_reference_kind,
ElementsKind higher_reference_kind);
// String helpers.
// Load a character from a String (might flatten a ConsString).
TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
SloppyTNode<IntPtrT> index);
// Return the single character string with only {code}.
TNode<String> StringFromSingleCharCode(TNode<Int32T> code);
// Return a new string object which holds a substring containing the range
// [from,to[ of string.
TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
TNode<IntPtrT> to);
// Return a new string object produced by concatenating |first| with |second|.
TNode<String> StringAdd(Node* context, TNode<String> first,
TNode<String> second,
Variable* var_feedback = nullptr);
// Check if |string| is an indirect (thin or flat cons) string type that can
// be dereferenced by DerefIndirectString.
void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
Label* can_deref, Label* cannot_deref);
// Unpack an indirect (thin or flat cons) string type.
void DerefIndirectString(Variable* var_string, Node* instance_type);
// Check if |var_string| has an indirect (thin or flat cons) string type,
// and unpack it if so.
void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
Label* did_deref, Label* cannot_deref);
// Check if |var_left| or |var_right| has an indirect (thin or flat cons)
// string type, and unpack it/them if so. Fall through if nothing was done.
void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
Variable* var_right, Node* right_instance_type,
Label* did_something);
Node* DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type,
Label* cannot_deref);
TNode<String> StringFromSingleCodePoint(TNode<Int32T> codepoint,
UnicodeEncoding encoding);
// Type conversion helpers.
enum class BigIntHandling { kConvertToNumber, kThrow };
// Convert a String to a Number.
TNode<Number> StringToNumber(TNode<String> input);
// Convert a Number to a String.
TNode<String> NumberToString(TNode<Number> input);
// Convert a Non-Number object to a Number.
TNode<Number> NonNumberToNumber(
SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
BigIntHandling bigint_handling = BigIntHandling::kThrow);
// Convert a Non-Number object to a Numeric.
TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
SloppyTNode<HeapObject> input);
// Convert any object to a Number.
// Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
// With {bigint_handling} == kConvertToNumber, matches behavior of
// tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
TNode<Number> ToNumber(
SloppyTNode<Context> context, SloppyTNode<Object> input,
BigIntHandling bigint_handling = BigIntHandling::kThrow);
TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
// https://tc39.github.io/proposal-bigint/#sec-to-bigint
TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Converts |input| to one of 2^32 integer values in the range 0 through
// 2^32-1, inclusive.
// ES#sec-touint32
TNode<Number> ToUint32(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Convert any object to a String.
TNode<String> ToString(SloppyTNode<Context> context,
SloppyTNode<Object> input);
TNode<String> ToString_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Convert any object to a Primitive.
Node* JSReceiverToPrimitive(Node* context, Node* input);
TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Same as ToObject but avoids the Builtin call if |input| is already a
// JSReceiver.
TNode<JSReceiver> ToObject_Inline(TNode<Context> context,
TNode<Object> input);
enum ToIntegerTruncationMode {
kNoTruncation,
kTruncateMinusZero,
};
// ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
TNode<Smi> ToSmiIndex(TNode<Context> context, TNode<Object> input,
Label* range_error);
// ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
TNode<Smi> ToSmiLength(TNode<Context> context, TNode<Object> input,
Label* range_error);
// ES6 7.1.15 ToLength, but with inlined fast path.
TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// ES6 7.1.4 ToInteger ( argument )
TNode<Number> ToInteger_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input,
ToIntegerTruncationMode mode = kNoTruncation);
TNode<Number> ToInteger(SloppyTNode<Context> context,
SloppyTNode<Object> input,
ToIntegerTruncationMode mode = kNoTruncation);
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word32|. Returns result as an uint32 node.
template <typename BitField>
TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
return DecodeWord32(word32, BitField::kShift, BitField::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word|. Returns result as a word-size node.
template <typename BitField>
TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
return DecodeWord(word, BitField::kShift, BitField::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word32|. Returns result as a word-size node.
template <typename BitField>
TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
return DecodeWord<BitField>(ChangeUint32ToWord(word32));
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word|. Returns result as an uint32 node.
template <typename BitField>
TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
return UncheckedCast<Uint32T>(
TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
}
// Decodes an unsigned (!) value from |word32| to an uint32 node.
TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
uint32_t mask);
// Decodes an unsigned (!) value from |word| to a word-size node.
TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
uint32_t mask);
// Returns a node that contains the updated values of a |BitField|.
template <typename BitField>
TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value) {
return UpdateWord(word, value, BitField::kShift, BitField::kMask);
}
// Returns a node that contains the updated {value} inside {word} starting
// at {shift} and fitting in {mask}.
TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift,
uint32_t mask);
// Returns true if any of the |T|'s bits in given |word32| are set.
template <typename T>
TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
return IsSetWord32(word32, T::kMask);
}
// Returns true if any of the mask's bits in given |word32| are set.
TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if none of the mask's bits in given |word32| are set.
TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
return Word32Equal(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if all of the mask's bits in a given |word32| are set.
TNode<BoolT> IsAllSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
TNode<Int32T> const_mask = Int32Constant(mask);
return Word32Equal(Word32And(word32, const_mask), const_mask);
}
// Returns true if any of the |T|'s bits in given |word| are set.
template <typename T>
TNode<BoolT> IsSetWord(SloppyTNode<WordT> word) {
return IsSetWord(word, T::kMask);
}
// Returns true if any of the mask's bits in given |word| are set.
TNode<BoolT> IsSetWord(SloppyTNode<WordT> word, uint32_t mask) {
return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
}
// Returns true if any of the mask's bit are set in the given Smi.
// Smi-encoding of the mask is performed implicitly!
