blob: 55485d004a0b7fef424a9ebf9c6b263370e7e5c9 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_CODE_STUB_ASSEMBLER_H_
#define V8_CODEGEN_CODE_STUB_ASSEMBLER_H_
#include <functional>
#include "src/base/macros.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/tnode.h"
#include "src/common/globals.h"
#include "src/common/message-template.h"
#include "src/compiler/code-assembler.h"
#include "src/numbers/integer-literal.h"
#include "src/objects/arguments.h"
#include "src/objects/bigint.h"
#include "src/objects/cell.h"
#include "src/objects/feedback-vector.h"
#include "src/objects/js-function.h"
#include "src/objects/js-generator.h"
#include "src/objects/js-promise.h"
#include "src/objects/objects.h"
#include "src/objects/promise.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/smi.h"
#include "src/objects/swiss-name-dictionary.h"
#include "src/objects/tagged-index.h"
#include "src/roots/roots.h"
#include "src/sandbox/external-pointer.h"
#include "torque-generated/exported-macros-assembler.h"
namespace v8 {
namespace internal {
class CallInterfaceDescriptor;
class CodeStubArguments;
class CodeStubAssembler;
class StatsCounter;
class StubCache;
enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
#define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
V(ArrayIteratorProtector, array_iterator_protector, ArrayIteratorProtector) \
V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
V(AsyncFunctionAwaitRejectSharedFun, async_function_await_reject_shared_fun, \
AsyncFunctionAwaitRejectSharedFun) \
V(AsyncFunctionAwaitResolveSharedFun, \
async_function_await_resolve_shared_fun, \
AsyncFunctionAwaitResolveSharedFun) \
V(AsyncGeneratorAwaitRejectSharedFun, \
async_generator_await_reject_shared_fun, \
AsyncGeneratorAwaitRejectSharedFun) \
V(AsyncGeneratorAwaitResolveSharedFun, \
async_generator_await_resolve_shared_fun, \
AsyncGeneratorAwaitResolveSharedFun) \
V(AsyncGeneratorReturnClosedRejectSharedFun, \
async_generator_return_closed_reject_shared_fun, \
AsyncGeneratorReturnClosedRejectSharedFun) \
V(AsyncGeneratorReturnClosedResolveSharedFun, \
async_generator_return_closed_resolve_shared_fun, \
AsyncGeneratorReturnClosedResolveSharedFun) \
V(AsyncGeneratorReturnResolveSharedFun, \
async_generator_return_resolve_shared_fun, \
AsyncGeneratorReturnResolveSharedFun) \
V(AsyncGeneratorYieldResolveSharedFun, \
async_generator_yield_resolve_shared_fun, \
AsyncGeneratorYieldResolveSharedFun) \
V(AsyncIteratorValueUnwrapSharedFun, async_iterator_value_unwrap_shared_fun, \
AsyncIteratorValueUnwrapSharedFun) \
V(IsConcatSpreadableProtector, is_concat_spreadable_protector, \
IsConcatSpreadableProtector) \
V(MapIteratorProtector, map_iterator_protector, MapIteratorProtector) \
V(NoElementsProtector, no_elements_protector, NoElementsProtector) \
V(MegaDOMProtector, mega_dom_protector, MegaDOMProtector) \
V(NumberStringCache, number_string_cache, NumberStringCache) \
V(PromiseAllResolveElementSharedFun, promise_all_resolve_element_shared_fun, \
PromiseAllResolveElementSharedFun) \
V(PromiseAllSettledRejectElementSharedFun, \
promise_all_settled_reject_element_shared_fun, \
PromiseAllSettledRejectElementSharedFun) \
V(PromiseAllSettledResolveElementSharedFun, \
promise_all_settled_resolve_element_shared_fun, \
PromiseAllSettledResolveElementSharedFun) \
V(PromiseAnyRejectElementSharedFun, promise_any_reject_element_shared_fun, \
PromiseAnyRejectElementSharedFun) \
V(PromiseCapabilityDefaultRejectSharedFun, \
promise_capability_default_reject_shared_fun, \
PromiseCapabilityDefaultRejectSharedFun) \
V(PromiseCapabilityDefaultResolveSharedFun, \
promise_capability_default_resolve_shared_fun, \
PromiseCapabilityDefaultResolveSharedFun) \
V(PromiseCatchFinallySharedFun, promise_catch_finally_shared_fun, \
PromiseCatchFinallySharedFun) \
V(PromiseGetCapabilitiesExecutorSharedFun, \
promise_get_capabilities_executor_shared_fun, \
PromiseGetCapabilitiesExecutorSharedFun) \
V(PromiseResolveProtector, promise_resolve_protector, \
PromiseResolveProtector) \
V(PromiseSpeciesProtector, promise_species_protector, \
PromiseSpeciesProtector) \
V(PromiseThenFinallySharedFun, promise_then_finally_shared_fun, \
PromiseThenFinallySharedFun) \
V(PromiseThenProtector, promise_then_protector, PromiseThenProtector) \
V(PromiseThrowerFinallySharedFun, promise_thrower_finally_shared_fun, \
PromiseThrowerFinallySharedFun) \
V(PromiseValueThunkFinallySharedFun, promise_value_thunk_finally_shared_fun, \
PromiseValueThunkFinallySharedFun) \
V(ProxyRevokeSharedFun, proxy_revoke_shared_fun, ProxyRevokeSharedFun) \
V(RegExpSpeciesProtector, regexp_species_protector, RegExpSpeciesProtector) \
V(SetIteratorProtector, set_iterator_protector, SetIteratorProtector) \
V(SingleCharacterStringCache, single_character_string_cache, \
SingleCharacterStringCache) \
V(StringIteratorProtector, string_iterator_protector, \
StringIteratorProtector) \
V(TypedArraySpeciesProtector, typed_array_species_protector, \
TypedArraySpeciesProtector)
#define UNIQUE_INSTANCE_TYPE_IMMUTABLE_IMMOVABLE_MAP_ADAPTER( \
V, rootIndexName, rootAccessorName, class_name) \
V(rootIndexName, rootAccessorName, class_name##Map)
#define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \
V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \
AllocationSiteWithoutWeakNextMap) \
V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \
V(arguments_to_string, arguments_to_string, ArgumentsToString) \
V(Array_string, Array_string, ArrayString) \
V(array_to_string, array_to_string, ArrayToString) \
V(BooleanMap, boolean_map, BooleanMap) \
V(boolean_to_string, boolean_to_string, BooleanToString) \
V(ConsOneByteStringMap, cons_one_byte_string_map, ConsOneByteStringMap) \
V(ConsStringMap, cons_string_map, ConsStringMap) \
V(constructor_string, constructor_string, ConstructorString) \
V(date_to_string, date_to_string, DateToString) \
V(default_string, default_string, DefaultString) \
V(EmptyByteArray, empty_byte_array, EmptyByteArray) \
V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \
V(EmptyScopeInfo, empty_scope_info, EmptyScopeInfo) \
V(EmptyPropertyDictionary, empty_property_dictionary, \
EmptyPropertyDictionary) \
V(EmptyOrderedPropertyDictionary, empty_ordered_property_dictionary, \
EmptyOrderedPropertyDictionary) \
V(EmptySwissPropertyDictionary, empty_swiss_property_dictionary, \
EmptySwissPropertyDictionary) \
V(EmptySlowElementDictionary, empty_slow_element_dictionary, \
EmptySlowElementDictionary) \
V(empty_string, empty_string, EmptyString) \
V(error_to_string, error_to_string, ErrorToString) \
V(errors_string, errors_string, ErrorsString) \
V(FalseValue, false_value, False) \
V(FixedArrayMap, fixed_array_map, FixedArrayMap) \
V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \
V(Function_string, function_string, FunctionString) \
V(function_to_string, function_to_string, FunctionToString) \
V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \
V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \
V(Infinity_string, Infinity_string, InfinityString) \
V(is_concat_spreadable_symbol, is_concat_spreadable_symbol, \
IsConcatSpreadableSymbol) \
V(iterator_symbol, iterator_symbol, IteratorSymbol) \
V(length_string, length_string, LengthString) \
V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \
V(match_symbol, match_symbol, MatchSymbol) \
V(megamorphic_symbol, megamorphic_symbol, MegamorphicSymbol) \
V(mega_dom_symbol, mega_dom_symbol, MegaDOMSymbol) \
V(message_string, message_string, MessageString) \
V(minus_Infinity_string, minus_Infinity_string, MinusInfinityString) \
V(MinusZeroValue, minus_zero_value, MinusZero) \
V(name_string, name_string, NameString) \
V(NanValue, nan_value, Nan) \
V(NaN_string, NaN_string, NaNString) \
V(next_string, next_string, NextString) \
V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \
V(null_to_string, null_to_string, NullToString) \
V(NullValue, null_value, Null) \
V(number_string, number_string, NumberString) \
V(number_to_string, number_to_string, NumberToString) \
V(Object_string, Object_string, ObjectString) \
V(object_to_string, object_to_string, ObjectToString) \
V(OneByteStringMap, one_byte_string_map, OneByteStringMap) \
V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \
V(OnePointerFillerMap, one_pointer_filler_map, OnePointerFillerMap) \
V(PromiseCapabilityMap, promise_capability_map, PromiseCapabilityMap) \
V(promise_forwarding_handler_symbol, promise_forwarding_handler_symbol, \
PromiseForwardingHandlerSymbol) \
V(PromiseFulfillReactionJobTaskMap, promise_fulfill_reaction_job_task_map, \
PromiseFulfillReactionJobTaskMap) \
V(promise_handled_by_symbol, promise_handled_by_symbol, \
PromiseHandledBySymbol) \
V(PromiseReactionMap, promise_reaction_map, PromiseReactionMap) \
V(PromiseRejectReactionJobTaskMap, promise_reject_reaction_job_task_map, \
PromiseRejectReactionJobTaskMap) \
V(PromiseResolveThenableJobTaskMap, promise_resolve_thenable_job_task_map, \
PromiseResolveThenableJobTaskMap) \
V(prototype_string, prototype_string, PrototypeString) \
V(replace_symbol, replace_symbol, ReplaceSymbol) \
V(regexp_to_string, regexp_to_string, RegexpToString) \
V(resolve_string, resolve_string, ResolveString) \
V(return_string, return_string, ReturnString) \
V(search_symbol, search_symbol, SearchSymbol) \
V(species_symbol, species_symbol, SpeciesSymbol) \
V(StaleRegister, stale_register, StaleRegister) \
V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \
V(string_string, string_string, StringString) \
V(string_to_string, string_to_string, StringToString) \
V(StringMap, string_map, StringMap) \
V(TheHoleValue, the_hole_value, TheHole) \
V(then_string, then_string, ThenString) \
V(toString_string, toString_string, ToStringString) \
V(to_primitive_symbol, to_primitive_symbol, ToPrimitiveSymbol) \
V(to_string_tag_symbol, to_string_tag_symbol, ToStringTagSymbol) \
V(TrueValue, true_value, True) \
V(undefined_to_string, undefined_to_string, UndefinedToString) \
V(UndefinedValue, undefined_value, Undefined) \
V(uninitialized_symbol, uninitialized_symbol, UninitializedSymbol) \
V(valueOf_string, valueOf_string, ValueOfString) \
V(wasm_wrapped_object_symbol, wasm_wrapped_object_symbol, \
WasmWrappedObjectSymbol) \
V(zero_string, zero_string, ZeroString) \
UNIQUE_INSTANCE_TYPE_MAP_LIST_GENERATOR( \
UNIQUE_INSTANCE_TYPE_IMMUTABLE_IMMOVABLE_MAP_ADAPTER, V)
#define HEAP_IMMOVABLE_OBJECT_LIST(V) \
HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)
#ifdef DEBUG
#define CSA_CHECK(csa, x) \
(csa)->Check([&]() -> TNode<BoolT> { return x; }, #x, __FILE__, __LINE__)
#else
#define CSA_CHECK(csa, x) (csa)->FastCheck(x)
#endif
#ifdef DEBUG
// CSA_DCHECK_ARGS generates an
// std::initializer_list<CodeStubAssembler::ExtraNode> from __VA_ARGS__. It
// currently supports between 0 and 2 arguments.
