blob: 1fb5abdf8f8fc0af92f265bbe26ced1a0584d26c [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_AST_H_
#define V8_AST_AST_H_
#include <memory>
#include "src/ast/ast-value-factory.h"
#include "src/ast/modules.h"
#include "src/ast/variables.h"
#include "src/base/pointer-with-payload.h"
#include "src/base/threaded-list.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/label.h"
#include "src/common/globals.h"
#include "src/heap/factory.h"
#include "src/objects/elements-kind.h"
#include "src/objects/function-syntax-kind.h"
#include "src/objects/literal-objects.h"
#include "src/objects/smi.h"
#include "src/parsing/token.h"
#include "src/runtime/runtime.h"
#include "src/zone/zone-list.h"
namespace v8 {
namespace internal {
// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.
// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.
// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.
#define DECLARATION_NODE_LIST(V) \
V(VariableDeclaration) \
V(FunctionDeclaration)
#define ITERATION_NODE_LIST(V) \
V(DoWhileStatement) \
V(WhileStatement) \
V(ForStatement) \
V(ForInStatement) \
V(ForOfStatement)
#define BREAKABLE_NODE_LIST(V) \
V(Block) \
V(SwitchStatement)
#define STATEMENT_NODE_LIST(V) \
ITERATION_NODE_LIST(V) \
BREAKABLE_NODE_LIST(V) \
V(ExpressionStatement) \
V(EmptyStatement) \
V(SloppyBlockFunctionStatement) \
V(IfStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(WithStatement) \
V(TryCatchStatement) \
V(TryFinallyStatement) \
V(DebuggerStatement) \
V(InitializeClassMembersStatement) \
V(InitializeClassStaticElementsStatement)
#define LITERAL_NODE_LIST(V) \
V(RegExpLiteral) \
V(ObjectLiteral) \
V(ArrayLiteral)
#define EXPRESSION_NODE_LIST(V) \
LITERAL_NODE_LIST(V) \
V(Assignment) \
V(Await) \
V(BinaryOperation) \
V(NaryOperation) \
V(Call) \
V(CallNew) \
V(CallRuntime) \
V(ClassLiteral) \
V(CompareOperation) \
V(CompoundAssignment) \
V(Conditional) \
V(CountOperation) \
V(EmptyParentheses) \
V(FunctionLiteral) \
V(GetTemplateObject) \
V(ImportCallExpression) \
V(Literal) \
V(NativeFunctionLiteral) \
V(OptionalChain) \
V(Property) \
V(Spread) \
V(SuperCallReference) \
V(SuperPropertyReference) \
V(TemplateLiteral) \
V(ThisExpression) \
V(Throw) \
V(UnaryOperation) \
V(VariableProxy) \
V(Yield) \
V(YieldStar)
#define FAILURE_NODE_LIST(V) V(FailureExpression)
#define AST_NODE_LIST(V) \
DECLARATION_NODE_LIST(V) \
STATEMENT_NODE_LIST(V) \
EXPRESSION_NODE_LIST(V)
// Forward declarations
class Isolate;
class AstNode;
class AstNodeFactory;
class Declaration;
class BreakableStatement;
class Expression;
class IterationStatement;
class MaterializedLiteral;
class NestedVariableDeclaration;
class ProducedPreparseData;
class Statement;
#define DEF_FORWARD_DECLARATION(type) class type;
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
FAILURE_NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION
class AstNode: public ZoneObject {
public:
#define DECLARE_TYPE_ENUM(type) k##type,
enum NodeType : uint8_t {
AST_NODE_LIST(DECLARE_TYPE_ENUM) /* , */
FAILURE_NODE_LIST(DECLARE_TYPE_ENUM)
};
#undef DECLARE_TYPE_ENUM
NodeType node_type() const { return NodeTypeField::decode(bit_field_); }
int position() const { return position_; }
#ifdef DEBUG
void Print(Isolate* isolate);
#endif // DEBUG
// Type testing & conversion functions overridden by concrete subclasses.
#define DECLARE_NODE_FUNCTIONS(type) \
V8_INLINE bool Is##type() const; \
V8_INLINE type* As##type(); \
V8_INLINE const type* As##type() const;
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
FAILURE_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
IterationStatement* AsIterationStatement();
MaterializedLiteral* AsMaterializedLiteral();
private:
int position_;
using NodeTypeField = base::BitField<NodeType, 0, 6>;
protected:
uint32_t bit_field_;
template <class T, int size>
using NextBitField = NodeTypeField::Next<T, size>;
AstNode(int position, NodeType type)
: position_(position), bit_field_(NodeTypeField::encode(type)) {}
};
class Statement : public AstNode {
protected:
Statement(int position, NodeType type) : AstNode(position, type) {}
};
class Expression : public AstNode {
public:
enum Context {
// Not assigned a context yet, or else will not be visited during
// code generation.
kUninitialized,
// Evaluated for its side effects.
kEffect,
// Evaluated for its value (and side effects).
kValue,
// Evaluated for control flow (and side effects).
kTest
};
// True iff the expression is a valid reference expression.
bool IsValidReferenceExpression() const;
// True iff the expression is a private name.
bool IsPrivateName() const;
// Helpers for ToBoolean conversion.
bool ToBooleanIsTrue() const;
bool ToBooleanIsFalse() const;
// Symbols that cannot be parsed as array indices are considered property
// names. We do not treat symbols that can be array indexes as property
// names because [] for string objects is handled only by keyed ICs.
bool IsPropertyName() const;
// True iff the expression is a class or function expression without
// a syntactic name.
bool IsAnonymousFunctionDefinition() const;
// True iff the expression is a concise method definition.
bool IsConciseMethodDefinition() const;
// True iff the expression is an accessor function definition.
bool IsAccessorFunctionDefinition() const;
// True iff the expression is a literal represented as a smi.
bool IsSmiLiteral() const;
// True iff the expression is a literal represented as a number.
V8_EXPORT_PRIVATE bool IsNumberLiteral() const;
// True iff the expression is a string literal.
bool IsStringLiteral() const;
// True iff the expression is the null literal.
bool IsNullLiteral() const;
// True iff the expression is the hole literal.
bool IsTheHoleLiteral() const;
// True if we can prove that the expression is the undefined literal. Note
// that this also checks for loads of the global "undefined" variable.
bool IsUndefinedLiteral() const;
// True if either null literal or undefined literal.
inline bool IsNullOrUndefinedLiteral() const {
return IsNullLiteral() || IsUndefinedLiteral();
}
// True if a literal and not null or undefined.
bool IsLiteralButNotNullOrUndefined() const;
bool IsCompileTimeValue();
bool IsPattern() {
STATIC_ASSERT(kObjectLiteral + 1 == kArrayLiteral);
return base::IsInRange(node_type(), kObjectLiteral, kArrayLiteral);
}
bool is_parenthesized() const {
return IsParenthesizedField::decode(bit_field_);
}
void mark_parenthesized() {
bit_field_ = IsParenthesizedField::update(bit_field_, true);
}
void clear_parenthesized() {
bit_field_ = IsParenthesizedField::update(bit_field_, false);
}
private:
using IsParenthesizedField = AstNode::NextBitField<bool, 1>;
protected:
Expression(int pos, NodeType type) : AstNode(pos, type) {
DCHECK(!is_parenthesized());
}
template <class T, int size>
using NextBitField = IsParenthesizedField::Next<T, size>;
};
class FailureExpression : public Expression {
private:
friend class AstNodeFactory;
friend Zone;
FailureExpression() : Expression(kNoSourcePosition, kFailureExpression) {}
};
// V8's notion of BreakableStatement does not correspond to the notion of
// BreakableStatement in ECMAScript. In V8, the idea is that a
// BreakableStatement is a statement that can be the target of a break
// statement.
//
// Since we don't want to track a list of labels for all kinds of statements, we
// only declare switchs, loops, and blocks as BreakableStatements. This means
// that we implement breaks targeting other statement forms as breaks targeting
// a substatement thereof. For instance, in "foo: if (b) { f(); break foo; }" we
// pretend that foo is the label of the inner block. That's okay because one
// can't observe the difference.
// TODO(verwaest): Reconsider this optimization now that the tracking of labels
// is done at runtime.
class BreakableStatement : public Statement {
protected:
BreakableStatement(int position, NodeType type) : Statement(position, type) {}
};
class Block final : public BreakableStatement {
public:
ZonePtrList<Statement>* statements() { return &statements_; }
bool ignore_completion_value() const {
return IgnoreCompletionField::decode(bit_field_);
}
bool is_breakable() const { return IsBreakableField::decode(bit_field_); }
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
void InitializeStatements(const ScopedPtrList<Statement>& statements,
Zone* zone) {
DCHECK_EQ(0, statements_.length());
statements_ = ZonePtrList<Statement>(statements.ToConstVector(), zone);
}
private:
friend class AstNodeFactory;
friend Zone;
ZonePtrList<Statement> statements_;
Scope* scope_;
using IgnoreCompletionField = BreakableStatement::NextBitField<bool, 1>;
using IsBreakableField = IgnoreCompletionField::Next<bool, 1>;
protected:
Block(Zone* zone, int capacity, bool ignore_completion_value,
bool is_breakable)
: BreakableStatement(kNoSourcePosition, kBlock),
statements_(capacity, zone),
scope_(nullptr) {
bit_field_ |= IgnoreCompletionField::encode(ignore_completion_value) |
IsBreakableField::encode(is_breakable);
}
Block(bool ignore_completion_value, bool is_breakable)
: Block(nullptr, 0, ignore_completion_value, is_breakable) {}
};
class Declaration : public AstNode {
public:
using List = base::ThreadedList<Declaration>;
Variable* var() const { return var_; }
void set_var(Variable* var) { var_ = var; }
protected:
Declaration(int pos, NodeType type) : AstNode(pos, type), next_(nullptr) {}
private:
Variable* var_;
// Declarations list threaded through the declarations.
Declaration** next() { return &next_; }
Declaration* next_;
friend List;
friend base::ThreadedListTraits<Declaration>;
};
class VariableDeclaration : public Declaration {
public:
inline NestedVariableDeclaration* AsNested();
private:
friend class AstNodeFactory;
friend Zone;
using IsNestedField = Declaration::NextBitField<bool, 1>;
protected:
explicit VariableDeclaration(int pos, bool is_nested = false)
: Declaration(pos, kVariableDeclaration) {
bit_field_ = IsNestedField::update(bit_field_, is_nested);
}
template <class T, int size>
using NextBitField = IsNestedField::Next<T, size>;
};
// For var declarations that appear in a block scope.