TNode<BoolT> IsSetSmi(SloppyTNode<Smi> smi, int untagged_mask) {
intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
return WordNotEqual(
WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
IntPtrConstant(0));
}
// Returns true if all of the |T|'s bits in given |word32| are clear.
template <typename T>
TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32) {
return IsClearWord32(word32, T::kMask);
}
// Returns true if all of the mask's bits in given |word32| are clear.
TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
return Word32Equal(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if all of the |T|'s bits in given |word| are clear.
template <typename T>
TNode<BoolT> IsClearWord(SloppyTNode<WordT> word) {
return IsClearWord(word, T::kMask);
}
// Returns true if all of the mask's bits in given |word| are clear.
TNode<BoolT> IsClearWord(SloppyTNode<WordT> word, uint32_t mask) {
return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
}
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int delta);
void DecrementCounter(StatsCounter* counter, int delta);
void Increment(Variable* variable, int value = 1,
ParameterMode mode = INTPTR_PARAMETERS);
void Decrement(Variable* variable, int value = 1,
ParameterMode mode = INTPTR_PARAMETERS) {
Increment(variable, -value, mode);
}
// Generates "if (false) goto label" code. Useful for marking a label as
// "live" to avoid assertion failures during graph building. In the resulting
// code this check will be eliminated.
void Use(Label* label);
// Various building blocks for stubs doing property lookups.
// |if_notinternalized| is optional; |if_bailout| will be used by default.
// Note: If |key| does not yet have a hash, |if_notinternalized| will be taken
// even if |key| is an array index. |if_keyisunique| will never
// be taken for array indices.
void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
Label* if_notinternalized = nullptr);
// Performs a hash computation and string table lookup for the given string,
// and jumps to:
// - |if_index| if the string is an array index like "123"; |var_index|
// will contain the intptr representation of that index.
// - |if_internalized| if the string exists in the string table; the
// internalized version will be in |var_internalized|.
// - |if_not_internalized| if the string is not in the string table (but
// does not add it).
// - |if_bailout| for unsupported cases (e.g. uncachable array index).
void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
Label* if_internalized, Variable* var_internalized,
Label* if_not_internalized, Label* if_bailout);
// Calculates array index for given dictionary entry and entry field.
// See Dictionary::EntryToIndex().
template <typename Dictionary>
V8_EXPORT_PRIVATE TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry,
int field_index);
template <typename Dictionary>
V8_EXPORT_PRIVATE TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) {
return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
}
// Loads the details for the entry with the given key_index.
// Returns an untagged int32.
template <class ContainerType>
TNode<Uint32T> LoadDetailsByKeyIndex(Node* container, Node* key_index) {
static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
"Use the non-templatized version for DescriptorArray");
const int kKeyToDetailsOffset =
(ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
kTaggedSize;
return Unsigned(LoadAndUntagToWord32FixedArrayElement(
CAST(container), key_index, kKeyToDetailsOffset));
}
// Loads the value for the entry with the given key_index.
// Returns a tagged value.
template <class ContainerType>
TNode<Object> LoadValueByKeyIndex(Node* container, Node* key_index) {
static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
"Use the non-templatized version for DescriptorArray");
const int kKeyToValueOffset =
(ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
kTaggedSize;
return LoadFixedArrayElement(CAST(container), key_index, kKeyToValueOffset);
}
// Stores the details for the entry with the given key_index.
// |details| must be a Smi.
template <class ContainerType>
void StoreDetailsByKeyIndex(TNode<ContainerType> container,
TNode<IntPtrT> key_index, TNode<Smi> details) {
const int kKeyToDetailsOffset =
(ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
kTaggedSize;
StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
kKeyToDetailsOffset);
}
// Stores the value for the entry with the given key_index.
template <class ContainerType>
void StoreValueByKeyIndex(
TNode<ContainerType> container, TNode<IntPtrT> key_index,
TNode<Object> value,
WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
const int kKeyToValueOffset =
(ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
kTaggedSize;
StoreFixedArrayElement(container, key_index, value, write_barrier,
kKeyToValueOffset);
}
// Calculate a valid size for the a hash table.
TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for);
template <class Dictionary>
TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary) {
return CAST(
LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex));
}
TNode<Smi> GetNumberDictionaryNumberOfElements(
TNode<NumberDictionary> dictionary) {
return GetNumberOfElements<NumberDictionary>(dictionary);
}
template <class Dictionary>
void SetNumberOfElements(TNode<Dictionary> dictionary,
TNode<Smi> num_elements_smi) {
StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
num_elements_smi, SKIP_WRITE_BARRIER);
}
template <class Dictionary>
TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) {
return CAST(LoadFixedArrayElement(
dictionary, Dictionary::kNumberOfDeletedElementsIndex));
}
template <class Dictionary>
void SetNumberOfDeletedElements(TNode<Dictionary> dictionary,
TNode<Smi> num_deleted_smi) {
StoreFixedArrayElement(dictionary,
Dictionary::kNumberOfDeletedElementsIndex,
num_deleted_smi, SKIP_WRITE_BARRIER);
}
template <class Dictionary>
TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) {
return CAST(
UnsafeLoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex));
}
template <class Dictionary>
TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) {
return CAST(LoadFixedArrayElement(dictionary,
Dictionary::kNextEnumerationIndexIndex));
}
template <class Dictionary>
void SetNextEnumerationIndex(TNode<Dictionary> dictionary,
TNode<Smi> next_enum_index_smi) {
StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex,
next_enum_index_smi, SKIP_WRITE_BARRIER);
}
// Looks up an entry in a NameDictionaryBase successor. If the entry is found
// control goes to {if_found} and {var_name_index} contains an index of the
// key field of the entry found. If the key is not found control goes to
// {if_not_found}.
