blob: f199204abd5c58c794c86b91857b1350c8a758fa [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <algorithm>
#include <fstream>
#include <iomanip>
#include <iterator>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
#ifdef ENABLE_VTUNE_JIT_INTERFACE
#include "src/third_party/vtune/v8-vtune.h"
#endif
#include "include/libplatform/libplatform.h"
#include "include/libplatform/v8-tracing.h"
#include "include/v8-inspector.h"
#include "include/v8-profiler.h"
#include "src/api/api-inl.h"
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/sys-info.h"
#include "src/d8/d8-console.h"
#include "src/d8/d8-platforms.h"
#include "src/d8/d8.h"
#include "src/debug/debug-interface.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/diagnostics/basic-block-profiler.h"
#include "src/execution/vm-state-inl.h"
#include "src/flags/flags.h"
#include "src/handles/maybe-handles.h"
#include "src/init/v8.h"
#include "src/interpreter/interpreter.h"
#include "src/logging/counters.h"
#include "src/objects/managed.h"
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parsing.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/profiler/profile-generator.h"
#include "src/sanitizer/msan.h"
#include "src/snapshot/snapshot.h"
#include "src/tasks/cancelable-task.h"
#include "src/trap-handler/trap-handler.h"
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"
#include "src/wasm/wasm-engine.h"
#ifdef V8_FUZZILLI
#include "src/d8/cov.h"
#endif // V8_FUZZILLI
#ifdef V8_USE_PERFETTO
#include "perfetto/tracing.h"
#endif // V8_USE_PERFETTO
#ifdef V8_INTL_SUPPORT
#include "unicode/locid.h"
#endif // V8_INTL_SUPPORT
#ifdef V8_OS_LINUX
#include <sys/mman.h> // For MultiMappedAllocator.
#endif
#if !defined(_WIN32) && !defined(_WIN64)
#include <unistd.h> // NOLINT
#else
#include <windows.h> // NOLINT
#endif // !defined(_WIN32) && !defined(_WIN64)
#ifndef DCHECK
#define DCHECK(condition) assert(condition)
#endif
#ifndef CHECK
#define CHECK(condition) assert(condition)
#endif
#define TRACE_BS(...) \
do { \
if (i::FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
} while (false)
namespace v8 {
namespace {
const int kMB = 1024 * 1024;
#ifdef V8_FUZZILLI
// REPRL = read-eval-print-loop
// These file descriptors are being opened when Fuzzilli uses fork & execve to
// run V8.
#define REPRL_CRFD 100 // Control read file decriptor
#define REPRL_CWFD 101 // Control write file decriptor
#define REPRL_DRFD 102 // Data read file decriptor
#define REPRL_DWFD 103 // Data write file decriptor
bool fuzzilli_reprl = true;
#else
bool fuzzilli_reprl = false;
#endif // V8_FUZZILLI
const int kMaxSerializerMemoryUsage =
1 * kMB; // Arbitrary maximum for testing.
// Base class for shell ArrayBuffer allocators. It forwards all opertions to
// the default v8 allocator.
class ArrayBufferAllocatorBase : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
return allocator_->Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
return allocator_->AllocateUninitialized(length);
}
void Free(void* data, size_t length) override {
allocator_->Free(data, length);
}
private:
std::unique_ptr<Allocator> allocator_ =
std::unique_ptr<Allocator>(NewDefaultAllocator());
};
// ArrayBuffer allocator that can use virtual memory to improve performance.
class ShellArrayBufferAllocator : public ArrayBufferAllocatorBase {
public:
void* Allocate(size_t length) override {
if (length >= kVMThreshold) return AllocateVM(length);
return ArrayBufferAllocatorBase::Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
if (length >= kVMThreshold) return AllocateVM(length);
return ArrayBufferAllocatorBase::AllocateUninitialized(length);
}
void Free(void* data, size_t length) override {
if (length >= kVMThreshold) {
FreeVM(data, length);
} else {
ArrayBufferAllocatorBase::Free(data, length);
}
}
private:
static constexpr size_t kVMThreshold = 65536;
void* AllocateVM(size_t length) {
DCHECK_LE(kVMThreshold, length);
v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
size_t page_size = page_allocator->AllocatePageSize();
size_t allocated = RoundUp(length, page_size);
return i::AllocatePages(page_allocator, nullptr, allocated, page_size,
PageAllocator::kReadWrite);
}
void FreeVM(void* data, size_t length) {
v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
size_t page_size = page_allocator->AllocatePageSize();
size_t allocated = RoundUp(length, page_size);
CHECK(i::FreePages(page_allocator, data, allocated));
}
};
// ArrayBuffer allocator that never allocates over 10MB.
class MockArrayBufferAllocator : public ArrayBufferAllocatorBase {
protected:
void* Allocate(size_t length) override {
return ArrayBufferAllocatorBase::Allocate(Adjust(length));
}
void* AllocateUninitialized(size_t length) override {
return ArrayBufferAllocatorBase::AllocateUninitialized(Adjust(length));
}
void Free(void* data, size_t length) override {
return ArrayBufferAllocatorBase::Free(data, Adjust(length));
}
private:
size_t Adjust(size_t length) {
const size_t kAllocationLimit = 10 * kMB;
return length > kAllocationLimit ? i::AllocatePageSize() : length;
}
};
// ArrayBuffer allocator that can be equipped with a limit to simulate system
// OOM.
class MockArrayBufferAllocatiorWithLimit : public MockArrayBufferAllocator {
public:
explicit MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)
: space_left_(allocation_limit) {}
protected:
void* Allocate(size_t length) override {
if (length > space_left_) {
return nullptr;
}
space_left_ -= length;
return MockArrayBufferAllocator::Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
if (length > space_left_) {
return nullptr;
}
space_left_ -= length;
return MockArrayBufferAllocator::AllocateUninitialized(length);
}
void Free(void* data, size_t length) override {
space_left_ += length;
return MockArrayBufferAllocator::Free(data, length);
}
private:
std::atomic<size_t> space_left_;
};
#ifdef V8_OS_LINUX
// This is a mock allocator variant that provides a huge virtual allocation
// backed by a small real allocation that is repeatedly mapped. If you create an
// array on memory allocated by this allocator, you will observe that elements
// will alias each other as if their indices were modulo-divided by the real
// allocation length.
// The purpose is to allow stability-testing of huge (typed) arrays without
// actually consuming huge amounts of physical memory.
// This is currently only available on Linux because it relies on {mremap}.
class MultiMappedAllocator : public ArrayBufferAllocatorBase {
protected:
void* Allocate(size_t length) override {
if (length < kChunkSize) {
return ArrayBufferAllocatorBase::Allocate(length);
}
// We use mmap, which initializes pages to zero anyway.
return AllocateUninitialized(length);
}
void* AllocateUninitialized(size_t length) override {
if (length < kChunkSize) {
return ArrayBufferAllocatorBase::AllocateUninitialized(length);
}
size_t rounded_length = RoundUp(length, kChunkSize);
int prot = PROT_READ | PROT_WRITE;
// We have to specify MAP_SHARED to make {mremap} below do what we want.
int flags = MAP_SHARED | MAP_ANONYMOUS;
void* real_alloc = mmap(nullptr, kChunkSize, prot, flags, -1, 0);
if (reinterpret_cast<intptr_t>(real_alloc) == -1) {
// If we ran into some limit (physical or virtual memory, or number
// of mappings, etc), return {nullptr}, which callers can handle.
if (errno == ENOMEM) {
return nullptr;
}
// Other errors may be bugs which we want to learn about.
FATAL("mmap (real) failed with error %d: %s", errno, strerror(errno));
}
void* virtual_alloc =
mmap(nullptr, rounded_length, prot, flags | MAP_NORESERVE, -1, 0);
if (reinterpret_cast<intptr_t>(virtual_alloc) == -1) {
if (errno == ENOMEM) {
// Undo earlier, successful mappings.
munmap(real_alloc, kChunkSize);
return nullptr;
}
FATAL("mmap (virtual) failed with error %d: %s", errno, strerror(errno));
}
i::Address virtual_base = reinterpret_cast<i::Address>(virtual_alloc);
i::Address virtual_end = virtual_base + rounded_length;
for (i::Address to_map = virtual_base; to_map < virtual_end;
to_map += kChunkSize) {
// Specifying 0 as the "old size" causes the existing map entry to not
// get deleted, which is important so that we can remap it again in the
// next iteration of this loop.
void* result =
mremap(real_alloc, 0, kChunkSize, MREMAP_MAYMOVE | MREMAP_FIXED,
reinterpret_cast<void*>(to_map));
if (reinterpret_cast<intptr_t>(result) == -1) {
if (errno == ENOMEM) {
// Undo earlier, successful mappings.
munmap(real_alloc, kChunkSize);
munmap(virtual_alloc, (to_map - virtual_base));
return nullptr;
}
FATAL("mremap failed with error %d: %s", errno, strerror(errno));
}
}
base::MutexGuard lock_guard(&regions_mutex_);
regions_[virtual_alloc] = real_alloc;
return virtual_alloc;
}
void Free(void* data, size_t length) override {
if (length < kChunkSize) {
return ArrayBufferAllocatorBase::Free(data, length);
}
base::MutexGuard lock_guard(&regions_mutex_);
void* real_alloc = regions_[data];
munmap(real_alloc, kChunkSize);
size_t rounded_length = RoundUp(length, kChunkSize);
munmap(data, rounded_length);
regions_.erase(data);
}
private:
// Aiming for a "Huge Page" (2M on Linux x64) to go easy on the TLB.
