blob: 7062db640d513341c48ad485412d6e343a5299a8 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/optimizing-compile-dispatcher.h"
#include "src/base/atomicops.h"
#include "src/full-codegen/full-codegen.h"
#include "src/isolate.h"
#include "src/v8.h"
namespace v8 {
namespace internal {
namespace {
void DisposeOptimizedCompileJob(OptimizedCompileJob* job,
bool restore_function_code) {
// The recompile job is allocated in the CompilationInfo's zone.
CompilationInfo* info = job->info();
if (restore_function_code) {
if (info->is_osr()) {
if (!job->IsWaitingForInstall()) {
// Remove stack check that guards OSR entry on original code.
Handle<Code> code = info->unoptimized_code();
uint32_t offset = code->TranslateAstIdToPcOffset(info->osr_ast_id());
BackEdgeTable::RemoveStackCheck(code, offset);
}
} else {
Handle<JSFunction> function = info->closure();
function->ReplaceCode(function->shared()->code());
}
}
delete info;
}
} // namespace
class OptimizingCompileDispatcher::CompileTask : public v8::Task {
public:
explicit CompileTask(Isolate* isolate) : isolate_(isolate) {
OptimizingCompileDispatcher* dispatcher =
isolate_->optimizing_compile_dispatcher();
base::LockGuard<base::Mutex> lock_guard(&dispatcher->ref_count_mutex_);
++dispatcher->ref_count_;
}
virtual ~CompileTask() {}
private:
// v8::Task overrides.
void Run() override {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
OptimizingCompileDispatcher* dispatcher =
isolate_->optimizing_compile_dispatcher();
{
TimerEventScope<TimerEventRecompileConcurrent> timer(isolate_);
if (dispatcher->recompilation_delay_ != 0) {
base::OS::Sleep(base::TimeDelta::FromMilliseconds(
dispatcher->recompilation_delay_));
}
dispatcher->CompileNext(dispatcher->NextInput(true));
}
{
base::LockGuard<base::Mutex> lock_guard(&dispatcher->ref_count_mutex_);
if (--dispatcher->ref_count_ == 0) {
dispatcher->ref_count_zero_.NotifyOne();
}
}
}
Isolate* isolate_;
DISALLOW_COPY_AND_ASSIGN(CompileTask);
};
OptimizingCompileDispatcher::~OptimizingCompileDispatcher() {
#ifdef DEBUG
{
base::LockGuard<base::Mutex> lock_guard(&ref_count_mutex_);
DCHECK_EQ(0, ref_count_);
}
#endif
DCHECK_EQ(0, input_queue_length_);
DeleteArray(input_queue_);
if (FLAG_concurrent_osr) {
#ifdef DEBUG
for (int i = 0; i < osr_buffer_capacity_; i++) {
CHECK_NULL(osr_buffer_[i]);
}
#endif
DeleteArray(osr_buffer_);
}
}
OptimizedCompileJob* OptimizingCompileDispatcher::NextInput(
bool check_if_flushing) {
base::LockGuard<base::Mutex> access_input_queue_(&input_queue_mutex_);
if (input_queue_length_ == 0) return NULL;
OptimizedCompileJob* job = input_queue_[InputQueueIndex(0)];
DCHECK_NOT_NULL(job);
input_queue_shift_ = InputQueueIndex(1);
input_queue_length_--;
if (check_if_flushing) {
if (static_cast<ModeFlag>(base::Acquire_Load(&mode_)) == FLUSH) {
if (!job->info()->is_osr()) {
AllowHandleDereference allow_handle_dereference;
DisposeOptimizedCompileJob(job, true);
}
return NULL;
}
}
return job;
}
void OptimizingCompileDispatcher::CompileNext(OptimizedCompileJob* job) {
if (!job) return;
// The function may have already been optimized by OSR. Simply continue.
OptimizedCompileJob::Status status = job->OptimizeGraph();
USE(status); // Prevent an unused-variable error in release mode.
