blob: c0026d15295202578c4f026332930d5461fe8b87 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#include "src/codegen/mips64/assembler-mips64.h"
#if V8_TARGET_ARCH_MIPS64
#include "src/base/cpu.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/mips64/assembler-mips64-inl.h"
#include "src/codegen/safepoint-table.h"
#include "src/codegen/string-constants.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/objects/heap-number-inl.h"
namespace v8 {
namespace internal {
// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
// can be defined to enable FPU instructions when building the
// snapshot.
static unsigned CpuFeaturesImpliedByCompiler() {
unsigned answer = 0;
#ifdef CAN_USE_FPU_INSTRUCTIONS
answer |= 1u << FPU;
#endif // def CAN_USE_FPU_INSTRUCTIONS
// If the compiler is allowed to use FPU then we can use FPU too in our code
// generation even when generating snapshots. This won't work for cross
// compilation.
#if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
answer |= 1u << FPU;
#endif
return answer;
}
bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
void CpuFeatures::ProbeImpl(bool cross_compile) {
supported_ |= CpuFeaturesImpliedByCompiler();
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
// If the compiler is allowed to use fpu then we can use fpu too in our
// code generation.
#ifndef __mips__
// For the simulator build, use FPU.
supported_ |= 1u << FPU;
#if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA)
supported_ |= 1u << MIPS_SIMD;
#endif
#else
// Probe for additional features at runtime.
base::CPU cpu;
if (cpu.has_fpu()) supported_ |= 1u << FPU;
#if defined(_MIPS_MSA)
supported_ |= 1u << MIPS_SIMD;
#else
if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
#endif
#endif
// Set a static value on whether Simd is supported.
// This variable is only used for certain archs to query SupportWasmSimd128()
// at runtime in builtins using an extern ref. Other callers should use
// CpuFeatures::SupportWasmSimd128().
CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
}
void CpuFeatures::PrintTarget() {}
void CpuFeatures::PrintFeatures() {}
int ToNumber(Register reg) {
DCHECK(reg.is_valid());
const int kNumbers[] = {
0, // zero_reg
1, // at
2, // v0
3, // v1
4, // a0
5, // a1
6, // a2
7, // a3
8, // a4
9, // a5
10, // a6
11, // a7
12, // t0
13, // t1
14, // t2
15, // t3
16, // s0
17, // s1
18, // s2
19, // s3
20, // s4
21, // s5
22, // s6
23, // s7
24, // t8
25, // t9
26, // k0
27, // k1
28, // gp
29, // sp
30, // fp
31, // ra
};
return kNumbers[reg.code()];
}
Register ToRegister(int num) {
DCHECK(num >= 0 && num < kNumRegisters);
const Register kRegisters[] = {
zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3,
s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
return kRegisters[num];
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo.
const int RelocInfo::kApplyMask =
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on MIPS means that it is a lui/ori instruction, and that is
// always the case inside code objects.
return true;
}
bool RelocInfo::IsInConstantPool() { return false; }
uint32_t RelocInfo::wasm_call_tag() const {
DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
return static_cast<uint32_t>(
Assembler::target_address_at(pc_, constant_pool_));
}
// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand.
// See assembler-mips-inl.h for inlined constructors.
Operand::Operand(Handle<HeapObject> handle)
: rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
value_.immediate = static_cast<intptr_t>(handle.address());
}
Operand Operand::EmbeddedNumber(double value) {
int32_t smi;
if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
result.is_heap_object_request_ = true;
result.value_.heap_object_request = HeapObjectRequest(value);
return result;
}
Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
result.is_heap_object_request_ = true;
result.value_.heap_object_request = HeapObjectRequest(str);
return result;
}
MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
offset_ = offset;
}
MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
OffsetAddend offset_addend)
: Operand(rm) {
offset_ = unit * multiplier + offset_addend;
}
void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
for (auto& request : heap_object_requests_) {
Handle<HeapObject> object;
switch (request.kind()) {
case HeapObjectRequest::kHeapNumber:
object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
request.heap_number());
break;
case HeapObjectRequest::kStringConstant:
const StringConstantBase* str = request.string();
CHECK_NOT_NULL(str);
object = str->AllocateStringConstant(isolate);
break;
}
Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location()));
}
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) |
(sp.code() << kRtShift) |
(kPointerSize & kImm16Mask);
// daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) |
(sp.code() << kRtShift) |
(-kPointerSize & kImm16Mask);
// Sd(r, MemOperand(sp, 0))
const Instr kPushRegPattern = SD | (sp.code() << kRsShift) | (0 & kImm16Mask);
// Ld(r, MemOperand(sp, 0))
const Instr kPopRegPattern = LD | (sp.code() << kRsShift) | (0 & kImm16Mask);
const Instr kLwRegFpOffsetPattern =
LW | (fp.code() << kRsShift) | (0 & kImm16Mask);
const Instr kSwRegFpOffsetPattern =
SW | (fp.code() << kRsShift) | (0 & kImm16Mask);
const Instr kLwRegFpNegOffsetPattern =
LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
const Instr kSwRegFpNegOffsetPattern =
SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
// A mask for the Rt register for push, pop, lw, sw instructions.