static constexpr size_t kChunkSize = 2 * 1024 * 1024;
std::unordered_map<void*, void*> regions_;
base::Mutex regions_mutex_;
};
#endif // V8_OS_LINUX
v8::Platform* g_default_platform;
std::unique_ptr<v8::Platform> g_platform;
static Local<Value> Throw(Isolate* isolate, const char* message) {
return isolate->ThrowException(
String::NewFromUtf8(isolate, message).ToLocalChecked());
}
static MaybeLocal<Value> TryGetValue(v8::Isolate* isolate,
Local<Context> context,
Local<v8::Object> object,
const char* property) {
MaybeLocal<String> v8_str = String::NewFromUtf8(isolate, property);
if (v8_str.IsEmpty()) return {};
return object->Get(context, v8_str.ToLocalChecked());
}
static Local<Value> GetValue(v8::Isolate* isolate, Local<Context> context,
Local<v8::Object> object, const char* property) {
return TryGetValue(isolate, context, object, property).ToLocalChecked();
}
std::shared_ptr<Worker> GetWorkerFromInternalField(Isolate* isolate,
Local<Object> object) {
if (object->InternalFieldCount() != 1) {
Throw(isolate, "this is not a Worker");
return nullptr;
}
i::Handle<i::Object> handle = Utils::OpenHandle(*object->GetInternalField(0));
if (handle->IsSmi()) {
Throw(isolate, "Worker is defunct because main thread is terminating");
return nullptr;
}
auto managed = i::Handle<i::Managed<Worker>>::cast(handle);
return managed->get();
}
base::Thread::Options GetThreadOptions(const char* name) {
// On some systems (OSX 10.6) the stack size default is 0.5Mb or less
// which is not enough to parse the big literal expressions used in tests.
// The stack size should be at least StackGuard::kLimitSize + some
// OS-specific padding for thread startup code. 2Mbytes seems to be enough.
return base::Thread::Options(name, 2 * kMB);
}
} // namespace
namespace tracing {
namespace {
static constexpr char kIncludedCategoriesParam[] = "included_categories";
class TraceConfigParser {
public:
static void FillTraceConfig(v8::Isolate* isolate,
platform::tracing::TraceConfig* trace_config,
const char* json_str) {
HandleScope outer_scope(isolate);
Local<Context> context = Context::New(isolate);
Context::Scope context_scope(context);
HandleScope inner_scope(isolate);
Local<String> source =
String::NewFromUtf8(isolate, json_str).ToLocalChecked();
Local<Value> result = JSON::Parse(context, source).ToLocalChecked();
Local<v8::Object> trace_config_object = Local<v8::Object>::Cast(result);
UpdateIncludedCategoriesList(isolate, context, trace_config_object,
trace_config);
}
private:
static int UpdateIncludedCategoriesList(
v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object,
platform::tracing::TraceConfig* trace_config) {
Local<Value> value =
GetValue(isolate, context, object, kIncludedCategoriesParam);
if (value->IsArray()) {
Local<Array> v8_array = Local<Array>::Cast(value);
for (int i = 0, length = v8_array->Length(); i < length; ++i) {
Local<Value> v = v8_array->Get(context, i)
.ToLocalChecked()
->ToString(context)
.ToLocalChecked();
String::Utf8Value str(isolate, v->ToString(context).ToLocalChecked());
trace_config->AddIncludedCategory(*str);
}
return v8_array->Length();
}
return 0;
}
};
} // namespace
static platform::tracing::TraceConfig* CreateTraceConfigFromJSON(
v8::Isolate* isolate, const char* json_str) {
platform::tracing::TraceConfig* trace_config =
new platform::tracing::TraceConfig();
TraceConfigParser::FillTraceConfig(isolate, trace_config, json_str);
return trace_config;
}
} // namespace tracing
class ExternalOwningOneByteStringResource
: public String::ExternalOneByteStringResource {
public:
ExternalOwningOneByteStringResource() = default;
ExternalOwningOneByteStringResource(
std::unique_ptr<base::OS::MemoryMappedFile> file)
: file_(std::move(file)) {}
const char* data() const override {
return static_cast<char*>(file_->memory());
}
size_t length() const override { return file_->size(); }
private:
std::unique_ptr<base::OS::MemoryMappedFile> file_;
};
CounterMap* Shell::counter_map_;
base::OS::MemoryMappedFile* Shell::counters_file_ = nullptr;
CounterCollection Shell::local_counters_;
CounterCollection* Shell::counters_ = &local_counters_;
base::LazyMutex Shell::context_mutex_;
const base::TimeTicks Shell::kInitialTicks =
base::TimeTicks::HighResolutionNow();
Global<Function> Shell::stringify_function_;
base::LazyMutex Shell::workers_mutex_;
bool Shell::allow_new_workers_ = true;
std::unordered_set<std::shared_ptr<Worker>> Shell::running_workers_;
std::atomic<bool> Shell::script_executed_{false};
base::LazyMutex Shell::isolate_status_lock_;
std::map<v8::Isolate*, bool> Shell::isolate_status_;
std::map<v8::Isolate*, int> Shell::isolate_running_streaming_tasks_;
base::LazyMutex Shell::cached_code_mutex_;
std::map<std::string, std::unique_ptr<ScriptCompiler::CachedData>>
Shell::cached_code_map_;
std::atomic<int> Shell::unhandled_promise_rejections_{0};
Global<Context> Shell::evaluation_context_;
ArrayBuffer::Allocator* Shell::array_buffer_allocator;
ShellOptions Shell::options;
base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
ScriptCompiler::CachedData* Shell::LookupCodeCache(Isolate* isolate,
Local<Value> source) {
base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
CHECK(source->IsString());
v8::String::Utf8Value key(isolate, source);
DCHECK(*key);
auto entry = cached_code_map_.find(*key);
if (entry != cached_code_map_.end() && entry->second) {
int length = entry->second->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, entry->second->data, length);
ScriptCompiler::CachedData* cached_data = new ScriptCompiler::CachedData(
cache, length, ScriptCompiler::CachedData::BufferOwned);
return cached_data;
}
return nullptr;
}
void Shell::StoreInCodeCache(Isolate* isolate, Local<Value> source,
const ScriptCompiler::CachedData* cache_data) {
base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
CHECK(source->IsString());
if (cache_data == nullptr) return;
v8::String::Utf8Value key(isolate, source);
DCHECK(*key);
int length = cache_data->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, cache_data->data, length);
cached_code_map_[*key] = std::unique_ptr<ScriptCompiler::CachedData>(
new ScriptCompiler::CachedData(cache, length,
ScriptCompiler::CachedData::BufferOwned));
}
// Dummy external source stream which returns the whole source in one go.
// TODO(leszeks): Also test chunking the data.
class DummySourceStream : public v8::ScriptCompiler::ExternalSourceStream {
public:
explicit DummySourceStream(Local<String> source) : done_(false) {
source_buffer_ = Utils::OpenHandle(*source)->ToCString(
i::ALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &source_length_);
}
size_t GetMoreData(const uint8_t** src) override {
if (done_) {
return 0;
}
*src = reinterpret_cast<uint8_t*>(source_buffer_.release());
done_ = true;
return source_length_;
}
private:
int source_length_;
std::unique_ptr<char[]> source_buffer_;
bool done_;
};
class StreamingCompileTask final : public v8::Task {
public:
StreamingCompileTask(Isolate* isolate,
v8::ScriptCompiler::StreamedSource* streamed_source)
: isolate_(isolate),
script_streaming_task_(v8::ScriptCompiler::StartStreamingScript(
isolate, streamed_source)) {
Shell::NotifyStartStreamingTask(isolate_);
}
void Run() override {
script_streaming_task_->Run();
// Signal that the task has finished using the task runner to wake the
// message loop.
Shell::PostForegroundTask(isolate_, std::make_unique<FinishTask>(isolate_));
}
private:
class FinishTask final : public v8::Task {
public:
explicit FinishTask(Isolate* isolate) : isolate_(isolate) {}
void Run() final { Shell::NotifyFinishStreamingTask(isolate_); }
Isolate* isolate_;
};
Isolate* isolate_;
std::unique_ptr<v8::ScriptCompiler::ScriptStreamingTask>
script_streaming_task_;
};
// Executes a string within the current v8 context.
bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
Local<Value> name, PrintResult print_result,
ReportExceptions report_exceptions,
ProcessMessageQueue process_message_queue) {
if (i::FLAG_parse_only) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::VMState<PARSER> state(i_isolate);
i::Handle<i::String> str = Utils::OpenHandle(*(source));
// Set up ParseInfo.
