| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_ARM64 |
| |
| #include "src/codegen/arm64/utils-arm64.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ assm-> |
| |
| uint32_t float_sign(float val) { |
| uint32_t bits = bit_cast<uint32_t>(val); |
| return unsigned_bitextract_32(31, 31, bits); |
| } |
| |
| uint32_t float_exp(float val) { |
| uint32_t bits = bit_cast<uint32_t>(val); |
| return unsigned_bitextract_32(30, 23, bits); |
| } |
| |
| uint32_t float_mantissa(float val) { |
| uint32_t bits = bit_cast<uint32_t>(val); |
| return unsigned_bitextract_32(22, 0, bits); |
| } |
| |
| uint32_t double_sign(double val) { |
| uint64_t bits = bit_cast<uint64_t>(val); |
| return static_cast<uint32_t>(unsigned_bitextract_64(63, 63, bits)); |
| } |
| |
| uint32_t double_exp(double val) { |
| uint64_t bits = bit_cast<uint64_t>(val); |
| return static_cast<uint32_t>(unsigned_bitextract_64(62, 52, bits)); |
| } |
| |
| uint64_t double_mantissa(double val) { |
| uint64_t bits = bit_cast<uint64_t>(val); |
| return unsigned_bitextract_64(51, 0, bits); |
| } |
| |
| float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa) { |
| uint32_t bits = sign << kFloatExponentBits | exp; |
| return bit_cast<float>((bits << kFloatMantissaBits) | mantissa); |
| } |
| |
| double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa) { |
| uint64_t bits = sign << kDoubleExponentBits | exp; |
| return bit_cast<double>((bits << kDoubleMantissaBits) | mantissa); |
| } |
| |
| int float16classify(float16 value) { |
| const uint16_t exponent_max = (1 << kFloat16ExponentBits) - 1; |
| const uint16_t exponent_mask = exponent_max << kFloat16MantissaBits; |
| const uint16_t mantissa_mask = (1 << kFloat16MantissaBits) - 1; |
| |
| const uint16_t exponent = (value & exponent_mask) >> kFloat16MantissaBits; |
| const uint16_t mantissa = value & mantissa_mask; |
| if (exponent == 0) { |
| if (mantissa == 0) { |
| return FP_ZERO; |
| } |
| return FP_SUBNORMAL; |
| } else if (exponent == exponent_max) { |
| if (mantissa == 0) { |
| return FP_INFINITE; |
| } |
| return FP_NAN; |
| } |
| return FP_NORMAL; |
| } |
| |
| int CountLeadingZeros(uint64_t value, int width) { |
| DCHECK(base::bits::IsPowerOfTwo(width) && (width <= 64)); |
| if (value == 0) { |
| return width; |
| } |
| return base::bits::CountLeadingZeros64(value << (64 - width)); |
| } |
| |
| int CountLeadingSignBits(int64_t value, int width) { |
| DCHECK(base::bits::IsPowerOfTwo(width) && (width <= 64)); |
| if (value >= 0) { |
| return CountLeadingZeros(value, width) - 1; |
| } else { |
| return CountLeadingZeros(~value, width) - 1; |
| } |
| } |
| |
| int CountSetBits(uint64_t value, int width) { |
| DCHECK((width == 32) || (width == 64)); |
| if (width == 64) { |
| return static_cast<int>(base::bits::CountPopulation(value)); |
| } |
| return static_cast<int>( |
| base::bits::CountPopulation(static_cast<uint32_t>(value & 0xFFFFFFFFF))); |
| } |
| |
| int LowestSetBitPosition(uint64_t value) { |
| DCHECK_NE(value, 0U); |
| return base::bits::CountTrailingZeros(value) + 1; |
| } |
| |
| int HighestSetBitPosition(uint64_t value) { |
| DCHECK_NE(value, 0U); |
| return 63 - CountLeadingZeros(value, 64); |
| } |
| |
| uint64_t LargestPowerOf2Divisor(uint64_t value) { |
| // Simulate two's complement (instead of casting to signed and negating) to |
| // avoid undefined behavior on signed overflow. |
| return value & ((~value) + 1); |
| } |
| |
| int MaskToBit(uint64_t mask) { |
| DCHECK_EQ(CountSetBits(mask, 64), 1); |
| return base::bits::CountTrailingZeros(mask); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM64 |