const Instr kRtMask = kRtFieldMask;
const Instr kLwSwInstrTypeMask = 0xFFE00000;
const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
const Instr kLwSwOffsetMask = kImm16Mask;
Assembler::Assembler(const AssemblerOptions& options,
std::unique_ptr<AssemblerBuffer> buffer)
: AssemblerBase(options, std::move(buffer)),
scratch_register_list_({at, s0}) {
if (CpuFeatures::IsSupported(MIPS_SIMD)) {
EnableCpuFeature(MIPS_SIMD);
}
reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
last_trampoline_pool_end_ = 0;
no_trampoline_pool_before_ = 0;
trampoline_pool_blocked_nesting_ = 0;
// We leave space (16 * kTrampolineSlotsSize)
// for BlockTrampolinePoolScope buffer.
next_buffer_check_ = FLAG_force_long_branches
? kMaxInt
: kMaxBranchOffset - kTrampolineSlotsSize * 16;
internal_trampoline_exception_ = false;
last_bound_pos_ = 0;
trampoline_emitted_ = FLAG_force_long_branches;
unbound_labels_count_ = 0;
block_buffer_growth_ = false;
}
void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
SafepointTableBuilder* safepoint_table_builder,
int handler_table_offset) {
// As a crutch to avoid having to add manual Align calls wherever we use a
// raw workflow to create Code objects (mostly in tests), add another Align
// call here. It does no harm - the end of the Code object is aligned to the
// (larger) kCodeAlignment anyways.
// TODO(jgruber): Consider moving responsibility for proper alignment to
// metadata table builders (safepoint, handler, constant pool, code
// comments).
DataAlign(Code::kMetadataAlignment);
EmitForbiddenSlotInstruction();
int code_comments_size = WriteCodeComments();
DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
AllocateAndInstallRequestedHeapObjects(isolate);
// Set up code descriptor.
// TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
// this point to make CodeDesc initialization less fiddly.
static constexpr int kConstantPoolSize = 0;
const int instruction_size = pc_offset();
const int code_comments_offset = instruction_size - code_comments_size;
const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
? constant_pool_offset
: handler_table_offset;
const int safepoint_table_offset =
(safepoint_table_builder == kNoSafepointTable)
? handler_table_offset2
: safepoint_table_builder->safepoint_table_offset();
const int reloc_info_offset =
static_cast<int>(reloc_info_writer.pos() - buffer_->start());
CodeDesc::Initialize(desc, this, safepoint_table_offset,
handler_table_offset2, constant_pool_offset,
code_comments_offset, reloc_info_offset);
}
void Assembler::Align(int m) {
DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
EmitForbiddenSlotInstruction();
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CodeTargetAlign() {
// No advantage to aligning branch/call targets to more than
// single instruction, that I am aware of.
Align(4);
}
Register Assembler::GetRtReg(Instr instr) {
return Register::from_code((instr & kRtFieldMask) >> kRtShift);
}
Register Assembler::GetRsReg(Instr instr) {
return Register::from_code((instr & kRsFieldMask) >> kRsShift);
}
Register Assembler::GetRdReg(Instr instr) {
return Register::from_code((instr & kRdFieldMask) >> kRdShift);
}
uint32_t Assembler::GetRt(Instr instr) {
return (instr & kRtFieldMask) >> kRtShift;
}
uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
uint32_t Assembler::GetRs(Instr instr) {
return (instr & kRsFieldMask) >> kRsShift;
}
uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
uint32_t Assembler::GetRd(Instr instr) {
return (instr & kRdFieldMask) >> kRdShift;
}
uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
uint32_t Assembler::GetSa(Instr instr) {
return (instr & kSaFieldMask) >> kSaShift;
}
uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
uint32_t Assembler::GetFunction(Instr instr) {
return (instr & kFunctionFieldMask) >> kFunctionShift;
}
uint32_t Assembler::GetFunctionField(Instr instr) {
return instr & kFunctionFieldMask;
}
uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
bool Assembler::IsPop(Instr instr) {
return (instr & ~kRtMask) == kPopRegPattern;
}
bool Assembler::IsPush(Instr instr) {
return (instr & ~kRtMask) == kPushRegPattern;
}
bool Assembler::IsSwRegFpOffset(Instr instr) {
return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
}
bool Assembler::IsLwRegFpOffset(Instr instr) {
return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
}
bool Assembler::IsSwRegFpNegOffset(Instr instr) {
return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
kSwRegFpNegOffsetPattern);
}
bool Assembler::IsLwRegFpNegOffset(Instr instr) {
return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
kLwRegFpNegOffsetPattern);
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.
// The link chain is terminated by a value in the instruction of -1,
// which is an otherwise illegal value (branch -1 is inf loop).