i::UnoptimizedCompileState compile_state(i_isolate);
i::UnoptimizedCompileFlags flags =
i::UnoptimizedCompileFlags::ForToplevelCompile(
i_isolate, true, i::construct_language_mode(i::FLAG_use_strict),
i::REPLMode::kNo);
if (options.compile_options == v8::ScriptCompiler::kEagerCompile) {
flags.set_is_eager(true);
}
i::ParseInfo parse_info(i_isolate, flags, &compile_state);
i::Handle<i::Script> script = parse_info.CreateScript(
i_isolate, str, i::kNullMaybeHandle, ScriptOriginOptions());
if (!i::parsing::ParseProgram(&parse_info, script, i_isolate,
i::parsing::ReportStatisticsMode::kYes)) {
parse_info.pending_error_handler()->PrepareErrors(
i_isolate, parse_info.ast_value_factory());
parse_info.pending_error_handler()->ReportErrors(i_isolate, script);
fprintf(stderr, "Failed parsing\n");
return false;
}
return true;
}
HandleScope handle_scope(isolate);
TryCatch try_catch(isolate);
try_catch.SetVerbose(report_exceptions == kReportExceptions);
MaybeLocal<Value> maybe_result;
bool success = true;
{
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm =
Local<Context>::New(isolate, data->realms_[data->realm_current_]);
Context::Scope context_scope(realm);
MaybeLocal<Script> maybe_script;
Local<Context> context(isolate->GetCurrentContext());
ScriptOrigin origin(name);
if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
ScriptCompiler::CachedData* cached_code =
LookupCodeCache(isolate, source);
if (cached_code != nullptr) {
ScriptCompiler::Source script_source(source, origin, cached_code);
maybe_script = ScriptCompiler::Compile(context, &script_source,
options.compile_options);
CHECK(!cached_code->rejected);
} else {
ScriptCompiler::Source script_source(source, origin);
maybe_script = ScriptCompiler::Compile(
context, &script_source, ScriptCompiler::kNoCompileOptions);
}
} else if (options.streaming_compile) {
v8::ScriptCompiler::StreamedSource streamed_source(
std::make_unique<DummySourceStream>(source),
v8::ScriptCompiler::StreamedSource::UTF8);
PostBlockingBackgroundTask(
std::make_unique<StreamingCompileTask>(isolate, &streamed_source));
// Pump the loop until the streaming task completes.
Shell::CompleteMessageLoop(isolate);
maybe_script =
ScriptCompiler::Compile(context, &streamed_source, source, origin);
} else {
ScriptCompiler::Source script_source(source, origin);
maybe_script = ScriptCompiler::Compile(context, &script_source,
options.compile_options);
}
Local<Script> script;
if (!maybe_script.ToLocal(&script)) {
return false;
}
if (options.code_cache_options ==
ShellOptions::CodeCacheOptions::kProduceCache) {
// Serialize and store it in memory for the next execution.
ScriptCompiler::CachedData* cached_data =
ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
StoreInCodeCache(isolate, source, cached_data);
delete cached_data;
}
maybe_result = script->Run(realm);
if (options.code_cache_options ==
ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute) {
// Serialize and store it in memory for the next execution.
ScriptCompiler::CachedData* cached_data =
ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
StoreInCodeCache(isolate, source, cached_data);
delete cached_data;
}
if (process_message_queue) {
if (!EmptyMessageQueues(isolate)) success = false;
if (!HandleUnhandledPromiseRejections(isolate)) success = false;
}
data->realm_current_ = data->realm_switch_;
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
return false;
}
// It's possible that a FinalizationRegistry cleanup task threw an error.
if (try_catch.HasCaught()) success = false;
if (print_result) {
if (options.test_shell) {
if (!result->IsUndefined()) {
// If all went well and the result wasn't undefined then print
// the returned value.
v8::String::Utf8Value str(isolate, result);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
} else {
v8::String::Utf8Value str(isolate, Stringify(isolate, result));
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
}
return success;
}
namespace {
std::string ToSTLString(Isolate* isolate, Local<String> v8_str) {
String::Utf8Value utf8(isolate, v8_str);
// Should not be able to fail since the input is a String.
CHECK(*utf8);
return *utf8;
}
bool IsAbsolutePath(const std::string& path) {
#if defined(_WIN32) || defined(_WIN64)
// TODO(adamk): This is an incorrect approximation, but should
// work for all our test-running cases.
return path.find(':') != std::string::npos;
#else
return path[0] == '/';
#endif
}
std::string GetWorkingDirectory() {
#if defined(_WIN32) || defined(_WIN64)
char system_buffer[MAX_PATH];
// TODO(adamk): Support Unicode paths.
DWORD len = GetCurrentDirectoryA(MAX_PATH, system_buffer);
CHECK_GT(len, 0);
return system_buffer;
#else
char curdir[PATH_MAX];
CHECK_NOT_NULL(getcwd(curdir, PATH_MAX));
return curdir;
#endif
}
// Returns the directory part of path, without the trailing '/'.
std::string DirName(const std::string& path) {
DCHECK(IsAbsolutePath(path));
size_t last_slash = path.find_last_of('/');
DCHECK(last_slash != std::string::npos);
return path.substr(0, last_slash);
}
// Resolves path to an absolute path if necessary, and does some
// normalization (eliding references to the current directory
// and replacing backslashes with slashes).
std::string NormalizePath(const std::string& path,
const std::string& dir_name) {
std::string absolute_path;
if (IsAbsolutePath(path)) {
absolute_path = path;
} else {
absolute_path = dir_name + '/' + path;
}
std::replace(absolute_path.begin(), absolute_path.end(), '\\', '/');
std::vector<std::string> segments;
std::istringstream segment_stream(absolute_path);
std::string segment;
while (std::getline(segment_stream, segment, '/')) {
if (segment == "..") {
segments.pop_back();
} else if (segment != ".") {
segments.push_back(segment);
}
}
// Join path segments.
std::ostringstream os;
std::copy(segments.begin(), segments.end() - 1,
std::ostream_iterator<std::string>(os, "/"));
os << *segments.rbegin();
return os.str();
}
// Per-context Module data, allowing sharing of module maps
// across top-level module loads.
class ModuleEmbedderData {
private:
class ModuleGlobalHash {
public:
explicit ModuleGlobalHash(Isolate* isolate) : isolate_(isolate) {}
size_t operator()(const Global<Module>& module) const {
return module.Get(isolate_)->GetIdentityHash();
}
private:
Isolate* isolate_;
};
public:
explicit ModuleEmbedderData(Isolate* isolate)
: module_to_specifier_map(10, ModuleGlobalHash(isolate)) {}
// Map from normalized module specifier to Module.
std::unordered_map<std::string, Global<Module>> specifier_to_module_map;
// Map from Module to its URL as defined in the ScriptOrigin
std::unordered_map<Global<Module>, std::string, ModuleGlobalHash>
module_to_specifier_map;
};
enum { kModuleEmbedderDataIndex, kInspectorClientIndex };
void InitializeModuleEmbedderData(Local<Context> context) {
context->SetAlignedPointerInEmbedderData(
kModuleEmbedderDataIndex, new ModuleEmbedderData(context->GetIsolate()));
}
ModuleEmbedderData* GetModuleDataFromContext(Local<Context> context) {
return static_cast<ModuleEmbedderData*>(
context->GetAlignedPointerFromEmbedderData(kModuleEmbedderDataIndex));
}
void DisposeModuleEmbedderData(Local<Context> context) {
delete GetModuleDataFromContext(context);
context->SetAlignedPointerInEmbedderData(kModuleEmbedderDataIndex, nullptr);
}
MaybeLocal<Module> ResolveModuleCallback(Local<Context> context,
Local<String> specifier,
Local<Module> referrer) {
Isolate* isolate = context->GetIsolate();
ModuleEmbedderData* d = GetModuleDataFromContext(context);
auto specifier_it =
d->module_to_specifier_map.find(Global<Module>(isolate, referrer));
CHECK(specifier_it != d->module_to_specifier_map.end());
std::string absolute_path = NormalizePath(ToSTLString(isolate, specifier),
DirName(specifier_it->second));
auto module_it = d->specifier_to_module_map.find(absolute_path);
CHECK(module_it != d->specifier_to_module_map.end());
return module_it->second.Get(isolate);
}
} // anonymous namespace
MaybeLocal<Module> Shell::FetchModuleTree(Local<Context> context,
const std::string& file_name) {
DCHECK(IsAbsolutePath(file_name));
Isolate* isolate = context->GetIsolate();
Local<String> source_text = ReadFile(isolate, file_name.c_str());
if (source_text.IsEmpty() && options.fuzzy_module_file_extensions) {
std::string fallback_file_name = file_name + ".js";
source_text = ReadFile(isolate, fallback_file_name.c_str());
if (source_text.IsEmpty()) {
fallback_file_name = file_name + ".mjs";
source_text = ReadFile(isolate, fallback_file_name.c_str());
}
}
if (source_text.IsEmpty()) {
std::string msg = "Error reading: " + file_name;
