| |
| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_ |
| #define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_ |
| |
| #include "src/codegen/mips64/assembler-mips64.h" |
| |
| #include "src/codegen/assembler.h" |
| #include "src/debug/debug.h" |
| #include "src/objects/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); } |
| |
| // ----------------------------------------------------------------------------- |
| // Operand and MemOperand. |
| |
| bool Operand::is_reg() const { return rm_.is_valid(); } |
| |
| int64_t Operand::immediate() const { |
| DCHECK(!is_reg()); |
| DCHECK(!IsHeapObjectRequest()); |
| return value_.immediate; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // RelocInfo. |
| |
| void RelocInfo::apply(intptr_t delta) { |
| if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { |
| // Absolute code pointer inside code object moves with the code object. |
| Assembler::RelocateInternalReference(rmode_, pc_, delta); |
| } |
| } |
| |
| Address RelocInfo::target_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| Address RelocInfo::target_address_address() { |
| DCHECK(HasTargetAddressAddress()); |
| // Read the address of the word containing the target_address in an |
| // instruction stream. |
| // The only architecture-independent user of this function is the serializer. |
| // The serializer uses it to find out how many raw bytes of instruction to |
| // output before the next target. |
| // For an instruction like LUI/ORI where the target bits are mixed into the |
| // instruction bits, the size of the target will be zero, indicating that the |
| // serializer should not step forward in memory after a target is resolved |
| // and written. In this case the target_address_address function should |
| // return the end of the instructions to be patched, allowing the |
| // deserializer to deserialize the instructions as raw bytes and put them in |
| // place, ready to be patched with the target. After jump optimization, |
| // that is the address of the instruction that follows J/JAL/JR/JALR |
| // instruction. |
| return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize; |
| } |
| |
| Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } |
| |
| int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } |
| |
| void Assembler::deserialization_set_special_target_at( |
| Address instruction_payload, Code code, Address target) { |
| set_target_address_at(instruction_payload, |
| !code.is_null() ? code.constant_pool() : kNullAddress, |
| target); |
| } |
| |
| int Assembler::deserialization_special_target_size( |
| Address instruction_payload) { |
| return kSpecialTargetSize; |
| } |
| |
| void Assembler::set_target_internal_reference_encoded_at(Address pc, |
| Address target) { |
| // Encoded internal references are j/jal instructions. |
| Instr instr = Assembler::instr_at(pc + 0 * kInstrSize); |
| |
| uint64_t imm28 = target & static_cast<uint64_t>(kImm28Mask); |
| |
| instr &= ~kImm26Mask; |
| uint64_t imm26 = imm28 >> 2; |
| DCHECK(is_uint26(imm26)); |
| |
| instr_at_put(pc, instr | (imm26 & kImm26Mask)); |
| // Currently used only by deserializer, and all code will be flushed |
| // after complete deserialization, no need to flush on each reference. |
| } |
| |
| void Assembler::deserialization_set_target_internal_reference_at( |
| Address pc, Address target, RelocInfo::Mode mode) { |
| if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { |
| DCHECK(IsJ(instr_at(pc))); |
| set_target_internal_reference_encoded_at(pc, target); |
| } else { |
| DCHECK(mode == RelocInfo::INTERNAL_REFERENCE); |
| Memory<Address>(pc) = target; |
| } |
| } |
| |
| HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) { |
| DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) || |
| IsDataEmbeddedObject(rmode_)); |
| if (IsDataEmbeddedObject(rmode_)) { |
| return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_))); |
| } |
| return HeapObject::cast( |
| Object(Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| |
| Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { |
| if (IsDataEmbeddedObject(rmode_)) { |
| return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_)); |
| } else { |
| DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_)); |
| return Handle<HeapObject>(reinterpret_cast<Address*>( |
| Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| } |
| |