// The instruction 16-bit offset field addresses 32-bit words, but in
// code is conv to an 18-bit value addressing bytes, hence the -4 value.
const int kEndOfChain = -4;
// Determines the end of the Jump chain (a subset of the label link chain).
const int kEndOfJumpChain = 0;
bool Assembler::IsMsaBranch(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs_field = GetRsField(instr);
if (opcode == COP1) {
switch (rs_field) {
case BZ_V:
case BZ_B:
case BZ_H:
case BZ_W:
case BZ_D:
case BNZ_V:
case BNZ_B:
case BNZ_H:
case BNZ_W:
case BNZ_D:
return true;
default:
return false;
}
} else {
return false;
}
}
bool Assembler::IsBranch(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rs_field = GetRsField(instr);
// Checks if the instruction is a branch.
bool isBranch =
opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
(opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
rt_field == BLTZAL || rt_field == BGEZAL)) ||
(opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
(opcode == COP1 && rs_field == BC1EQZ) ||
(opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
if (!isBranch && kArchVariant == kMips64r6) {
// All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
// POP30 (BNVC, BNEC, BNEZALC) are branch ops.
isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
opcode == BALC ||
(opcode == POP66 && rs_field != 0) || // BEQZC
(opcode == POP76 && rs_field != 0); // BNEZC
}
return isBranch;
}
bool Assembler::IsBc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a BC or BALC.
return opcode == BC || opcode == BALC;
}
bool Assembler::IsNal(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rs_field = GetRsField(instr);
return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
}
bool Assembler::IsBzc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is BEQZC or BNEZC.
return (opcode == POP66 && GetRsField(instr) != 0) ||
(opcode == POP76 && GetRsField(instr) != 0);
}
bool Assembler::IsEmittedConstant(Instr instr) {
uint32_t label_constant = GetLabelConst(instr);
return label_constant == 0; // Emitted label const in reg-exp engine.
}
bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
bool Assembler::IsBeqzc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
return opcode == POP66 && GetRsField(instr) != 0;
}
bool Assembler::IsBnezc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
return opcode == POP76 && GetRsField(instr) != 0;
}
bool Assembler::IsBeqc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
uint32_t rt = GetRtField(instr);
return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
}
bool Assembler::IsBnec(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
uint32_t rt = GetRtField(instr);
return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
}
bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rd_field = GetRd(instr);
uint32_t rs_field = GetRs(instr);
uint32_t rt_field = GetRt(instr);
uint32_t rd_reg = static_cast<uint32_t>(rd.code());
uint32_t rs_reg = static_cast<uint32_t>(rs.code());
uint32_t function_field = GetFunctionField(instr);
// Checks if the instruction is a OR with zero_reg argument (aka MOV).
bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
rs_field == rs_reg && rt_field == 0;
return res;
}
bool Assembler::IsJump(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rd_field = GetRdField(instr);
uint32_t function_field = GetFunctionField(instr);
// Checks if the instruction is a jump.
return opcode == J || opcode == JAL ||
(opcode == SPECIAL && rt_field == 0 &&
((function_field == JALR) ||
(rd_field == 0 && (function_field == JR))));
}
bool Assembler::IsJ(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a jump.
return opcode == J;
}
bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
bool Assembler::IsJr(Instr instr) {
return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
}
bool Assembler::IsJalr(Instr instr) {
return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
}
bool Assembler::IsLui(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a load upper immediate.
return opcode == LUI;
}
bool Assembler::IsOri(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a load upper immediate.
return opcode == ORI;
}
bool Assembler::IsNop(Instr instr, unsigned int type) {
// See Assembler::nop(type).
DCHECK_LT(type, 32);
uint32_t opcode = GetOpcodeField(instr);
uint32_t function = GetFunctionField(instr);
uint32_t rt = GetRt(instr);
uint32_t rd = GetRd(instr);
uint32_t sa = GetSa(instr);
// Traditional mips nop == sll(zero_reg, zero_reg, 0)
// When marking non-zero type, use sll(zero_reg, at, type)
// to avoid use of mips ssnop and ehb special encodings
// of the sll instruction.
Register nop_rt_reg = (type == 0) ? zero_reg : at;
bool ret = (opcode == SPECIAL && function == SLL &&
rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
return ret;
}
int32_t Assembler::GetBranchOffset(Instr instr) {
DCHECK(IsBranch(instr));
return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
}
bool Assembler::IsLw(Instr instr) {
return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
}
int16_t Assembler::GetLwOffset(Instr instr) {
DCHECK(IsLw(instr));
return ((instr & kImm16Mask));
}
Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
DCHECK(IsLw(instr));
// We actually create a new lw instruction based on the original one.
Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
(offset & kImm16Mask);
return temp_instr;
}
bool Assembler::IsSw(Instr instr) {
return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
}
Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
DCHECK(IsSw(instr));
return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}
bool Assembler::IsAddImmediate(Instr instr) {
return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
}
Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
DCHECK(IsAddImmediate(instr));
return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}
bool Assembler::IsAndImmediate(Instr instr) {
return GetOpcodeField(instr) == ANDI;
}
static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
if (kArchVariant == kMips64r6) {
if (Assembler::IsBc(instr)) {
return Assembler::OffsetSize::kOffset26;
} else if (Assembler::IsBzc(instr)) {
return Assembler::OffsetSize::kOffset21;
}
}
return Assembler::OffsetSize::kOffset16;
}
static inline int32_t AddBranchOffset(int pos, Instr instr) {
int bits = OffsetSizeInBits(instr);
const int32_t mask = (1 << bits) - 1;
bits = 32 - bits;
// Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
// the compiler uses arithmetic shifts for signed integers.
int32_t imm = ((instr & mask) << bits) >> (bits - 2);
if (imm == kEndOfChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
return pos + Assembler::kBranchPCOffset + imm;
}
}
int Assembler::target_at(int pos, bool is_internal) {
if (is_internal) {
int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos);
int64_t address = *p;
if (address == kEndOfJumpChain) {
return kEndOfChain;
} else {
int64_t instr_address = reinterpret_cast<int64_t>(p);
DCHECK(instr_address - address < INT_MAX);
int delta = static_cast<int>(instr_address - address);
DCHECK(pos > delta);
return pos - delta;
}
}
Instr instr = instr_at(pos);
if ((instr & ~kImm16Mask) == 0) {
// Emitted label constant, not part of a branch.
if (instr == 0) {
return kEndOfChain;
} else {
int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
return (imm18 + pos);
}
}
// Check we have a branch or jump instruction.
DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) ||
IsMov(instr, t8, ra));
// Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
// the compiler uses arithmetic shifts for signed integers.
if (IsBranch(instr)) {
return AddBranchOffset(pos, instr);
} else if (IsMov(instr, t8, ra)) {
int32_t imm32;
Instr instr_lui = instr_at(pos + 2 * kInstrSize);
Instr instr_ori = instr_at(pos + 3 * kInstrSize);
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
if (imm32 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
}
return pos + Assembler::kLongBranchPCOffset + imm32;
} else if (IsLui(instr)) {
if (IsNal(instr_at(pos + kInstrSize))) {
int32_t imm32;
Instr instr_lui = instr_at(pos + 0 * kInstrSize);
Instr instr_ori = instr_at(pos + 2 * kInstrSize);
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
if (imm32 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
}
return pos + Assembler::kLongBranchPCOffset + imm32;
} else {
Instr instr_lui = instr_at(pos + 0 * kInstrSize);
Instr instr_ori = instr_at(pos + 1 * kInstrSize);
Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
DCHECK(IsOri(instr_ori));
DCHECK(IsOri(instr_ori2));
// TODO(plind) create named constants for shift values.
int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
// Sign extend address;
imm >>= 16;
if (imm == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos);
DCHECK(instr_address - imm < INT_MAX);
int delta = static_cast<int>(instr_address - imm);
DCHECK(pos > delta);
return pos - delta;
}
}
} else {
DCHECK(IsJ(instr) || IsJal(instr));
int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
if (imm28 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
// Sign extend 28-bit offset.
int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
return pos + delta;
}
}
}
static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
Instr instr) {
int32_t bits = OffsetSizeInBits(instr);
int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
DCHECK_EQ(imm & 3, 0);
imm >>= 2;
const int32_t mask = (1 << bits) - 1;
instr &= ~mask;
DCHECK(is_intn(imm, bits));
return instr | (imm & mask);
}
void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
if (is_internal) {
uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
*reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm;
return;
}
Instr instr = instr_at(pos);
if ((instr & ~kImm16Mask) == 0) {
DCHECK(target_pos == kEndOfChain || target_pos >= 0);
// Emitted label constant, not part of a branch.
// Make label relative to Code pointer of generated Code object.
instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
return;
}
if (IsBranch(instr)) {
instr = SetBranchOffset(pos, target_pos, instr);
instr_at_put(pos, instr);
} else if (IsLui(instr)) {
if (IsNal(instr_at(pos + kInstrSize))) {
Instr instr_lui = instr_at(pos + 0 * kInstrSize);
Instr instr_ori = instr_at(pos + 2 * kInstrSize);
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
DCHECK_EQ(imm & 3, 0);
if (is_int16(imm + Assembler::kLongBranchPCOffset -
Assembler::kBranchPCOffset)) {
// Optimize by converting to regular branch and link with 16-bit
// offset.
Instr instr_b = REGIMM | BGEZAL; // Branch and link.
instr_b = SetBranchOffset(pos, target_pos, instr_b);
// Correct ra register to point to one instruction after jalr from
// TurboAssembler::BranchAndLinkLong.
Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
kOptimizedBranchAndLinkLongReturnOffset;
instr_at_put(pos, instr_b);
instr_at_put(pos + 1 * kInstrSize, instr_a);
} else {
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
instr_at_put(pos + 0 * kInstrSize,
instr_lui | ((imm >> kLuiShift) & kImm16Mask));
instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask));
}
} else {
Instr instr_lui = instr_at(pos + 0 * kInstrSize);
Instr instr_ori = instr_at(pos + 1 * kInstrSize);
Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
DCHECK(IsOri(instr_ori));
DCHECK(IsOri(instr_ori2));
uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
DCHECK_EQ(imm & 3, 0);
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
instr_ori2 &= ~kImm16Mask;
instr_at_put(pos + 0 * kInstrSize,
instr_lui | ((imm >> 32) & kImm16Mask));
instr_at_put(pos + 1 * kInstrSize,
instr_ori | ((imm >> 16) & kImm16Mask));
instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
}
} else if (IsMov(instr, t8, ra)) {
Instr instr_lui = instr_at(pos + 2 * kInstrSize);
Instr instr_ori = instr_at(pos + 3 * kInstrSize);
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
if (is_int16(imm_short)) {
// Optimize by converting to regular branch with 16-bit
// offset
Instr instr_b = BEQ;
instr_b = SetBranchOffset(pos, target_pos, instr_b);
Instr instr_j = instr_at(pos + 5 * kInstrSize);
Instr instr_branch_delay;
if (IsJump(instr_j)) {
// Case when branch delay slot is protected.
instr_branch_delay = nopInstr;
} else {
// Case when branch delay slot is used.
instr_branch_delay = instr_at(pos + 7 * kInstrSize);
}
instr_at_put(pos, instr_b);
instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
} else {
int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
DCHECK_EQ(imm & 3, 0);
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
instr_at_put(pos + 2 * kInstrSize,
instr_lui | ((imm >> kLuiShift) & kImm16Mask));
instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask));
}
} else if (IsJ(instr) || IsJal(instr)) {
int32_t imm28 = target_pos - pos;
DCHECK_EQ(imm28 & 3, 0);
uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
DCHECK(is_uint26(imm26));
// Place 26-bit signed offset with markings.