DCHECK(status != OptimizedCompileJob::FAILED);
// The function may have already been optimized by OSR. Simply continue.
// Use a mutex to make sure that functions marked for install
// are always also queued.
base::LockGuard<base::Mutex> access_output_queue_(&output_queue_mutex_);
output_queue_.push(job);
isolate_->stack_guard()->RequestInstallCode();
}
void OptimizingCompileDispatcher::FlushOutputQueue(bool restore_function_code) {
for (;;) {
OptimizedCompileJob* job = NULL;
{
base::LockGuard<base::Mutex> access_output_queue_(&output_queue_mutex_);
if (output_queue_.empty()) return;
job = output_queue_.front();
output_queue_.pop();
}
// OSR jobs are dealt with separately.
if (!job->info()->is_osr()) {
DisposeOptimizedCompileJob(job, restore_function_code);
}
}
}
void OptimizingCompileDispatcher::FlushOsrBuffer(bool restore_function_code) {
for (int i = 0; i < osr_buffer_capacity_; i++) {
if (osr_buffer_[i] != NULL) {
DisposeOptimizedCompileJob(osr_buffer_[i], restore_function_code);
osr_buffer_[i] = NULL;
}
}
}
void OptimizingCompileDispatcher::Flush() {
base::Release_Store(&mode_, static_cast<base::AtomicWord>(FLUSH));
if (FLAG_block_concurrent_recompilation) Unblock();
{
base::LockGuard<base::Mutex> lock_guard(&ref_count_mutex_);
while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_);
base::Release_Store(&mode_, static_cast<base::AtomicWord>(COMPILE));
}
FlushOutputQueue(true);
if (FLAG_concurrent_osr) FlushOsrBuffer(true);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Flushed concurrent recompilation queues.\n");
}
}
void OptimizingCompileDispatcher::Stop() {
base::Release_Store(&mode_, static_cast<base::AtomicWord>(FLUSH));
if (FLAG_block_concurrent_recompilation) Unblock();
{
base::LockGuard<base::Mutex> lock_guard(&ref_count_mutex_);
while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_);
base::Release_Store(&mode_, static_cast<base::AtomicWord>(COMPILE));
}
if (recompilation_delay_ != 0) {
// At this point the optimizing compiler thread's event loop has stopped.
// There is no need for a mutex when reading input_queue_length_.
while (input_queue_length_ > 0) CompileNext(NextInput());
InstallOptimizedFunctions();
} else {
FlushOutputQueue(false);
}
if (FLAG_concurrent_osr) FlushOsrBuffer(false);
if ((FLAG_trace_osr || FLAG_trace_concurrent_recompilation) &&
FLAG_concurrent_osr) {
PrintF("[COSR hit rate %d / %d]\n", osr_hits_, osr_attempts_);
}
}
void OptimizingCompileDispatcher::InstallOptimizedFunctions() {
HandleScope handle_scope(isolate_);
for (;;) {
OptimizedCompileJob* job = NULL;
{
base::LockGuard<base::Mutex> access_output_queue_(&output_queue_mutex_);
if (output_queue_.empty()) return;
job = output_queue_.front();
output_queue_.pop();
}
CompilationInfo* info = job->info();
Handle<JSFunction> function(*info->closure());
if (info->is_osr()) {
if (FLAG_trace_osr) {
PrintF("[COSR - ");
function->ShortPrint();
PrintF(" is ready for install and entry at AST id %d]\n",
info->osr_ast_id().ToInt());
}
job->WaitForInstall();
// Remove stack check that guards OSR entry on original code.