// Only distinguished from VariableDeclaration during Scope analysis,
// so it doesn't get its own NodeType.
class NestedVariableDeclaration final : public VariableDeclaration {
public:
Scope* scope() const { return scope_; }
private:
friend class AstNodeFactory;
friend Zone;
NestedVariableDeclaration(Scope* scope, int pos)
: VariableDeclaration(pos, true), scope_(scope) {}
// Nested scope from which the declaration originated.
Scope* scope_;
};
inline NestedVariableDeclaration* VariableDeclaration::AsNested() {
return IsNestedField::decode(bit_field_)
? static_cast<NestedVariableDeclaration*>(this)
: nullptr;
}
class FunctionDeclaration final : public Declaration {
public:
FunctionLiteral* fun() const { return fun_; }
private:
friend class AstNodeFactory;
friend Zone;
FunctionDeclaration(FunctionLiteral* fun, int pos)
: Declaration(pos, kFunctionDeclaration), fun_(fun) {}
FunctionLiteral* fun_;
};
class IterationStatement : public BreakableStatement {
public:
Statement* body() const { return body_; }
void set_body(Statement* s) { body_ = s; }
protected:
IterationStatement(int pos, NodeType type)
: BreakableStatement(pos, type), body_(nullptr) {}
void Initialize(Statement* body) { body_ = body; }
private:
Statement* body_;
};
class DoWhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
private:
friend class AstNodeFactory;
friend Zone;
explicit DoWhileStatement(int pos)
: IterationStatement(pos, kDoWhileStatement), cond_(nullptr) {}
Expression* cond_;
};
class WhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
private:
friend class AstNodeFactory;
friend Zone;
explicit WhileStatement(int pos)
: IterationStatement(pos, kWhileStatement), cond_(nullptr) {}
Expression* cond_;
};
class ForStatement final : public IterationStatement {
public:
void Initialize(Statement* init, Expression* cond, Statement* next,
Statement* body) {
IterationStatement::Initialize(body);
init_ = init;
cond_ = cond;
next_ = next;
}
Statement* init() const { return init_; }
Expression* cond() const { return cond_; }
Statement* next() const { return next_; }
private:
friend class AstNodeFactory;
friend Zone;
explicit ForStatement(int pos)
: IterationStatement(pos, kForStatement),
init_(nullptr),
cond_(nullptr),
next_(nullptr) {}
Statement* init_;
Expression* cond_;
Statement* next_;
};
// Shared class for for-in and for-of statements.
class ForEachStatement : public IterationStatement {
public:
enum VisitMode {
ENUMERATE, // for (each in subject) body;
ITERATE // for (each of subject) body;
};
using IterationStatement::Initialize;
static const char* VisitModeString(VisitMode mode) {
return mode == ITERATE ? "for-of" : "for-in";
}
void Initialize(Expression* each, Expression* subject, Statement* body) {
IterationStatement::Initialize(body);
each_ = each;
subject_ = subject;
}
Expression* each() const { return each_; }
Expression* subject() const { return subject_; }
protected:
friend class AstNodeFactory;
friend Zone;
ForEachStatement(int pos, NodeType type)
: IterationStatement(pos, type), each_(nullptr), subject_(nullptr) {}
Expression* each_;
Expression* subject_;
};
class ForInStatement final : public ForEachStatement {
private:
friend class AstNodeFactory;
friend Zone;
explicit ForInStatement(int pos) : ForEachStatement(pos, kForInStatement) {}
};
enum class IteratorType { kNormal, kAsync };
class ForOfStatement final : public ForEachStatement {
public:
IteratorType type() const { return type_; }
private:
friend class AstNodeFactory;
friend Zone;
ForOfStatement(int pos, IteratorType type)
: ForEachStatement(pos, kForOfStatement), type_(type) {}
IteratorType type_;
};
class ExpressionStatement final : public Statement {
public:
void set_expression(Expression* e) { expression_ = e; }
Expression* expression() const { return expression_; }
private:
friend class AstNodeFactory;
friend Zone;
ExpressionStatement(Expression* expression, int pos)
: Statement(pos, kExpressionStatement), expression_(expression) {}
Expression* expression_;
};
class JumpStatement : public Statement {
protected:
JumpStatement(int pos, NodeType type) : Statement(pos, type) {}
};
class ContinueStatement final : public JumpStatement {
public:
IterationStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
friend Zone;
ContinueStatement(IterationStatement* target, int pos)
: JumpStatement(pos, kContinueStatement), target_(target) {}
IterationStatement* target_;
};
class BreakStatement final : public JumpStatement {
public:
BreakableStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
friend Zone;
BreakStatement(BreakableStatement* target, int pos)
: JumpStatement(pos, kBreakStatement), target_(target) {}
BreakableStatement* target_;
};
class ReturnStatement final : public JumpStatement {
public:
enum Type { kNormal, kAsyncReturn, kSyntheticAsyncReturn };
Expression* expression() const { return expression_; }
Type type() const { return TypeField::decode(bit_field_); }
bool is_async_return() const { return type() != kNormal; }
bool is_synthetic_async_return() const {
return type() == kSyntheticAsyncReturn;
}
// This constant is used to indicate that the return position
// from the FunctionLiteral should be used when emitting code.
static constexpr int kFunctionLiteralReturnPosition = -2;
STATIC_ASSERT(kFunctionLiteralReturnPosition == kNoSourcePosition - 1);
int end_position() const { return end_position_; }
private:
friend class AstNodeFactory;
friend Zone;
ReturnStatement(Expression* expression, Type type, int pos, int end_position)
: JumpStatement(pos, kReturnStatement),
expression_(expression),
end_position_(end_position) {
bit_field_ |= TypeField::encode(type);
}
Expression* expression_;
int end_position_;
using TypeField = JumpStatement::NextBitField<Type, 2>;
};
class WithStatement final : public Statement {
public:
Scope* scope() { return scope_; }
Expression* expression() const { return expression_; }
Statement* statement() const { return statement_; }
void set_statement(Statement* s) { statement_ = s; }
private:
friend class AstNodeFactory;
friend Zone;
WithStatement(Scope* scope, Expression* expression, Statement* statement,
int pos)
: Statement(pos, kWithStatement),
scope_(scope),
expression_(expression),
statement_(statement) {}
Scope* scope_;
Expression* expression_;
Statement* statement_;
};
class CaseClause final : public ZoneObject {
public:
bool is_default() const { return label_ == nullptr; }
Expression* label() const {
DCHECK(!is_default());
return label_;
}
ZonePtrList<Statement>* statements() { return &statements_; }
private:
friend class AstNodeFactory;
friend Zone;
CaseClause(Zone* zone, Expression* label,
const ScopedPtrList<Statement>& statements);
Expression* label_;
ZonePtrList<Statement> statements_;
};
class SwitchStatement final : public BreakableStatement {
public:
Expression* tag() const { return tag_; }
void set_tag(Expression* t) { tag_ = t; }
ZonePtrList<CaseClause>* cases() { return &cases_; }
private:
friend class AstNodeFactory;
friend Zone;
SwitchStatement(Zone* zone, Expression* tag, int pos)
: BreakableStatement(pos, kSwitchStatement), tag_(tag), cases_(4, zone) {}
Expression* tag_;
ZonePtrList<CaseClause> cases_;
};
// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement final : public Statement {
public:
bool HasThenStatement() const { return !then_statement_->IsEmptyStatement(); }
bool HasElseStatement() const { return !else_statement_->IsEmptyStatement(); }
Expression* condition() const { return condition_; }
Statement* then_statement() const { return then_statement_; }
Statement* else_statement() const { return else_statement_; }
void set_then_statement(Statement* s) { then_statement_ = s; }
void set_else_statement(Statement* s) { else_statement_ = s; }
private:
friend class AstNodeFactory;
friend Zone;
IfStatement(Expression* condition, Statement* then_statement,
Statement* else_statement, int pos)
: Statement(pos, kIfStatement),
condition_(condition),
then_statement_(then_statement),
else_statement_(else_statement) {}
Expression* condition_;
Statement* then_statement_;
Statement* else_statement_;
};
class TryStatement : public Statement {
public:
Block* try_block() const { return try_block_; }
void set_try_block(Block* b) { try_block_ = b; }
protected:
TryStatement(Block* try_block, int pos, NodeType type)
: Statement(pos, type), try_block_(try_block) {}
private:
Block* try_block_;
};
class TryCatchStatement final : public TryStatement {
public:
Scope* scope() { return scope_; }
Block* catch_block() const { return catch_block_; }
void set_catch_block(Block* b) { catch_block_ = b; }
// Prediction of whether exceptions thrown into the handler for this try block
// will be caught.
//
// BytecodeGenerator tracks the state of catch prediction, which can change
// with each TryCatchStatement encountered. The tracked catch prediction is
// later compiled into the code's handler table. The runtime uses this
// information to implement a feature that notifies the debugger when an
// uncaught exception is thrown, _before_ the exception propagates to the top.
//
// If this try/catch statement is meant to rethrow (HandlerTable::UNCAUGHT),
// the catch prediction value is set to the same value as the surrounding
// catch prediction.
//
// Since it's generally undecidable whether an exception will be caught, our
// prediction is only an approximation.
// ---------------------------------------------------------------------------
inline HandlerTable::CatchPrediction GetCatchPrediction(
HandlerTable::CatchPrediction outer_catch_prediction) const {
if (catch_prediction_ == HandlerTable::UNCAUGHT) {
return outer_catch_prediction;
}
return catch_prediction_;
}
// Indicates whether or not code should be generated to clear the pending
// exception. The pending exception is cleared for cases where the exception
// is not guaranteed to be rethrown, indicated by the value
// HandlerTable::UNCAUGHT. If both the current and surrounding catch handler's
// are predicted uncaught, the exception is not cleared.
//
// If this handler is not going to simply rethrow the exception, this method
// indicates that the isolate's pending exception message should be cleared
// before executing the catch_block.