// When code is committed it will be resolved to j/jal.
int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
instr_at_put(pos, mark | (imm26 & kImm26Mask));
} else {
int32_t imm28 = target_pos - pos;
DCHECK_EQ(imm28 & 3, 0);
uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
DCHECK(is_uint26(imm26));
// Place raw 26-bit signed offset.
// When code is committed it will be resolved to j/jal.
instr &= ~kImm26Mask;
instr_at_put(pos, instr | (imm26 & kImm26Mask));
}
}
void Assembler::print(const Label* L) {
if (L->is_unused()) {
PrintF("unused label\n");
} else if (L->is_bound()) {
PrintF("bound label to %d\n", L->pos());
} else if (L->is_linked()) {
Label l;
l.link_to(L->pos());
PrintF("unbound label");
while (l.is_linked()) {
PrintF("@ %d ", l.pos());
Instr instr = instr_at(l.pos());
if ((instr & ~kImm16Mask) == 0) {
PrintF("value\n");
} else {
PrintF("%d\n", instr);
}
next(&l, is_internal_reference(&l));
}
} else {
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
}
}
void Assembler::bind_to(Label* L, int pos) {
DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
int trampoline_pos = kInvalidSlotPos;
bool is_internal = false;
if (L->is_linked() && !trampoline_emitted_) {
unbound_labels_count_--;
if (!is_internal_reference(L)) {
next_buffer_check_ += kTrampolineSlotsSize;
}
}
while (L->is_linked()) {
int fixup_pos = L->pos();
int dist = pos - fixup_pos;
is_internal = is_internal_reference(L);
next(L, is_internal); // Call next before overwriting link with target at
// fixup_pos.
Instr instr = instr_at(fixup_pos);
if (is_internal) {
target_at_put(fixup_pos, pos, is_internal);
} else {
if (IsBranch(instr)) {
int branch_offset = BranchOffset(instr);
if (dist > branch_offset) {
if (trampoline_pos == kInvalidSlotPos) {
trampoline_pos = get_trampoline_entry(fixup_pos);
CHECK_NE(trampoline_pos, kInvalidSlotPos);
}
CHECK((trampoline_pos - fixup_pos) <= branch_offset);
target_at_put(fixup_pos, trampoline_pos, false);
fixup_pos = trampoline_pos;
}
target_at_put(fixup_pos, pos, false);
} else {
DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
IsEmittedConstant(instr) || IsMov(instr, t8, ra));
target_at_put(fixup_pos, pos, false);
}
}
}
L->bind_to(pos);
// Keep track of the last bound label so we don't eliminate any instructions
// before a bound label.
if (pos > last_bound_pos_) last_bound_pos_ = pos;
}
void Assembler::bind(Label* L) {
DCHECK(!L->is_bound()); // Label can only be bound once.
bind_to(L, pc_offset());
}
void Assembler::next(Label* L, bool is_internal) {
DCHECK(L->is_linked());
int link = target_at(L->pos(), is_internal);
if (link == kEndOfChain) {
L->Unuse();
} else {
DCHECK_GE(link, 0);
L->link_to(link);
}
}
bool Assembler::is_near(Label* L) {
DCHECK(L->is_bound());
return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
}
bool Assembler::is_near(Label* L, OffsetSize bits) {
if (L == nullptr || !L->is_bound()) return true;
return ((pc_offset() - L->pos()) <
(1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
}
bool Assembler::is_near_branch(Label* L) {
DCHECK(L->is_bound());
return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
}
int Assembler::BranchOffset(Instr instr) {
// At pre-R6 and for other R6 branches the offset is 16 bits.
int bits = OffsetSize::kOffset16;
if (kArchVariant == kMips64r6) {
uint32_t opcode = GetOpcodeField(instr);
switch (opcode) {
// Checks BC or BALC.
case BC:
case BALC:
bits = OffsetSize::kOffset26;
break;
// Checks BEQZC or BNEZC.
case POP66:
case POP76:
if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
break;
default:
break;
}
}
return (1 << (bits + 2 - 1)) - 1;
}
// We have to use a temporary register for things that can be relocated even
// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
// space. There is no guarantee that the relocated location can be similarly
// encoded.
bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
return !RelocInfo::IsNoInfo(rmode);
}
void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
Register rd, uint16_t sa,
SecondaryField func) {
DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (sa << kSaShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
uint16_t msb, uint16_t lsb,
SecondaryField func) {
DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(msb << kRdShift) | (lsb << kSaShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
FPURegister ft, FPURegister fs, FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
Instr instr = opcode | fmt | (ft.code() << kFtShift) |
(fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
FPURegister fs, FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
(fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
FPURegister fs, FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
Instr instr = opcode | fmt | (rt.code() << kRtShift) |
(fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
FPUControlRegister fs, SecondaryField func) {
DCHECK(fs.is_valid() && rt.is_valid());
Instr instr =
opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
emit(instr);
}
// Instructions with immediate value.