Throw(isolate, msg.c_str());
return MaybeLocal<Module>();
}
ScriptOrigin origin(
String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked(),
Local<Integer>(), Local<Integer>(), Local<Boolean>(), Local<Integer>(),
Local<Value>(), Local<Boolean>(), Local<Boolean>(), True(isolate));
ScriptCompiler::Source source(source_text, origin);
Local<Module> module;
if (!ScriptCompiler::CompileModule(isolate, &source).ToLocal(&module)) {
return MaybeLocal<Module>();
}
ModuleEmbedderData* d = GetModuleDataFromContext(context);
CHECK(d->specifier_to_module_map
.insert(std::make_pair(file_name, Global<Module>(isolate, module)))
.second);
CHECK(d->module_to_specifier_map
.insert(std::make_pair(Global<Module>(isolate, module), file_name))
.second);
std::string dir_name = DirName(file_name);
for (int i = 0, length = module->GetModuleRequestsLength(); i < length; ++i) {
Local<String> name = module->GetModuleRequest(i);
std::string absolute_path =
NormalizePath(ToSTLString(isolate, name), dir_name);
if (d->specifier_to_module_map.count(absolute_path)) continue;
if (FetchModuleTree(context, absolute_path).IsEmpty()) {
return MaybeLocal<Module>();
}
}
return module;
}
namespace {
struct DynamicImportData {
DynamicImportData(Isolate* isolate_, Local<String> referrer_,
Local<String> specifier_,
Local<Promise::Resolver> resolver_)
: isolate(isolate_) {
referrer.Reset(isolate, referrer_);
specifier.Reset(isolate, specifier_);
resolver.Reset(isolate, resolver_);
}
Isolate* isolate;
Global<String> referrer;
Global<String> specifier;
Global<Promise::Resolver> resolver;
};
struct ModuleResolutionData {
ModuleResolutionData(Isolate* isolate_, Local<Value> module_namespace_,
Local<Promise::Resolver> resolver_)
: isolate(isolate_) {
module_namespace.Reset(isolate, module_namespace_);
resolver.Reset(isolate, resolver_);
}
Isolate* isolate;
Global<Value> module_namespace;
Global<Promise::Resolver> resolver;
};
} // namespace
void Shell::ModuleResolutionSuccessCallback(
const FunctionCallbackInfo<Value>& info) {
std::unique_ptr<ModuleResolutionData> module_resolution_data(
static_cast<ModuleResolutionData*>(
info.Data().As<v8::External>()->Value()));
Isolate* isolate(module_resolution_data->isolate);
HandleScope handle_scope(isolate);
Local<Promise::Resolver> resolver(
module_resolution_data->resolver.Get(isolate));
Local<Value> module_namespace(
module_resolution_data->module_namespace.Get(isolate));
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
resolver->Resolve(realm, module_namespace).ToChecked();
}
void Shell::ModuleResolutionFailureCallback(
const FunctionCallbackInfo<Value>& info) {
std::unique_ptr<ModuleResolutionData> module_resolution_data(
static_cast<ModuleResolutionData*>(
info.Data().As<v8::External>()->Value()));
Isolate* isolate(module_resolution_data->isolate);
HandleScope handle_scope(isolate);
Local<Promise::Resolver> resolver(
module_resolution_data->resolver.Get(isolate));
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
DCHECK_EQ(info.Length(), 1);
resolver->Reject(realm, info[0]).ToChecked();
}
MaybeLocal<Promise> Shell::HostImportModuleDynamically(
Local<Context> context, Local<ScriptOrModule> referrer,
Local<String> specifier) {
Isolate* isolate = context->GetIsolate();
MaybeLocal<Promise::Resolver> maybe_resolver =
Promise::Resolver::New(context);
Local<Promise::Resolver> resolver;
if (maybe_resolver.ToLocal(&resolver)) {
DynamicImportData* data = new DynamicImportData(
isolate, Local<String>::Cast(referrer->GetResourceName()), specifier,
resolver);
isolate->EnqueueMicrotask(Shell::DoHostImportModuleDynamically, data);
return resolver->GetPromise();
}
return MaybeLocal<Promise>();
}
void Shell::HostInitializeImportMetaObject(Local<Context> context,
Local<Module> module,
Local<Object> meta) {
Isolate* isolate = context->GetIsolate();
HandleScope handle_scope(isolate);
ModuleEmbedderData* d = GetModuleDataFromContext(context);
auto specifier_it =
d->module_to_specifier_map.find(Global<Module>(isolate, module));
CHECK(specifier_it != d->module_to_specifier_map.end());
Local<String> url_key =
String::NewFromUtf8Literal(isolate, "url", NewStringType::kInternalized);
Local<String> url = String::NewFromUtf8(isolate, specifier_it->second.c_str())
.ToLocalChecked();
meta->CreateDataProperty(context, url_key, url).ToChecked();
}
void Shell::DoHostImportModuleDynamically(void* import_data) {
std::unique_ptr<DynamicImportData> import_data_(
static_cast<DynamicImportData*>(import_data));
Isolate* isolate(import_data_->isolate);
HandleScope handle_scope(isolate);
Local<String> referrer(import_data_->referrer.Get(isolate));
Local<String> specifier(import_data_->specifier.Get(isolate));
Local<Promise::Resolver> resolver(import_data_->resolver.Get(isolate));
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
std::string source_url = ToSTLString(isolate, referrer);
std::string dir_name =
DirName(NormalizePath(source_url, GetWorkingDirectory()));
std::string file_name = ToSTLString(isolate, specifier);
std::string absolute_path = NormalizePath(file_name, dir_name);
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
ModuleEmbedderData* d = GetModuleDataFromContext(realm);
Local<Module> root_module;
auto module_it = d->specifier_to_module_map.find(absolute_path);
if (module_it != d->specifier_to_module_map.end()) {
root_module = module_it->second.Get(isolate);
} else if (!FetchModuleTree(realm, absolute_path).ToLocal(&root_module)) {
CHECK(try_catch.HasCaught());
resolver->Reject(realm, try_catch.Exception()).ToChecked();
return;
}
MaybeLocal<Value> maybe_result;
if (root_module->InstantiateModule(realm, ResolveModuleCallback)
.FromMaybe(false)) {
maybe_result = root_module->Evaluate(realm);
CHECK_IMPLIES(i::FLAG_harmony_top_level_await, !maybe_result.IsEmpty());
EmptyMessageQueues(isolate);
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
resolver->Reject(realm, try_catch.Exception()).ToChecked();
return;
}
Local<Value> module_namespace = root_module->GetModuleNamespace();
if (i::FLAG_harmony_top_level_await) {
Local<Promise> result_promise(Local<Promise>::Cast(result));
if (result_promise->State() == Promise::kRejected) {
resolver->Reject(realm, result_promise->Result()).ToChecked();
return;
}
// Setup callbacks, and then chain them to the result promise.
// ModuleResolutionData will be deleted by the callbacks.
auto module_resolution_data =
new ModuleResolutionData(isolate, module_namespace, resolver);
Local<v8::External> edata = External::New(isolate, module_resolution_data);
Local<Function> callback_success;
CHECK(Function::New(realm, ModuleResolutionSuccessCallback, edata)
.ToLocal(&callback_success));
Local<Function> callback_failure;
CHECK(Function::New(realm, ModuleResolutionFailureCallback, edata)
.ToLocal(&callback_failure));
result_promise->Then(realm, callback_success, callback_failure)
.ToLocalChecked();
} else {
// TODO(cbruni): Clean up exception handling after introducing new
// API for evaluating async modules.
DCHECK(!try_catch.HasCaught());
resolver->Resolve(realm, module_namespace).ToChecked();
}
}
bool Shell::ExecuteModule(Isolate* isolate, const char* file_name) {
HandleScope handle_scope(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
// Use a non-verbose TryCatch and report exceptions manually using
// Shell::ReportException, because some errors (such as file errors) are
// thrown without entering JS and thus do not trigger
// isolate->ReportPendingMessages().
TryCatch try_catch(isolate);
Local<Module> root_module;
if (!FetchModuleTree(realm, absolute_path).ToLocal(&root_module)) {
CHECK(try_catch.HasCaught());
ReportException(isolate, &try_catch);
return false;
}
MaybeLocal<Value> maybe_result;
if (root_module->InstantiateModule(realm, ResolveModuleCallback)
.FromMaybe(false)) {
maybe_result = root_module->Evaluate(realm);
CHECK_IMPLIES(i::FLAG_harmony_top_level_await, !maybe_result.IsEmpty());
EmptyMessageQueues(isolate);
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
ReportException(isolate, &try_catch);
return false;
}
if (i::FLAG_harmony_top_level_await) {
// Loop until module execution finishes
// TODO(cbruni): This is a bit wonky. "Real" engines would not be
// able to just busy loop waiting for execution to finish.
Local<Promise> result_promise(Local<Promise>::Cast(result));
while (result_promise->State() == Promise::kPending) {
isolate->PerformMicrotaskCheckpoint();
}
if (result_promise->State() == Promise::kRejected) {
// If the exception has been caught by the promise pipeline, we rethrow
// here in order to ReportException.