// clang-format off
#define CSA_DCHECK_0_ARGS(...) {}
#define CSA_DCHECK_1_ARG(a, ...) {{a, #a}}
#define CSA_DCHECK_2_ARGS(a, b, ...) {{a, #a}, {b, #b}}
// clang-format on
#define SWITCH_CSA_DCHECK_ARGS(dummy, a, b, FUNC, ...) FUNC(a, b)
#define CSA_DCHECK_ARGS(...) \
CALL(SWITCH_CSA_DCHECK_ARGS, (, ##__VA_ARGS__, CSA_DCHECK_2_ARGS, \
CSA_DCHECK_1_ARG, CSA_DCHECK_0_ARGS))
// Workaround for MSVC to skip comma in empty __VA_ARGS__.
#define CALL(x, y) x y
// CSA_DCHECK(csa, <condition>, <extra values to print...>)
#define CSA_DCHECK(csa, condition_node, ...) \
(csa)->Dcheck(condition_node, #condition_node, __FILE__, __LINE__, \
CSA_DCHECK_ARGS(__VA_ARGS__))
// CSA_DCHECK_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
// <extra values to print...>)
#define CSA_DCHECK_BRANCH(csa, gen, ...) \
(csa)->Dcheck(gen, #gen, __FILE__, __LINE__, CSA_DCHECK_ARGS(__VA_ARGS__))
#define CSA_DCHECK_JS_ARGC_OP(csa, Op, op, expected) \
(csa)->Dcheck( \
[&]() -> TNode<BoolT> { \
const TNode<Word32T> argc = (csa)->UncheckedParameter<Word32T>( \
Descriptor::kJSActualArgumentsCount); \
return (csa)->Op(argc, \
(csa)->Int32Constant(i::JSParameterCount(expected))); \
}, \
"argc " #op " " #expected, __FILE__, __LINE__, \
{{SmiFromInt32((csa)->UncheckedParameter<Int32T>( \
Descriptor::kJSActualArgumentsCount)), \
"argc"}})
#define CSA_DCHECK_JS_ARGC_EQ(csa, expected) \
CSA_DCHECK_JS_ARGC_OP(csa, Word32Equal, ==, expected)
#define CSA_DEBUG_INFO(name) \
{ #name, __FILE__, __LINE__ }
#define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
#define TYPED_VARIABLE_DEF(type, name, ...) \
TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
#define TYPED_VARIABLE_CONSTRUCTOR(name, ...) \
name(CSA_DEBUG_INFO(name), __VA_ARGS__)
#else // DEBUG
#define CSA_DCHECK(csa, ...) ((void)0)
#define CSA_DCHECK_BRANCH(csa, ...) ((void)0)
#define CSA_DCHECK_JS_ARGC_EQ(csa, expected) ((void)0)
#define BIND(label) Bind(label)
#define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
#define TYPED_VARIABLE_CONSTRUCTOR(name, ...) name(__VA_ARGS__)
#endif // DEBUG
#define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
#define TVARIABLE_CONSTRUCTOR(...) \
EXPAND(TYPED_VARIABLE_CONSTRUCTOR(__VA_ARGS__, this))
#ifdef ENABLE_SLOW_DCHECKS
#define CSA_SLOW_DCHECK(csa, ...) \
if (FLAG_enable_slow_asserts) { \
CSA_DCHECK(csa, __VA_ARGS__); \
}
#else
#define CSA_SLOW_DCHECK(csa, ...) ((void)0)
#endif
// Provides JavaScript-specific "macro-assembler" functionality on top of the
// CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
// it's possible to add JavaScript-specific useful CodeAssembler "macros"
// without modifying files in the compiler directory (and requiring a review
// from a compiler directory OWNER).
class V8_EXPORT_PRIVATE CodeStubAssembler
: public compiler::CodeAssembler,
public TorqueGeneratedExportedMacrosAssembler {
public:
using ScopedExceptionHandler = compiler::ScopedExceptionHandler;
template <typename T>
using LazyNode = std::function<TNode<T>()>;
explicit CodeStubAssembler(compiler::CodeAssemblerState* state);
enum class AllocationFlag : uint8_t {
kNone = 0,
kDoubleAlignment = 1,
kPretenured = 1 << 1,
kAllowLargeObjectAllocation = 1 << 2,
};
enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
using AllocationFlags = base::Flags<AllocationFlag>;
TNode<IntPtrT> ParameterToIntPtr(TNode<Smi> value) { return SmiUntag(value); }
TNode<IntPtrT> ParameterToIntPtr(TNode<IntPtrT> value) { return value; }
TNode<IntPtrT> ParameterToIntPtr(TNode<UintPtrT> value) {
return Signed(value);
}
enum InitializationMode {
kUninitialized,
kInitializeToZero,
kInitializeToNull
};
TNode<Smi> ParameterToTagged(TNode<Smi> value) { return value; }
TNode<Smi> ParameterToTagged(TNode<IntPtrT> value) { return SmiTag(value); }
template <typename TIndex>
TNode<TIndex> TaggedToParameter(TNode<Smi> value);
bool ToParameterConstant(TNode<Smi> node, intptr_t* out) {
if (TryToIntPtrConstant(node, out)) {
return true;
}
return false;
}
bool ToParameterConstant(TNode<IntPtrT> node, intptr_t* out) {
intptr_t constant;
if (TryToIntPtrConstant(node, &constant)) {
*out = constant;
return true;
}
return false;
}
#if defined(BINT_IS_SMI)
TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; }
TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) {
return SmiToIntPtr(source);
}
TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; }
TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) {
return SmiFromIntPtr(source);
}
#elif defined(BINT_IS_INTPTR)
TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); }
TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; }
TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); }
TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; }
#else
#error Unknown architecture.
#endif
TNode<IntPtrT> TaggedIndexToIntPtr(TNode<TaggedIndex> value);
TNode<TaggedIndex> IntPtrToTaggedIndex(TNode<IntPtrT> value);
// TODO(v8:10047): Get rid of these convertions eventually.
TNode<Smi> TaggedIndexToSmi(TNode<TaggedIndex> value);
TNode<TaggedIndex> SmiToTaggedIndex(TNode<Smi> value);
// Pointer compression specific. Ensures that the upper 32 bits of a Smi
// contain the sign of a lower 32 bits so that the Smi can be directly used
// as an index in element offset computation.
TNode<Smi> NormalizeSmiIndex(TNode<Smi> smi_index);
TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
GotoIf(TaggedIsNotSmi(value), fail);
return UncheckedCast<Smi>(value);
}
TNode<Smi> TaggedToPositiveSmi(TNode<Object> value, Label* fail) {
GotoIfNot(TaggedIsPositiveSmi(value), fail);
return UncheckedCast<Smi>(value);
}
TNode<String> TaggedToDirectString(TNode<Object> value, Label* fail);
TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
GotoIf(TaggedIsSmi(value), fail);
return UncheckedCast<HeapObject>(value);
}
TNode<Uint16T> Uint16Constant(uint16_t t) {
return UncheckedCast<Uint16T>(Int32Constant(t));
}
TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsJSDataView(heap_object), fail);
return CAST(heap_object);
}
TNode<JSProxy> HeapObjectToJSProxy(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsJSProxy(heap_object), fail);
return CAST(heap_object);
}
TNode<JSStringIterator> HeapObjectToJSStringIterator(
TNode<HeapObject> heap_object, Label* fail) {
GotoIfNot(IsJSStringIterator(heap_object), fail);
return CAST(heap_object);
}
TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsCallable(heap_object), fail);
return CAST(heap_object);
}
TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) {
GotoIfNot(IsString(heap_object), fail);
return CAST(heap_object);
}
TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object,
Label* fail) {
GotoIfNot(IsConstructor(heap_object), fail);
return CAST(heap_object);
}
TNode<JSFunction> HeapObjectToJSFunctionWithPrototypeSlot(
TNode<HeapObject> heap_object, Label* fail) {
GotoIfNot(IsJSFunctionWithPrototypeSlot(heap_object), fail);
return CAST(heap_object);
}
template <typename T>
TNode<T> RunLazy(LazyNode<T> lazy) {
return lazy();
}
#define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
TNode<Smi> OpName(TNode<Smi> a, TNode<Smi> b) { return SmiOpName(a, b); } \
TNode<IntPtrT> OpName(TNode<IntPtrT> a, TNode<IntPtrT> b) { \
return IntPtrOpName(a, b); \
} \
TNode<UintPtrT> OpName(TNode<UintPtrT> a, TNode<UintPtrT> b) { \
return Unsigned(IntPtrOpName(Signed(a), Signed(b))); \
} \
TNode<RawPtrT> OpName(TNode<RawPtrT> a, TNode<RawPtrT> b) { \
return ReinterpretCast<RawPtrT>(IntPtrOpName( \
ReinterpretCast<IntPtrT>(a), ReinterpretCast<IntPtrT>(b))); \
}
// TODO(v8:9708): Define BInt operations once all uses are ported.
PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
#undef PARAMETER_BINOP
#define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
TNode<BoolT> OpName(TNode<Smi> a, TNode<Smi> b) { return SmiOpName(a, b); } \
TNode<BoolT> OpName(TNode<IntPtrT> a, TNode<IntPtrT> b) { \
return IntPtrOpName(a, b); \
} \
TNode<BoolT> OpName(TNode<UintPtrT> a, TNode<UintPtrT> b) { \
return IntPtrOpName(Signed(a), Signed(b)); \
} \
TNode<BoolT> OpName(TNode<RawPtrT> a, TNode<RawPtrT> b) { \
return IntPtrOpName(a, b); \
}
// TODO(v8:9708): Define BInt operations once all uses are ported.
PARAMETER_BINOP(IntPtrOrSmiEqual, WordEqual, SmiEqual)
PARAMETER_BINOP(IntPtrOrSmiNotEqual, WordNotEqual, SmiNotEqual)
PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
SmiLessThanOrEqual)
PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
SmiAboveOrEqual)
#undef PARAMETER_BINOP
uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; }
uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; }
intptr_t ConstexprIntPtrAdd(intptr_t a, intptr_t b) { return a + b; }
uintptr_t ConstexprUintPtrAdd(uintptr_t a, uintptr_t b) { return a + b; }
intptr_t ConstexprWordNot(intptr_t a) { return ~a; }
uintptr_t ConstexprWordNot(uintptr_t a) { return ~a; }
TNode<BoolT> TaggedEqual(TNode<AnyTaggedT> a, TNode<AnyTaggedT> b) {
if (COMPRESS_POINTERS_BOOL) {
return Word32Equal(ReinterpretCast<Word32T>(a),
ReinterpretCast<Word32T>(b));
} else {
return WordEqual(ReinterpretCast<WordT>(a), ReinterpretCast<WordT>(b));
}
}
TNode<BoolT> TaggedNotEqual(TNode<AnyTaggedT> a, TNode<AnyTaggedT> b) {
return Word32BinaryNot(TaggedEqual(a, b));
}
TNode<Smi> NoContextConstant();
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
TNode<std::remove_pointer<std::remove_reference<decltype( \
std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
name##Constant();
HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
TNode<std::remove_pointer<std::remove_reference<decltype( \
std::declval<Heap>().rootAccessorName())>::type>::type> \
name##Constant();
HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
TNode<BoolT> Is##name(TNode<Object> value); \
TNode<BoolT> IsNot##name(TNode<Object> value);
HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST
TNode<BInt> BIntConstant(int value);
template <typename TIndex>
TNode<TIndex> IntPtrOrSmiConstant(int value);
bool TryGetIntPtrOrSmiConstantValue(TNode<Smi> maybe_constant, int* value);
bool TryGetIntPtrOrSmiConstantValue(TNode<IntPtrT> maybe_constant,
int* value);
TNode<IntPtrT> PopulationCountFallback(TNode<UintPtrT> value);
TNode<Int64T> PopulationCount64(TNode<Word64T> value);
TNode<Int32T> PopulationCount32(TNode<Word32T> value);
TNode<Int64T> CountTrailingZeros64(TNode<Word64T> value);
TNode<Int32T> CountTrailingZeros32(TNode<Word32T> value);
TNode<Int64T> CountLeadingZeros64(TNode<Word64T> value);
TNode<Int32T> CountLeadingZeros32(TNode<Word32T> value);
// Round the 32bits payload of the provided word up to the next power of two.
TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
// Select the maximum of the two provided IntPtr values.
TNode<IntPtrT> IntPtrMax(TNode<IntPtrT> left, TNode<IntPtrT> right);
// Select the minimum of the two provided IntPtr values.
TNode<IntPtrT> IntPtrMin(TNode<IntPtrT> left, TNode<IntPtrT> right);
TNode<UintPtrT> UintPtrMin(TNode<UintPtrT> left, TNode<UintPtrT> right);
// Float64 operations.
TNode<Float64T> Float64Ceil(TNode<Float64T> x);
TNode<Float64T> Float64Floor(TNode<Float64T> x);
TNode<Float64T> Float64Round(TNode<Float64T> x);
TNode<Float64T> Float64RoundToEven(TNode<Float64T> x);
TNode<Float64T> Float64Trunc(TNode<Float64T> x);
// Select the minimum of the two provided Number values.
TNode<Number> NumberMax(TNode<Number> left, TNode<Number> right);
// Select the minimum of the two provided Number values.
TNode<Number> NumberMin(TNode<Number> left, TNode<Number> right);
// Returns true iff the given value fits into smi range and is >= 0.
TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);
// Tag an IntPtr as a Smi value.
TNode<Smi> SmiTag(TNode<IntPtrT> value);
// Untag a Smi value as an IntPtr.
TNode<IntPtrT> SmiUntag(TNode<Smi> value);
// Smi conversions.
TNode<Float64T> SmiToFloat64(TNode<Smi> value);
TNode<Smi> SmiFromIntPtr(TNode<IntPtrT> value) { return SmiTag(value); }
TNode<Smi> SmiFromInt32(TNode<Int32T> value);
TNode<Smi> SmiFromUint32(TNode<Uint32T> value);
TNode<IntPtrT> SmiToIntPtr(TNode<Smi> value) { return SmiUntag(value); }
TNode<Int32T> SmiToInt32(TNode<Smi> value);
// Smi operations.
#define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \
TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
if (SmiValuesAre32Bits()) { \
return BitcastWordToTaggedSigned( \
IntPtrOpName(BitcastTaggedToWordForTagAndSmiBits(a), \
BitcastTaggedToWordForTagAndSmiBits(b))); \
} else { \
DCHECK(SmiValuesAre31Bits()); \
return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(Int32OpName( \
TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(a)), \
TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(b))))); \
} \
}
SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
SMI_ARITHMETIC_BINOP(SmiXor, WordXor, Word32Xor)
#undef SMI_ARITHMETIC_BINOP
TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b,
Label* if_overflow);
TNode<IntPtrT> TryIntPtrSub(TNode<IntPtrT> a, TNode<IntPtrT> b,
Label* if_overflow);
TNode<Int32T> TryInt32Mul(TNode<Int32T> a, TNode<Int32T> b,
Label* if_overflow);
TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
TNode<Smi> TrySmiAbs(TNode<Smi> a, Label* if_overflow);
TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
TNode<Smi> result = BitcastWordToTaggedSigned(
WordShl(BitcastTaggedToWordForTagAndSmiBits(a), shift));
// Smi shift have different result to int32 shift when the inputs are not
// strictly limited. The CSA_DCHECK is to ensure valid inputs.
CSA_DCHECK(
this, TaggedEqual(result, BitwiseOp(SmiToInt32(a), Int32Constant(shift),
Operation::kShiftLeft)));
return result;
}
TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
TNode<Smi> result;
if (kTaggedSize == kInt64Size) {
result = BitcastWordToTaggedSigned(
WordAnd(WordShr(BitcastTaggedToWordForTagAndSmiBits(a), shift),
BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1))));
} else {
// For pointer compressed Smis, we want to make sure that we truncate to
// int32 before shifting, to avoid the values of the top 32-bits from
// leaking into the sign bit of the smi.
result = BitcastWordToTaggedSigned(WordAnd(
ChangeInt32ToIntPtr(Word32Shr(
TruncateWordToInt32(BitcastTaggedToWordForTagAndSmiBits(a)),
shift)),
BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1))));
}
// Smi shift have different result to int32 shift when the inputs are not
// strictly limited. The CSA_DCHECK is to ensure valid inputs.
CSA_DCHECK(
this, TaggedEqual(result, BitwiseOp(SmiToInt32(a), Int32Constant(shift),
Operation::kShiftRightLogical)));
return result;
}
TNode<Smi> SmiSar(TNode<Smi> a, int shift) {
// The number of shift bits is |shift % 64| for 64-bits value and |shift %
// 32| for 32-bits value. The DCHECK is to ensure valid inputs.
DCHECK_LT(shift, 32);
if (kTaggedSize == kInt64Size) {
return BitcastWordToTaggedSigned(
WordAnd(WordSar(BitcastTaggedToWordForTagAndSmiBits(a), shift),
BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1))));
} else {
// For pointer compressed Smis, we want to make sure that we truncate to
// int32 before shifting, to avoid the values of the top 32-bits from
// changing the sign bit of the smi.
return BitcastWordToTaggedSigned(WordAnd(
ChangeInt32ToIntPtr(Word32Sar(
TruncateWordToInt32(BitcastTaggedToWordForTagAndSmiBits(a)),
shift)),
BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1))));
}
}
TNode<Smi> WordOrSmiShr(TNode<Smi> a, int shift) { return SmiShr(a, shift); }
TNode<IntPtrT> WordOrSmiShr(TNode<IntPtrT> a, int shift) {
return WordShr(a, shift);
}
#define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \
TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
if (kTaggedSize == kInt64Size) { \
return IntPtrOpName(BitcastTaggedToWordForTagAndSmiBits(a), \
BitcastTaggedToWordForTagAndSmiBits(b)); \
} else { \
DCHECK_EQ(kTaggedSize, kInt32Size); \
DCHECK(SmiValuesAre31Bits()); \
return Int32OpName( \
TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(a)), \
TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(b))); \
} \
}
SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
Uint32GreaterThanOrEqual)
SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
Int32LessThanOrEqual)
SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
Int32GreaterThanOrEqual)
#undef SMI_COMPARISON_OP
TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
// Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
// Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
// Tries to compute dividend / divisor for Smi inputs; branching to bailout
// if the division needs to be performed as a floating point operation.
TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);
// Compares two Smis a and b as if they were converted to strings and then
// compared lexicographically. Returns:
// -1 iff x < y.
// 0 iff x == y.
// 1 iff x > y.
TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y);
#ifdef BINT_IS_SMI
#define BINT_COMPARISON_OP(BIntOpName, SmiOpName, IntPtrOpName) \
TNode<BoolT> BIntOpName(TNode<BInt> a, TNode<BInt> b) { \
return SmiOpName(a, b); \
}
#else
#define BINT_COMPARISON_OP(BIntOpName, SmiOpName, IntPtrOpName) \
TNode<BoolT> BIntOpName(TNode<BInt> a, TNode<BInt> b) { \
return IntPtrOpName(a, b); \
}
#endif
BINT_COMPARISON_OP(BIntEqual, SmiEqual, WordEqual)
BINT_COMPARISON_OP(BIntNotEqual, SmiNotEqual, WordNotEqual)
BINT_COMPARISON_OP(BIntAbove, SmiAbove, UintPtrGreaterThan)
BINT_COMPARISON_OP(BIntAboveOrEqual, SmiAboveOrEqual,
UintPtrGreaterThanOrEqual)
BINT_COMPARISON_OP(BIntBelow, SmiBelow, UintPtrLessThan)
BINT_COMPARISON_OP(BIntLessThan, SmiLessThan, IntPtrLessThan)
BINT_COMPARISON_OP(BIntLessThanOrEqual, SmiLessThanOrEqual,
IntPtrLessThanOrEqual)
BINT_COMPARISON_OP(BIntGreaterThan, SmiGreaterThan, IntPtrGreaterThan)
BINT_COMPARISON_OP(BIntGreaterThanOrEqual, SmiGreaterThanOrEqual,
IntPtrGreaterThanOrEqual)
#undef BINT_COMPARISON_OP
// Smi | HeapNumber operations.
TNode<Number> NumberInc(TNode<Number> value);
TNode<Number> NumberDec(TNode<Number> value);
TNode<Number> NumberAdd(TNode<Number> a, TNode<Number> b);
TNode<Number> NumberSub(TNode<Number> a, TNode<Number> b);
void GotoIfNotNumber(TNode<Object> value, Label* is_not_number);
void GotoIfNumber(TNode<Object> value, Label* is_number);
TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }
TNode<Number> BitwiseOp(TNode<Word32T> left32, TNode<Word32T> right32,
Operation bitwise_op);
TNode<Number> BitwiseSmiOp(TNode<Smi> left32, TNode<Smi> right32,
Operation bitwise_op);
// Allocate an object of the given size.
TNode<HeapObject> AllocateInNewSpace(
TNode<IntPtrT> size, AllocationFlags flags = AllocationFlag::kNone);
TNode<HeapObject> AllocateInNewSpace(
int size, AllocationFlags flags = AllocationFlag::kNone);
TNode<HeapObject> Allocate(TNode<IntPtrT> size,
AllocationFlags flags = AllocationFlag::kNone);
TNode<HeapObject> Allocate(int size,
AllocationFlags flags = AllocationFlag::kNone);
TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size);
using BranchGenerator = std::function<void(Label*, Label*)>;
template <typename T>
using NodeGenerator = std::function<TNode<T>()>;
using ExtraNode = std::pair<TNode<Object>, const char*>;
void Dcheck(const BranchGenerator& branch, const char* message,
const char* file, int line,
std::initializer_list<ExtraNode> extra_nodes = {});
void Dcheck(const NodeGenerator<BoolT>& condition_body, const char* message,
const char* file, int line,
std::initializer_list<ExtraNode> extra_nodes = {});
void Dcheck(TNode<Word32T> condition_node, const char* message,
const char* file, int line,
std::initializer_list<ExtraNode> extra_nodes = {});
void Check(const BranchGenerator& branch, const char* message,
const char* file, int line,
std::initializer_list<ExtraNode> extra_nodes = {});
void Check(const NodeGenerator<BoolT>& condition_body, const char* message,
const char* file, int line,
std::initializer_list<ExtraNode> extra_nodes = {});
void Check(TNode<Word32T> condition_node, const char* message,
const char* file, int line,
std::initializer_list<ExtraNode> extra_nodes = {});
void FailAssert(const char* message,
const std::vector<FileAndLine>& files_and_lines,
std::initializer_list<ExtraNode> extra_nodes = {});
void FastCheck(TNode<BoolT> condition);
TNode<BoolT> IsCodeTMap(TNode<Map> map) {
return V8_EXTERNAL_CODE_SPACE_BOOL ? IsCodeDataContainerMap(map)
: IsCodeMap(map);
}
TNode<BoolT> IsCodeT(TNode<HeapObject> object) {
return IsCodeTMap(LoadMap(object));
}
// TODO(v8:11880): remove once Code::bytecode_or_interpreter_data field
// is cached in or moved to CodeT.
TNode<Code> FromCodeT(TNode<CodeT> code) {
#ifdef V8_EXTERNAL_CODE_SPACE
#if V8_TARGET_BIG_ENDIAN
#error "This code requires updating for big-endian architectures"
#endif
// Given the fields layout we can read the Code reference as a full word.