// Registers are in the order of the instruction encoding, from left to right.
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
int32_t offset9, int bit6,
SecondaryField func) {
DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
is_uint1(bit6));
Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
func;
emit(instr);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
(j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && (is_int21(offset21)));
Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
uint32_t offset21) {
DCHECK(rs.is_valid() && (is_uint21(offset21)));
Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
emit(instr);
}
void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
CompactBranchType is_compact_branch) {
DCHECK(is_int26(offset26));
Instr instr = opcode | (offset26 & kImm26Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(is_uint26(address));
Instr instr = opcode | address;
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// MSA instructions
void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
int32_t imm5, MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
(operation == CEQI) || (operation == CLTI_S) ||
(operation == CLEI_S)
? is_int5(imm5)
: is_uint5(imm5));
Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
uint32_t m, MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
Instr instr = MSA | operation | df | (m << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
int32_t imm10, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(wd.is_valid() && is_int10(imm10));
Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
(wd.code() << kWdShift);
emit(instr);
}
template <typename RegType>
void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
RegType t, MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
Instr instr = MSA | operation | df | (t.code() << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
template <typename DstType, typename SrcType>
void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
uint32_t n, SrcType src, DstType dst) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
Instr instr = MSA | operation | df | (n << kWtShift) |
(src.code() << kWsShift) | (dst.code() << kWdShift) |
MSA_ELM_MINOR;
emit(instr);
}
void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
MSARegister wt, MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
DCHECK_LT(df, 2);
Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
Instr instr = MSA | operation | (wt.code() << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift) |
MSA_VEC_2R_2RF_MINOR;
emit(instr);
}
void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
Register rs, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
(rs.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
(wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
emit(instr);
}
void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
MSARegister ws, MSARegister wd) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
(ws.code() << kWsShift) | (wd.code() << kWdShift) |
MSA_VEC_2R_2RF_MINOR;
emit(instr);
}
void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
int32_t offset16) {
DCHECK(IsEnabled(MIPS_SIMD));
DCHECK(wt.is_valid() && is_int16(offset16));
BlockTrampolinePoolScope block_trampoline_pool(this);
Instr instr =
COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry(int32_t pos) {
int32_t trampoline_entry = kInvalidSlotPos;
if (!internal_trampoline_exception_) {
if (trampoline_.start() > pos) {
trampoline_entry = trampoline_.take_slot();
}
if (kInvalidSlotPos == trampoline_entry) {
internal_trampoline_exception_ = true;
}
}
return trampoline_entry;
}
uint64_t Assembler::jump_address(Label* L) {
int64_t target_pos;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset());
} else {
L->link_to(pc_offset());
return kEndOfJumpChain;
}
}
uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
DCHECK_EQ(imm & 3, 0);
return imm;
}
uint64_t Assembler::jump_offset(Label* L) {
int64_t target_pos;
int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset() + pad);
} else {
L->link_to(pc_offset() + pad);
return kEndOfJumpChain;
}
}
int64_t imm = target_pos - (pc_offset() + pad);
DCHECK_EQ(imm & 3, 0);
return static_cast<uint64_t>(imm);
}
uint64_t Assembler::branch_long_offset(Label* L) {
int64_t target_pos;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset());
} else {
L->link_to(pc_offset());
return kEndOfJumpChain;
}
}
int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
DCHECK_EQ(offset & 3, 0);
return static_cast<uint64_t>(offset);
}
int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
int32_t target_pos;
int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos();
L->link_to(pc_offset() + pad);
} else {
L->link_to(pc_offset() + pad);
if (!trampoline_emitted_) {
unbound_labels_count_++;
next_buffer_check_ -= kTrampolineSlotsSize;
}
return kEndOfChain;
}
}
int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
DCHECK(is_intn(offset, bits + 2));
DCHECK_EQ(offset & 3, 0);
return offset;
}
void Assembler::label_at_put(Label* L, int at_offset) {
int target_pos;
if (L->is_bound()) {
target_pos = L->pos();
instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
int32_t imm18 = target_pos - at_offset;
DCHECK_EQ(imm18 & 3, 0);
int32_t imm16 = imm18 >> 2;
DCHECK(is_int16(imm16));
instr_at_put(at_offset, (imm16 & kImm16Mask));
} else {
target_pos = kEndOfChain;
instr_at_put(at_offset, 0);
if (!trampoline_emitted_) {
unbound_labels_count_++;
next_buffer_check_ -= kTrampolineSlotsSize;
}
}
L->link_to(at_offset);
}
}
//------- Branch and jump instructions --------
void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
void Assembler::bc(int32_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::balc(int32_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beq(Register rs, Register rt, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BEQ, rs, rt, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgez(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZ, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgezc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgec(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezal(Register rs, int16_t offset) {
DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
DCHECK(rs != ra);
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgtz(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BGTZ, rs, zero_reg, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgtzc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
GenInstrImmediate(BGTZL, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::blez(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BLEZ, rs, zero_reg, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::blezc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
GenInstrImmediate(BLEZL, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltzc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltc(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltz(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BLTZ, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bltzal(Register rs, int16_t offset) {
DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
DCHECK(rs != ra);
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bne(Register rs, Register rt, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BNE, rs, rt, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bovc(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
if (rs.code() >= rt.code()) {
GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
if (rs.code() >= rt.code()) {
GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::blezalc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BLEZ, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezalc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezall(Register rs, int16_t offset) {
DCHECK_NE(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
DCHECK(rs != ra);
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bltzalc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgtzalc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BGTZ, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beqzalc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(ADDI, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnezalc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(DADDI, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beqc(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
if (rs.code() < rt.code()) {
GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::beqzc(Register rs, int32_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnec(Register rs, Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
if (rs.code() < rt.code()) {
GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::bnezc(Register rs, int32_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs != zero_reg);
GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::j(int64_t target) {
// Deprecated. Use PC-relative jumps instead.