// TODO(cbruni): Clean this up after we create a new API for the case
// where TLA is enabled.
if (!try_catch.HasCaught()) {
isolate->ThrowException(result_promise->Result());
} else {
DCHECK_EQ(try_catch.Exception(), result_promise->Result());
}
ReportException(isolate, &try_catch);
return false;
}
}
DCHECK(!try_catch.HasCaught());
return true;
}
PerIsolateData::PerIsolateData(Isolate* isolate)
: isolate_(isolate), realms_(nullptr) {
isolate->SetData(0, this);
if (i::FLAG_expose_async_hooks) {
async_hooks_wrapper_ = new AsyncHooks(isolate);
}
}
PerIsolateData::~PerIsolateData() {
isolate_->SetData(0, nullptr); // Not really needed, just to be sure...
if (i::FLAG_expose_async_hooks) {
delete async_hooks_wrapper_; // This uses the isolate
}
}
void PerIsolateData::SetTimeout(Local<Function> callback,
Local<Context> context) {
set_timeout_callbacks_.emplace(isolate_, callback);
set_timeout_contexts_.emplace(isolate_, context);
}
MaybeLocal<Function> PerIsolateData::GetTimeoutCallback() {
if (set_timeout_callbacks_.empty()) return MaybeLocal<Function>();
Local<Function> result = set_timeout_callbacks_.front().Get(isolate_);
set_timeout_callbacks_.pop();
return result;
}
MaybeLocal<Context> PerIsolateData::GetTimeoutContext() {
if (set_timeout_contexts_.empty()) return MaybeLocal<Context>();
Local<Context> result = set_timeout_contexts_.front().Get(isolate_);
set_timeout_contexts_.pop();
return result;
}
void PerIsolateData::RemoveUnhandledPromise(Local<Promise> promise) {
// Remove handled promises from the list
DCHECK_EQ(promise->GetIsolate(), isolate_);
for (auto it = unhandled_promises_.begin(); it != unhandled_promises_.end();
++it) {
v8::Local<v8::Promise> unhandled_promise = std::get<0>(*it).Get(isolate_);
if (unhandled_promise == promise) {
unhandled_promises_.erase(it--);
}
}
}
void PerIsolateData::AddUnhandledPromise(Local<Promise> promise,
Local<Message> message,
Local<Value> exception) {
DCHECK_EQ(promise->GetIsolate(), isolate_);
unhandled_promises_.emplace_back(v8::Global<v8::Promise>(isolate_, promise),
v8::Global<v8::Message>(isolate_, message),
v8::Global<v8::Value>(isolate_, exception));
}
size_t PerIsolateData::GetUnhandledPromiseCount() {
return unhandled_promises_.size();
}
int PerIsolateData::HandleUnhandledPromiseRejections() {
v8::HandleScope scope(isolate_);
// Ignore promises that get added during error reporting.
size_t unhandled_promises_count = unhandled_promises_.size();
for (size_t i = 0; i < unhandled_promises_count; i++) {
const auto& tuple = unhandled_promises_[i];
Local<v8::Message> message = std::get<1>(tuple).Get(isolate_);
Local<v8::Value> value = std::get<2>(tuple).Get(isolate_);
Shell::ReportException(isolate_, message, value);
}
unhandled_promises_.clear();
return static_cast<int>(unhandled_promises_count);
}
PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
data_->realm_count_ = 1;
data_->realm_current_ = 0;
data_->realm_switch_ = 0;
data_->realms_ = new Global<Context>[1];
data_->realms_[0].Reset(data_->isolate_,
data_->isolate_->GetEnteredOrMicrotaskContext());
}
PerIsolateData::RealmScope::~RealmScope() {
// Drop realms to avoid keeping them alive. We don't dispose the
// module embedder data for the first realm here, but instead do
// it in RunShell or in RunMain, if not running in interactive mode
for (int i = 1; i < data_->realm_count_; ++i) {
Global<Context>& realm = data_->realms_[i];
if (realm.IsEmpty()) continue;
DisposeModuleEmbedderData(realm.Get(data_->isolate_));
}
data_->realm_count_ = 0;
delete[] data_->realms_;
}
int PerIsolateData::RealmFind(Local<Context> context) {
for (int i = 0; i < realm_count_; ++i) {
if (realms_[i] == context) return i;
}
return -1;
}
int PerIsolateData::RealmIndexOrThrow(
const v8::FunctionCallbackInfo<v8::Value>& args, int arg_offset) {
if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
Throw(args.GetIsolate(), "Invalid argument");
return -1;
}
int index = args[arg_offset]
->Int32Value(args.GetIsolate()->GetCurrentContext())
.FromMaybe(-1);
if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
Throw(args.GetIsolate(), "Invalid realm index");
return -1;
}
return index;
}
// performance.now() returns a time stamp as double, measured in milliseconds.
// When FLAG_verify_predictable mode is enabled it returns result of
// v8::Platform::MonotonicallyIncreasingTime().
void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
if (i::FLAG_verify_predictable) {
args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime());
} else {
base::TimeDelta delta =
base::TimeTicks::HighResolutionNow() - kInitialTicks;
args.GetReturnValue().Set(delta.InMillisecondsF());
}
}
// performance.measureMemory() implements JavaScript Memory API proposal.
// See https://github.com/ulan/javascript-agent-memory/blob/master/explainer.md.
void Shell::PerformanceMeasureMemory(
const v8::FunctionCallbackInfo<v8::Value>& args) {
v8::MeasureMemoryMode mode = v8::MeasureMemoryMode::kSummary;
v8::Isolate* isolate = args.GetIsolate();
Local<Context> context = isolate->GetCurrentContext();
if (args.Length() >= 1 && args[0]->IsObject()) {
Local<Object> object = args[0].As<Object>();
Local<Value> value = TryGetValue(isolate, context, object, "detailed")
.FromMaybe(Local<Value>());
if (!value.IsEmpty() && value->IsBoolean() &&
value->BooleanValue(isolate)) {
mode = v8::MeasureMemoryMode::kDetailed;
}
}
Local<v8::Promise::Resolver> promise_resolver =
v8::Promise::Resolver::New(context).ToLocalChecked();
args.GetIsolate()->MeasureMemory(
v8::MeasureMemoryDelegate::Default(isolate, context, promise_resolver,
mode),
v8::MeasureMemoryExecution::kEager);
args.GetReturnValue().Set(promise_resolver->GetPromise());
}
// Realm.current() returns the index of the currently active realm.
void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmFind(isolate->GetEnteredOrMicrotaskContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.owner(o) returns the index of the realm that created o.
void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (args.Length() < 1 || !args[0]->IsObject()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
int index = data->RealmFind(args[0]
->ToObject(isolate->GetCurrentContext())
.ToLocalChecked()
->CreationContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.global(i) returns the global object of realm i.
// (Note that properties of global objects cannot be read/written cross-realm.)
void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
args.GetReturnValue().Set(
Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global());
}
MaybeLocal<Context> Shell::CreateRealm(
const v8::FunctionCallbackInfo<v8::Value>& args, int index,
v8::MaybeLocal<Value> global_object) {
Isolate* isolate = args.GetIsolate();
TryCatch try_catch(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
if (index < 0) {
Global<Context>* old_realms = data->realms_;
index = data->realm_count_;
data->realms_ = new Global<Context>[++data->realm_count_];
for (int i = 0; i < index; ++i) {
data->realms_[i].Reset(isolate, old_realms[i]);
old_realms[i].Reset();
}
delete[] old_realms;
}
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
Local<Context> context =
Context::New(isolate, nullptr, global_template, global_object);
DCHECK(!try_catch.HasCaught());
if (context.IsEmpty()) return MaybeLocal<Context>();
InitializeModuleEmbedderData(context);
data->realms_[index].Reset(isolate, context);
args.GetReturnValue().Set(index);
return context;
}
void Shell::DisposeRealm(const v8::FunctionCallbackInfo<v8::Value>& args,
int index) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> context = data->realms_[index].Get(isolate);
DisposeModuleEmbedderData(context);
data->realms_[index].Reset();
// ContextDisposedNotification expects the disposed context to be entered.
v8::Context::Scope scope(context);
isolate->ContextDisposedNotification();
isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
}
// Realm.create() creates a new realm with a distinct security token
// and returns its index.
void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
CreateRealm(args, -1, v8::MaybeLocal<Value>());
}
// Realm.createAllowCrossRealmAccess() creates a new realm with the same
// security token as the current realm.
void Shell::RealmCreateAllowCrossRealmAccess(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Local<Context> context;
if (CreateRealm(args, -1, v8::MaybeLocal<Value>()).ToLocal(&context)) {
context->SetSecurityToken(
args.GetIsolate()->GetEnteredOrMicrotaskContext()->GetSecurityToken());
}
}
// Realm.navigate(i) creates a new realm with a distinct security token
// in place of realm i.
void Shell::RealmNavigate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (index == 0 || index == data->realm_current_ ||
index == data->realm_switch_) {
Throw(args.GetIsolate(), "Invalid realm index");
return;
}
Local<Context> context = Local<Context>::New(isolate, data->realms_[index]);
v8::MaybeLocal<Value> global_object = context->Global();
// Context::Global doesn't return JSGlobalProxy if DetachGlobal is called in
// advance.
if (!global_object.IsEmpty()) {
HandleScope scope(isolate);
if (!Utils::OpenHandle(*global_object.ToLocalChecked())
->IsJSGlobalProxy()) {
global_object = v8::MaybeLocal<Value>();
}
}
DisposeRealm(args, index);
CreateRealm(args, index, global_object);
}
// Realm.detachGlobal(i) detaches the global objects of realm i from realm i.
void Shell::RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (index == 0 || index == data->realm_current_ ||
index == data->realm_switch_) {
Throw(args.GetIsolate(), "Invalid realm index");
return;
}
HandleScope scope(isolate);
Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
realm->DetachGlobal();
}
// Realm.dispose(i) disposes the reference to the realm i.
void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (index == 0 || index == data->realm_current_ ||
index == data->realm_switch_) {
Throw(args.GetIsolate(), "Invalid realm index");
return;
}
DisposeRealm(args, index);
}
// Realm.switch(i) switches to the realm i for consecutive interactive inputs.
void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
data->realm_switch_ = index;
}
// Realm.eval(i, s) evaluates s in realm i and returns the result.