// In the normal use case, this flag is always on because the message object
// is not needed anymore when entering the catch block and should not be
// kept alive.
// The use case where the flag is off is when the catch block is guaranteed
// to rethrow the caught exception (using %ReThrow), which reuses the
// pending message instead of generating a new one.
// (When the catch block doesn't rethrow but is guaranteed to perform an
// ordinary throw, not clearing the old message is safe but not very
// useful.)
//
// For scripts in repl mode there is exactly one catch block with
// UNCAUGHT_ASYNC_AWAIT prediction. This catch block needs to preserve
// the exception so it can be re-used later by the inspector.
inline bool ShouldClearPendingException(
HandlerTable::CatchPrediction outer_catch_prediction) const {
if (catch_prediction_ == HandlerTable::UNCAUGHT_ASYNC_AWAIT) {
DCHECK_EQ(outer_catch_prediction, HandlerTable::UNCAUGHT);
return false;
}
return catch_prediction_ != HandlerTable::UNCAUGHT ||
outer_catch_prediction != HandlerTable::UNCAUGHT;
}
bool is_try_catch_for_async() {
return catch_prediction_ == HandlerTable::ASYNC_AWAIT;
}
private:
friend class AstNodeFactory;
friend Zone;
TryCatchStatement(Block* try_block, Scope* scope, Block* catch_block,
HandlerTable::CatchPrediction catch_prediction, int pos)
: TryStatement(try_block, pos, kTryCatchStatement),
scope_(scope),
catch_block_(catch_block),
catch_prediction_(catch_prediction) {}
Scope* scope_;
Block* catch_block_;
HandlerTable::CatchPrediction catch_prediction_;
};
class TryFinallyStatement final : public TryStatement {
public:
Block* finally_block() const { return finally_block_; }
void set_finally_block(Block* b) { finally_block_ = b; }
private:
friend class AstNodeFactory;
friend Zone;
TryFinallyStatement(Block* try_block, Block* finally_block, int pos)
: TryStatement(try_block, pos, kTryFinallyStatement),
finally_block_(finally_block) {}
Block* finally_block_;
};
class DebuggerStatement final : public Statement {
private:
friend class AstNodeFactory;
friend Zone;
explicit DebuggerStatement(int pos) : Statement(pos, kDebuggerStatement) {}
};
class EmptyStatement final : public Statement {
private:
friend class AstNodeFactory;
friend Zone;
EmptyStatement() : Statement(kNoSourcePosition, kEmptyStatement) {}
};
// Delegates to another statement, which may be overwritten.
// This was introduced to implement ES2015 Annex B3.3 for conditionally making
// sloppy-mode block-scoped functions have a var binding, which is changed
// from one statement to another during parsing.
class SloppyBlockFunctionStatement final : public Statement {
public:
Statement* statement() const { return statement_; }
void set_statement(Statement* statement) { statement_ = statement; }
Scope* scope() const { return var_->scope(); }
Variable* var() const { return var_; }
Token::Value init() const { return TokenField::decode(bit_field_); }
const AstRawString* name() const { return var_->raw_name(); }
SloppyBlockFunctionStatement** next() { return &next_; }
private:
friend class AstNodeFactory;
friend Zone;
using TokenField = Statement::NextBitField<Token::Value, 8>;
SloppyBlockFunctionStatement(int pos, Variable* var, Token::Value init,
Statement* statement)
: Statement(pos, kSloppyBlockFunctionStatement),
var_(var),
statement_(statement),
next_(nullptr) {
bit_field_ = TokenField::update(bit_field_, init);
}
Variable* var_;
Statement* statement_;
SloppyBlockFunctionStatement* next_;
};
class Literal final : public Expression {
public:
enum Type {
kSmi,
kHeapNumber,
kBigInt,
kString,
kBoolean,
kUndefined,
kNull,
kTheHole,
};
Type type() const { return TypeField::decode(bit_field_); }
// Returns true if literal represents a property name (i.e. cannot be parsed
// as array indices).
bool IsPropertyName() const;
// Returns true if literal represents an array index.
// Note, that in general the following statement is not true:
// key->IsPropertyName() != key->AsArrayIndex(...)
// but for non-computed LiteralProperty properties the following is true:
// property->key()->IsPropertyName() != property->key()->AsArrayIndex(...)
bool AsArrayIndex(uint32_t* index) const;
const AstRawString* AsRawPropertyName() {
DCHECK(IsPropertyName());
return string_;
}
Smi AsSmiLiteral() const {
DCHECK_EQ(kSmi, type());
return Smi::FromInt(smi_);
}
// Returns true if literal represents a Number.
bool IsNumber() const { return type() == kHeapNumber || type() == kSmi; }
double AsNumber() const {
DCHECK(IsNumber());
switch (type()) {
case kSmi:
return smi_;
case kHeapNumber:
return number_;
default:
UNREACHABLE();
}
}
AstBigInt AsBigInt() const {
DCHECK_EQ(type(), kBigInt);
return bigint_;
}
bool IsString() const { return type() == kString; }
const AstRawString* AsRawString() {
DCHECK_EQ(type(), kString);
return string_;
}
V8_EXPORT_PRIVATE bool ToBooleanIsTrue() const;
bool ToBooleanIsFalse() const { return !ToBooleanIsTrue(); }
bool ToUint32(uint32_t* value) const;
// Returns an appropriate Object representing this Literal, allocating
// a heap object if needed.
template <typename IsolateT>
Handle<Object> BuildValue(IsolateT* isolate) const;
// Support for using Literal as a HashMap key. NOTE: Currently, this works
// only for string and number literals!
uint32_t Hash();
static bool Match(void* literal1, void* literal2);
private:
friend class AstNodeFactory;
friend Zone;
using TypeField = Expression::NextBitField<Type, 4>;
Literal(int smi, int position) : Expression(position, kLiteral), smi_(smi) {
bit_field_ = TypeField::update(bit_field_, kSmi);
}
Literal(double number, int position)
: Expression(position, kLiteral), number_(number) {
bit_field_ = TypeField::update(bit_field_, kHeapNumber);
}
Literal(AstBigInt bigint, int position)
: Expression(position, kLiteral), bigint_(bigint) {
bit_field_ = TypeField::update(bit_field_, kBigInt);
}
Literal(const AstRawString* string, int position)
: Expression(position, kLiteral), string_(string) {
bit_field_ = TypeField::update(bit_field_, kString);
}
Literal(bool boolean, int position)
: Expression(position, kLiteral), boolean_(boolean) {
bit_field_ = TypeField::update(bit_field_, kBoolean);
}
Literal(Type type, int position) : Expression(position, kLiteral) {
DCHECK(type == kNull || type == kUndefined || type == kTheHole);
bit_field_ = TypeField::update(bit_field_, type);
}
union {
const AstRawString* string_;
int smi_;
double number_;
AstBigInt bigint_;
bool boolean_;
};
};
// Base class for literals that need space in the type feedback vector.
class MaterializedLiteral : public Expression {
public:
// A Materializedliteral is simple if the values consist of only
// constants and simple object and array literals.
bool IsSimple() const;
protected:
MaterializedLiteral(int pos, NodeType type) : Expression(pos, type) {}
bool NeedsInitialAllocationSite();
friend class CompileTimeValue;
friend class LiteralBoilerplateBuilder;
friend class ArrayLiteralBoilerplateBuilder;
friend class ObjectLiteralBoilerplateBuilder;
};
// Node for capturing a regexp literal.
class RegExpLiteral final : public MaterializedLiteral {
public:
Handle<String> pattern() const { return pattern_->string(); }
const AstRawString* raw_pattern() const { return pattern_; }
int flags() const { return flags_; }
private:
friend class AstNodeFactory;
friend Zone;
RegExpLiteral(const AstRawString* pattern, int flags, int pos)
: MaterializedLiteral(pos, kRegExpLiteral),
flags_(flags),
pattern_(pattern) {}
int const flags_;
const AstRawString* const pattern_;
};
// Base class for Array and Object literals
class AggregateLiteral : public MaterializedLiteral {
public:
enum Flags {
kNoFlags = 0,
kIsShallow = 1,
kDisableMementos = 1 << 1,
kNeedsInitialAllocationSite = 1 << 2,
kIsShallowAndDisableMementos = kIsShallow | kDisableMementos,
};
protected:
AggregateLiteral(int pos, NodeType type) : MaterializedLiteral(pos, type) {}
};
// Base class for build literal boilerplate, providing common code for handling
// nested subliterals.
class LiteralBoilerplateBuilder {
public:
enum DepthKind { kUninitialized, kShallow, kNotShallow };
static constexpr int kDepthKindBits = 2;
STATIC_ASSERT((1 << kDepthKindBits) > kNotShallow);
bool is_initialized() const {
return kUninitialized != DepthField::decode(bit_field_);
}
DepthKind depth() const {
DCHECK(is_initialized());
return DepthField::decode(bit_field_);
}
// If the expression is a literal, return the literal value;
// if the expression is a materialized literal and is_simple
// then return an Array or Object Boilerplate Description
// Otherwise, return undefined literal as the placeholder
// in the object literal boilerplate.
template <typename IsolateT>
static Handle<Object> GetBoilerplateValue(Expression* expression,
IsolateT* isolate);
bool is_shallow() const { return depth() == kShallow; }
bool needs_initial_allocation_site() const {
return NeedsInitialAllocationSiteField::decode(bit_field_);
}
int ComputeFlags(bool disable_mementos = false) const {
int flags = AggregateLiteral::kNoFlags;
if (is_shallow()) flags |= AggregateLiteral::kIsShallow;
if (disable_mementos) flags |= AggregateLiteral::kDisableMementos;
if (needs_initial_allocation_site())
flags |= AggregateLiteral::kNeedsInitialAllocationSite;
return flags;
}
// An AggregateLiteral is simple if the values consist of only
// constants and simple object and array literals.