UNREACHABLE();
}
void Assembler::j(Label* target) {
// Deprecated. Use PC-relative jumps instead.
UNREACHABLE();
}
void Assembler::jal(Label* target) {
// Deprecated. Use PC-relative jumps instead.
UNREACHABLE();
}
void Assembler::jal(int64_t target) {
// Deprecated. Use PC-relative jumps instead.
UNREACHABLE();
}
void Assembler::jr(Register rs) {
if (kArchVariant != kMips64r6) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
BlockTrampolinePoolFor(1); // For associated delay slot.
} else {
jalr(rs, zero_reg);
}
}
void Assembler::jalr(Register rs, Register rd) {
DCHECK(rs.code() != rd.code());
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::jic(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrImmediate(POP66, zero_reg, rt, offset);
}
void Assembler::jialc(Register rt, int16_t offset) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrImmediate(POP76, zero_reg, rt, offset);
}
// -------Data-processing-instructions---------
// Arithmetic.
void Assembler::addu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
}
void Assembler::addiu(Register rd, Register rs, int32_t j) {
GenInstrImmediate(ADDIU, rs, rd, j);
}
void Assembler::subu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
}
void Assembler::mul(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
} else {
GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
}
}
void Assembler::muh(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
}
void Assembler::mulu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
}
void Assembler::muhu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
}
void Assembler::dmul(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
}
void Assembler::dmuh(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
}
void Assembler::dmulu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
}
void Assembler::dmuhu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
}
void Assembler::mult(Register rs, Register rt) {
DCHECK_NE(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
}
void Assembler::multu(Register rs, Register rt) {
DCHECK_NE(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
}
void Assembler::daddiu(Register rd, Register rs, int32_t j) {
GenInstrImmediate(DADDIU, rs, rd, j);
}
void Assembler::div(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
}
void Assembler::div(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
}
void Assembler::mod(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
}
void Assembler::divu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
}
void Assembler::divu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
}
void Assembler::modu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
}
void Assembler::daddu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
}
void Assembler::dsubu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
}
void Assembler::dmult(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
}
void Assembler::dmultu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
}
void Assembler::ddiv(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
}
void Assembler::ddiv(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
}
void Assembler::dmod(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
}
void Assembler::ddivu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
}
void Assembler::ddivu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
}
void Assembler::dmodu(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
}
// Logical.
void Assembler::and_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
}
void Assembler::andi(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(ANDI, rs, rt, j);
}
void Assembler::or_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
}
void Assembler::ori(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(ORI, rs, rt, j);
}
void Assembler::xor_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
}
void Assembler::xori(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(XORI, rs, rt, j);
}
void Assembler::nor(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
}
// Shifts.
void Assembler::sll(Register rd, Register rt, uint16_t sa,
bool coming_from_nop) {
// Don't allow nop instructions in the form sll zero_reg, zero_reg to be
// generated using the sll instruction. They must be generated using
// nop(int/NopMarkerTypes).
DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg));
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
}
void Assembler::sllv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
}
void Assembler::srl(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
}
void Assembler::srlv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
}
void Assembler::sra(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
}
void Assembler::srav(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
}
void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
// Should be called via MacroAssembler::Ror.
DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (sa << kSaShift) | SRL;
emit(instr);
}
void Assembler::rotrv(Register rd, Register rt, Register rs) {
// Should be called via MacroAssembler::Ror.
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
emit(instr);
}
void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
}
void Assembler::dsllv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
}
void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
}
void Assembler::dsrlv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
}
void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
emit(instr);
}
void Assembler::drotr32(Register rd, Register rt, uint16_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (sa << kSaShift) | DSRL32;
emit(instr);
}
void Assembler::drotrv(Register rd, Register rt, Register rs) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
emit(instr);
}
void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
}
void Assembler::dsrav(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
}
void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
}
void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
}
void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
}
void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK_LE(sa, 3);
DCHECK_EQ(kArchVariant, kMips64r6);
Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
rd.code() << kRdShift | sa << kSaShift | LSA;
emit(instr);
}
void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK_LE(sa, 3);
DCHECK_EQ(kArchVariant, kMips64r6);
Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
rd.code() << kRdShift | sa << kSaShift | DLSA;
emit(instr);
}
// ------------Memory-instructions-------------
void Assembler::AdjustBaseAndOffset(MemOperand* src,
OffsetAccessType access_type,
int second_access_add_to_offset) {
// This method is used to adjust the base register and offset pair
// for a load/store when the offset doesn't fit into int16_t.