enum LookupMode { kFindExisting, kFindInsertionIndex };
template <typename Dictionary>
TNode<HeapObject> LoadName(TNode<HeapObject> key);
template <typename Dictionary>
void NameDictionaryLookup(TNode<Dictionary> dictionary,
TNode<Name> unique_name, Label* if_found,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found,
LookupMode mode = kFindExisting);
Node* ComputeUnseededHash(Node* key);
Node* ComputeSeededHash(Node* key);
void NumberDictionaryLookup(TNode<NumberDictionary> dictionary,
TNode<IntPtrT> intptr_index, Label* if_found,
TVariable<IntPtrT>* var_entry,
Label* if_not_found);
TNode<Object> BasicLoadNumberDictionaryElement(
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
Label* not_data, Label* if_hole);
void BasicStoreNumberDictionaryElement(TNode<NumberDictionary> dictionary,
TNode<IntPtrT> intptr_index,
TNode<Object> value, Label* not_data,
Label* if_hole, Label* read_only);
template <class Dictionary>
void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key,
TVariable<IntPtrT>* var_key_index);
template <class Dictionary>
void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key,
TNode<Object> value, TNode<IntPtrT> index,
TNode<Smi> enum_index);
template <class Dictionary>
void Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value,
Label* bailout);
// Tries to check if {object} has own {unique_name} property.
void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found,
Label* if_not_found, Label* if_bailout);
// Operating mode for TryGetOwnProperty and CallGetterIfAccessor
// kReturnAccessorPair is used when we're only getting the property descriptor
enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
// Tries to get {object}'s own {unique_name} property value. If the property
// is an accessor then it also calls a getter. If the property is a double
// field it re-wraps value in an immutable heap number. {unique_name} must be
// a unique name (Symbol or InternalizedString) that is not an array index.
void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
Node* instance_type, Node* unique_name,
Label* if_found, Variable* var_value,
Label* if_not_found, Label* if_bailout);
void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
Node* instance_type, Node* unique_name,
Label* if_found, Variable* var_value,
Variable* var_details, Variable* var_raw_value,
Label* if_not_found, Label* if_bailout,
GetOwnPropertyMode mode);
TNode<Object> GetProperty(SloppyTNode<Context> context,
SloppyTNode<Object> receiver, Handle<Name> name) {
return GetProperty(context, receiver, HeapConstant(name));
}
TNode<Object> GetProperty(SloppyTNode<Context> context,
SloppyTNode<Object> receiver,
SloppyTNode<Object> name) {
return CallBuiltin(Builtins::kGetProperty, context, receiver, name);
}
TNode<Object> SetPropertyStrict(TNode<Context> context,
TNode<Object> receiver, TNode<Object> key,
TNode<Object> value) {
return CallBuiltin(Builtins::kSetProperty, context, receiver, key, value);
}
TNode<Object> SetPropertyInLiteral(TNode<Context> context,
TNode<JSObject> receiver,
TNode<Object> key, TNode<Object> value) {
return CallBuiltin(Builtins::kSetPropertyInLiteral, context, receiver, key,
value);
}
Node* GetMethod(Node* context, Node* object, Handle<Name> name,
Label* if_null_or_undefined);
TNode<Object> GetIteratorMethod(TNode<Context> context,
TNode<HeapObject> heap_obj,
Label* if_iteratorundefined);
template <class... TArgs>
TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
TArgs... args) {
return CallStub<Object>(Builtins::CallableFor(isolate(), id), context,
args...);
}
template <class... TArgs>
void TailCallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
TArgs... args) {
return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...);
}
void LoadPropertyFromFastObject(Node* object, Node* map,
TNode<DescriptorArray> descriptors,
Node* name_index, Variable* var_details,
Variable* var_value);
void LoadPropertyFromFastObject(Node* object, Node* map,
TNode<DescriptorArray> descriptors,
Node* name_index, Node* details,
Variable* var_value);
void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
Variable* var_details,
Variable* var_value);
void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
Variable* var_details,
Variable* var_value, Label* if_deleted);
// Generic property lookup generator. If the {object} is fast and
// {unique_name} property is found then the control goes to {if_found_fast}
// label and {var_meta_storage} and {var_name_index} will contain
// DescriptorArray and an index of the descriptor's name respectively.
// If the {object} is slow or global then the control goes to {if_found_dict}
// or {if_found_global} and the {var_meta_storage} and {var_name_index} will
// contain a dictionary and an index of the key field of the found entry.
// If property is not found or given lookup is not supported then
// the control goes to {if_not_found} or {if_bailout} respectively.
//
// Note: this code does not check if the global dictionary points to deleted
// entry! This has to be done by the caller.
void TryLookupProperty(SloppyTNode<JSObject> object, SloppyTNode<Map> map,
SloppyTNode<Int32T> instance_type,
SloppyTNode<Name> unique_name, Label* if_found_fast,
Label* if_found_dict, Label* if_found_global,
TVariable<HeapObject>* var_meta_storage,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found, Label* if_bailout);
// This is a building block for TryLookupProperty() above. Supports only
// non-special fast and dictionary objects.
void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map,
TNode<Name> unique_name,
Label* if_found_fast,
Label* if_found_dict,
TVariable<HeapObject>* var_meta_storage,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found);
// This method jumps to if_found if the element is known to exist. To
// if_absent if it's known to not exist. To if_not_found if the prototype
// chain needs to be checked. And if_bailout if the lookup is unsupported.
void TryLookupElement(Node* object, Node* map,
SloppyTNode<Int32T> instance_type,
SloppyTNode<IntPtrT> intptr_index, Label* if_found,
Label* if_absent, Label* if_not_found,
Label* if_bailout);
// This is a type of a lookup in holder generator function. In case of a
// property lookup the {key} is guaranteed to be an unique name and in case of
// element lookup the key is an Int32 index.
typedef std::function<void(Node* receiver, Node* holder, Node* map,
Node* instance_type, Node* key, Label* next_holder,
Label* if_bailout)>
LookupInHolder;
// For integer indexed exotic cases, check if the given string cannot be a
// special index. If we are not sure that the given string is not a special
// index with a simple check, return False. Note that "False" return value
// does not mean that the name_string is a special index in the current
// implementation.
void BranchIfMaybeSpecialIndex(TNode<String> name_string,
Label* if_maybe_special_index,
Label* if_not_special_index);
// Generic property prototype chain lookup generator.