void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (args.Length() < 2 || !args[1]->IsString()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
ScriptOrigin origin(String::NewFromUtf8Literal(isolate, "(d8)",
NewStringType::kInternalized));
ScriptCompiler::Source script_source(
args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked(), origin);
Local<UnboundScript> script;
if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
.ToLocal(&script)) {
return;
}
Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
realm->Enter();
int previous_index = data->realm_current_;
data->realm_current_ = data->realm_switch_ = index;
Local<Value> result;
if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) {
realm->Exit();
data->realm_current_ = data->realm_switch_ = previous_index;
return;
}
realm->Exit();
data->realm_current_ = data->realm_switch_ = previous_index;
args.GetReturnValue().Set(result);
}
// Realm.shared is an accessor for a single shared value across realms.
void Shell::RealmSharedGet(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (data->realm_shared_.IsEmpty()) return;
info.GetReturnValue().Set(data->realm_shared_);
}
void Shell::RealmSharedSet(Local<String> property, Local<Value> value,
const PropertyCallbackInfo<void>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
data->realm_shared_.Reset(isolate, value);
}
// async_hooks.createHook() registers functions to be called for different
// lifetime events of each async operation.
void Shell::AsyncHooksCreateHook(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Local<Object> wrap =
PerIsolateData::Get(args.GetIsolate())->GetAsyncHooks()->CreateHook(args);
args.GetReturnValue().Set(wrap);
}
// async_hooks.executionAsyncId() returns the asyncId of the current execution
// context.
void Shell::AsyncHooksExecutionAsyncId(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
args.GetReturnValue().Set(v8::Number::New(
isolate,
PerIsolateData::Get(isolate)->GetAsyncHooks()->GetExecutionAsyncId()));
}
void Shell::AsyncHooksTriggerAsyncId(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
args.GetReturnValue().Set(v8::Number::New(
isolate,
PerIsolateData::Get(isolate)->GetAsyncHooks()->GetTriggerAsyncId()));
}
void WriteToFile(FILE* file, const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
if (i != 0) {
fprintf(file, " ");
}
// Explicitly catch potential exceptions in toString().
v8::TryCatch try_catch(args.GetIsolate());
Local<Value> arg = args[i];
Local<String> str_obj;
if (arg->IsSymbol()) {
arg = Local<Symbol>::Cast(arg)->Description();
}
if (!arg->ToString(args.GetIsolate()->GetCurrentContext())
.ToLocal(&str_obj)) {
try_catch.ReThrow();
return;
}
v8::String::Utf8Value str(args.GetIsolate(), str_obj);
int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), file));
if (n != str.length()) {
printf("Error in fwrite\n");
base::OS::ExitProcess(1);
}
}
}
void WriteAndFlush(FILE* file,
const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteToFile(file, args);
fprintf(file, "\n");
fflush(file);
}
void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteAndFlush(stdout, args);
}
void Shell::PrintErr(const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteAndFlush(stderr, args);
}
void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) {
WriteToFile(stdout, args);
}
void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) {
String::Utf8Value file(args.GetIsolate(), args[0]);
if (*file == nullptr) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
if (args.Length() == 2) {
String::Utf8Value format(args.GetIsolate(), args[1]);
if (*format && std::strcmp(*format, "binary") == 0) {
ReadBuffer(args);
return;
}
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
args.GetReturnValue().Set(source);
}
Local<String> Shell::ReadFromStdin(Isolate* isolate) {
static const int kBufferSize = 256;
char buffer[kBufferSize];
Local<String> accumulator = String::NewFromUtf8Literal(isolate, "");
int length;
while (true) {
// Continue reading if the line ends with an escape '\\' or the line has
// not been fully read into the buffer yet (does not end with '\n').
// If fgets gets an error, just give up.
char* input = nullptr;
input = fgets(buffer, kBufferSize, stdin);
if (input == nullptr) return Local<String>();
length = static_cast<int>(strlen(buffer));
if (length == 0) {
return accumulator;
} else if (buffer[length - 1] != '\n') {
accumulator = String::Concat(
isolate, accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
.ToLocalChecked());
} else if (length > 1 && buffer[length - 2] == '\\') {
buffer[length - 2] = '\n';
accumulator =
String::Concat(isolate, accumulator,
String::NewFromUtf8(isolate, buffer,
NewStringType::kNormal, length - 1)
.ToLocalChecked());
} else {
return String::Concat(
isolate, accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1)
.ToLocalChecked());
}
}
}
void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
String::Utf8Value file(args.GetIsolate(), args[i]);
if (*file == nullptr) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
if (!ExecuteString(
args.GetIsolate(), source,
String::NewFromUtf8(args.GetIsolate(), *file).ToLocalChecked(),
kNoPrintResult,
options.quiet_load ? kNoReportExceptions : kReportExceptions,
kNoProcessMessageQueue)) {
Throw(args.GetIsolate(), "Error executing file");
return;
}
}
}
void Shell::SetTimeout(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
args.GetReturnValue().Set(v8::Number::New(isolate, 0));
if (args.Length() == 0 || !args[0]->IsFunction()) return;
Local<Function> callback = Local<Function>::Cast(args[0]);
Local<Context> context = isolate->GetCurrentContext();
PerIsolateData::Get(isolate)->SetTimeout(callback, context);
}
void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1 || !args[0]->IsString()) {
Throw(args.GetIsolate(), "1st argument must be string");
return;
}
// d8 honors `options={type: string}`, which means the first argument is
// not a filename but string of script to be run.
bool load_from_file = true;
if (args.Length() > 1 && args[1]->IsObject()) {
Local<Object> object = args[1].As<Object>();
Local<Context> context = isolate->GetCurrentContext();
Local<Value> value;
if (TryGetValue(args.GetIsolate(), context, object, "type")
.ToLocal(&value) &&
value->IsString()) {
Local<String> worker_type = value->ToString(context).ToLocalChecked();
String::Utf8Value str(isolate, worker_type);
if (strcmp("string", *str) == 0) {
load_from_file = false;
} else if (strcmp("classic", *str) == 0) {
load_from_file = true;
} else {
Throw(args.GetIsolate(), "Unsupported worker type");
return;
}
}
}
Local<Value> source;
if (load_from_file) {
String::Utf8Value filename(args.GetIsolate(), args[0]);
source = ReadFile(args.GetIsolate(), *filename);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading worker script");
return;
}
} else {
source = args[0];
}
if (!args.IsConstructCall()) {
Throw(args.GetIsolate(), "Worker must be constructed with new");
return;
}
// Initialize the embedder field to 0; if we return early without
// creating a new Worker (because the main thread is terminating) we can
// early-out from the instance calls.
args.Holder()->SetInternalField(0, v8::Integer::New(isolate, 0));
{
// Don't allow workers to create more workers if the main thread
// is waiting for existing running workers to terminate.
base::MutexGuard lock_guard(workers_mutex_.Pointer());
if (!allow_new_workers_) return;
String::Utf8Value script(args.GetIsolate(), source);
if (!*script) {
Throw(args.GetIsolate(), "Can't get worker script");
return;
}
// The C++ worker object's lifetime is shared between the Managed<Worker>
// object on the heap, which the JavaScript object points to, and an
// internal std::shared_ptr in the worker thread itself.
auto worker = std::make_shared<Worker>(*script);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
const size_t kWorkerSizeEstimate = 4 * 1024 * 1024; // stack + heap.
i::Handle<i::Object> managed = i::Managed<Worker>::FromSharedPtr(
i_isolate, kWorkerSizeEstimate, worker);
args.Holder()->SetInternalField(0, Utils::ToLocal(managed));
if (!Worker::StartWorkerThread(std::move(worker))) {
Throw(args.GetIsolate(), "Can't start thread");
return;
}
}
}
void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, args.Holder());
if (!worker.get()) {
return;
}
Local<Value> message = args[0];
Local<Value> transfer =
args.Length() >= 2 ? args[1] : Local<Value>::Cast(Undefined(isolate));
std::unique_ptr<SerializationData> data =
Shell::SerializeValue(isolate, message, transfer);
if (data) {
worker->PostMessage(std::move(data));
}
}
void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, args.Holder());
if (!worker.get()) {
return;
}
std::unique_ptr<SerializationData> data = worker->GetMessage();
if (data) {
Local<Value> value;
if (Shell::DeserializeValue(isolate, std::move(data)).ToLocal(&value)) {
args.GetReturnValue().Set(value);
}
}
}
void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, args.Holder());
if (!worker.get()) {
return;
}
worker->Terminate();
}
void Shell::WorkerTerminateAndWait(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, args.Holder());
if (!worker.get()) {
return;
}
worker->TerminateAndWaitForThread();
}
void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
int exit_code = (*args)[0]
->Int32Value(args->GetIsolate()->GetCurrentContext())
.FromMaybe(0);
WaitForRunningWorkers();
args->GetIsolate()->Exit();
OnExit(args->GetIsolate());
base::OS::ExitProcess(exit_code);
}
void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
base::CallOnce(&quit_once_, &QuitOnce,
const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
}
void Shell::WaitUntilDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
SetWaitUntilDone(args.GetIsolate(), true);
}
void Shell::NotifyDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
SetWaitUntilDone(args.GetIsolate(), false);
}
void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
args.GetReturnValue().Set(
String::NewFromUtf8(args.GetIsolate(), V8::GetVersion())
.ToLocalChecked());
}
#ifdef V8_FUZZILLI
// We have to assume that the fuzzer will be able to call this function e.g. by
// enumerating the properties of the global object and eval'ing them. As such
// this function is implemented in a way that requires passing some magic value
// as first argument (with the idea being that the fuzzer won't be able to
// generate this value) which then also acts as a selector for the operation
// to perform.