Handle<Code> code = info->unoptimized_code();
uint32_t offset = code->TranslateAstIdToPcOffset(info->osr_ast_id());
BackEdgeTable::RemoveStackCheck(code, offset);
} else {
if (function->IsOptimized()) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Aborting compilation for ");
function->ShortPrint();
PrintF(" as it has already been optimized.\n");
}
DisposeOptimizedCompileJob(job, false);
} else {
Handle<Code> code = Compiler::GetConcurrentlyOptimizedCode(job);
function->ReplaceCode(code.is_null() ? function->shared()->code()
: *code);
}
}
}
}
void OptimizingCompileDispatcher::QueueForOptimization(
OptimizedCompileJob* job) {
DCHECK(IsQueueAvailable());
CompilationInfo* info = job->info();
if (info->is_osr()) {
osr_attempts_++;
AddToOsrBuffer(job);
// Add job to the front of the input queue.
base::LockGuard<base::Mutex> access_input_queue(&input_queue_mutex_);
DCHECK_LT(input_queue_length_, input_queue_capacity_);
// Move shift_ back by one.
input_queue_shift_ = InputQueueIndex(input_queue_capacity_ - 1);
input_queue_[InputQueueIndex(0)] = job;
input_queue_length_++;
} else {
// Add job to the back of the input queue.
base::LockGuard<base::Mutex> access_input_queue(&input_queue_mutex_);
DCHECK_LT(input_queue_length_, input_queue_capacity_);
input_queue_[InputQueueIndex(input_queue_length_)] = job;
input_queue_length_++;
}
if (FLAG_block_concurrent_recompilation) {
blocked_jobs_++;
} else {
V8::GetCurrentPlatform()->CallOnBackgroundThread(
new CompileTask(isolate_), v8::Platform::kShortRunningTask);
}
}
void OptimizingCompileDispatcher::Unblock() {
while (blocked_jobs_ > 0) {
V8::GetCurrentPlatform()->CallOnBackgroundThread(
new CompileTask(isolate_), v8::Platform::kShortRunningTask);
blocked_jobs_--;
}
}
OptimizedCompileJob* OptimizingCompileDispatcher::FindReadyOSRCandidate(
Handle<JSFunction> function, BailoutId osr_ast_id) {
for (int i = 0; i < osr_buffer_capacity_; i++) {
OptimizedCompileJob* current = osr_buffer_[i];
if (current != NULL && current->IsWaitingForInstall() &&
current->info()->HasSameOsrEntry(function, osr_ast_id)) {
osr_hits_++;
osr_buffer_[i] = NULL;
return current;
}
}
return NULL;
}
bool OptimizingCompileDispatcher::IsQueuedForOSR(Handle<JSFunction> function,
BailoutId osr_ast_id) {
for (int i = 0; i < osr_buffer_capacity_; i++) {
OptimizedCompileJob* current = osr_buffer_[i];
if (current != NULL &&
current->info()->HasSameOsrEntry(function, osr_ast_id)) {
return !current->IsWaitingForInstall();
}
}
return false;
}
bool OptimizingCompileDispatcher::IsQueuedForOSR(JSFunction* function) {
for (int i = 0; i < osr_buffer_capacity_; i++) {
OptimizedCompileJob* current = osr_buffer_[i];
if (current != NULL && *current->info()->closure() == function) {
return !current->IsWaitingForInstall();
}
}
return false;
}
void OptimizingCompileDispatcher::AddToOsrBuffer(OptimizedCompileJob* job) {
// Find the next slot that is empty or has a stale job.
OptimizedCompileJob* stale = NULL;
while (true) {
stale = osr_buffer_[osr_buffer_cursor_];
if (stale == NULL || stale->IsWaitingForInstall()) break;
osr_buffer_cursor_ = (osr_buffer_cursor_ + 1) % osr_buffer_capacity_;
}
// Add to found slot and dispose the evicted job.
if (stale != NULL) {
DCHECK(stale->IsWaitingForInstall());
CompilationInfo* info = stale->info();
if (FLAG_trace_osr) {
PrintF("[COSR - Discarded ");
info->closure()->PrintName();
PrintF(", AST id %d]\n", info->osr_ast_id().ToInt());
}
DisposeOptimizedCompileJob(stale, false);
}
osr_buffer_[osr_buffer_cursor_] = job;
osr_buffer_cursor_ = (osr_buffer_cursor_ + 1) % osr_buffer_capacity_;
}
} // namespace internal
} // namespace v8