STATIC_ASSERT(CodeDataContainer::kCodeCageBaseUpper32BitsOffset ==
CodeDataContainer::kCodeOffset + kTaggedSize);
TNode<Object> o = BitcastWordToTagged(Load<RawPtrT>(
code, IntPtrConstant(CodeDataContainer::kCodeOffset - kHeapObjectTag)));
return CAST(o);
#else
return code;
#endif
}
TNode<CodeDataContainer> CodeDataContainerFromCodeT(TNode<CodeT> code) {
#ifdef V8_EXTERNAL_CODE_SPACE
return code;
#else
return LoadObjectField<CodeDataContainer>(code,
Code::kCodeDataContainerOffset);
#endif
}
TNode<CodeT> ToCodeT(TNode<Code> code) {
#ifdef V8_EXTERNAL_CODE_SPACE
return LoadObjectField<CodeDataContainer>(code,
Code::kCodeDataContainerOffset);
#else
return code;
#endif
}
TNode<CodeT> ToCodeT(TNode<Code> code,
TNode<CodeDataContainer> code_data_container) {
#ifdef V8_EXTERNAL_CODE_SPACE
return code_data_container;
#else
return code;
#endif
}
TNode<RawPtrT> GetCodeEntry(TNode<CodeT> code);
// The following Call wrappers call an object according to the semantics that
// one finds in the EcmaScript spec, operating on an Callable (e.g. a
// JSFunction or proxy) rather than a Code object.
template <class... TArgs>
TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
TNode<JSReceiver> receiver, TArgs... args) {
return CallJS(
CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
context, callable, receiver, args...);
}
template <class... TArgs>
TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
TNode<Object> receiver, TArgs... args) {
if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
return CallJS(
CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
context, callable, receiver, args...);
}
return CallJS(CodeFactory::Call(isolate()), context, callable, receiver,
args...);
}
TNode<Object> CallApiCallback(TNode<Object> context, TNode<RawPtrT> callback,
TNode<IntPtrT> argc, TNode<Object> data,
TNode<Object> holder, TNode<Object> receiver);
TNode<Object> CallApiCallback(TNode<Object> context, TNode<RawPtrT> callback,
TNode<IntPtrT> argc, TNode<Object> data,
TNode<Object> holder, TNode<Object> receiver,
TNode<Object> value);
TNode<Object> CallRuntimeNewArray(TNode<Context> context,
TNode<Object> receiver,
TNode<Object> length,
TNode<Object> new_target,
TNode<Object> allocation_site);
void TailCallRuntimeNewArray(TNode<Context> context, TNode<Object> receiver,
TNode<Object> length, TNode<Object> new_target,
TNode<Object> allocation_site);
template <class... TArgs>
TNode<JSReceiver> ConstructWithTarget(TNode<Context> context,
TNode<JSReceiver> target,
TNode<JSReceiver> new_target,
TArgs... args) {
return CAST(ConstructJSWithTarget(CodeFactory::Construct(isolate()),
context, target, new_target,
implicit_cast<TNode<Object>>(args)...));
}
template <class... TArgs>
TNode<JSReceiver> Construct(TNode<Context> context,
TNode<JSReceiver> new_target, TArgs... args) {
return ConstructWithTarget(context, new_target, new_target, args...);
}
template <typename T>
TNode<T> Select(TNode<BoolT> condition, const NodeGenerator<T>& true_body,
const NodeGenerator<T>& false_body) {
TVARIABLE(T, value);
Label vtrue(this), vfalse(this), end(this);
Branch(condition, &vtrue, &vfalse);
BIND(&vtrue);
{
value = true_body();
Goto(&end);
}
BIND(&vfalse);
{
value = false_body();
Goto(&end);
}
BIND(&end);
return value.value();
}
template <class A>
TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
TNode<A> false_value) {
return Select<A>(
condition, [=] { return true_value; }, [=] { return false_value; });
}
TNode<Int32T> SelectInt32Constant(TNode<BoolT> condition, int true_value,
int false_value);
TNode<IntPtrT> SelectIntPtrConstant(TNode<BoolT> condition, int true_value,
int false_value);
TNode<Oddball> SelectBooleanConstant(TNode<BoolT> condition);
TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, Smi true_value,
Smi false_value);
TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, int true_value,
Smi false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
}
TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, Smi true_value,
int false_value) {
return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
}
TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, int true_value,
int false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value),
Smi::FromInt(false_value));
}
TNode<String> SingleCharacterStringConstant(char const* single_char) {
DCHECK_EQ(strlen(single_char), 1);
return HeapConstant(
isolate()->factory()->LookupSingleCharacterStringFromCode(
single_char[0]));
}
TNode<Int32T> TruncateWordToInt32(TNode<WordT> value);
TNode<Int32T> TruncateIntPtrToInt32(TNode<IntPtrT> value);
// Check a value for smi-ness
TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
TNode<BoolT> TaggedIsNotSmi(TNode<MaybeObject> a);
// Check that the value is a non-negative smi.
TNode<BoolT> TaggedIsPositiveSmi(TNode<Object> a);
// Check that a word has a word-aligned address.
TNode<BoolT> WordIsAligned(TNode<WordT> word, size_t alignment);
TNode<BoolT> WordIsPowerOfTwo(TNode<IntPtrT> value);
// Check if lower_limit <= value <= higher_limit.
template <typename U>
TNode<BoolT> IsInRange(TNode<Word32T> value, U lower_limit, U higher_limit) {
DCHECK_LE(lower_limit, higher_limit);
STATIC_ASSERT(sizeof(U) <= kInt32Size);
return Uint32LessThanOrEqual(Int32Sub(value, Int32Constant(lower_limit)),
Int32Constant(higher_limit - lower_limit));
}
TNode<BoolT> IsInRange(TNode<WordT> value, intptr_t lower_limit,
intptr_t higher_limit) {
DCHECK_LE(lower_limit, higher_limit);
return UintPtrLessThanOrEqual(IntPtrSub(value, IntPtrConstant(lower_limit)),
IntPtrConstant(higher_limit - lower_limit));
}
#if DEBUG
void Bind(Label* label, AssemblerDebugInfo debug_info);
#endif // DEBUG
void Bind(Label* label);
template <class... T>
void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label,
TNode<T>*... phis) {
CodeAssembler::Bind(label, phis...);
}
void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
Label* if_false) {
Branch(SmiEqual(a, b), if_true, if_false);
}
void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
Label* if_false) {
Branch(SmiLessThan(a, b), if_true, if_false);
}
void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
Label* if_false) {
Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
}
void BranchIfFloat64IsNaN(TNode<Float64T> value, Label* if_true,
Label* if_false) {
Branch(Float64Equal(value, value), if_false, if_true);
}
// Branches to {if_true} if ToBoolean applied to {value} yields true,
// otherwise goes to {if_false}.
void BranchIfToBooleanIsTrue(TNode<Object> value, Label* if_true,
Label* if_false);
// Branches to {if_false} if ToBoolean applied to {value} yields false,
// otherwise goes to {if_true}.
void BranchIfToBooleanIsFalse(TNode<Object> value, Label* if_false,
Label* if_true) {
BranchIfToBooleanIsTrue(value, if_true, if_false);
}
void BranchIfJSReceiver(TNode<Object> object, Label* if_true,
Label* if_false);
// Branches to {if_true} when --force-slow-path flag has been passed.
// It's used for testing to ensure that slow path implementation behave
// equivalent to corresponding fast paths (where applicable).
//
// Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
void GotoIfForceSlowPath(Label* if_true);
//
// Caged pointer related functionality.
//
// Load a caged pointer value from an object.
TNode<RawPtrT> LoadSandboxedPointerFromObject(TNode<HeapObject> object,
int offset) {
return LoadSandboxedPointerFromObject(object, IntPtrConstant(offset));
}
TNode<RawPtrT> LoadSandboxedPointerFromObject(TNode<HeapObject> object,
TNode<IntPtrT> offset);
// Stored a caged pointer value to an object.
void StoreSandboxedPointerToObject(TNode<HeapObject> object, int offset,
TNode<RawPtrT> pointer) {
StoreSandboxedPointerToObject(object, IntPtrConstant(offset), pointer);
}
void StoreSandboxedPointerToObject(TNode<HeapObject> object,
TNode<IntPtrT> offset,
TNode<RawPtrT> pointer);
TNode<RawPtrT> EmptyBackingStoreBufferConstant();
//
// ExternalPointerT-related functionality.
//
#ifdef V8_SANDBOXED_EXTERNAL_POINTERS
TNode<ExternalPointerT> ChangeIndexToExternalPointer(TNode<Uint32T> index);
TNode<Uint32T> ChangeExternalPointerToIndex(TNode<ExternalPointerT> pointer);
#endif // V8_SANDBOXED_EXTERNAL_POINTERS
// Initialize an external pointer field in an object.
void InitializeExternalPointerField(TNode<HeapObject> object, int offset) {
InitializeExternalPointerField(object, IntPtrConstant(offset));
}
void InitializeExternalPointerField(TNode<HeapObject> object,
TNode<IntPtrT> offset);
// Initialize an external pointer field in an object with given value.
void InitializeExternalPointerField(TNode<HeapObject> object, int offset,
TNode<RawPtrT> pointer,
ExternalPointerTag tag) {
InitializeExternalPointerField(object, IntPtrConstant(offset), pointer,
tag);
}
void InitializeExternalPointerField(TNode<HeapObject> object,
TNode<IntPtrT> offset,
TNode<RawPtrT> pointer,
ExternalPointerTag tag) {
InitializeExternalPointerField(object, offset);
StoreExternalPointerToObject(object, offset, pointer, tag);
}
// Load an external pointer value from an object.
TNode<RawPtrT> LoadExternalPointerFromObject(TNode<HeapObject> object,
int offset,
ExternalPointerTag tag) {
return LoadExternalPointerFromObject(object, IntPtrConstant(offset), tag);
}
TNode<RawPtrT> LoadExternalPointerFromObject(TNode<HeapObject> object,
TNode<IntPtrT> offset,
ExternalPointerTag tag);
// Store external object pointer to object.
void StoreExternalPointerToObject(TNode<HeapObject> object, int offset,
TNode<RawPtrT> pointer,
ExternalPointerTag tag) {
StoreExternalPointerToObject(object, IntPtrConstant(offset), pointer, tag);
}
void StoreExternalPointerToObject(TNode<HeapObject> object,
TNode<IntPtrT> offset,
TNode<RawPtrT> pointer,
ExternalPointerTag tag);
TNode<RawPtrT> LoadForeignForeignAddressPtr(TNode<Foreign> object) {
return LoadExternalPointerFromObject(object, Foreign::kForeignAddressOffset,
kForeignForeignAddressTag);
}
TNode<RawPtrT> LoadExternalStringResourcePtr(TNode<ExternalString> object) {
return LoadExternalPointerFromObject(
object, ExternalString::kResourceOffset, kExternalStringResourceTag);
}
TNode<RawPtrT> LoadExternalStringResourceDataPtr(
TNode<ExternalString> object) {
// This is only valid for ExternalStrings where the resource data
// pointer is cached (i.e. no uncached external strings).
CSA_DCHECK(this, Word32NotEqual(
Word32And(LoadInstanceType(object),
Int32Constant(kUncachedExternalStringMask)),
Int32Constant(kUncachedExternalStringTag)));
return LoadExternalPointerFromObject(object,
ExternalString::kResourceDataOffset,
kExternalStringResourceDataTag);
}
TNode<RawPtrT> LoadJSTypedArrayExternalPointerPtr(
TNode<JSTypedArray> holder) {
return LoadSandboxedPointerFromObject(holder,
JSTypedArray::kExternalPointerOffset);
}
void StoreJSTypedArrayExternalPointerPtr(TNode<JSTypedArray> holder,
TNode<RawPtrT> value) {
StoreSandboxedPointerToObject(holder, JSTypedArray::kExternalPointerOffset,
value);
}
// Load value from current parent frame by given offset in bytes.
TNode<Object> LoadFromParentFrame(int offset);
// Load an object pointer from a buffer that isn't in the heap.
TNode<Object> LoadBufferObject(TNode<RawPtrT> buffer, int offset) {
return LoadFullTagged(buffer, IntPtrConstant(offset));
}
template <typename T>
TNode<T> LoadBufferData(TNode<RawPtrT> buffer, int offset) {
return UncheckedCast<T>(
Load(MachineTypeOf<T>::value, buffer, IntPtrConstant(offset)));
}
TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) {
return LoadBufferData<RawPtrT>(buffer, offset);
}
TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) {
return CAST(LoadBufferObject(buffer, offset));
}
TNode<IntPtrT> LoadBufferIntptr(TNode<RawPtrT> buffer, int offset) {
return LoadBufferData<IntPtrT>(buffer, offset);
}
TNode<Uint8T> LoadUint8Ptr(TNode<RawPtrT> ptr, TNode<IntPtrT> offset);
// Load a field from an object on the heap.