bool is_simple() const { return IsSimpleField::decode(bit_field_); }
ElementsKind boilerplate_descriptor_kind() const {
return BoilerplateDescriptorKindField::decode(bit_field_);
}
private:
// we actually only care three conditions for depth
// - depth == kUninitialized, DCHECK(!is_initialized())
// - depth == kShallow, which means depth = 1
// - depth == kNotShallow, which means depth > 1
using DepthField = base::BitField<DepthKind, 0, kDepthKindBits>;
using NeedsInitialAllocationSiteField = DepthField::Next<bool, 1>;
using IsSimpleField = NeedsInitialAllocationSiteField::Next<bool, 1>;
using BoilerplateDescriptorKindField =
IsSimpleField::Next<ElementsKind, kFastElementsKindBits>;
protected:
uint32_t bit_field_;
LiteralBoilerplateBuilder() {
bit_field_ =
DepthField::encode(kUninitialized) |
NeedsInitialAllocationSiteField::encode(false) |
IsSimpleField::encode(false) |
BoilerplateDescriptorKindField::encode(FIRST_FAST_ELEMENTS_KIND);
}
void set_is_simple(bool is_simple) {
bit_field_ = IsSimpleField::update(bit_field_, is_simple);
}
void set_boilerplate_descriptor_kind(ElementsKind kind) {
DCHECK(IsFastElementsKind(kind));
bit_field_ = BoilerplateDescriptorKindField::update(bit_field_, kind);
}
void set_depth(DepthKind depth) {
DCHECK(!is_initialized());
bit_field_ = DepthField::update(bit_field_, depth);
}
void set_needs_initial_allocation_site(bool required) {
bit_field_ = NeedsInitialAllocationSiteField::update(bit_field_, required);
}
// Populate the depth field and any flags the literal builder has
static void InitDepthAndFlags(MaterializedLiteral* expr);
// Populate the constant properties/elements fixed array.
template <typename IsolateT>
void BuildConstants(IsolateT* isolate, MaterializedLiteral* expr);
template <class T, int size>
using NextBitField = BoilerplateDescriptorKindField::Next<T, size>;
};
// Common supertype for ObjectLiteralProperty and ClassLiteralProperty
class LiteralProperty : public ZoneObject {
public:
Expression* key() const { return key_and_is_computed_name_.GetPointer(); }
Expression* value() const { return value_; }
bool is_computed_name() const {
return key_and_is_computed_name_.GetPayload();
}
bool NeedsSetFunctionName() const;
protected:
LiteralProperty(Expression* key, Expression* value, bool is_computed_name)
: key_and_is_computed_name_(key, is_computed_name), value_(value) {}
base::PointerWithPayload<Expression, bool, 1> key_and_is_computed_name_;
Expression* value_;
};
// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class ObjectLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t {
CONSTANT, // Property with constant value (compile time).
COMPUTED, // Property with computed value (execution time).
MATERIALIZED_LITERAL, // Property value is a materialized literal.
GETTER,
SETTER, // Property is an accessor function.
PROTOTYPE, // Property is __proto__.
SPREAD
};
Kind kind() const { return kind_; }
bool IsCompileTimeValue() const;
void set_emit_store(bool emit_store);
bool emit_store() const;
bool IsNullPrototype() const {
return IsPrototype() && value()->IsNullLiteral();
}
bool IsPrototype() const { return kind() == PROTOTYPE; }
private:
friend class AstNodeFactory;
friend Zone;
ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_computed_name);
ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
Expression* value, bool is_computed_name);
Kind kind_;
bool emit_store_;
};
// class for build object boilerplate
class ObjectLiteralBoilerplateBuilder final : public LiteralBoilerplateBuilder {
public:
using Property = ObjectLiteralProperty;
ObjectLiteralBoilerplateBuilder(ZoneList<Property*>* properties,
uint32_t boilerplate_properties,
bool has_rest_property)
: properties_(properties),
boilerplate_properties_(boilerplate_properties) {
bit_field_ |= HasElementsField::encode(false) |
HasRestPropertyField::encode(has_rest_property) |
FastElementsField::encode(false) |
HasNullPrototypeField::encode(false);
}
Handle<ObjectBoilerplateDescription> boilerplate_description() const {
DCHECK(!boilerplate_description_.is_null());
return boilerplate_description_;
}
// Determines whether the {CreateShallowArrayLiteral} builtin can be used.
bool IsFastCloningSupported() const;
int properties_count() const { return boilerplate_properties_; }
const ZonePtrList<Property>* properties() const { return properties_; }
bool has_elements() const { return HasElementsField::decode(bit_field_); }
bool has_rest_property() const {
return HasRestPropertyField::decode(bit_field_);
}
bool fast_elements() const { return FastElementsField::decode(bit_field_); }
bool has_null_prototype() const {
return HasNullPrototypeField::decode(bit_field_);
}
// Populate the boilerplate description.
template <typename IsolateT>
void BuildBoilerplateDescription(IsolateT* isolate);
// Get the boilerplate description, populating it if necessary.
template <typename IsolateT>
Handle<ObjectBoilerplateDescription> GetOrBuildBoilerplateDescription(
IsolateT* isolate) {
if (boilerplate_description_.is_null()) {
BuildBoilerplateDescription(isolate);
}
return boilerplate_description_;
}
bool is_empty() const {
DCHECK(is_initialized());
return !has_elements() && properties_count() == 0 &&
properties()->length() == 0;
}
// Assemble bitfield of flags for the CreateObjectLiteral helper.
int ComputeFlags(bool disable_mementos = false) const;
bool IsEmptyObjectLiteral() const {
return is_empty() && !has_null_prototype();
}
int EncodeLiteralType();
// Populate the depth field and flags, returns the depth.
void InitDepthAndFlags();
private:
void InitFlagsForPendingNullPrototype(int i);
void set_has_elements(bool has_elements) {
bit_field_ = HasElementsField::update(bit_field_, has_elements);
}
void set_fast_elements(bool fast_elements) {
bit_field_ = FastElementsField::update(bit_field_, fast_elements);
}
void set_has_null_protoype(bool has_null_prototype) {
bit_field_ = HasNullPrototypeField::update(bit_field_, has_null_prototype);
}
ZoneList<Property*>* properties_;
uint32_t boilerplate_properties_;
Handle<ObjectBoilerplateDescription> boilerplate_description_;
using HasElementsField = LiteralBoilerplateBuilder::NextBitField<bool, 1>;
using HasRestPropertyField = HasElementsField::Next<bool, 1>;
using FastElementsField = HasRestPropertyField::Next<bool, 1>;
using HasNullPrototypeField = FastElementsField::Next<bool, 1>;
};
// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral final : public AggregateLiteral {
public:
using Property = ObjectLiteralProperty;
enum Flags {
kFastElements = 1 << 3,
kHasNullPrototype = 1 << 4,
};
STATIC_ASSERT(
static_cast<int>(AggregateLiteral::kNeedsInitialAllocationSite) <
static_cast<int>(kFastElements));
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
void CalculateEmitStore(Zone* zone);
ZoneList<Property*>* properties() { return &properties_; }
const ObjectLiteralBoilerplateBuilder* builder() const { return &builder_; }
ObjectLiteralBoilerplateBuilder* builder() { return &builder_; }
Variable* home_object() const { return home_object_; }
private:
friend class AstNodeFactory;
friend Zone;
ObjectLiteral(Zone* zone, const ScopedPtrList<Property>& properties,
uint32_t boilerplate_properties, int pos,
bool has_rest_property, Variable* home_object)
: AggregateLiteral(pos, kObjectLiteral),
properties_(properties.ToConstVector(), zone),
home_object_(home_object),
builder_(&properties_, boilerplate_properties, has_rest_property) {}
ZoneList<Property*> properties_;
Variable* home_object_;
ObjectLiteralBoilerplateBuilder builder_;
};
// class for build boilerplate for array literal, including
// array_literal, spread call elements
class ArrayLiteralBoilerplateBuilder final : public LiteralBoilerplateBuilder {
public:
ArrayLiteralBoilerplateBuilder(const ZonePtrList<Expression>* values,
int first_spread_index)
: values_(values), first_spread_index_(first_spread_index) {}
Handle<ArrayBoilerplateDescription> boilerplate_description() const {
return boilerplate_description_;
}
// Determines whether the {CreateShallowArrayLiteral} builtin can be used.
bool IsFastCloningSupported() const;
// Assemble bitfield of flags for the CreateArrayLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
return LiteralBoilerplateBuilder::ComputeFlags(disable_mementos);
}
int first_spread_index() const { return first_spread_index_; }
// Populate the depth field and flags
void InitDepthAndFlags();
// Get the boilerplate description, populating it if necessary.
template <typename IsolateT>
Handle<ArrayBoilerplateDescription> GetOrBuildBoilerplateDescription(
IsolateT* isolate) {
if (boilerplate_description_.is_null()) {
BuildBoilerplateDescription(isolate);
}
return boilerplate_description_;
}
// Populate the boilerplate description.
template <typename IsolateT>
void BuildBoilerplateDescription(IsolateT* isolate);
const ZonePtrList<Expression>* values_;
int first_spread_index_;
Handle<ArrayBoilerplateDescription> boilerplate_description_;
};
// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral final : public AggregateLiteral {
public:
const ZonePtrList<Expression>* values() const { return &values_; }
const ArrayLiteralBoilerplateBuilder* builder() const { return &builder_; }
ArrayLiteralBoilerplateBuilder* builder() { return &builder_; }
private:
friend class AstNodeFactory;
friend Zone;
ArrayLiteral(Zone* zone, const ScopedPtrList<Expression>& values,
int first_spread_index, int pos)
: AggregateLiteral(pos, kArrayLiteral),
values_(values.ToConstVector(), zone),
builder_(&values_, first_spread_index) {}
ZonePtrList<Expression> values_;
ArrayLiteralBoilerplateBuilder builder_;
};
enum class HoleCheckMode { kRequired, kElided };
class ThisExpression final : public Expression {
private:
friend class AstNodeFactory;
friend Zone;
explicit ThisExpression(int pos) : Expression(pos, kThisExpression) {}
};
class VariableProxy final : public Expression {
public:
bool IsValidReferenceExpression() const { return !is_new_target(); }
Handle<String> name() const { return raw_name()->string(); }
const AstRawString* raw_name() const {
return is_resolved() ? var_->raw_name() : raw_name_;
}
Variable* var() const {
DCHECK(is_resolved());
return var_;
}
void set_var(Variable* v) {
DCHECK(!is_resolved());
DCHECK_NOT_NULL(v);
var_ = v;
}
Scanner::Location location() {
return Scanner::Location(position(), position() + raw_name()->length());
}
bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
void set_is_assigned() {
bit_field_ = IsAssignedField::update(bit_field_, true);
if (is_resolved()) {
var()->SetMaybeAssigned();
}
}
void clear_is_assigned() {
bit_field_ = IsAssignedField::update(bit_field_, false);
}
bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
void set_is_resolved() {
bit_field_ = IsResolvedField::update(bit_field_, true);
}
bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
void set_is_new_target() {
bit_field_ = IsNewTargetField::update(bit_field_, true);
}
HoleCheckMode hole_check_mode() const {
HoleCheckMode mode = HoleCheckModeField::decode(bit_field_);
DCHECK_IMPLIES(mode == HoleCheckMode::kRequired,
var()->binding_needs_init() ||
var()->local_if_not_shadowed()->binding_needs_init());
return mode;
}
void set_needs_hole_check() {
bit_field_ =
HoleCheckModeField::update(bit_field_, HoleCheckMode::kRequired);
}
bool IsPrivateName() const { return raw_name()->IsPrivateName(); }
// Bind this proxy to the variable var.