// For properties it generates lookup using given {lookup_property_in_holder}
// and for elements it uses {lookup_element_in_holder}.
// Upon reaching the end of prototype chain the control goes to {if_end}.
// If it can't handle the case {receiver}/{key} case then the control goes
// to {if_bailout}.
// If {if_proxy} is nullptr, proxies go to if_bailout.
void TryPrototypeChainLookup(Node* receiver, Node* key,
const LookupInHolder& lookup_property_in_holder,
const LookupInHolder& lookup_element_in_holder,
Label* if_end, Label* if_bailout,
Label* if_proxy = nullptr);
// Instanceof helpers.
// Returns true if {object} has {prototype} somewhere in it's prototype
// chain, otherwise false is returned. Might cause arbitrary side effects
// due to [[GetPrototypeOf]] invocations.
Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
// ES6 section 7.3.19 OrdinaryHasInstance (C, O)
Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
// Load type feedback vector from the stub caller's frame.
TNode<FeedbackVector> LoadFeedbackVectorForStub();
// Load the value from closure's feedback cell.
TNode<HeapObject> LoadFeedbackCellValue(SloppyTNode<JSFunction> closure);
// Load the object from feedback vector cell for the given closure.
// The returned object could be undefined if the closure does not have
// a feedback vector associated with it.
TNode<HeapObject> LoadFeedbackVector(SloppyTNode<JSFunction> closure);
// Load the ClosureFeedbackCellArray that contains the feedback cells
// used when creating closures from this function. This array could be
// directly hanging off the FeedbackCell when there is no feedback vector
// or available from the feedback vector's header.
TNode<ClosureFeedbackCellArray> LoadClosureFeedbackArray(
SloppyTNode<JSFunction> closure);
// Update the type feedback vector.
void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
// Report that there was a feedback update, performing any tasks that should
// be done after a feedback update.
void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
SloppyTNode<IntPtrT> slot_id, const char* reason);
// Combine the new feedback with the existing_feedback. Do nothing if
// existing_feedback is nullptr.
void CombineFeedback(Variable* existing_feedback, int feedback);
void CombineFeedback(Variable* existing_feedback, Node* feedback);
// Overwrite the existing feedback with new_feedback. Do nothing if
// existing_feedback is nullptr.
void OverwriteFeedback(Variable* existing_feedback, int new_feedback);
// Check if a property name might require protector invalidation when it is
// used for a property store or deletion.
void CheckForAssociatedProtector(Node* name, Label* if_protector);
TNode<Map> LoadReceiverMap(SloppyTNode<Object> receiver);
enum class ArgumentsAccessMode { kLoad, kStore, kHas };
// Emits keyed sloppy arguments has. Returns whether the key is in the
// arguments.
Node* HasKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout,
ArgumentsAccessMode::kHas);
}
// Emits keyed sloppy arguments load. Returns either the loaded value.
Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout,
ArgumentsAccessMode::kLoad);
}
// Emits keyed sloppy arguments store.
void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
Label* bailout) {
DCHECK_NOT_NULL(value);
EmitKeyedSloppyArguments(receiver, key, value, bailout,
ArgumentsAccessMode::kStore);
}
// Loads script context from the script context table.
TNode<Context> LoadScriptContext(TNode<Context> context,
TNode<IntPtrT> context_index);
Node* Int32ToUint8Clamped(Node* int32_value);
Node* Float64ToUint8Clamped(Node* float64_value);
Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
ElementsKind elements_kind,
TNode<Context> context);
// Store value to an elements array with given elements kind.
void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
ParameterMode mode);
void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
TNode<FixedTypedArrayBase> elements,
TNode<IntPtrT> intptr_key,
TNode<Object> value,
TNode<Context> context,
Label* opt_if_detached);
// Part of the above, refactored out to reuse in another place.
void EmitBigTypedArrayElementStore(TNode<FixedTypedArrayBase> elements,
TNode<RawPtrT> backing_store,
TNode<IntPtrT> offset,
TNode<BigInt> bigint_value);
// Implements the BigInt part of
// https://tc39.github.io/proposal-bigint/#sec-numbertorawbytes,
// including truncation to 64 bits (i.e. modulo 2^64).
// {var_high} is only used on 32-bit platforms.
void BigIntToRawBytes(TNode<BigInt> bigint, TVariable<UintPtrT>* var_low,
TVariable<UintPtrT>* var_high);
void EmitElementStore(Node* object, Node* key, Node* value,
ElementsKind elements_kind,
KeyedAccessStoreMode store_mode, Label* bailout,
Node* context);
Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
Node* length, Node* key, ParameterMode mode,
Label* bailout);
Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
Node* length, ParameterMode mode, Label* bailout);
void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
ElementsKind to_kind, Label* bailout);
void TrapAllocationMemento(Node* object, Label* memento_found);
TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address);
// Store a weak in-place reference into the FeedbackVector.