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value &&
std::is_base_of<T, Map>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
const MachineType machine_type = offset == HeapObject::kMapOffset
? MachineType::MapInHeader()
: MachineTypeOf<T>::value;
return CAST(LoadFromObject(machine_type, object,
IntPtrConstant(offset - kHeapObjectTag)));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value &&
!std::is_base_of<T, Map>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
return CAST(LoadFromObject(MachineTypeOf<T>::value, object,
IntPtrConstant(offset - kHeapObjectTag)));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
return UncheckedCast<T>(
LoadFromObject(MachineTypeOf<T>::value, object,
IntPtrConstant(offset - kHeapObjectTag)));
}
TNode<Object> LoadObjectField(TNode<HeapObject> object, int offset) {
return UncheckedCast<Object>(
LoadFromObject(MachineType::AnyTagged(), object,
IntPtrConstant(offset - kHeapObjectTag)));
}
TNode<Object> LoadObjectField(TNode<HeapObject> object,
TNode<IntPtrT> offset) {
return UncheckedCast<Object>(
LoadFromObject(MachineType::AnyTagged(), object,
IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) {
return UncheckedCast<T>(
LoadFromObject(MachineTypeOf<T>::value, object,
IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))));
}
// Load a SMI field and untag it.
TNode<IntPtrT> LoadAndUntagObjectField(TNode<HeapObject> object, int offset);
// Load a SMI field, untag it, and convert to Word32.
TNode<Int32T> LoadAndUntagToWord32ObjectField(TNode<HeapObject> object,
int offset);
TNode<MaybeObject> LoadMaybeWeakObjectField(TNode<HeapObject> object,
int offset) {
return UncheckedCast<MaybeObject>(LoadObjectField(object, offset));
}
TNode<Object> LoadConstructorOrBackPointer(TNode<Map> map) {
return LoadObjectField(map,
Map::kConstructorOrBackPointerOrNativeContextOffset);
}
TNode<Simd128T> LoadSimd128(TNode<IntPtrT> ptr) {
return Load<Simd128T>(ptr);
}
// Reference is the CSA-equivalent of a Torque reference value, representing
// an inner pointer into a HeapObject.
//
// The object can be a HeapObject or an all-zero bitpattern. The latter is
// used for off-heap data, in which case the offset holds the actual address
// and the data must be untagged (i.e. accessed via the Load-/StoreReference
// overloads for TNode<UntaggedT>-convertible types below).
//
// TODO(gsps): Remove in favor of flattened {Load,Store}Reference interface.
struct Reference {
TNode<Object> object;
TNode<IntPtrT> offset;
std::tuple<TNode<Object>, TNode<IntPtrT>> Flatten() const {
return std::make_tuple(object, offset);
}
};
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value,
int>::type = 0>
TNode<T> LoadReference(Reference reference) {
if (IsMapOffsetConstant(reference.offset)) {
TNode<Map> map = LoadMap(CAST(reference.object));
DCHECK((std::is_base_of<T, Map>::value));
return ReinterpretCast<T>(map);
}
TNode<IntPtrT> offset =
IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag));
CSA_DCHECK(this, TaggedIsNotSmi(reference.object));
return CAST(
LoadFromObject(MachineTypeOf<T>::value, reference.object, offset));
}
template <class T,
typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value ||
std::is_same<T, MaybeObject>::value,
int>::type = 0>
TNode<T> LoadReference(Reference reference) {
DCHECK(!IsMapOffsetConstant(reference.offset));
TNode<IntPtrT> offset =
IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag));
return UncheckedCast<T>(
LoadFromObject(MachineTypeOf<T>::value, reference.object, offset));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value ||
std::is_same<T, MaybeObject>::value,
int>::type = 0>
void StoreReference(Reference reference, TNode<T> value) {
if (IsMapOffsetConstant(reference.offset)) {
DCHECK((std::is_base_of<T, Map>::value));
return StoreMap(CAST(reference.object), ReinterpretCast<Map>(value));
}
MachineRepresentation rep = MachineRepresentationOf<T>::value;
StoreToObjectWriteBarrier write_barrier = StoreToObjectWriteBarrier::kFull;
if (std::is_same<T, Smi>::value) {
write_barrier = StoreToObjectWriteBarrier::kNone;
} else if (std::is_same<T, Map>::value) {
write_barrier = StoreToObjectWriteBarrier::kMap;
}
TNode<IntPtrT> offset =
IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag));
CSA_DCHECK(this, TaggedIsNotSmi(reference.object));
StoreToObject(rep, reference.object, offset, value, write_barrier);
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
void StoreReference(Reference reference, TNode<T> value) {
DCHECK(!IsMapOffsetConstant(reference.offset));
TNode<IntPtrT> offset =
IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag));
StoreToObject(MachineRepresentationOf<T>::value, reference.object, offset,
value, StoreToObjectWriteBarrier::kNone);
}
TNode<RawPtrT> GCUnsafeReferenceToRawPtr(TNode<Object> object,
TNode<IntPtrT> offset) {
return ReinterpretCast<RawPtrT>(
IntPtrAdd(BitcastTaggedToWord(object),
IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))));
}
// Load the floating point value of a HeapNumber.
TNode<Float64T> LoadHeapNumberValue(TNode<HeapObject> object);
// Load the Map of an HeapObject.
TNode<Map> LoadMap(TNode<HeapObject> object);
// Load the instance type of an HeapObject.
TNode<Uint16T> LoadInstanceType(TNode<HeapObject> object);
// Compare the instance the type of the object against the provided one.
TNode<BoolT> HasInstanceType(TNode<HeapObject> object, InstanceType type);
TNode<BoolT> DoesntHaveInstanceType(TNode<HeapObject> object,
InstanceType type);
TNode<BoolT> TaggedDoesntHaveInstanceType(TNode<HeapObject> any_tagged,
InstanceType type);
TNode<Word32T> IsStringWrapperElementsKind(TNode<Map> map);
void GotoIfMapHasSlowProperties(TNode<Map> map, Label* if_slow);
// Load the properties backing store of a JSReceiver.
TNode<HeapObject> LoadSlowProperties(TNode<JSReceiver> object);
TNode<HeapObject> LoadFastProperties(TNode<JSReceiver> object);
// Load the elements backing store of a JSObject.
TNode<FixedArrayBase> LoadElements(TNode<JSObject> object) {
return LoadJSObjectElements(object);
}
// Load the length of a JSArray instance.
TNode<Object> LoadJSArgumentsObjectLength(TNode<Context> context,
TNode<JSArgumentsObject> array);
// Load the length of a fast JSArray instance. Returns a positive Smi.
TNode<Smi> LoadFastJSArrayLength(TNode<JSArray> array);
// Load the length of a fixed array base instance.
TNode<Smi> LoadFixedArrayBaseLength(TNode<FixedArrayBase> array);
// Load the length of a fixed array base instance.
TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(TNode<FixedArrayBase> array);
// Load the length of a WeakFixedArray.
TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(TNode<WeakFixedArray> array);
// Load the number of descriptors in DescriptorArray.
TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array);
// Load the number of own descriptors of a map.
TNode<Int32T> LoadNumberOfOwnDescriptors(TNode<Map> map);
// Load the bit field of a Map.
TNode<Int32T> LoadMapBitField(TNode<Map> map);
// Load bit field 2 of a map.
TNode<Int32T> LoadMapBitField2(TNode<Map> map);
// Load bit field 3 of a map.
TNode<Uint32T> LoadMapBitField3(TNode<Map> map);
// Load the instance type of a map.
TNode<Uint16T> LoadMapInstanceType(TNode<Map> map);
// Load the ElementsKind of a map.
TNode<Int32T> LoadMapElementsKind(TNode<Map> map);
TNode<Int32T> LoadElementsKind(TNode<HeapObject> object);
// Load the instance descriptors of a map.
TNode<DescriptorArray> LoadMapDescriptors(TNode<Map> map);
// Load the prototype of a map.
TNode<HeapObject> LoadMapPrototype(TNode<Map> map);
// Load the instance size of a Map.
TNode<IntPtrT> LoadMapInstanceSizeInWords(TNode<Map> map);
// Load the inobject properties start of a Map (valid only for JSObjects).
TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(TNode<Map> map);
// Load the constructor function index of a Map (only for primitive maps).
TNode<IntPtrT> LoadMapConstructorFunctionIndex(TNode<Map> map);
// Load the constructor of a Map (equivalent to Map::GetConstructor()).
TNode<Object> LoadMapConstructor(TNode<Map> map);
// Load the EnumLength of a Map.
TNode<WordT> LoadMapEnumLength(TNode<Map> map);
// Load the back-pointer of a Map.
TNode<Object> LoadMapBackPointer(TNode<Map> map);
// Checks that |map| has only simple properties, returns bitfield3.
TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map,
TNode<Int32T> instance_type,
Label* bailout);
// Load the identity hash of a JSRececiver.
TNode<IntPtrT> LoadJSReceiverIdentityHash(TNode<JSReceiver> receiver,
Label* if_no_hash = nullptr);
// This is only used on a newly allocated PropertyArray which
// doesn't have an existing hash.
void InitializePropertyArrayLength(TNode<PropertyArray> property_array,
TNode<IntPtrT> length);
// Check if the map is set for slow properties.
TNode<BoolT> IsDictionaryMap(TNode<Map> map);
// Load the Name::hash() value of a name as an uint32 value.
// If {if_hash_not_computed} label is specified then it also checks if
// hash is actually computed.
TNode<Uint32T> LoadNameHash(TNode<Name> name,
Label* if_hash_not_computed = nullptr);
TNode<Uint32T> LoadNameHashAssumeComputed(TNode<Name> name);
// Load length field of a String object as Smi value.
TNode<Smi> LoadStringLengthAsSmi(TNode<String> string);
// Load length field of a String object as intptr_t value.
TNode<IntPtrT> LoadStringLengthAsWord(TNode<String> string);
// Load length field of a String object as uint32_t value.
TNode<Uint32T> LoadStringLengthAsWord32(TNode<String> string);
// Load value field of a JSPrimitiveWrapper object.
TNode<Object> LoadJSPrimitiveWrapperValue(TNode<JSPrimitiveWrapper> object);
// Figures out whether the value of maybe_object is:
// - a SMI (jump to "if_smi", "extracted" will be the SMI value)
// - a cleared weak reference (jump to "if_cleared", "extracted" will be
// untouched)
// - a weak reference (jump to "if_weak", "extracted" will be the object
// pointed to)
// - a strong reference (jump to "if_strong", "extracted" will be the object
// pointed to)
void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
Label* if_cleared, Label* if_weak, Label* if_strong,
TVariable<Object>* extracted);
// See MaybeObject for semantics of these functions.
TNode<BoolT> IsStrong(TNode<MaybeObject> value);
TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value,
Label* if_not_strong);
TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value);
TNode<BoolT> IsCleared(TNode<MaybeObject> value);
TNode<BoolT> IsNotCleared(TNode<MaybeObject> value) {
return Word32BinaryNot(IsCleared(value));
}
// Removes the weak bit + asserts it was set.
TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value);
TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value,
Label* if_cleared);
// Checks if |maybe_object| is a weak reference to given |heap_object|.
// Works for both any tagged |maybe_object| values.
TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> maybe_object,
TNode<HeapObject> heap_object);
// Returns true if the |object| is a HeapObject and |maybe_object| is a weak
// reference to |object|.
// The |maybe_object| must not be a Smi.
TNode<BoolT> IsWeakReferenceToObject(TNode<MaybeObject> maybe_object,
TNode<Object> object);
TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);
void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, TNode<Smi> index,
int additional_offset);
void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, TNode<IntPtrT> index,
int additional_offset);
void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, TNode<UintPtrT> index,
int additional_offset) {
FixedArrayBoundsCheck(array, Signed(index), additional_offset);
}
// Array is any array-like type that has a fixed header followed by
// tagged elements.
template <typename Array>
TNode<IntPtrT> LoadArrayLength(TNode<Array> array);
// Array is any array-like type that has a fixed header followed by
// tagged elements.
template <typename Array, typename TIndex, typename TValue = MaybeObject>
TNode<TValue> LoadArrayElement(TNode<Array> array, int array_header_size,
TNode<TIndex> index,
int additional_offset = 0);
template <typename TIndex>
TNode<Object> LoadFixedArrayElement(
TNode<FixedArray> object, TNode<TIndex> index, int additional_offset = 0,
CheckBounds check_bounds = CheckBounds::kAlways);
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object,
TNode<IntPtrT> index,
int additional_offset = 0) {
return LoadFixedArrayElement(object, index, additional_offset,
CheckBounds::kDebugOnly);
}
TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object, int index,
int additional_offset = 0) {
return LoadFixedArrayElement(object, IntPtrConstant(index),
additional_offset);
}
// This doesn't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object, int index,
int additional_offset = 0) {
return LoadFixedArrayElement(object, IntPtrConstant(index),
additional_offset, CheckBounds::kDebugOnly);
}
TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object,
TNode<IntPtrT> index);
TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);
// Load an element from an array and untag it and return it as Word32.