void BindTo(Variable* var);
V8_INLINE VariableProxy* next_unresolved() { return next_unresolved_; }
V8_INLINE bool is_removed_from_unresolved() const {
return IsRemovedFromUnresolvedField::decode(bit_field_);
}
void mark_removed_from_unresolved() {
bit_field_ = IsRemovedFromUnresolvedField::update(bit_field_, true);
}
// Provides filtered access to the unresolved variable proxy threaded list.
struct UnresolvedNext {
static VariableProxy** filter(VariableProxy** t) {
VariableProxy** n = t;
// Skip over possibly removed values.
while (*n != nullptr && (*n)->is_removed_from_unresolved()) {
n = (*n)->next();
}
return n;
}
static VariableProxy** start(VariableProxy** head) { return filter(head); }
static VariableProxy** next(VariableProxy* t) { return filter(t->next()); }
};
private:
friend class AstNodeFactory;
friend Zone;
VariableProxy(Variable* var, int start_position);
VariableProxy(const AstRawString* name, VariableKind variable_kind,
int start_position)
: Expression(start_position, kVariableProxy),
raw_name_(name),
next_unresolved_(nullptr) {
DCHECK_NE(THIS_VARIABLE, variable_kind);
bit_field_ |= IsAssignedField::encode(false) |
IsResolvedField::encode(false) |
IsRemovedFromUnresolvedField::encode(false) |
HoleCheckModeField::encode(HoleCheckMode::kElided);
}
explicit VariableProxy(const VariableProxy* copy_from);
using IsAssignedField = Expression::NextBitField<bool, 1>;
using IsResolvedField = IsAssignedField::Next<bool, 1>;
using IsRemovedFromUnresolvedField = IsResolvedField::Next<bool, 1>;
using IsNewTargetField = IsRemovedFromUnresolvedField::Next<bool, 1>;
using HoleCheckModeField = IsNewTargetField::Next<HoleCheckMode, 1>;
union {
const AstRawString* raw_name_; // if !is_resolved_
Variable* var_; // if is_resolved_
};
V8_INLINE VariableProxy** next() { return &next_unresolved_; }
VariableProxy* next_unresolved_;
friend base::ThreadedListTraits<VariableProxy>;
};
// Wraps an optional chain to provide a wrapper for jump labels.
class OptionalChain final : public Expression {
public:
Expression* expression() const { return expression_; }
private:
friend class AstNodeFactory;
friend Zone;
explicit OptionalChain(Expression* expression)
: Expression(0, kOptionalChain), expression_(expression) {}
Expression* expression_;
};
// Assignments to a property will use one of several types of property access.
// Otherwise, the assignment is to a non-property (a global, a local slot, a
// parameter slot, or a destructuring pattern).
enum AssignType {
NON_PROPERTY, // destructuring
NAMED_PROPERTY, // obj.key
KEYED_PROPERTY, // obj[key]
NAMED_SUPER_PROPERTY, // super.key
KEYED_SUPER_PROPERTY, // super[key]
PRIVATE_METHOD, // obj.#key: #key is a private method
PRIVATE_GETTER_ONLY, // obj.#key: #key only has a getter defined
PRIVATE_SETTER_ONLY, // obj.#key: #key only has a setter defined
PRIVATE_GETTER_AND_SETTER // obj.#key: #key has both accessors defined
};
class Property final : public Expression {
public:
bool is_optional_chain_link() const {
return IsOptionalChainLinkField::decode(bit_field_);
}
bool IsValidReferenceExpression() const { return true; }
Expression* obj() const { return obj_; }
Expression* key() const { return key_; }
bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
bool IsPrivateReference() const { return key()->IsPrivateName(); }
// Returns the properties assign type.
static AssignType GetAssignType(Property* property) {
if (property == nullptr) return NON_PROPERTY;
if (property->IsPrivateReference()) {
DCHECK(!property->IsSuperAccess());
VariableProxy* proxy = property->key()->AsVariableProxy();
DCHECK_NOT_NULL(proxy);
Variable* var = proxy->var();
switch (var->mode()) {
case VariableMode::kPrivateMethod:
return PRIVATE_METHOD;
case VariableMode::kConst:
return KEYED_PROPERTY; // Use KEYED_PROPERTY for private fields.
case VariableMode::kPrivateGetterOnly:
return PRIVATE_GETTER_ONLY;
case VariableMode::kPrivateSetterOnly:
return PRIVATE_SETTER_ONLY;
case VariableMode::kPrivateGetterAndSetter:
return PRIVATE_GETTER_AND_SETTER;
default:
UNREACHABLE();
}
}
bool super_access = property->IsSuperAccess();
return (property->key()->IsPropertyName())
? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
: (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
}
private:
friend class AstNodeFactory;
friend Zone;
Property(Expression* obj, Expression* key, int pos, bool optional_chain)
: Expression(pos, kProperty), obj_(obj), key_(key) {
bit_field_ |= IsOptionalChainLinkField::encode(optional_chain);
}
using IsOptionalChainLinkField = Expression::NextBitField<bool, 1>;
Expression* obj_;
Expression* key_;
};
class CallBase : public Expression {
public:
Expression* expression() const { return expression_; }
const ZonePtrList<Expression>* arguments() const { return &arguments_; }
enum SpreadPosition { kNoSpread, kHasFinalSpread, kHasNonFinalSpread };
SpreadPosition spread_position() const {
return SpreadPositionField::decode(bit_field_);
}
protected:
CallBase(Zone* zone, NodeType type, Expression* expression,
const ScopedPtrList<Expression>& arguments, int pos, bool has_spread)
: Expression(pos, type),
expression_(expression),
arguments_(arguments.ToConstVector(), zone) {
DCHECK(type == kCall || type == kCallNew);
if (has_spread) {
ComputeSpreadPosition();
} else {
bit_field_ |= SpreadPositionField::encode(kNoSpread);
}
}
// Only valid to be called if there is a spread in arguments_.
void ComputeSpreadPosition();
using SpreadPositionField = Expression::NextBitField<SpreadPosition, 2>;
template <class T, int size>
using NextBitField = SpreadPositionField::Next<T, size>;
Expression* expression_;
ZonePtrList<Expression> arguments_;
};
class Call final : public CallBase {
public:
bool is_possibly_eval() const {
return IsPossiblyEvalField::decode(bit_field_);
}
bool is_tagged_template() const {
return IsTaggedTemplateField::decode(bit_field_);
}
bool is_optional_chain_link() const {
return IsOptionalChainLinkField::decode(bit_field_);
}
enum CallType {
GLOBAL_CALL,
WITH_CALL,
NAMED_PROPERTY_CALL,
KEYED_PROPERTY_CALL,
NAMED_OPTIONAL_CHAIN_PROPERTY_CALL,
KEYED_OPTIONAL_CHAIN_PROPERTY_CALL,
NAMED_SUPER_PROPERTY_CALL,
KEYED_SUPER_PROPERTY_CALL,
PRIVATE_CALL,
PRIVATE_OPTIONAL_CHAIN_CALL,
SUPER_CALL,
OTHER_CALL,
};
enum PossiblyEval {
IS_POSSIBLY_EVAL,
NOT_EVAL,
};
// Helpers to determine how to handle the call.
CallType GetCallType() const;
enum class TaggedTemplateTag { kTrue };
private:
friend class AstNodeFactory;
friend Zone;
Call(Zone* zone, Expression* expression,
const ScopedPtrList<Expression>& arguments, int pos, bool has_spread,
PossiblyEval possibly_eval, bool optional_chain)
: CallBase(zone, kCall, expression, arguments, pos, has_spread) {
bit_field_ |=
IsPossiblyEvalField::encode(possibly_eval == IS_POSSIBLY_EVAL) |
IsTaggedTemplateField::encode(false) |
IsOptionalChainLinkField::encode(optional_chain);
}
Call(Zone* zone, Expression* expression,
const ScopedPtrList<Expression>& arguments, int pos,
TaggedTemplateTag tag)
: CallBase(zone, kCall, expression, arguments, pos, false) {
bit_field_ |= IsPossiblyEvalField::encode(false) |
IsTaggedTemplateField::encode(true) |
IsOptionalChainLinkField::encode(false);
}
using IsPossiblyEvalField = CallBase::NextBitField<bool, 1>;
using IsTaggedTemplateField = IsPossiblyEvalField::Next<bool, 1>;
using IsOptionalChainLinkField = IsTaggedTemplateField::Next<bool, 1>;
};
class CallNew final : public CallBase {
private:
friend class AstNodeFactory;
friend Zone;
CallNew(Zone* zone, Expression* expression,
const ScopedPtrList<Expression>& arguments, int pos, bool has_spread)
: CallBase(zone, kCallNew, expression, arguments, pos, has_spread) {}
};
// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript.