TNode<MaybeObject> StoreWeakReferenceInFeedbackVector(
SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
SloppyTNode<HeapObject> value, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Create a new AllocationSite and install it into a feedback vector.
TNode<AllocationSite> CreateAllocationSiteInFeedbackVector(
SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot);
// TODO(ishell, cbruni): Change to HasBoilerplate.
TNode<BoolT> NotHasBoilerplate(TNode<Object> maybe_literal_site);
TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site);
TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site);
TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site);
enum class IndexAdvanceMode { kPre, kPost };
typedef std::function<void(Node* index)> FastLoopBody;
Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
Node* end_index, const FastLoopBody& body, int increment,
ParameterMode parameter_mode,
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
Node* BuildFastLoop(Node* start_index, Node* end_index,
const FastLoopBody& body, int increment,
ParameterMode parameter_mode,
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
increment, parameter_mode, advance_mode);
}
enum class ForEachDirection { kForward, kReverse };
typedef std::function<void(Node* fixed_array, Node* offset)>
FastFixedArrayForEachBody;
void BuildFastFixedArrayForEach(
const CodeStubAssembler::VariableList& vars, Node* fixed_array,
ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse);
void BuildFastFixedArrayForEach(
Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse) {
CodeStubAssembler::VariableList list(0, zone());
BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
last_element_exclusive, body, mode, direction);
}
TNode<IntPtrT> GetArrayAllocationSize(Node* element_count, ElementsKind kind,
ParameterMode mode, int header_size) {
return ElementOffsetFromIndex(element_count, kind, mode, header_size);
}
TNode<IntPtrT> GetFixedArrayAllocationSize(Node* element_count,
ElementsKind kind,
ParameterMode mode) {
return GetArrayAllocationSize(element_count, kind, mode,
FixedArray::kHeaderSize);
}
TNode<IntPtrT> GetPropertyArrayAllocationSize(Node* element_count,
ParameterMode mode) {
return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
PropertyArray::kHeaderSize);
}
void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
Label* doesnt_fit, int base_size,
ParameterMode mode);
void InitializeFieldsWithRoot(Node* object, Node* start_offset,
Node* end_offset, RootIndex root);
Node* RelationalComparison(Operation op, Node* left, Node* right,
Node* context,
Variable* var_type_feedback = nullptr);
void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
Label* if_true, Label* if_false);
void BranchIfNumberEqual(TNode<Number> left, TNode<Number> right,
Label* if_true, Label* if_false) {
BranchIfNumberRelationalComparison(Operation::kEqual, left, right, if_true,
if_false);
}
void BranchIfNumberNotEqual(TNode<Number> left, TNode<Number> right,
Label* if_true, Label* if_false) {
BranchIfNumberEqual(left, right, if_false, if_true);
}
void BranchIfNumberLessThan(TNode<Number> left, TNode<Number> right,
Label* if_true, Label* if_false) {
BranchIfNumberRelationalComparison(Operation::kLessThan, left, right,
if_true, if_false);
}
void BranchIfNumberLessThanOrEqual(TNode<Number> left, TNode<Number> right,
Label* if_true, Label* if_false) {
BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right,
if_true, if_false);
}
void BranchIfNumberGreaterThan(TNode<Number> left, TNode<Number> right,
Label* if_true, Label* if_false) {
BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right,
if_true, if_false);
}
void BranchIfNumberGreaterThanOrEqual(TNode<Number> left, TNode<Number> right,
Label* if_true, Label* if_false) {
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
right, if_true, if_false);
}
void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
Label* if_not_accessor_pair) {
GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
}
void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);
Node* Equal(Node* lhs, Node* rhs, Node* context,
Variable* var_type_feedback = nullptr);
Node* StrictEqual(Node* lhs, Node* rhs,
Variable* var_type_feedback = nullptr);
// ECMA#sec-samevalue
// Similar to StrictEqual except that NaNs are treated as equal and minus zero
// differs from positive zero.
enum class SameValueMode { kNumbersOnly, kFull };
void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false,
SameValueMode mode = SameValueMode::kFull);
// A part of BranchIfSameValue() that handles two double values.
// Treats NaN == NaN and +0 != -0.
void BranchIfSameNumberValue(TNode<Float64T> lhs_value,
TNode<Float64T> rhs_value, Label* if_true,
Label* if_false);
enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };
TNode<Oddball> HasProperty(SloppyTNode<Context> context,
SloppyTNode<Object> object,
SloppyTNode<Object> key,
HasPropertyLookupMode mode);
// Due to naming conflict with the builtin function namespace.
TNode<Oddball> HasProperty_Inline(TNode<Context> context,
TNode<JSReceiver> object,
TNode<Object> key) {
return HasProperty(context, object, key,
HasPropertyLookupMode::kHasProperty);
}
Node* Typeof(Node* value);
TNode<Object> GetSuperConstructor(SloppyTNode<Context> context,
SloppyTNode<JSFunction> active_function);
TNode<JSReceiver> SpeciesConstructor(
SloppyTNode<Context> context, SloppyTNode<Object> object,
SloppyTNode<JSReceiver> default_constructor);
Node* InstanceOf(Node* object, Node* callable, Node* context);
// Debug helpers
Node* IsDebugActive();
TNode<BoolT> IsRuntimeCallStatsEnabled();
// JSArrayBuffer helpers
TNode<Uint32T> LoadJSArrayBufferBitField(TNode<JSArrayBuffer> array_buffer);
TNode<RawPtrT> LoadJSArrayBufferBackingStore(
TNode<JSArrayBuffer> array_buffer);
Node* IsDetachedBuffer(Node* buffer);
void ThrowIfArrayBufferIsDetached(SloppyTNode<Context> context,
TNode<JSArrayBuffer> array_buffer,
const char* method_name);
// JSArrayBufferView helpers
TNode<JSArrayBuffer> LoadJSArrayBufferViewBuffer(
TNode<JSArrayBufferView> array_buffer_view);
TNode<UintPtrT> LoadJSArrayBufferViewByteLength(
TNode<JSArrayBufferView> array_buffer_view);
TNode<UintPtrT> LoadJSArrayBufferViewByteOffset(
TNode<JSArrayBufferView> array_buffer_view);
void ThrowIfArrayBufferViewBufferIsDetached(
SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
const char* method_name);
// JSTypedArray helpers
TNode<Smi> LoadJSTypedArrayLength(TNode<JSTypedArray> typed_array);
TNode<IntPtrT> ElementOffsetFromIndex(Node* index, ElementsKind kind,
ParameterMode mode, int base_size = 0);
// Check that a field offset is within the bounds of the an object.