// Array is any array-like type that has a fixed header followed by
// tagged elements.
template <typename Array>
TNode<Int32T> LoadAndUntagToWord32ArrayElement(TNode<Array> array,
int array_header_size,
TNode<IntPtrT> index,
int additional_offset = 0);
// Load an array element from a FixedArray, untag it and return it as Word32.
TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
TNode<FixedArray> object, TNode<IntPtrT> index,
int additional_offset = 0);
// Load an array element from a WeakFixedArray.
TNode<MaybeObject> LoadWeakFixedArrayElement(TNode<WeakFixedArray> object,
TNode<IntPtrT> index,
int additional_offset = 0);
// Load an array element from a FixedDoubleArray.
TNode<Float64T> LoadFixedDoubleArrayElement(
TNode<FixedDoubleArray> object, TNode<IntPtrT> index,
Label* if_hole = nullptr,
MachineType machine_type = MachineType::Float64());
// Load an array element from a FixedArray, FixedDoubleArray or a
// NumberDictionary (depending on the |elements_kind|) and return
// it as a tagged value. Assumes that the |index| passed a length
// check before. Bails out to |if_accessor| if the element that
// was found is an accessor, or to |if_hole| if the element at
// the given |index| is not found in |elements|.
TNode<Object> LoadFixedArrayBaseElementAsTagged(
TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);
// Load a feedback slot from a FeedbackVector.
template <typename TIndex>
TNode<MaybeObject> LoadFeedbackVectorSlot(
TNode<FeedbackVector> feedback_vector, TNode<TIndex> slot,
int additional_offset = 0);
TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
TNode<IntPtrT> index,
Label* if_hole = nullptr);
TNode<BoolT> IsDoubleHole(TNode<Object> base, TNode<IntPtrT> offset);
// Load Float64 value by |base| + |offset| address. If the value is a double
// hole then jump to |if_hole|. If |machine_type| is None then only the hole
// check is generated.
TNode<Float64T> LoadDoubleWithHoleCheck(
TNode<Object> base, TNode<IntPtrT> offset, Label* if_hole,
MachineType machine_type = MachineType::Float64());
TNode<Numeric> LoadFixedTypedArrayElementAsTagged(TNode<RawPtrT> data_pointer,
TNode<UintPtrT> index,
ElementsKind elements_kind);
TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
TNode<RawPtrT> data_pointer, TNode<UintPtrT> index,
TNode<Int32T> elements_kind);
// Parts of the above, factored out for readability:
TNode<BigInt> LoadFixedBigInt64ArrayElementAsTagged(
TNode<RawPtrT> data_pointer, TNode<IntPtrT> offset);
TNode<BigInt> LoadFixedBigUint64ArrayElementAsTagged(
TNode<RawPtrT> data_pointer, TNode<IntPtrT> offset);
// 64-bit platforms only:
TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value);
TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value);
// 32-bit platforms only:
TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high);
TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high);
// ScopeInfo:
TNode<ScopeInfo> LoadScopeInfo(TNode<Context> context);
TNode<BoolT> LoadScopeInfoHasExtensionField(TNode<ScopeInfo> scope_info);
// Context manipulation:
void StoreContextElementNoWriteBarrier(TNode<Context> context, int slot_index,
TNode<Object> value);
TNode<NativeContext> LoadNativeContext(TNode<Context> context);
// Calling this is only valid if there's a module context in the chain.
TNode<Context> LoadModuleContext(TNode<Context> context);
TNode<Object> GetImportMetaObject(TNode<Context> context);
void GotoIfContextElementEqual(TNode<Object> value,
TNode<NativeContext> native_context,
int slot_index, Label* if_equal) {
GotoIf(TaggedEqual(value, LoadContextElement(native_context, slot_index)),
if_equal);
}
// Loads the initial map of the the Object constructor.
TNode<Map> LoadObjectFunctionInitialMap(TNode<NativeContext> native_context);
TNode<Map> LoadSlowObjectWithNullPrototypeMap(
TNode<NativeContext> native_context);
TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
TNode<NativeContext> native_context);
TNode<Map> LoadJSArrayElementsMap(TNode<Int32T> kind,
TNode<NativeContext> native_context);
TNode<BoolT> IsJSFunctionWithPrototypeSlot(TNode<HeapObject> object);
TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
void BranchIfHasPrototypeProperty(TNode<JSFunction> function,
TNode<Int32T> function_map_bit_field,
Label* if_true, Label* if_false);
void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
TNode<Map> map, Label* runtime);
// Load the "prototype" property of a JSFunction.
TNode<HeapObject> LoadJSFunctionPrototype(TNode<JSFunction> function,
Label* if_bailout);
TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray(
TNode<SharedFunctionInfo> shared);
void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
TNode<Word32T> value);
// Store the floating point value of a HeapNumber.
void StoreHeapNumberValue(TNode<HeapNumber> object, TNode<Float64T> value);
// Store a field to an object on the heap.
void StoreObjectField(TNode<HeapObject> object, int offset, TNode<Smi> value);
void StoreObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset,
TNode<Smi> value);
void StoreObjectField(TNode<HeapObject> object, int offset,
TNode<Object> value);
void StoreObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset,
TNode<Object> value);
template <class T>
void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object,
TNode<IntPtrT> offset, TNode<T> value) {
int const_offset;
if (TryToInt32Constant(offset, &const_offset)) {
return StoreObjectFieldNoWriteBarrier<T>(object, const_offset, value);
}
StoreNoWriteBarrier(MachineRepresentationOf<T>::value, object,
IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)),
value);
}
template <class T>
void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, int offset,
TNode<T> value) {
if (CanBeTaggedPointer(MachineRepresentationOf<T>::value)) {
OptimizedStoreFieldAssertNoWriteBarrier(MachineRepresentationOf<T>::value,
object, offset, value);
} else {
OptimizedStoreFieldUnsafeNoWriteBarrier(MachineRepresentationOf<T>::value,
object, offset, value);
}
}
void UnsafeStoreObjectFieldNoWriteBarrier(TNode<HeapObject> object,
int offset, TNode<Object> value);
// Store the Map of an HeapObject.
void StoreMap(TNode<HeapObject> object, TNode<Map> map);
void StoreMapNoWriteBarrier(TNode<HeapObject> object,
RootIndex map_root_index);
void StoreMapNoWriteBarrier(TNode<HeapObject> object, TNode<Map> map);
void StoreObjectFieldRoot(TNode<HeapObject> object, int offset,
RootIndex root);
// Store an array element to a FixedArray.
void StoreFixedArrayElement(
TNode<FixedArray> object, int index, TNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
CheckBounds check_bounds = CheckBounds::kAlways) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
barrier_mode, 0, check_bounds);
}
void StoreFixedArrayElement(TNode<FixedArray> object, int index,
TNode<Smi> value,
CheckBounds check_bounds = CheckBounds::kAlways) {
return StoreFixedArrayElement(object, IntPtrConstant(index),
TNode<Object>{value},
UNSAFE_SKIP_WRITE_BARRIER, 0, check_bounds);
}
template <typename TIndex>
void StoreFixedArrayElement(
TNode<FixedArray> array, TNode<TIndex> index, TNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
CheckBounds check_bounds = CheckBounds::kAlways) {
// TODO(v8:9708): Do we want to keep both IntPtrT and UintPtrT variants?
static_assert(std::is_same<TIndex, Smi>::value ||
std::is_same<TIndex, UintPtrT>::value ||
std::is_same<TIndex, IntPtrT>::value,
"Only Smi, UintPtrT or IntPtrT index is allowed");
if (NeedsBoundsCheck(check_bounds)) {
FixedArrayBoundsCheck(array, index, additional_offset);
}
StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
additional_offset);
}
template <typename TIndex>
void StoreFixedArrayElement(TNode<FixedArray> array, TNode<TIndex> index,
TNode<Smi> value, int additional_offset = 0) {
static_assert(std::is_same<TIndex, Smi>::value ||
std::is_same<TIndex, IntPtrT>::value,
"Only Smi or IntPtrT indeces is allowed");
StoreFixedArrayElement(array, index, TNode<Object>{value},
UNSAFE_SKIP_WRITE_BARRIER, additional_offset);
}
// These don't emit a bounds-check. As part of the security-performance
// tradeoff, only use it if it is performance critical.
void UnsafeStoreFixedArrayElement(
TNode<FixedArray> object, int index, TNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
barrier_mode, 0, CheckBounds::kDebugOnly);
}
void UnsafeStoreFixedArrayElement(TNode<FixedArray> object, int index,
TNode<Smi> value) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
UNSAFE_SKIP_WRITE_BARRIER, 0,
CheckBounds::kDebugOnly);
}
void UnsafeStoreFixedArrayElement(
TNode<FixedArray> array, TNode<IntPtrT> index, TNode<Object> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0) {
return StoreFixedArrayElement(array, index, value, barrier_mode,
additional_offset, CheckBounds::kDebugOnly);
}
void UnsafeStoreFixedArrayElement(TNode<FixedArray> array,
TNode<IntPtrT> index, TNode<Smi> value,
int additional_offset) {
return StoreFixedArrayElement(array, index, value,
UNSAFE_SKIP_WRITE_BARRIER, additional_offset,
CheckBounds::kDebugOnly);
}
void StorePropertyArrayElement(TNode<PropertyArray> array,
TNode<IntPtrT> index, TNode<Object> value) {
StoreFixedArrayOrPropertyArrayElement(array, index, value,
UPDATE_WRITE_BARRIER);
}
template <typename TIndex>
void StoreFixedDoubleArrayElement(
TNode<FixedDoubleArray> object, TNode<TIndex> index,
TNode<Float64T> value, CheckBounds check_bounds = CheckBounds::kAlways);
void StoreDoubleHole(TNode<HeapObject> object, TNode<IntPtrT> offset);
void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array,
TNode<IntPtrT> index);
void StoreFeedbackVectorSlot(
TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot,
TNode<AnyTaggedT> value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0);
void StoreJSSharedStructInObjectField(TNode<HeapObject> object,
TNode<IntPtrT> offset,
TNode<Object> value);
void StoreJSSharedStructPropertyArrayElement(TNode<PropertyArray> array,
TNode<IntPtrT> index,
TNode<Object> value) {
// JSSharedStructs are allocated in the shared old space, which is currently
// collected by stopping the world, so the incremental write barrier is not
// needed. They can only store Smis and other HeapObjects in the shared old
// space, so the generational write barrier is also not needed.
// TODO(v8:12547): Add a safer, shared variant of SKIP_WRITE_BARRIER.
StoreFixedArrayOrPropertyArrayElement(array, index, value,
UNSAFE_SKIP_WRITE_BARRIER);
}
// EnsureArrayPushable verifies that receiver with this map is:
// 1. Is not a prototype.
// 2. Is not a dictionary.
// 3. Has a writeable length property.
// It returns ElementsKind as a node for further division into cases.
TNode<Int32T> EnsureArrayPushable(TNode<Context> context, TNode<Map> map,
Label* bailout);
void TryStoreArrayElement(ElementsKind kind, Label* bailout,
TNode<FixedArrayBase> elements, TNode<BInt> index,
TNode<Object> value);
// Consumes args into the array, and returns tagged new length.