class CallRuntime final : public Expression {
public:
const ZonePtrList<Expression>* arguments() const { return &arguments_; }
bool is_jsruntime() const { return function_ == nullptr; }
int context_index() const {
DCHECK(is_jsruntime());
return context_index_;
}
const Runtime::Function* function() const {
DCHECK(!is_jsruntime());
return function_;
}
const char* debug_name();
private:
friend class AstNodeFactory;
friend Zone;
CallRuntime(Zone* zone, const Runtime::Function* function,
const ScopedPtrList<Expression>& arguments, int pos)
: Expression(pos, kCallRuntime),
function_(function),
arguments_(arguments.ToConstVector(), zone) {}
CallRuntime(Zone* zone, int context_index,
const ScopedPtrList<Expression>& arguments, int pos)
: Expression(pos, kCallRuntime),
context_index_(context_index),
function_(nullptr),
arguments_(arguments.ToConstVector(), zone) {}
int context_index_;
const Runtime::Function* function_;
ZonePtrList<Expression> arguments_;
};
class UnaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* expression() const { return expression_; }
private:
friend class AstNodeFactory;
friend Zone;
UnaryOperation(Token::Value op, Expression* expression, int pos)
: Expression(pos, kUnaryOperation), expression_(expression) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsUnaryOp(op));
}
Expression* expression_;
using OperatorField = Expression::NextBitField<Token::Value, 7>;
};
class BinaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
// Returns true if one side is a Smi literal, returning the other side's
// sub-expression in |subexpr| and the literal Smi in |literal|.
bool IsSmiLiteralOperation(Expression** subexpr, Smi* literal);
private:
friend class AstNodeFactory;
friend Zone;
BinaryOperation(Token::Value op, Expression* left, Expression* right, int pos)
: Expression(pos, kBinaryOperation), left_(left), right_(right) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsBinaryOp(op));
}
Expression* left_;
Expression* right_;
using OperatorField = Expression::NextBitField<Token::Value, 7>;
};
class NaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* first() const { return first_; }
Expression* subsequent(size_t index) const {
return subsequent_[index].expression;
}
size_t subsequent_length() const { return subsequent_.size(); }
int subsequent_op_position(size_t index) const {
return subsequent_[index].op_position;
}
void AddSubsequent(Expression* expr, int pos) {
subsequent_.emplace_back(expr, pos);
}
private:
friend class AstNodeFactory;
friend Zone;
NaryOperation(Zone* zone, Token::Value op, Expression* first,
size_t initial_subsequent_size)
: Expression(first->position(), kNaryOperation),
first_(first),
subsequent_(zone) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsBinaryOp(op));
DCHECK_NE(op, Token::EXP);
subsequent_.reserve(initial_subsequent_size);
}
// Nary operations store the first (lhs) child expression inline, and the
// child expressions (rhs of each op) are stored out-of-line, along with
// their operation's position. Note that the Nary operation expression's
// position has no meaning.
//
// So an nary add:
//
// expr + expr + expr + ...
//
// is stored as:
//
// (expr) [(+ expr), (+ expr), ...]
// '-.--' '-----------.-----------'
// first subsequent entry list
Expression* first_;
struct NaryOperationEntry {
Expression* expression;
int op_position;
NaryOperationEntry(Expression* e, int pos)
: expression(e), op_position(pos) {}
};
ZoneVector<NaryOperationEntry> subsequent_;
using OperatorField = Expression::NextBitField<Token::Value, 7>;
};
class CountOperation final : public Expression {
public:
bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
bool is_postfix() const { return !is_prefix(); }
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* expression() const { return expression_; }
private:
friend class AstNodeFactory;
friend Zone;
CountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos)
: Expression(pos, kCountOperation), expression_(expr) {
bit_field_ |= IsPrefixField::encode(is_prefix) | TokenField::encode(op);
}
using IsPrefixField = Expression::NextBitField<bool, 1>;
using TokenField = IsPrefixField::Next<Token::Value, 7>;
Expression* expression_;
};
class CompareOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
// Match special cases.
bool IsLiteralCompareTypeof(Expression** expr, Literal** literal);
bool IsLiteralCompareUndefined(Expression** expr);
bool IsLiteralCompareNull(Expression** expr);
private:
friend class AstNodeFactory;
friend Zone;
CompareOperation(Token::Value op, Expression* left, Expression* right,
int pos)
: Expression(pos, kCompareOperation), left_(left), right_(right) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsCompareOp(op));
}
Expression* left_;
Expression* right_;
using OperatorField = Expression::NextBitField<Token::Value, 7>;
};
class Spread final : public Expression {
public:
Expression* expression() const { return expression_; }
int expression_position() const { return expr_pos_; }
private:
friend class AstNodeFactory;
friend Zone;
Spread(Expression* expression, int pos, int expr_pos)
: Expression(pos, kSpread),
expr_pos_(expr_pos),
expression_(expression) {}
int expr_pos_;
Expression* expression_;
};
class Conditional final : public Expression {
public:
Expression* condition() const { return condition_; }
Expression* then_expression() const { return then_expression_; }
Expression* else_expression() const { return else_expression_; }
private:
friend class AstNodeFactory;
friend Zone;
Conditional(Expression* condition, Expression* then_expression,
Expression* else_expression, int position)
: Expression(position, kConditional),
condition_(condition),
then_expression_(then_expression),
else_expression_(else_expression) {}
Expression* condition_;
Expression* then_expression_;
Expression* else_expression_;
};
class Assignment : public Expression {
public:
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* target() const { return target_; }
Expression* value() const { return value_; }
// The assignment was generated as part of block-scoped sloppy-mode
// function hoisting, see
// ES#sec-block-level-function-declarations-web-legacy-compatibility-semantics
LookupHoistingMode lookup_hoisting_mode() const {
return static_cast<LookupHoistingMode>(
LookupHoistingModeField::decode(bit_field_));
}
void set_lookup_hoisting_mode(LookupHoistingMode mode) {
bit_field_ =
LookupHoistingModeField::update(bit_field_, static_cast<bool>(mode));
}
protected:
Assignment(NodeType type, Token::Value op, Expression* target,
Expression* value, int pos);
private:
friend class AstNodeFactory;
friend Zone;
using TokenField = Expression::NextBitField<Token::Value, 7>;
using LookupHoistingModeField = TokenField::Next<bool, 1>;
Expression* target_;
Expression* value_;
};
class CompoundAssignment final : public Assignment {
public:
BinaryOperation* binary_operation() const { return binary_operation_; }
private:
friend class AstNodeFactory;
friend Zone;
CompoundAssignment(Token::Value op, Expression* target, Expression* value,
int pos, BinaryOperation* binary_operation)
: Assignment(kCompoundAssignment, op, target, value, pos),
binary_operation_(binary_operation) {}
BinaryOperation* binary_operation_;
};
// There are several types of Suspend node:
//
// Yield
// YieldStar
// Await
//
// Our Yield is different from the JS yield in that it "returns" its argument as
// is, without wrapping it in an iterator result object. Such wrapping, if
// desired, must be done beforehand (see the parser).
class Suspend : public Expression {
public:
// With {kNoControl}, the {Suspend} behaves like yield, except that it never
// throws and never causes the current generator to return. This is used to
// desugar yield*.
// TODO(caitp): remove once yield* desugaring for async generators is handled
// in BytecodeGenerator.
enum OnAbruptResume { kOnExceptionThrow, kNoControl };
Expression* expression() const { return expression_; }
OnAbruptResume on_abrupt_resume() const {
return OnAbruptResumeField::decode(bit_field_);
}
private:
friend class AstNodeFactory;
friend Zone;
friend class Yield;
friend class YieldStar;
friend class Await;
Suspend(NodeType node_type, Expression* expression, int pos,
OnAbruptResume on_abrupt_resume)
: Expression(pos, node_type), expression_(expression) {
bit_field_ |= OnAbruptResumeField::encode(on_abrupt_resume);
}
Expression* expression_;
using OnAbruptResumeField = Expression::NextBitField<OnAbruptResume, 1>;
};
class Yield final : public Suspend {
private:
friend class AstNodeFactory;
friend Zone;
Yield(Expression* expression, int pos, OnAbruptResume on_abrupt_resume)
: Suspend(kYield, expression, pos, on_abrupt_resume) {}
};
class YieldStar final : public Suspend {
private:
friend class AstNodeFactory;
friend Zone;
YieldStar(Expression* expression, int pos)
: Suspend(kYieldStar, expression, pos,
Suspend::OnAbruptResume::kNoControl) {}
};
class Await final : public Suspend {
private:
friend class AstNodeFactory;
friend Zone;
Await(Expression* expression, int pos)
: Suspend(kAwait, expression, pos, Suspend::kOnExceptionThrow) {}
};
class Throw final : public Expression {
public:
Expression* exception() const { return exception_; }
private:
friend class AstNodeFactory;
friend Zone;
Throw(Expression* exception, int pos)
: Expression(pos, kThrow), exception_(exception) {}
Expression* exception_;
};
class FunctionLiteral final : public Expression {
public:
enum ParameterFlag : uint8_t {
kNoDuplicateParameters,
kHasDuplicateParameters
};
enum EagerCompileHint : uint8_t { kShouldEagerCompile, kShouldLazyCompile };
// Empty handle means that the function does not have a shared name (i.e.
// the name will be set dynamically after creation of the function closure).
template <typename IsolateT>
MaybeHandle<String> GetName(IsolateT* isolate) const {
return raw_name_ ? raw_name_->AllocateFlat(isolate) : MaybeHandle<String>();
}
bool has_shared_name() const { return raw_name_ != nullptr; }
const AstConsString* raw_name() const { return raw_name_; }
void set_raw_name(const AstConsString* name) { raw_name_ = name; }
DeclarationScope* scope() const { return scope_; }
ZonePtrList<Statement>* body() { return &body_; }
void set_function_token_position(int pos) { function_token_position_ = pos; }
int function_token_position() const { return function_token_position_; }
int start_position() const;
int end_position() const;
bool is_anonymous_expression() const {
return syntax_kind() == FunctionSyntaxKind::kAnonymousExpression;
}
bool is_toplevel() const {
return function_literal_id() == kFunctionLiteralIdTopLevel;
}
V8_EXPORT_PRIVATE LanguageMode language_mode() const;
void add_expected_properties(int number_properties) {
expected_property_count_ += number_properties;
}
int expected_property_count() { return expected_property_count_; }
int parameter_count() { return parameter_count_; }
int function_length() { return function_length_; }
bool AllowsLazyCompilation();
bool CanSuspend() {
if (suspend_count() > 0) {
DCHECK(IsResumableFunction(kind()));
return true;
}
return false;
}
// Returns either name or inferred name as a cstring.
std::unique_ptr<char[]> GetDebugName() const;
Handle<String> GetInferredName(Isolate* isolate) {
if (!inferred_name_.is_null()) {
DCHECK_NULL(raw_inferred_name_);
return inferred_name_;
}
if (raw_inferred_name_ != nullptr) {
return raw_inferred_name_->GetString(isolate);
}
UNREACHABLE();
}
Handle<String> GetInferredName(LocalIsolate* isolate) const {
DCHECK(inferred_name_.is_null());
DCHECK_NOT_NULL(raw_inferred_name_);
return raw_inferred_name_->GetString(isolate);
}
const AstConsString* raw_inferred_name() { return raw_inferred_name_; }
// Only one of {set_inferred_name, set_raw_inferred_name} should be called.
void set_inferred_name(Handle<String> inferred_name);
void set_raw_inferred_name(AstConsString* raw_inferred_name);
bool pretenure() const { return Pretenure::decode(bit_field_); }
void set_pretenure() { bit_field_ = Pretenure::update(bit_field_, true); }
bool has_duplicate_parameters() const {
// Not valid for lazy functions.