TNode<BoolT> IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
SloppyTNode<IntPtrT> length, int header_size,
ElementsKind kind = HOLEY_ELEMENTS);
// Load a builtin's code from the builtin array in the isolate.
TNode<Code> LoadBuiltin(TNode<Smi> builtin_id);
// Figure out the SFI's code object using its data field.
// If |if_compile_lazy| is provided then the execution will go to the given
// label in case of an CompileLazy code object.
TNode<Code> GetSharedFunctionInfoCode(
SloppyTNode<SharedFunctionInfo> shared_info,
Label* if_compile_lazy = nullptr);
Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
Node* context);
// Promise helpers
Node* IsPromiseHookEnabled();
Node* HasAsyncEventDelegate();
Node* IsPromiseHookEnabledOrHasAsyncEventDelegate();
Node* IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate();
// Helpers for StackFrame markers.
Node* MarkerIsFrameType(Node* marker_or_function,
StackFrame::Type frame_type);
Node* MarkerIsNotFrameType(Node* marker_or_function,
StackFrame::Type frame_type);
// for..in helpers
void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
Label* if_fast, Label* if_slow);
Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);
TNode<Object> GetArgumentValue(BaseBuiltinsFromDSLAssembler::Arguments args,
TNode<IntPtrT> index);
BaseBuiltinsFromDSLAssembler::Arguments GetFrameArguments(
TNode<RawPtrT> frame, TNode<IntPtrT> argc);
// Support for printf-style debugging
void Print(const char* s);
void Print(const char* prefix, Node* tagged_value);
inline void Print(SloppyTNode<Object> tagged_value) {
return Print(nullptr, tagged_value);
}
inline void Print(TNode<MaybeObject> tagged_value) {
return Print(nullptr, tagged_value);
}
template <class... TArgs>
Node* MakeTypeError(MessageTemplate message, Node* context, TArgs... args) {
STATIC_ASSERT(sizeof...(TArgs) <= 3);
Node* const make_type_error = LoadContextElement(
LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
UndefinedConstant(), SmiConstant(message), args...);
}
void Abort(AbortReason reason) {
CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
Unreachable();
}
bool ConstexprBoolNot(bool value) { return !value; }
bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; }
bool ConstexprInt31GreaterThanEqual(int31_t a, int31_t b) { return a >= b; }
uint32_t ConstexprUint32Add(uint32_t a, uint32_t b) { return a + b; }
int31_t ConstexprInt31Add(int31_t a, int31_t b) {
int32_t val;
CHECK(!base::bits::SignedAddOverflow32(a, b, &val));
return val;
}
int31_t ConstexprInt31Mul(int31_t a, int31_t b) {
int32_t val;
CHECK(!base::bits::SignedMulOverflow32(a, b, &val));
return val;
}
void PerformStackCheck(TNode<Context> context);
void SetPropertyLength(TNode<Context> context, TNode<Object> array,
TNode<Number> length);
// Checks that {object_map}'s prototype map is the {initial_prototype_map} and
// makes sure that the field with name at index {descriptor} is still
// constant. If it is not, go to label {if_modified}.
//
// To make the checks robust, the method also asserts that the descriptor has
// the right key, the caller must pass the root index of the key
// in {field_name_root_index}.
//
// This is useful for checking that given function has not been patched
// on the prototype.
void GotoIfInitialPrototypePropertyModified(TNode<Map> object_map,
TNode<Map> initial_prototype_map,
int descfriptor,
RootIndex field_name_root_index,
Label* if_modified);
struct DescriptorIndexAndName {
DescriptorIndexAndName() {}
DescriptorIndexAndName(int descriptor_index, RootIndex name_root_index)
: descriptor_index(descriptor_index),
name_root_index(name_root_index) {}
int descriptor_index;
RootIndex name_root_index;
};
void GotoIfInitialPrototypePropertiesModified(
TNode<Map> object_map, TNode<Map> initial_prototype_map,
Vector<DescriptorIndexAndName> properties, Label* if_modified);
// Implements DescriptorArray::Search().
void DescriptorLookup(SloppyTNode<Name> unique_name,
SloppyTNode<DescriptorArray> descriptors,
SloppyTNode<Uint32T> bitfield3, Label* if_found,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found);
// Implements TransitionArray::SearchName() - searches for first transition
// entry with given name (note that there could be multiple entries with
// the same name).
void TransitionLookup(SloppyTNode<Name> unique_name,
SloppyTNode<TransitionArray> transitions,
Label* if_found, TVariable<IntPtrT>* var_name_index,
Label* if_not_found);
// Implements generic search procedure like i::Search<Array>().
template <typename Array>
void Lookup(TNode<Name> unique_name, TNode<Array> array,
TNode<Uint32T> number_of_valid_entries, Label* if_found,
TVariable<IntPtrT>* var_name_index, Label* if_not_found);
// Implements generic linear search procedure like i::LinearSearch<Array>().