TNode<Smi> BuildAppendJSArray(ElementsKind kind, TNode<JSArray> array,
CodeStubArguments* args,
TVariable<IntPtrT>* arg_index, Label* bailout);
// Pushes value onto the end of array.
void BuildAppendJSArray(ElementsKind kind, TNode<JSArray> array,
TNode<Object> value, Label* bailout);
void StoreFieldsNoWriteBarrier(TNode<IntPtrT> start_address,
TNode<IntPtrT> end_address,
TNode<Object> value);
// Marks the FixedArray copy-on-write without moving it.
void MakeFixedArrayCOW(TNode<FixedArray> array);
TNode<Cell> AllocateCellWithValue(
TNode<Object> value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
TNode<Cell> AllocateSmiCell(int value = 0) {
return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
}
TNode<Object> LoadCellValue(TNode<Cell> cell);
void StoreCellValue(TNode<Cell> cell, TNode<Object> value,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
// Allocate a HeapNumber without initializing its value.
TNode<HeapNumber> AllocateHeapNumber();
// Allocate a HeapNumber with a specific value.
TNode<HeapNumber> AllocateHeapNumberWithValue(TNode<Float64T> value);
TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
return AllocateHeapNumberWithValue(Float64Constant(value));
}
// Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
// Does not initialize the digits.
TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
// Like above, but allowing custom bitfield initialization.
TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield);
void StoreBigIntDigit(TNode<BigInt> bigint, intptr_t digit_index,
TNode<UintPtrT> digit);
void StoreBigIntDigit(TNode<BigInt> bigint, TNode<IntPtrT> digit_index,
TNode<UintPtrT> digit);
TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint);
TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, intptr_t digit_index);
TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint,
TNode<IntPtrT> digit_index);
// Allocate a ByteArray with the given non-zero length.
TNode<ByteArray> AllocateNonEmptyByteArray(TNode<UintPtrT> length,
AllocationFlags flags);
// Allocate a ByteArray with the given length.
TNode<ByteArray> AllocateByteArray(
TNode<UintPtrT> length, AllocationFlags flags = AllocationFlag::kNone);
// Allocate a SeqOneByteString with the given length.
TNode<String> AllocateSeqOneByteString(
uint32_t length, AllocationFlags flags = AllocationFlag::kNone);
using TorqueGeneratedExportedMacrosAssembler::AllocateSeqOneByteString;
// Allocate a SeqTwoByteString with the given length.
TNode<String> AllocateSeqTwoByteString(
uint32_t length, AllocationFlags flags = AllocationFlag::kNone);
using TorqueGeneratedExportedMacrosAssembler::AllocateSeqTwoByteString;
// Allocate a SlicedOneByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length,
TNode<String> parent,
TNode<Smi> offset);
// Allocate a SlicedTwoByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length,
TNode<String> parent,
TNode<Smi> offset);
TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
TNode<NameDictionary> AllocateNameDictionary(
TNode<IntPtrT> at_least_space_for,
AllocationFlags = AllocationFlag::kNone);
TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
TNode<IntPtrT> capacity, AllocationFlags = AllocationFlag::kNone);
TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
Label* large_object_fallback);
TNode<OrderedHashSet> AllocateOrderedHashSet();
TNode<OrderedHashMap> AllocateOrderedHashMap();
// Allocates an OrderedNameDictionary of the given capacity. This guarantees
// that |capacity| entries can be added without reallocating.
TNode<OrderedNameDictionary> AllocateOrderedNameDictionary(
TNode<IntPtrT> capacity);
TNode<OrderedNameDictionary> AllocateOrderedNameDictionary(int capacity);
TNode<JSObject> AllocateJSObjectFromMap(
TNode<Map> map,
base::Optional<TNode<HeapObject>> properties = base::nullopt,
base::Optional<TNode<FixedArray>> elements = base::nullopt,
AllocationFlags flags = AllocationFlag::kNone,
SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
void InitializeJSObjectFromMap(
TNode<HeapObject> object, TNode<Map> map, TNode<IntPtrT> instance_size,
base::Optional<TNode<HeapObject>> properties = base::nullopt,
base::Optional<TNode<FixedArray>> elements = base::nullopt,
SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
void InitializeJSObjectBodyWithSlackTracking(TNode<HeapObject> object,
TNode<Map> map,
TNode<IntPtrT> instance_size);
void InitializeJSObjectBodyNoSlackTracking(
TNode<HeapObject> object, TNode<Map> map, TNode<IntPtrT> instance_size,
int start_offset = JSObject::kHeaderSize);
TNode<BoolT> IsValidFastJSArrayCapacity(TNode<IntPtrT> capacity);
//
// Allocate and return a JSArray with initialized header fields and its
// uninitialized elements.
std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
AllocateUninitializedJSArrayWithElements(
ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
base::Optional<TNode<AllocationSite>> allocation_site,
TNode<IntPtrT> capacity,
AllocationFlags allocation_flags = AllocationFlag::kNone,
int array_header_size = JSArray::kHeaderSize);
// Allocate a JSArray and fill elements with the hole.
TNode<JSArray> AllocateJSArray(
ElementsKind kind, TNode<Map> array_map, TNode<IntPtrT> capacity,
TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site,
AllocationFlags allocation_flags = AllocationFlag::kNone);
TNode<JSArray> AllocateJSArray(
ElementsKind kind, TNode<Map> array_map, TNode<Smi> capacity,
TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site,
AllocationFlags allocation_flags = AllocationFlag::kNone) {
return AllocateJSArray(kind, array_map, SmiUntag(capacity), length,
allocation_site, allocation_flags);
}
TNode<JSArray> AllocateJSArray(
ElementsKind kind, TNode<Map> array_map, TNode<Smi> capacity,
TNode<Smi> length,
AllocationFlags allocation_flags = AllocationFlag::kNone) {
return AllocateJSArray(kind, array_map, SmiUntag(capacity), length,
base::nullopt, allocation_flags);
}
TNode<JSArray> AllocateJSArray(
ElementsKind kind, TNode<Map> array_map, TNode<IntPtrT> capacity,
TNode<Smi> length,
AllocationFlags allocation_flags = AllocationFlag::kNone) {
return AllocateJSArray(kind, array_map, capacity, length, base::nullopt,
allocation_flags);
}
// Allocate a JSArray and initialize the header fields.
TNode<JSArray> AllocateJSArray(
TNode<Map> array_map, TNode<FixedArrayBase> elements, TNode<Smi> length,
base::Optional<TNode<AllocationSite>> allocation_site = base::nullopt,
int array_header_size = JSArray::kHeaderSize);
enum class HoleConversionMode { kDontConvert, kConvertToUndefined };
// Clone a fast JSArray |array| into a new fast JSArray.
// |convert_holes| tells the function to convert holes into undefined or not.
// If |convert_holes| is set to kConvertToUndefined, but the function did not
// find any hole in |array|, the resulting array will have the same elements
// kind as |array|. If the function did find a hole, it will convert holes in
// |array| to undefined in the resulting array, who will now have
// PACKED_ELEMENTS kind.
// If |convert_holes| is set kDontConvert, holes are also copied to the
// resulting array, who will have the same elements kind as |array|. The
// function generates significantly less code in this case.
TNode<JSArray> CloneFastJSArray(
TNode<Context> context, TNode<JSArray> array,
base::Optional<TNode<AllocationSite>> allocation_site = base::nullopt,
HoleConversionMode convert_holes = HoleConversionMode::kDontConvert);
TNode<JSArray> ExtractFastJSArray(TNode<Context> context,
TNode<JSArray> array, TNode<BInt> begin,
TNode<BInt> count);
template <typename TIndex>
TNode<FixedArrayBase> AllocateFixedArray(
ElementsKind kind, TNode<TIndex> capacity,
AllocationFlags flags = AllocationFlag::kNone,
base::Optional<TNode<Map>> fixed_array_map = base::nullopt);
TNode<NativeContext> GetCreationContext(TNode<JSReceiver> receiver,
Label* if_bailout);
TNode<NativeContext> GetFunctionRealm(TNode<Context> context,
TNode<JSReceiver> receiver,
Label* if_bailout);
TNode<Object> GetConstructor(TNode<Map> map);
TNode<Map> GetInstanceTypeMap(InstanceType instance_type);
TNode<FixedArray> AllocateUninitializedFixedArray(intptr_t capacity) {
return UncheckedCast<FixedArray>(AllocateFixedArray(
PACKED_ELEMENTS, IntPtrConstant(capacity), AllocationFlag::kNone));
}
TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
TNode<FixedArray> result = UncheckedCast<FixedArray>(
AllocateFixedArray(PACKED_ELEMENTS, capacity,
AllocationFlag::kAllowLargeObjectAllocation));
FillFixedArrayWithSmiZero(result, capacity);
return result;
}
TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
TNode<IntPtrT> capacity) {
TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity,
AllocationFlag::kAllowLargeObjectAllocation));
FillFixedDoubleArrayWithZero(result, capacity);
return result;
}
TNode<FixedArray> AllocateFixedArrayWithHoles(TNode<IntPtrT> capacity,
AllocationFlags flags) {
TNode<FixedArray> result = UncheckedCast<FixedArray>(
AllocateFixedArray(PACKED_ELEMENTS, capacity, flags));
FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0),
capacity, RootIndex::kTheHoleValue);
return result;
}
TNode<FixedDoubleArray> AllocateFixedDoubleArrayWithHoles(
TNode<IntPtrT> capacity, AllocationFlags flags) {
TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, flags));
FillFixedArrayWithValue(PACKED_DOUBLE_ELEMENTS, result, IntPtrConstant(0),
capacity, RootIndex::kTheHoleValue);
return result;
}
TNode<PropertyArray> AllocatePropertyArray(TNode<IntPtrT> capacity);
TNode<HeapObject> AllocateWasmArray(TNode<IntPtrT> size_in_bytes,
int initialization);
// TODO(v8:9722): Return type should be JSIteratorResult
TNode<JSObject> AllocateJSIteratorResult(TNode<Context> context,
TNode<Object> value,
TNode<Oddball> done);
// TODO(v8:9722): Return type should be JSIteratorResult
TNode<JSObject> AllocateJSIteratorResultForEntry(TNode<Context> context,
TNode<Object> key,
TNode<Object> value);
TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context,
TNode<Object> originalArray,
TNode<Number> len);
template <typename TIndex>
void FillFixedArrayWithValue(ElementsKind kind, TNode<FixedArrayBase> array,
TNode<TIndex> from_index, TNode<TIndex> to_index,
RootIndex value_root_index);
// Uses memset to effectively initialize the given FixedArray with zeroes.
void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
TNode<IntPtrT> length);
void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
TNode<IntPtrT> length);
void FillPropertyArrayWithUndefined(TNode<PropertyArray> array,
TNode<IntPtrT> from_index,
TNode<IntPtrT> to_index);
enum class DestroySource { kNo, kYes };
// Increment the call count for a CALL_IC or construct call.
// The call count is located at feedback_vector[slot_id + 1].
void IncrementCallCount(TNode<FeedbackVector> feedback_vector,
TNode<UintPtrT> slot_id);
// Specify DestroySource::kYes if {from_array} is being supplanted by
// {to_array}. This offers a slight performance benefit by simply copying the
// array word by word. The source may be destroyed at the end of this macro.
//
// Otherwise, specify DestroySource::kNo for operations where an Object is
// being cloned, to ensure that mutable HeapNumbers are unique between the
// source and cloned object.
void CopyPropertyArrayValues(TNode<HeapObject> from_array,
TNode<PropertyArray> to_array,
TNode<IntPtrT> length,
WriteBarrierMode barrier_mode,
DestroySource destroy_source);
// Copies all elements from |from_array| of |length| size to
// |to_array| of the same size respecting the elements kind.
template <typename TIndex>
void CopyFixedArrayElements(
ElementsKind kind, TNode<FixedArrayBase> from_array,
TNode<FixedArrayBase> to_array, TNode<TIndex> length,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
CopyFixedArrayElements(kind, from_array, kind, to_array,
IntPtrOrSmiConstant<TIndex>(0), length, length,
barrier_mode);
}
// Copies |element_count| elements from |from_array| starting from element
// zero to |to_array| of |capacity| size respecting both array's elements
// kinds.
template <typename TIndex>
void CopyFixedArrayElements(
ElementsKind from_kind, TNode<FixedArrayBase> from_array,
ElementsKind to_kind, TNode<FixedArrayBase> to_array,
TNode<TIndex> element_count, TNode<TIndex> capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
IntPtrOrSmiConstant<TIndex>(0), element_count,
capacity, barrier_mode);
}
// Copies |element_count| elements from |from_array| starting from element
// |first_element| to |to_array| of |capacity| size respecting both array's
// elements kinds.