DCHECK(ShouldEagerCompile());
return HasDuplicateParameters::decode(bit_field_);
}
bool should_parallel_compile() const {
return ShouldParallelCompileField::decode(bit_field_);
}
void set_should_parallel_compile() {
bit_field_ = ShouldParallelCompileField::update(bit_field_, true);
}
// This is used as a heuristic on when to eagerly compile a function
// literal. We consider the following constructs as hints that the
// function will be called immediately:
// - (function() { ... })();
// - var x = function() { ... }();
V8_EXPORT_PRIVATE bool ShouldEagerCompile() const;
V8_EXPORT_PRIVATE void SetShouldEagerCompile();
FunctionSyntaxKind syntax_kind() const {
return FunctionSyntaxKindBits::decode(bit_field_);
}
FunctionKind kind() const;
bool IsAnonymousFunctionDefinition() const {
return is_anonymous_expression();
}
int suspend_count() { return suspend_count_; }
void set_suspend_count(int suspend_count) { suspend_count_ = suspend_count; }
int return_position() {
return std::max(
start_position(),
end_position() - (HasBracesField::decode(bit_field_) ? 1 : 0));
}
int function_literal_id() const { return function_literal_id_; }
void set_function_literal_id(int function_literal_id) {
function_literal_id_ = function_literal_id;
}
void set_requires_instance_members_initializer(bool value) {
bit_field_ = RequiresInstanceMembersInitializer::update(bit_field_, value);
}
bool requires_instance_members_initializer() const {
return RequiresInstanceMembersInitializer::decode(bit_field_);
}
void set_has_static_private_methods_or_accessors(bool value) {
bit_field_ =
HasStaticPrivateMethodsOrAccessorsField::update(bit_field_, value);
}
bool has_static_private_methods_or_accessors() const {
return HasStaticPrivateMethodsOrAccessorsField::decode(bit_field_);
}
void set_class_scope_has_private_brand(bool value);
bool class_scope_has_private_brand() const;
bool private_name_lookup_skips_outer_class() const;
ProducedPreparseData* produced_preparse_data() const {
return produced_preparse_data_;
}
private:
friend class AstNodeFactory;
friend Zone;
FunctionLiteral(Zone* zone, const AstConsString* name,
AstValueFactory* ast_value_factory, DeclarationScope* scope,
const ScopedPtrList<Statement>& body,
int expected_property_count, int parameter_count,
int function_length, FunctionSyntaxKind function_syntax_kind,
ParameterFlag has_duplicate_parameters,
EagerCompileHint eager_compile_hint, int position,
bool has_braces, int function_literal_id,
ProducedPreparseData* produced_preparse_data = nullptr)
: Expression(position, kFunctionLiteral),
expected_property_count_(expected_property_count),
parameter_count_(parameter_count),
function_length_(function_length),
function_token_position_(kNoSourcePosition),
suspend_count_(0),
function_literal_id_(function_literal_id),
raw_name_(name),
scope_(scope),
body_(body.ToConstVector(), zone),
raw_inferred_name_(ast_value_factory->empty_cons_string()),
produced_preparse_data_(produced_preparse_data) {
bit_field_ |= FunctionSyntaxKindBits::encode(function_syntax_kind) |
Pretenure::encode(false) |
HasDuplicateParameters::encode(has_duplicate_parameters ==
kHasDuplicateParameters) |
RequiresInstanceMembersInitializer::encode(false) |
HasBracesField::encode(has_braces) |
ShouldParallelCompileField::encode(false);
if (eager_compile_hint == kShouldEagerCompile) SetShouldEagerCompile();
}
using FunctionSyntaxKindBits =
Expression::NextBitField<FunctionSyntaxKind, 3>;
using Pretenure = FunctionSyntaxKindBits::Next<bool, 1>;
using HasDuplicateParameters = Pretenure::Next<bool, 1>;
using RequiresInstanceMembersInitializer =
HasDuplicateParameters::Next<bool, 1>;
using HasStaticPrivateMethodsOrAccessorsField =
RequiresInstanceMembersInitializer::Next<bool, 1>;
using HasBracesField = HasStaticPrivateMethodsOrAccessorsField::Next<bool, 1>;
using ShouldParallelCompileField = HasBracesField::Next<bool, 1>;
// expected_property_count_ is the sum of instance fields and properties.
// It can vary depending on whether a function is lazily or eagerly parsed.
int expected_property_count_;
int parameter_count_;
int function_length_;
int function_token_position_;
int suspend_count_;
int function_literal_id_;
const AstConsString* raw_name_;
DeclarationScope* scope_;
ZonePtrList<Statement> body_;
AstConsString* raw_inferred_name_;
Handle<String> inferred_name_;
ProducedPreparseData* produced_preparse_data_;
};
// Property is used for passing information
// about a class literal's properties from the parser to the code generator.
class ClassLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t { METHOD, GETTER, SETTER, FIELD };
Kind kind() const { return kind_; }
bool is_static() const { return is_static_; }
bool is_private() const { return is_private_; }
void set_computed_name_var(Variable* var) {
DCHECK_EQ(FIELD, kind());
DCHECK(!is_private());
private_or_computed_name_var_ = var;
}
Variable* computed_name_var() const {
DCHECK_EQ(FIELD, kind());
DCHECK(!is_private());
return private_or_computed_name_var_;
}
void set_private_name_var(Variable* var) {
DCHECK(is_private());
private_or_computed_name_var_ = var;
}
Variable* private_name_var() const {
DCHECK(is_private());
return private_or_computed_name_var_;
}
private:
friend class AstNodeFactory;
friend Zone;
ClassLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_static, bool is_computed_name, bool is_private);
Kind kind_;
bool is_static_;
bool is_private_;
Variable* private_or_computed_name_var_;
};
class ClassLiteralStaticElement final : public ZoneObject {
public:
enum Kind : uint8_t { PROPERTY, STATIC_BLOCK };
Kind kind() const { return kind_; }
ClassLiteralProperty* property() const {
DCHECK(kind() == PROPERTY);
return property_;
}
Block* static_block() const {
DCHECK(kind() == STATIC_BLOCK);
return static_block_;
}
private:
friend class AstNodeFactory;
friend Zone;
explicit ClassLiteralStaticElement(ClassLiteralProperty* property)
: kind_(PROPERTY), property_(property) {}
explicit ClassLiteralStaticElement(Block* static_block)
: kind_(STATIC_BLOCK), static_block_(static_block) {}
Kind kind_;
union {
ClassLiteralProperty* property_;
Block* static_block_;
};
};
class InitializeClassMembersStatement final : public Statement {
public:
using Property = ClassLiteralProperty;
ZonePtrList<Property>* fields() const { return fields_; }
private:
friend class AstNodeFactory;
friend Zone;
InitializeClassMembersStatement(ZonePtrList<Property>* fields, int pos)
: Statement(pos, kInitializeClassMembersStatement), fields_(fields) {}
ZonePtrList<Property>* fields_;
};
class InitializeClassStaticElementsStatement final : public Statement {
public:
using StaticElement = ClassLiteralStaticElement;
ZonePtrList<StaticElement>* elements() const { return elements_; }
private:
friend class AstNodeFactory;
friend Zone;
InitializeClassStaticElementsStatement(ZonePtrList<StaticElement>* elements,
int pos)
: Statement(pos, kInitializeClassStaticElementsStatement),
elements_(elements) {}
ZonePtrList<StaticElement>* elements_;
};
class ClassLiteral final : public Expression {
public:
using Property = ClassLiteralProperty;
using StaticElement = ClassLiteralStaticElement;
ClassScope* scope() const { return scope_; }
Expression* extends() const { return extends_; }
FunctionLiteral* constructor() const { return constructor_; }
ZonePtrList<Property>* public_members() const { return public_members_; }
ZonePtrList<Property>* private_members() const { return private_members_; }
int start_position() const { return position(); }
int end_position() const { return end_position_; }
bool has_static_computed_names() const {
return HasStaticComputedNames::decode(bit_field_);
}
bool is_anonymous_expression() const {
return IsAnonymousExpression::decode(bit_field_);
}
bool has_private_methods() const {
return HasPrivateMethods::decode(bit_field_);
}
bool IsAnonymousFunctionDefinition() const {
return is_anonymous_expression();
}
FunctionLiteral* static_initializer() const { return static_initializer_; }
FunctionLiteral* instance_members_initializer_function() const {
return instance_members_initializer_function_;
}
Variable* home_object() const { return home_object_; }
Variable* static_home_object() const { return static_home_object_; }
private:
friend class AstNodeFactory;
friend Zone;
ClassLiteral(ClassScope* scope, Expression* extends,
FunctionLiteral* constructor,
ZonePtrList<Property>* public_members,
ZonePtrList<Property>* private_members,
FunctionLiteral* static_initializer,
FunctionLiteral* instance_members_initializer_function,
int start_position, int end_position,
bool has_static_computed_names, bool is_anonymous,
bool has_private_methods, Variable* home_object,
Variable* static_home_object)
: Expression(start_position, kClassLiteral),
end_position_(end_position),
scope_(scope),
extends_(extends),
constructor_(constructor),
public_members_(public_members),
private_members_(private_members),
static_initializer_(static_initializer),
instance_members_initializer_function_(
instance_members_initializer_function),
home_object_(home_object),
static_home_object_(static_home_object) {
bit_field_ |= HasStaticComputedNames::encode(has_static_computed_names) |
IsAnonymousExpression::encode(is_anonymous) |
HasPrivateMethods::encode(has_private_methods);
}
int end_position_;
ClassScope* scope_;
Expression* extends_;
FunctionLiteral* constructor_;
ZonePtrList<Property>* public_members_;
ZonePtrList<Property>* private_members_;
FunctionLiteral* static_initializer_;
FunctionLiteral* instance_members_initializer_function_;
using HasStaticComputedNames = Expression::NextBitField<bool, 1>;
using IsAnonymousExpression = HasStaticComputedNames::Next<bool, 1>;
using HasPrivateMethods = IsAnonymousExpression::Next<bool, 1>;
Variable* home_object_;
Variable* static_home_object_;
};
class NativeFunctionLiteral final : public Expression {
public:
Handle<String> name() const { return name_->string(); }
const AstRawString* raw_name() const { return name_; }
v8::Extension* extension() const { return extension_; }
private:
friend class AstNodeFactory;
friend Zone;
NativeFunctionLiteral(const AstRawString* name, v8::Extension* extension,
int pos)
: Expression(pos, kNativeFunctionLiteral),
name_(name),
extension_(extension) {}
const AstRawString* name_;
v8::Extension* extension_;
};
class SuperPropertyReference final : public Expression {
public:
VariableProxy* home_object() const { return home_object_; }
private:
friend class AstNodeFactory;
friend Zone;
explicit SuperPropertyReference(VariableProxy* home_object, int pos)
: Expression(pos, kSuperPropertyReference), home_object_(home_object) {}
VariableProxy* home_object_;
};
class SuperCallReference final : public Expression {
public:
VariableProxy* new_target_var() const { return new_target_var_; }
VariableProxy* this_function_var() const { return this_function_var_; }
private:
friend class AstNodeFactory;
friend Zone;
// We take in ThisExpression* only as a proof that it was accessed.