template <typename Array>
void LookupLinear(TNode<Name> unique_name, TNode<Array> array,
TNode<Uint32T> number_of_valid_entries, Label* if_found,
TVariable<IntPtrT>* var_name_index, Label* if_not_found);
// Implements generic binary search procedure like i::BinarySearch<Array>().
template <typename Array>
void LookupBinary(TNode<Name> unique_name, TNode<Array> array,
TNode<Uint32T> number_of_valid_entries, Label* if_found,
TVariable<IntPtrT>* var_name_index, Label* if_not_found);
// Converts [Descriptor/Transition]Array entry number to a fixed array index.
template <typename Array>
TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index);
// Implements [Descriptor/Transition]Array::ToKeyIndex.
template <typename Array>
TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index);
// Implements [Descriptor/Transition]Array::GetKey.
template <typename Array>
TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index);
// Implements DescriptorArray::GetDetails.
TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
TNode<Uint32T> descriptor_number);
typedef std::function<void(TNode<IntPtrT> descriptor_key_index)>
ForEachDescriptorBodyFunction;
// Descriptor array accessors based on key_index, which is equal to
// DescriptorArray::ToKeyIndex(descriptor).
TNode<Name> LoadKeyByKeyIndex(TNode<DescriptorArray> container,
TNode<IntPtrT> key_index);
TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container,
TNode<IntPtrT> key_index);
TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container,
TNode<IntPtrT> key_index);
TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container,
TNode<IntPtrT> key_index);
TNode<IntPtrT> DescriptorEntryToIndex(TNode<IntPtrT> descriptor);
// Descriptor array accessors based on descriptor.
TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
TNode<IntPtrT> descriptor);
TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
int descriptor);
TNode<Uint32T> LoadDetailsByDescriptorEntry(
TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
TNode<Uint32T> LoadDetailsByDescriptorEntry(
TNode<DescriptorArray> descriptors, int descriptor);
TNode<Object> LoadValueByDescriptorEntry(TNode<DescriptorArray> descriptors,
int descriptor);
TNode<MaybeObject> LoadFieldTypeByDescriptorEntry(
TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
typedef std::function<void(TNode<Name> key, TNode<Object> value)>
ForEachKeyValueFunction;
enum ForEachEnumerationMode {
// String and then Symbol properties according to the spec
// ES#sec-object.assign
kEnumerationOrder,
// Order of property addition
kPropertyAdditionOrder,
};
// For each JSObject property (in DescriptorArray order), check if the key is
// enumerable, and if so, load the value from the receiver and evaluate the
// closure.
void ForEachEnumerableOwnProperty(TNode<Context> context, TNode<Map> map,
TNode<JSObject> object,
ForEachEnumerationMode mode,
const ForEachKeyValueFunction& body,
Label* bailout);
TNode<Object> CallGetterIfAccessor(Node* value, Node* details, Node* context,
Node* receiver, Label* if_bailout,
GetOwnPropertyMode mode = kCallJSGetter);
TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);
void BranchIfPrototypesHaveNoElements(Node* receiver_map,
Label* definitely_no_elements,
Label* possibly_elements);
void InitializeFunctionContext(Node* native_context, Node* context,
int slots);
TNode<JSArray> ArrayCreate(TNode<Context> context, TNode<Number> length);
// Allocate a clone of a mutable primitive, if {object} is a
// MutableHeapNumber.
TNode<Object> CloneIfMutablePrimitive(TNode<Object> object);
private:
friend class CodeStubArguments;
void HandleBreakOnNode();
TNode<HeapObject> AllocateRawDoubleAligned(TNode<IntPtrT> size_in_bytes,
AllocationFlags flags,
TNode<RawPtrT> top_address,
TNode<RawPtrT> limit_address);
TNode<HeapObject> AllocateRawUnaligned(TNode<IntPtrT> size_in_bytes,
AllocationFlags flags,
TNode<RawPtrT> top_address,
TNode<RawPtrT> limit_address);
TNode<HeapObject> AllocateRaw(TNode<IntPtrT> size_in_bytes,
AllocationFlags flags,
TNode<RawPtrT> top_address,
TNode<RawPtrT> limit_address);
// Allocate and return a JSArray of given total size in bytes with header
// fields initialized.
TNode<JSArray> AllocateUninitializedJSArray(TNode<Map> array_map,
TNode<Smi> length,
Node* allocation_site,
TNode<IntPtrT> size_in_bytes);
TNode<BoolT> IsValidSmi(TNode<Smi> smi);
Node* SmiShiftBitsConstant();
// Emits keyed sloppy arguments load if the |value| is nullptr or store
// otherwise. Returns either the loaded value or |value|.
Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
Label* bailout,
ArgumentsAccessMode access_mode);
TNode<String> AllocateSlicedString(RootIndex map_root_index,
TNode<Uint32T> length,
TNode<String> parent, TNode<Smi> offset);
// Allocate a MutableHeapNumber without initializing its value.
TNode<MutableHeapNumber> AllocateMutableHeapNumber();
Node* SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body,
const NodeGenerator& false_body, MachineRepresentation rep);
// Implements [Descriptor/Transition]Array::number_of_entries.
template <typename Array>
TNode<Uint32T> NumberOfEntries(TNode<Array> array);
// Implements [Descriptor/Transition]Array::GetSortedKeyIndex.
template <typename Array>
TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors,
TNode<Uint32T> entry_index);
TNode<Smi> CollectFeedbackForString(SloppyTNode<Int32T> instance_type);
void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
Variable* var_type_feedback = nullptr);
TNode<String> AllocAndCopyStringCharacters(Node* from,
Node* from_instance_type,
TNode<IntPtrT> from_index,
TNode<IntPtrT> character_count);
static const int kElementLoopUnrollThreshold = 8;
// {convert_bigint} is only meaningful when {mode} == kToNumber.