| void RelocInfo::set_target_object(Heap* heap, HeapObject target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) || |
| IsDataEmbeddedObject(rmode_)); |
| if (IsDataEmbeddedObject(rmode_)) { |
| WriteUnalignedValue(pc_, target.ptr()); |
| // No need to flush icache since no instructions were changed. |
| } else { |
| Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(), |
| icache_flush_mode); |
| } |
| if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() && |
| !FLAG_disable_write_barriers) { |
| WriteBarrierForCode(host(), this, target); |
| } |
| } |
| |
| Address RelocInfo::target_external_reference() { |
| DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| void RelocInfo::set_target_external_reference( |
| Address target, ICacheFlushMode icache_flush_mode) { |
| DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); |
| Assembler::set_target_address_at(pc_, constant_pool_, target, |
| icache_flush_mode); |
| } |
| |
| Address RelocInfo::target_internal_reference() { |
| if (rmode_ == INTERNAL_REFERENCE) { |
| return Memory<Address>(pc_); |
| } else { |
| // Encoded internal references are j/jal instructions. |
| DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED); |
| Instr instr = Assembler::instr_at(pc_ + 0 * kInstrSize); |
| instr &= kImm26Mask; |
| uint64_t imm28 = instr << 2; |
| uint64_t segment = pc_ & ~static_cast<uint64_t>(kImm28Mask); |
| return static_cast<Address>(segment | imm28); |
| } |
| } |
| |
| Address RelocInfo::target_internal_reference_address() { |
| DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED); |
| return pc_; |
| } |
| |
| Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| return target_address(); |
| } |
| |
| void RelocInfo::set_target_runtime_entry(Address target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| if (target_address() != target) |
| set_target_address(target, write_barrier_mode, icache_flush_mode); |
| } |
| |
| Address RelocInfo::target_off_heap_target() { |
| DCHECK(IsOffHeapTarget(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| void RelocInfo::WipeOut() { |
| DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
| IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || |
| IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) || |
| IsOffHeapTarget(rmode_)); |
| if (IsInternalReference(rmode_)) { |
| Memory<Address>(pc_) = kNullAddress; |
| } else if (IsInternalReferenceEncoded(rmode_)) { |
| Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress); |
| } else { |
| Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Assembler. |
| |
| void Assembler::CheckBuffer() { |
| if (buffer_space() <= kGap) { |
| GrowBuffer(); |
| } |
| } |
| |
| void Assembler::CheckForEmitInForbiddenSlot() { |
| if (!is_buffer_growth_blocked()) { |
| CheckBuffer(); |
| } |
| if (IsPrevInstrCompactBranch()) { |
| // Nop instruction to precede a CTI in forbidden slot: |
| Instr nop = SPECIAL | SLL; |
| *reinterpret_cast<Instr*>(pc_) = nop; |
| pc_ += kInstrSize; |
| |
| ClearCompactBranchState(); |
| } |
| } |
| |
| void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) { |
| if (IsPrevInstrCompactBranch()) { |
| if (Instruction::IsForbiddenAfterBranchInstr(x)) { |
| // Nop instruction to precede a CTI in forbidden slot: |
| Instr nop = SPECIAL | SLL; |
| *reinterpret_cast<Instr*>(pc_) = nop; |
| pc_ += kInstrSize; |
| } |
| ClearCompactBranchState(); |
| } |
| *reinterpret_cast<Instr*>(pc_) = x; |
| pc_ += kInstrSize; |
| if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) { |
| EmittedCompactBranchInstruction(); |
| } |
| CheckTrampolinePoolQuick(); |
| } |
| |
| template <> |
| inline void Assembler::EmitHelper(uint8_t x); |
| |
| template <typename T> |
| void Assembler::EmitHelper(T x) { |
| *reinterpret_cast<T*>(pc_) = x; |
| pc_ += sizeof(x); |
| CheckTrampolinePoolQuick(); |
| } |
| |
| template <> |
| void Assembler::EmitHelper(uint8_t x) { |
| *reinterpret_cast<uint8_t*>(pc_) = x; |
| pc_ += sizeof(x); |
| if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) { |
| CheckTrampolinePoolQuick(); |
| } |
| } |
| |
| void Assembler::emit(Instr x, CompactBranchType is_compact_branch) { |
| if (!is_buffer_growth_blocked()) { |
| CheckBuffer(); |
| } |
| EmitHelper(x, is_compact_branch); |
| } |
| |
| void Assembler::emit(uint64_t data) { |
| CheckForEmitInForbiddenSlot(); |
| EmitHelper(data); |
| } |
| |
| EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_ |