SuperCallReference(VariableProxy* new_target_var,
VariableProxy* this_function_var, int pos)
: Expression(pos, kSuperCallReference),
new_target_var_(new_target_var),
this_function_var_(this_function_var) {
DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
}
VariableProxy* new_target_var_;
VariableProxy* this_function_var_;
};
// This AST Node is used to represent a dynamic import call --
// import(argument).
class ImportCallExpression final : public Expression {
public:
Expression* specifier() const { return specifier_; }
Expression* import_assertions() const { return import_assertions_; }
private:
friend class AstNodeFactory;
friend Zone;
ImportCallExpression(Expression* specifier, int pos)
: Expression(pos, kImportCallExpression),
specifier_(specifier),
import_assertions_(nullptr) {}
ImportCallExpression(Expression* specifier, Expression* import_assertions,
int pos)
: Expression(pos, kImportCallExpression),
specifier_(specifier),
import_assertions_(import_assertions) {}
Expression* specifier_;
Expression* import_assertions_;
};
// This class is produced when parsing the () in arrow functions without any
// arguments and is not actually a valid expression.
class EmptyParentheses final : public Expression {
private:
friend class AstNodeFactory;
friend Zone;
explicit EmptyParentheses(int pos) : Expression(pos, kEmptyParentheses) {
mark_parenthesized();
}
};
// Represents the spec operation `GetTemplateObject(templateLiteral)`
// (defined at https://tc39.github.io/ecma262/#sec-gettemplateobject).
class GetTemplateObject final : public Expression {
public:
const ZonePtrList<const AstRawString>* cooked_strings() const {
return cooked_strings_;
}
const ZonePtrList<const AstRawString>* raw_strings() const {
return raw_strings_;
}
template <typename IsolateT>
Handle<TemplateObjectDescription> GetOrBuildDescription(IsolateT* isolate);
private:
friend class AstNodeFactory;
friend Zone;
GetTemplateObject(const ZonePtrList<const AstRawString>* cooked_strings,
const ZonePtrList<const AstRawString>* raw_strings, int pos)
: Expression(pos, kGetTemplateObject),
cooked_strings_(cooked_strings),
raw_strings_(raw_strings) {}
const ZonePtrList<const AstRawString>* cooked_strings_;
const ZonePtrList<const AstRawString>* raw_strings_;
};
class TemplateLiteral final : public Expression {
public:
const ZonePtrList<const AstRawString>* string_parts() const {
return string_parts_;
}
const ZonePtrList<Expression>* substitutions() const {
return substitutions_;
}
private:
friend class AstNodeFactory;
friend Zone;
TemplateLiteral(const ZonePtrList<const AstRawString>* parts,
const ZonePtrList<Expression>* substitutions, int pos)
: Expression(pos, kTemplateLiteral),
string_parts_(parts),
substitutions_(substitutions) {}
const ZonePtrList<const AstRawString>* string_parts_;
const ZonePtrList<Expression>* substitutions_;
};
// ----------------------------------------------------------------------------
// Basic visitor
// Sub-class should parametrize AstVisitor with itself, e.g.:
// class SpecificVisitor : public AstVisitor<SpecificVisitor> { ... }
template <class Subclass>
class AstVisitor {
public:
void Visit(AstNode* node) { impl()->Visit(node); }
void VisitDeclarations(Declaration::List* declarations) {
for (Declaration* decl : *declarations) Visit(decl);
}
void VisitStatements(const ZonePtrList<Statement>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
Visit(stmt);
}
}
void VisitExpressions(const ZonePtrList<Expression>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass null expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes.
Expression* expression = expressions->at(i);
if (expression != nullptr) Visit(expression);
}
}
protected:
Subclass* impl() { return static_cast<Subclass*>(this); }
};
#define GENERATE_VISIT_CASE(NodeType) \
case AstNode::k##NodeType: \
return this->impl()->Visit##NodeType(static_cast<NodeType*>(node));
#define GENERATE_FAILURE_CASE(NodeType) \
case AstNode::k##NodeType: \
UNREACHABLE();
#define GENERATE_AST_VISITOR_SWITCH() \
switch (node->node_type()) { \
AST_NODE_LIST(GENERATE_VISIT_CASE) \
FAILURE_NODE_LIST(GENERATE_FAILURE_CASE) \
}
#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
public: \
void VisitNoStackOverflowCheck(AstNode* node) { \
GENERATE_AST_VISITOR_SWITCH() \
} \
\
void Visit(AstNode* node) { \
if (CheckStackOverflow()) return; \
VisitNoStackOverflowCheck(node); \
} \
\
void SetStackOverflow() { stack_overflow_ = true; } \
void ClearStackOverflow() { stack_overflow_ = false; } \
bool HasStackOverflow() const { return stack_overflow_; } \
\
bool CheckStackOverflow() { \
if (stack_overflow_) return true; \
if (GetCurrentStackPosition() < stack_limit_) { \
stack_overflow_ = true; \
return true; \
} \
return false; \
} \
\
protected: \
uintptr_t stack_limit() const { return stack_limit_; } \
\
private: \
void InitializeAstVisitor(Isolate* isolate) { \
stack_limit_ = isolate->stack_guard()->real_climit(); \
stack_overflow_ = false; \
} \
\
void InitializeAstVisitor(uintptr_t stack_limit) { \
stack_limit_ = stack_limit; \
stack_overflow_ = false; \
} \
\
uintptr_t stack_limit_; \
bool stack_overflow_
#define DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW() \
public: \
void Visit(AstNode* node) { GENERATE_AST_VISITOR_SWITCH() } \
\
private:
// ----------------------------------------------------------------------------
// AstNode factory
class AstNodeFactory final {
public:
AstNodeFactory(AstValueFactory* ast_value_factory, Zone* zone)
: zone_(zone),
ast_value_factory_(ast_value_factory),
empty_statement_(zone->New<class EmptyStatement>()),
this_expression_(zone->New<class ThisExpression>(kNoSourcePosition)),
failure_expression_(zone->New<class FailureExpression>()) {}
AstNodeFactory* ast_node_factory() { return this; }
AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
VariableDeclaration* NewVariableDeclaration(int pos) {
return zone_->New<VariableDeclaration>(pos);
}
NestedVariableDeclaration* NewNestedVariableDeclaration(Scope* scope,
int pos) {
return zone_->New<NestedVariableDeclaration>(scope, pos);
}
FunctionDeclaration* NewFunctionDeclaration(FunctionLiteral* fun, int pos) {
return zone_->New<FunctionDeclaration>(fun, pos);
}
Block* NewBlock(int capacity, bool ignore_completion_value) {
return zone_->New<Block>(zone_, capacity, ignore_completion_value, false);
}
Block* NewBlock(bool ignore_completion_value, bool is_breakable) {
return zone_->New<Block>(ignore_completion_value, is_breakable);
}
Block* NewBlock(bool ignore_completion_value,
const ScopedPtrList<Statement>& statements) {
Block* result = NewBlock(ignore_completion_value, false);
result->InitializeStatements(statements, zone_);
return result;
}
#define STATEMENT_WITH_POSITION(NodeType) \
NodeType* New##NodeType(int pos) { return zone_->New<NodeType>(pos); }
STATEMENT_WITH_POSITION(DoWhileStatement)
STATEMENT_WITH_POSITION(WhileStatement)
STATEMENT_WITH_POSITION(ForStatement)
#undef STATEMENT_WITH_POSITION
SwitchStatement* NewSwitchStatement(Expression* tag, int pos) {
return zone_->New<SwitchStatement>(zone_, tag, pos);
}
ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
int pos) {
switch (visit_mode) {
case ForEachStatement::ENUMERATE: {
return zone_->New<ForInStatement>(pos);
}
case ForEachStatement::ITERATE: {
return zone_->New<ForOfStatement>(pos, IteratorType::kNormal);
}
}
UNREACHABLE();
}
ForOfStatement* NewForOfStatement(int pos, IteratorType type) {
return zone_->New<ForOfStatement>(pos, type);
}
ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
return zone_->New<ExpressionStatement>(expression, pos);
}
ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
return zone_->New<ContinueStatement>(target, pos);
}
BreakStatement* NewBreakStatement(BreakableStatement