void Shell::Fuzzilli(const v8::FunctionCallbackInfo<v8::Value>& args) {
HandleScope handle_scope(args.GetIsolate());
String::Utf8Value operation(args.GetIsolate(), args[0]);
if (*operation == nullptr) {
return;
}
if (strcmp(*operation, "FUZZILLI_CRASH") == 0) {
auto arg = args[1]
->Int32Value(args.GetIsolate()->GetCurrentContext())
.FromMaybe(0);
switch (arg) {
case 0:
V8_IMMEDIATE_CRASH();
break;
case 1:
CHECK(0);
break;
default:
DCHECK(false);
break;
}
} else if (strcmp(*operation, "FUZZILLI_PRINT") == 0) {
static FILE* fzliout = fdopen(REPRL_DWFD, "w");
if (!fzliout) {
fprintf(
stderr,
"Fuzzer output channel not available, printing to stdout instead\n");
fzliout = stdout;
}
String::Utf8Value string(args.GetIsolate(), args[1]);
if (*string == nullptr) {
return;
}
fprintf(fzliout, "%s\n", *string);
fflush(fzliout);
}
}
#endif // V8_FUZZILLI
void Shell::ReportException(Isolate* isolate, Local<v8::Message> message,
Local<v8::Value> exception_obj) {
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
bool enter_context = context.IsEmpty();
if (enter_context) {
context = Local<Context>::New(isolate, evaluation_context_);
context->Enter();
}
// Converts a V8 value to a C string.
auto ToCString = [](const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
};
v8::String::Utf8Value exception(isolate, exception_obj);
const char* exception_string = ToCString(exception);
if (message.IsEmpty()) {
// V8 didn't provide any extra information about this error; just
// print the exception.
printf("%s\n", exception_string);
} else if (message->GetScriptOrigin().Options().IsWasm()) {
// Print wasm-function[(function index)]:(offset): (message).
int function_index = message->GetWasmFunctionIndex();
int offset = message->GetStartColumn(context).FromJust();
printf("wasm-function[%d]:0x%x: %s\n", function_index, offset,
exception_string);
} else {
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(isolate,
message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
int linenum = message->GetLineNumber(context).FromMaybe(-1);
printf("%s:%i: %s\n", filename_string, linenum, exception_string);
Local<String> sourceline;
if (message->GetSourceLine(context).ToLocal(&sourceline)) {
// Print line of source code.
v8::String::Utf8Value sourcelinevalue(isolate, sourceline);
const char* sourceline_string = ToCString(sourcelinevalue);
printf("%s\n", sourceline_string);
// Print wavy underline (GetUnderline is deprecated).
int start = message->GetStartColumn(context).FromJust();
for (int i = 0; i < start; i++) {
printf(" ");
}
int end = message->GetEndColumn(context).FromJust();
for (int i = start; i < end; i++) {
printf("^");
}
printf("\n");
}
}
Local<Value> stack_trace_string;
if (v8::TryCatch::StackTrace(context, exception_obj)
.ToLocal(&stack_trace_string) &&
stack_trace_string->IsString()) {
v8::String::Utf8Value stack_trace(isolate,
Local<String>::Cast(stack_trace_string));
printf("%s\n", ToCString(stack_trace));
}
printf("\n");
if (enter_context) context->Exit();
}
void Shell::ReportException(v8::Isolate* isolate, v8::TryCatch* try_catch) {
ReportException(isolate, try_catch->Message(), try_catch->Exception());
}
int32_t* Counter::Bind(const char* name, bool is_histogram) {
int i;
for (i = 0; i < kMaxNameSize - 1 && name[i]; i++)
name_[i] = static_cast<char>(name[i]);
name_[i] = '\0';
is_histogram_ = is_histogram;
return ptr();
}
void Counter::AddSample(int32_t sample) {
count_++;
sample_total_ += sample;
}
CounterCollection::CounterCollection() {
magic_number_ = 0xDEADFACE;
max_counters_ = kMaxCounters;
max_name_size_ = Counter::kMaxNameSize;
counters_in_use_ = 0;
}
Counter* CounterCollection::GetNextCounter() {
if (counters_in_use_ == kMaxCounters) return nullptr;
return &counters_[counters_in_use_++];
}
void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
counters_file_ = base::OS::MemoryMappedFile::create(
name, sizeof(CounterCollection), &local_counters_);
void* memory =
(counters_file_ == nullptr) ? nullptr : counters_file_->memory();
if (memory == nullptr) {
printf("Could not map counters file %s\n", name);
base::OS::ExitProcess(1);
}
counters_ = static_cast<CounterCollection*>(memory);
isolate->SetCounterFunction(LookupCounter);
isolate->SetCreateHistogramFunction(CreateHistogram);
isolate->SetAddHistogramSampleFunction(AddHistogramSample);
}
Counter* Shell::GetCounter(const char* name, bool is_histogram) {
auto map_entry = counter_map_->find(name);
Counter* counter =
map_entry != counter_map_->end() ? map_entry->second : nullptr;
if (counter == nullptr) {
counter = counters_->GetNextCounter();
if (counter != nullptr) {
(*counter_map_)[name] = counter;
counter->Bind(name, is_histogram);
}
} else {
DCHECK(counter->is_histogram() == is_histogram);
}
return counter;
}
int* Shell::LookupCounter(const char* name) {
Counter* counter = GetCounter(name, false);
if (counter != nullptr) {
return counter->ptr();
} else {
return nullptr;
}
}
void* Shell::CreateHistogram(const char* name, int min, int max,
size_t buckets) {
return GetCounter(name, true);
}
void Shell::AddHistogramSample(void* histogram, int sample) {
Counter* counter = reinterpret_cast<Counter*>(histogram);
counter->AddSample(sample);
}
// Turn a value into a human-readable string.
Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) {
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
if (stringify_function_.IsEmpty()) {
Local<String> source =
String::NewFromUtf8(isolate, stringify_source_).ToLocalChecked();
Local<String> name = String::NewFromUtf8Literal(isolate, "d8-stringify");
ScriptOrigin origin(name);
Local<Script> script =
Script::Compile(context, source, &origin).ToLocalChecked();
stringify_function_.Reset(
isolate, script->Run(context).ToLocalChecked().As<Function>());
}
Local<Function> fun = Local<Function>::New(isolate, stringify_function_);
Local<Value> argv[1] = {value};
v8::TryCatch try_catch(isolate);
MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv);
if (result.IsEmpty()) return String::Empty(isolate);
return result.ToLocalChecked().As<String>();
}
Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
global_template->Set(isolate, "print", FunctionTemplate::New(isolate, Print));
global_template->Set(isolate, "printErr",
FunctionTemplate::New(isolate, PrintErr));
global_template->Set(isolate, "write", FunctionTemplate::New(isolate, Write));
global_template->Set(isolate, "read", FunctionTemplate::New(isolate, Read));
global_template->Set(isolate, "readbuffer",
FunctionTemplate::New(isolate, ReadBuffer));
global_template->Set(isolate, "readline",
FunctionTemplate::New(isolate, ReadLine));
global_template->Set(isolate, "load", FunctionTemplate::New(isolate, Load));
global_template->Set(isolate, "setTimeout",
FunctionTemplate::New(isolate, SetTimeout));
// Some Emscripten-generated code tries to call 'quit', which in turn would
// call C's exit(). This would lead to memory leaks, because there is no way
// we can terminate cleanly then, so we need a way to hide 'quit'.
if (!options.omit_quit) {
global_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
}
Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
global_template->Set(isolate, "testRunner", test_template);
test_template->Set(isolate, "notifyDone",
FunctionTemplate::New(isolate, NotifyDone));
test_template->Set(isolate, "waitUntilDone",
FunctionTemplate::New(isolate, WaitUntilDone));
// Reliable access to quit functionality. The "quit" method function
// installed on the global object can be hidden with the --omit-quit flag
// (e.g. on asan bots).
test_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
global_template->Set(isolate, "version",
FunctionTemplate::New(isolate, Version));
global_template->Set(Symbol::GetToStringTag(isolate),
String::NewFromUtf8Literal(isolate, "global"));
// Bind the Realm object.
Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
realm_template->Set(isolate, "current",
FunctionTemplate::New(isolate, RealmCurrent));
realm_template->Set(isolate, "owner",
FunctionTemplate::New(isolate, RealmOwner));
realm_template->Set(isolate, "global",
FunctionTemplate::New(isolate, RealmGlobal));
realm_template->Set(isolate, "create",
FunctionTemplate::New(isolate, RealmCreate));
realm_template->Set(
isolate, "createAllowCrossRealmAccess",
FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess));
realm_template->Set(isolate, "navigate",
FunctionTemplate::New(isolate, RealmNavigate));
realm_template->Set(isolate, "detachGlobal",
FunctionTemplate::New(isolate, RealmDetachGlobal));
realm_template->Set(isolate, "dispose",
FunctionTemplate::New(isolate, RealmDispose));
realm_template->Set(isolate, "switch",
FunctionTemplate::New(isolate, RealmSwitch));
realm_template->Set(isolate, "eval",
FunctionTemplate::New(isolate, RealmEval));
realm_template->SetAccessor(String::NewFromUtf8Literal(isolate, "shared"),
RealmSharedGet, RealmSharedSet);
global_template->Set(isolate, "Realm", realm_template);
Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
performance_template->Set(isolate, "now",
FunctionTemplate::New(isolate, PerformanceNow));
performance_template->Set(
isolate, "measureMemory",
FunctionTemplate::New(isolate, PerformanceMeasureMemory));
global_template->Set(isolate, "performance", performance_template);
Local<FunctionTemplate> worker_fun_template =
FunctionTemplate::New(isolate, WorkerNew);
Local<Signature> worker_signature =
Signature::New(isolate, worker_fun_template);
worker_fun_template->SetClassName(
String::NewFromUtf8Literal(isolate, "Worker"));
worker_fun_template->ReadOnlyPrototype();
worker_fun_template->PrototypeTemplate()->Set(
isolate, "terminate",
FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
isolate, "terminateAndWait",
FunctionTemplate::New(isolate, WorkerTerminateAndWait, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
isolate, "postMessage",
FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
isolate, "getMessage",
FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
worker_signature));
worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
global_template->Set(isolate, "Worker", worker_fun_template);
Local<ObjectTemplate> os_templ = ObjectTemplate::New(isolate);
AddOSMethods(isolate, os_templ);
global_template->Set(isolate, "os", os_templ);
#ifdef V8_FUZZILLI
global_template->Set(
String::NewFromUtf8(isolate, "fuzzilli", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Fuzzilli), PropertyAttribute::DontEnum);
#endif // V8_FUZZILLI
if (i::FLAG_expose_async_hooks) {
Local<ObjectTemplate> async_hooks_templ = ObjectTemplate::New(isolate);
async_hooks_templ->Set(
isolate, "createHook",
FunctionTemplate::New(isolate, AsyncHooksCreateHook));
async_hooks_templ->Set(
isolate, "executionAsyncId",
FunctionTemplate::New(isolate, AsyncHooksExecutionAsyncId));
async_hooks_templ->Set(
isolate, "triggerAsyncId",
FunctionTemplate::New(isolate, AsyncHooksTriggerAsyncId));
global_template->Set(isolate, "async_hooks", async_hooks_templ);
}
return global_template;
}
static void PrintMessageCallback(Local<Message> message, Local<Value> error) {
switch (message->ErrorLevel()) {
case v8::Isolate::kMessageWarning:
case v8::Isolate::kMessageLog:
case v8::Isolate::kMessageInfo:
case v8::Isolate::kMessageDebug: {
break;
}
case v8::Isolate::kMessageError: {
Shell::ReportException(message->GetIsolate(), message, error);
return;
}
default: {
UNREACHABLE();
}
}
// Converts a V8 value to a C string.
auto ToCString = [](const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
};
Isolate* isolate = message->GetIsolate();
v8::String::Utf8Value msg(isolate, message->Get());
const char* msg_string = ToCString(msg);
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(isolate,
message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext());
int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1;
printf("%s:%i: %s\n", filename_string, linenum, msg_string);
}
void Shell::PromiseRejectCallback(v8::PromiseRejectMessage data) {
if (options.ignore_unhandled_promises) return;
if (data.GetEvent() == v8::kPromiseRejectAfterResolved ||
data.GetEvent() == v8::kPromiseResolveAfterResolved) {
// Ignore reject/resolve after resolved.
return;
}
v8::Local<v8::Promise> promise = data.GetPromise();
v8::Isolate* isolate = promise->GetIsolate();
PerIsolateData* isolate_data = PerIsolateData::Get(isolate);
if (data.GetEvent() == v8::kPromiseHandlerAddedAfterReject) {
isolate_data->RemoveUnhandledPromise(promise);
return;
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
bool capture_exceptions =
i_isolate->get_capture_stack_trace_for_uncaught_exceptions();
isolate->SetCaptureStackTraceForUncaughtExceptions(true);
v8::Local<Value> exception = data.GetValue();
v8::Local<Message> message;
// Assume that all objects are stack-traces.
if (exception->IsObject()) {
message = v8::Exception::CreateMessage(isolate, exception);
}
if (!exception->IsNativeError() &&
(message.IsEmpty() || message->GetStackTrace().IsEmpty())) {
// If there is no real Error object, manually throw and catch a stack trace.
v8::TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
isolate->ThrowException(v8::Exception::Error(
v8::String::NewFromUtf8Literal(isolate, "Unhandled Promise.")));
message = try_catch.Message();
exception = try_catch.Exception();
}
isolate->SetCaptureStackTraceForUncaughtExceptions(capture_exceptions);
isolate_data->AddUnhandledPromise(promise, message, exception);
}
void Shell::Initialize(Isolate* isolate, D8Console* console,
bool isOnMainThread) {
isolate->SetPromiseRejectCallback(PromiseRejectCallback);
if (isOnMainThread) {
// Set up counters
if (i::FLAG_map_counters[0] != '\0') {
MapCounters(isolate, i::FLAG_map_counters);
}
// Disable default message reporting.
isolate->AddMessageListenerWithErrorLevel(
PrintMessageCallback,
v8::Isolate::kMessageError | v8::Isolate::kMessageWarning |
v8::Isolate::kMessageInfo | v8::Isolate::kMessageDebug |
v8::Isolate::kMessageLog);
}
isolate->SetHostImportModuleDynamicallyCallback(
Shell::HostImportModuleDynamically);
isolate->SetHostInitializeImportMetaObjectCallback(
Shell::HostInitializeImportMetaObject);
#ifdef V8_FUZZILLI
// Let the parent process (Fuzzilli) know we are ready.
if (options.fuzzilli_enable_builtins_coverage) {
cov_init_builtins_edges(static_cast<uint32_t>(
i::BasicBlockProfiler::Get()
->GetCoverageBitmap(reinterpret_cast<i::Isolate*>(isolate))
.size()));
}
char helo[] = "HELO";
if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
fuzzilli_reprl = false;
}
if (memcmp(helo, "HELO", 4) != 0) {
fprintf(stderr, "Invalid response from parent\n");
_exit(-1);
}
#endif // V8_FUZZILLI
debug::SetConsoleDelegate(isolate, console);
}
Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
// This needs to be a critical section since this is not thread-safe
base::MutexGuard lock_guard(context_mutex_.Pointer());
// Initialize the global objects
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
EscapableHandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate, nullptr, global_template);
DCHECK(!context.IsEmpty());
if (i::FLAG_perf_prof_annotate_wasm || i::FLAG_vtune_prof_annotate_wasm) {
isolate->SetWasmLoadSourceMapCallback(ReadFile);
}
InitializeModuleEmbedderData(context);
if (options.include_arguments) {
Context::Scope scope(context);
const std::vector<const char*>& args = options.arguments;
int size = static_cast<int>(args.size());
Local<Array> array = Array::New(isolate, size);
for (int i = 0; i < size; i++) {
Local<String> arg =
v8::String::NewFromUtf8(isolate, args[i]).ToLocalChecked();
Local<Number> index = v8::Number::New(isolate, i);
array->Set(context, index, arg).FromJust();
}
Local<String> name = String::NewFromUtf8Literal(
isolate, "arguments", NewStringType::kInternalized);
context->Global()->Set(context, name, array).FromJust();
}
return handle_scope.Escape(context);
}
void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) {
HandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate);
Context::Scope context_scope(context);
Local<Object> dispatch_counters = reinterpret_cast<i::Isolate*>(isolate)
->interpreter()
->GetDispatchCountersObject();
std::ofstream dispatch_counters_stream(
i::FLAG_trace_ignition_dispatches_output_file);
dispatch_counters_stream << *String::Utf8Value(
isolate, JSON::Stringify(context, dispatch_counters).ToLocalChecked());
}
namespace {
int LineFromOffset(Local<debug::Script> script, int offset) {
debug::Location location = script->GetSourceLocation(offset);
return location.GetLineNumber();
}
void WriteLcovDataForRange(std::vector<uint32_t>* lines, int start_line,
int end_line, uint32_t count) {
// Ensure space in the array.
lines->resize(std::max(static_cast<size_t>(end_line + 1), lines->size()), 0);
// Boundary lines could be shared between two functions with different
// invocation counts. Take the maximum.
(*lines)[start_line] = std::max((*lines)[start_line], count);
(*lines)[end_line] = std::max((*lines)[end_line], count);
// Invocation counts for non-boundary lines are overwritten.
for (int k = start_line + 1; k < end_line; k++) (*lines)[k] = count;
}
void WriteLcovDataForNamedRange(std::ostream& sink,
std::vector<uint32_t>* lines,
const std::string& name, int start_line,
int end_line, uint32_t count) {
WriteLcovDataForRange(lines, start_line, end_line, count);
sink << "FN:" << start_line + 1 << "," << name << std::endl;
sink << "FNDA:" << count << "," << name << std::endl;
}
} // namespace
// Write coverage data in LCOV format. See man page for geninfo(1).
void Shell::WriteLcovData(v8::Isolate* isolate, const char* file) {
if (!file) return;
HandleScope handle_scope(isolate);
debug::Coverage coverage = debug::Coverage::CollectPrecise(isolate);
std::ofstream sink(file, std::ofstream::app);
for (size_t i = 0; i < coverage.ScriptCount(); i++) {