// |convert_holes| tells the function whether to convert holes to undefined.
// |var_holes_converted| can be used to signify that the conversion happened
// (i.e. that there were holes). If |convert_holes_to_undefined| is
// HoleConversionMode::kConvertToUndefined, then it must not be the case that
// IsDoubleElementsKind(to_kind).
template <typename TIndex>
void CopyFixedArrayElements(
ElementsKind from_kind, TNode<FixedArrayBase> from_array,
ElementsKind to_kind, TNode<FixedArrayBase> to_array,
TNode<TIndex> first_element, TNode<TIndex> element_count,
TNode<TIndex> capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
TVariable<BoolT>* var_holes_converted = nullptr);
void JumpIfPointersFromHereAreInteresting(TNode<Object> object,
Label* interesting);
// Efficiently copy elements within a single array. The regions
// [src_index, src_index + length) and [dst_index, dst_index + length)
// can be overlapping.
void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements,
TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index,
TNode<IntPtrT> length);
// Efficiently copy elements from one array to another. The ElementsKind
// needs to be the same. Copy from src_elements at
// [src_index, src_index + length) to dst_elements at
// [dst_index, dst_index + length).
// The function decides whether it can use memcpy. In case it cannot,
// |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is
// only safe when copying to new space, or when copying to old space and the
// array does not contain object pointers.
void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements,
TNode<IntPtrT> dst_index,
TNode<FixedArrayBase> src_elements,
TNode<IntPtrT> src_index, TNode<IntPtrT> length,
WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER);
TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
Label* cast_fail);
TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
Label* cast_fail) {
GotoIf(TaggedNotEqual(LoadMap(base), FixedDoubleArrayMapConstant()),
cast_fail);
return UncheckedCast<FixedDoubleArray>(base);
}
template <typename T>
bool ClassHasMapConstant() {
return false;
}
template <typename T>
TNode<Map> GetClassMapConstant() {
UNREACHABLE();
return TNode<Map>();
}
enum class ExtractFixedArrayFlag {
kFixedArrays = 1,
kFixedDoubleArrays = 2,
kDontCopyCOW = 4,
kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
};
using ExtractFixedArrayFlags = base::Flags<ExtractFixedArrayFlag>;
// Copy a portion of an existing FixedArray or FixedDoubleArray into a new
// array, including special appropriate handling for empty arrays and COW
// arrays. The result array will be of the same type as the original array.
//
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements.
// * |first| is the starting element index to copy from, if nullptr is passed
// then index zero is used by default.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|. If |count| is
// nullptr, then all of the elements from |start| to the end of |source| are
// copied.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
// the destination array's capacity.
// * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
// are detected and copied. Although it's always correct to pass
// kAllFixedArrays, the generated code is more compact and efficient if the
// caller can specify whether only FixedArrays or FixedDoubleArrays will be
// passed as the |source| parameter.
// * |parameter_mode| determines the parameter mode of |first|, |count| and
// |capacity|.
// * If |var_holes_converted| is given, any holes will be converted to
// undefined and the variable will be set according to whether or not there
// were any hole.
// * If |source_elements_kind| is given, the function will try to use the
// runtime elements kind of source to make copy faster. More specifically, it
// can skip write barriers.
template <typename TIndex>
TNode<FixedArrayBase> ExtractFixedArray(
TNode<FixedArrayBase> source, base::Optional<TNode<TIndex>> first,
base::Optional<TNode<TIndex>> count = base::nullopt,
base::Optional<TNode<TIndex>> capacity = base::nullopt,
ExtractFixedArrayFlags extract_flags =
ExtractFixedArrayFlag::kAllFixedArrays,
TVariable<BoolT>* var_holes_converted = nullptr,
base::Optional<TNode<Int32T>> source_elements_kind = base::nullopt);
// Copy a portion of an existing FixedArray or FixedDoubleArray into a new
// FixedArray, including special appropriate handling for COW arrays.
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements. |source| is assumed to be non-empty.
// * |first| is the starting element index to copy from.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|.
// * |source_map| is the map of the |source|.
// * |from_kind| is the elements kind that is consistent with |source| being
// a FixedArray or FixedDoubleArray. This function only cares about double vs.
// non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does
// not care about holeyness. For example, when |source| is a FixedArray,
// PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS.
// * |allocation_flags| and |extract_flags| influence how the target
// FixedArray is allocated.
// * |convert_holes| is used to signify that the target array should use
// undefined in places of holes.
// * If |convert_holes| is true and |var_holes_converted| not nullptr, then
// |var_holes_converted| is used to signal whether any holes were found and
// converted. The caller should use this information to decide which map is
// compatible with the result array. For example, if the input was of
// HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be
// compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS.
template <typename TIndex>
TNode<FixedArray> ExtractToFixedArray(
TNode<FixedArrayBase> source, TNode<TIndex> first, TNode<TIndex> count,
TNode<TIndex> capacity, TNode<Map> source_map, ElementsKind from_kind,
AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags,
HoleConversionMode convert_holes,
TVariable<BoolT>* var_holes_converted = nullptr,
base::Optional<TNode<Int32T>> source_runtime_kind = base::nullopt);
// Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case
// where the source array has a hole, produce a FixedArray instead where holes
// are replaced with undefined.
// * |source| is a FixedDoubleArray from which to copy elements.
// * |first| is the starting element index to copy from.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|.
// * |source_map| is the map of |source|. It will be used as the map of the
// target array if the target can stay a FixedDoubleArray. Otherwise if the
// target array needs to be a FixedArray, the FixedArrayMap will be used.
// * |var_holes_converted| is used to signal whether a FixedAray
// is produced or not.
// * |allocation_flags| and |extract_flags| influence how the target array is
// allocated.
template <typename TIndex>
TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles(
TNode<FixedArrayBase> source, TNode<TIndex> first, TNode<TIndex> count,
TNode<TIndex> capacity, TNode<Map> source_map,
TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags,
ExtractFixedArrayFlags extract_flags);
// Copy the entire contents of a FixedArray or FixedDoubleArray to a new
// array, including special appropriate handling for empty arrays and COW
// arrays.
//
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements.
// * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
// are detected and copied. Although it's always correct to pass
// kAllFixedArrays, the generated code is more compact and efficient if the
// caller can specify whether only FixedArrays or FixedDoubleArrays will be
// passed as the |source| parameter.
TNode<FixedArrayBase> CloneFixedArray(
TNode<FixedArrayBase> source,
ExtractFixedArrayFlags flags =
ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW);
// Loads an element from |array| of |from_kind| elements by given |offset|
// (NOTE: not index!), does a hole check if |if_hole| is provided and
// converts the value so that it becomes ready for storing to array of
// |to_kind| elements.
template <typename TResult>
TNode<TResult> LoadElementAndPrepareForStore(TNode<FixedArrayBase> array,
TNode<IntPtrT> offset,
ElementsKind from_kind,
ElementsKind to_kind,
Label* if_hole);
template <typename TIndex>
TNode<TIndex> CalculateNewElementsCapacity(TNode<TIndex> old_capacity);
// Tries to grow the |elements| array of given |object| to store the |key|
// or bails out if the growing gap is too big. Returns new elements.
TNode<FixedArrayBase> TryGrowElementsCapacity(TNode<HeapObject> object,
TNode<FixedArrayBase> elements,
ElementsKind kind,
TNode<Smi> key, Label* bailout);
// Tries to grow the |capacity|-length |elements| array of given |object|
// to store the |key| or bails out if the growing gap is too big. Returns
// new elements.
template <typename TIndex>
TNode<FixedArrayBase> TryGrowElementsCapacity(TNode<HeapObject> object,
TNode<FixedArrayBase> elements,
ElementsKind kind,
TNode<TIndex> key,
TNode<TIndex> capacity,
Label* bailout);
// Grows elements capacity of given object. Returns new elements.
template <typename TIndex>
TNode<FixedArrayBase> GrowElementsCapacity(
TNode<HeapObject> object, TNode<FixedArrayBase> elements,
ElementsKind from_kind, ElementsKind to_kind, TNode<TIndex> capacity,
TNode<TIndex> new_capacity, Label* bailout);
// Given a need to grow by |growth|, allocate an appropriate new capacity
// if necessary, and return a new elements FixedArray object. Label |bailout|
// is followed for allocation failure.
void PossiblyGrowElementsCapacity(ElementsKind kind, TNode<HeapObject> array,
TNode<BInt> length,
TVariable<FixedArrayBase>* var_elements,
TNode<BInt> growth, Label* bailout);
// Allocation site manipulation
void InitializeAllocationMemento(TNode<HeapObject> base,
TNode<IntPtrT> base_allocation_size,
TNode<AllocationSite> allocation_site);
TNode<IntPtrT> TryTaggedToInt32AsIntPtr(TNode<Object> value,
Label* if_not_possible);
TNode<Float64T> TryTaggedToFloat64(TNode<Object> value,
Label* if_valueisnotnumber);
TNode<Float64T> TruncateTaggedToFloat64(TNode<Context> context,
TNode<Object> value);
TNode<Word32T> TruncateTaggedToWord32(TNode<Context> context,
TNode<Object> value);
void TaggedToWord32OrBigInt(TNode<Context> context, TNode<Object> value,
Label* if_number, TVariable<Word32T>* var_word32,
Label* if_bigint,
TVariable<BigInt>* var_maybe_bigint);
void TaggedToWord32OrBigIntWithFeedback(TNode<Context> context,
TNode<Object> value, Label* if_number,
TVariable<Word32T>* var_word32,
Label* if_bigint,
TVariable<BigInt>* var_maybe_bigint,
TVariable<Smi>* var_feedback);
void TaggedPointerToWord32OrBigIntWithFeedback(
TNode<Context> context, TNode<HeapObject> pointer, Label* if_number,
TVariable<Word32T>* var_word32, Label* if_bigint,
TVariable<BigInt>* var_maybe_bigint, TVariable<Smi>* var_feedback);
TNode<Int32T> TruncateNumberToWord32(TNode<Number> value);
// Truncate the floating point value of a HeapNumber to an Int32.
TNode<Int32T> TruncateHeapNumberValueToWord32(TNode<HeapNumber> object);
// Conversions.
void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>* output,
Label* if_smi);
void TryFloat32ToSmi(TNode<Float32T> number, TVariable<Smi>* output,
Label* if_smi);
void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>* output,
Label* if_smi);
TNode<Number> ChangeFloat32ToTagged(TNode<Float32T> value);
TNode<Number> ChangeFloat64ToTagged(TNode<Float64T> value);
TNode<Number> ChangeInt32ToTagged(TNode<Int32T> value);
TNode<Number> ChangeInt32ToTaggedNoOverflow(TNode<Int32T> value);
TNode<Number> ChangeUint32ToTagged(TNode<Uint32T> value);
TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value);
TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
TNode<Float64T> ChangeNumberToFloat64(TNode<Number> value);
TNode<Int32T> ChangeTaggedNonSmiToInt32(TNode<Context> context,
TNode<HeapObject> input);
TNode<Float64T> ChangeTaggedToFloat64(TNode<Context> context,
TNode<Object> input);
TNode<Int32T> ChangeBoolToInt32(TNode<BoolT> b);
void TaggedToNumeric(TNode<Context> context, TNode<Object> value,
TVariable<Numeric>* var_numeric);
void TaggedToNumericWithFeedback(TNode<Context> context, TNode<Object> value,
TVariable<Numeric>* var_numeric,
TVariable<Smi>* var_feedback);
// Ensures that {var_shared_value} is shareable across Isolates, and throws if
// not.
void SharedValueBarrier(TNode<Context> context,
TVariable<Object>* var_shared_value);
TNode<WordT> TimesSystemPointerSize(TNode<WordT> value);
TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) {
return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) {
return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<WordT> TimesTaggedSize(TNode<WordT> value);
TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) {
return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) {
return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<WordT> TimesDoubleSize(TNode<WordT> value);
TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
}
TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
}
// Type conversions.
// Throws a TypeError for {method_name} if {value} is not coercible to Object,
// or returns the {value} converted to a String otherwise.
TNode<String> ToThisString(TNode<Context> context, TNode<Object></