Node* NonNumberToNumberOrNumeric(
Node* context, Node* input, Object::Conversion mode,
BigIntHandling bigint_handling = BigIntHandling::kThrow);
void TaggedToNumeric(Node* context, Node* value, Label* done,
Variable* var_numeric, Variable* var_feedback);
template <Object::Conversion conversion>
void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
Variable* var_word32,
Label* if_bigint = nullptr,
Variable* var_bigint = nullptr,
Variable* var_feedback = nullptr);
private:
// Low-level accessors for Descriptor arrays.
TNode<MaybeObject> LoadDescriptorArrayElement(TNode<DescriptorArray> object,
Node* index,
int additional_offset = 0);
};
class V8_EXPORT_PRIVATE CodeStubArguments {
public:
typedef compiler::Node Node;
template <class T>
using TNode = compiler::TNode<T>;
template <class T>
using SloppyTNode = compiler::SloppyTNode<T>;
enum ReceiverMode { kHasReceiver, kNoReceiver };
// |argc| is an intptr value which specifies the number of arguments passed
// to the builtin excluding the receiver. The arguments will include a
// receiver iff |receiver_mode| is kHasReceiver.
CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
: CodeStubArguments(assembler, argc, nullptr,
CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
}
// |argc| is either a smi or intptr depending on |param_mode|. The arguments
// include a receiver iff |receiver_mode| is kHasReceiver.
CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
CodeStubAssembler::ParameterMode param_mode,
ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);
// Used by Torque to construct arguments based on a Torque-defined
// struct of values.
CodeStubArguments(CodeStubAssembler* assembler,
BaseBuiltinsFromDSLAssembler::Arguments torque_arguments)
: assembler_(assembler),
argc_mode_(CodeStubAssembler::INTPTR_PARAMETERS),
receiver_mode_(ReceiverMode::kHasReceiver),
argc_(torque_arguments.length),
base_(torque_arguments.base),
fp_(torque_arguments.frame) {}
TNode<Object> GetReceiver() const;
// Replaces receiver argument on the expression stack. Should be used only
// for manipulating arguments in trampoline builtins before tail calling
// further with passing all the JS arguments as is.
void SetReceiver(TNode<Object> object) const;
// Computes address of the index'th argument.
TNode<WordT> AtIndexPtr(Node* index,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) const;
// |index| is zero-based and does not include the receiver
TNode<Object> AtIndex(Node* index,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) const;
TNode<Object> AtIndex(int index) const;
TNode<Object> GetOptionalArgumentValue(int index) {
return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
}
TNode<Object> GetOptionalArgumentValue(int index,
TNode<Object> default_value);
Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
DCHECK_EQ(mode, argc_mode_);
return argc_;
}
BaseBuiltinsFromDSLAssembler::Arguments GetTorqueArguments() const {
DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
return BaseBuiltinsFromDSLAssembler::Arguments{
assembler_->UncheckedCast<RawPtrT>(fp_), base_,
assembler_->UncheckedCast<IntPtrT>(argc_)};
}
TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) {
return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
}
TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index,
TNode<Object> default_value);
TNode<IntPtrT> GetLength() const {
DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
return assembler_->UncheckedCast<IntPtrT>(argc_);
}
typedef std::function<void(Node* arg)> ForEachBodyFunction;
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
Node* last = nullptr,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) {
CodeStubAssembler::VariableList list(0, assembler_->zone());
ForEach(list, body, first, last);
}
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const CodeStubAssembler::VariableList& vars,
const ForEachBodyFunction& body, Node* first = nullptr,
Node* last = nullptr,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS);
void PopAndReturn(Node* value);
private:
Node* GetArguments();
CodeStubAssembler* assembler_;
CodeStubAssembler::ParameterMode argc_mode_;
ReceiverMode receiver_mode_;
Node* argc_;
TNode<RawPtrT> base_;
Node* fp_;
};
class ToDirectStringAssembler : public CodeStubAssembler {
private:
enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };
public:
enum Flag {
kDontUnpackSlicedStrings = 1 << 0,
};
typedef base::Flags<Flag> Flags;
ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
Flags flags = Flags());
// Converts flat cons, thin, and sliced strings and returns the direct
// string. The result can be either a sequential or external string.
// Jumps to if_bailout if the string if the string is indirect and cannot
// be unpacked.
TNode<String> TryToDirect(Label* if_bailout);
// Returns a pointer to the beginning of the string data.
// Jumps to if_bailout if the external string cannot be unpacked.
TNode<RawPtrT> PointerToData(Label* if_bailout) {
return TryToSequential(PTR_TO_DATA, if_bailout);
}
// Returns a pointer that, offset-wise, looks like a String.
// Jumps to if_bailout if the external string cannot be unpacked.
TNode<RawPtrT> PointerToString(Label* if_bailout) {
return TryToSequential(PTR_TO_STRING, if_bailout);
}
Node* string() { return var_string_.value(); }
Node* instance_type() { return var_instance_type_.value(); }
TNode<IntPtrT> offset() {
return UncheckedCast<IntPtrT>(var_offset_.value());
}
Node* is_external() { return var_is_external_.value(); }
private:
TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);
Variable var_string_;
Variable var_instance_type_;
Variable var_offset_;
Variable var_is_external_;
const Flags flags_;
};
DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags)
} // namespace internal
} // namespace v8
#endif // V8_CODE_STUB_ASSEMBLER_H_