// It is assumed that 'base + offset' is sufficiently aligned for memory
// operands that are machine word in size or smaller. For doubleword-sized
// operands it's assumed that 'base' is a multiple of 8, while 'offset'
// may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
// and spilled variables on the stack accessed relative to the stack
// pointer register).
// We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7.
// is_int16 must be passed a signed value, hence the static cast below.
if (is_int16(src->offset()) &&
(!two_accesses || is_int16(static_cast<int32_t>(
src->offset() + second_access_add_to_offset)))) {
// Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
// value) fits into int16_t.
return;
}
DCHECK(src->rm() !=
at); // Must not overwrite the register 'base' while loading 'offset'.
#ifdef DEBUG
// Remember the "(mis)alignment" of 'offset', it will be checked at the end.
uint32_t misalignment = src->offset() & (kDoubleSize - 1);
#endif
// Do not load the whole 32-bit 'offset' if it can be represented as
// a sum of two 16-bit signed offsets. This can save an instruction or two.
// To simplify matters, only do this for a symmetric range of offsets from
// about -64KB to about +64KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForSimpleAdjustment =
0x7FF8; // Max int16_t that's a multiple of 8.
constexpr int32_t kMaxOffsetForSimpleAdjustment =
2 * kMinOffsetForSimpleAdjustment;
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
src->offset_ -= kMinOffsetForSimpleAdjustment;
} else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
src->offset() < 0) {
daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
src->offset_ += kMinOffsetForSimpleAdjustment;
} else if (kArchVariant == kMips64r6) {
// On r6 take advantage of the daui instruction, e.g.:
// daui at, base, offset_high
// [dahi at, 1] // When `offset` is close to +2GB.
// lw reg_lo, offset_low(at)
// [lw reg_hi, (offset_low+4)(at)] // If misaligned 64-bit load.
// or when offset_low+4 overflows int16_t:
// daui at, base, offset_high
// daddiu at, at, 8
// lw reg_lo, (offset_low-8)(at)
// lw reg_hi, (offset_low-4)(at)
int16_t offset_low = static_cast<uint16_t>(src->offset());
int32_t offset_low32 = offset_low;
int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
bool increment_hi16 = offset_low < 0;
bool overflow_hi16 = false;
if (increment_hi16) {
offset_high++;
overflow_hi16 = (offset_high == -32768);
}
daui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
if (overflow_hi16) {
dahi(scratch, 1);
}
if (two_accesses && !is_int16(static_cast<int32_t>(
offset_low32 + second_access_add_to_offset))) {
// Avoid overflow in the 16-bit offset of the load/store instruction when
// adding 4.
daddiu(scratch, scratch, kDoubleSize);
offset_low32 -= kDoubleSize;
}
src->offset_ = offset_low32;
} else {
// Do not load the whole 32-bit 'offset' if it can be represented as
// a sum of three 16-bit signed offsets. This can save an instruction.
// To simplify matters, only do this for a symmetric range of offsets from
// about -96KB to about +96KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForMediumAdjustment =
2 * kMinOffsetForSimpleAdjustment;
constexpr int32_t kMaxOffsetForMediumAdjustment =
3 * kMinOffsetForSimpleAdjustment;
if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
src->offset_ -= kMinOffsetForMediumAdjustment;
} else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
src->offset() < 0) {
daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
src->offset_ += kMinOffsetForMediumAdjustment;
} else {
// Now that all shorter options have been exhausted, load the full 32-bit
// offset.
int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset.
daddu(scratch, scratch, src->rm());
src->offset_ -= loaded_offset;
}
}
src->rm_ = scratch;
DCHECK(is_int16(src->offset()));
if (two_accesses) {
DCHECK(is_int16(
static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
}
DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
}
void Assembler::lb(Register rd, const MemOperand& rs) {
GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
}
void Assembler::lbu(Register rd, const MemOperand& rs) {
GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
}
void Assembler::lh(Register rd, const MemOperand& rs) {
GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
}
void Assembler::lhu(Register rd, const MemOperand& rs) {
GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
}
void Assembler::lw(Register rd, const MemOperand& rs) {
GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
}
void Assembler::lwu(Register rd, const MemOperand& rs) {
GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
}
void Assembler::lwl(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
}
void Assembler::lwr(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
}
void Assembler::sb(Register rd, const MemOperand& rs) {
GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
}
void Assembler::sh(Register rd, const MemOperand& rs) {
GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
}
void Assembler::sw(Register rd, const MemOperand& rs) {
GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
}
void Assembler::swl(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
}
void Assembler::swr(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
}
void Assembler::ll(Register rd, const MemOperand& rs) {
if (kArchVariant == kMips64r6) {
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
DCHECK(is_int16(rs.offset_));
GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
}
}
void Assembler::lld(Register rd, const MemOperand& rs) {
if (kArchVariant == kMips64r6) {
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
DCHECK(is_int16(rs.offset_));
GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_);
}
}
void Assembler::sc(Register rd, const MemOperand& rs) {
if (kArchVariant == kMips64r6) {
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
}
}
void Assembler::scd(Register rd, const MemOperand& rs) {
if (kArchVariant == kMips64r6) {
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6);
} else {
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_);
}
}
void Assembler::lui(Register rd, int32_t j) {
DCHECK(is_uint16(j) || is_int16(j));
GenInstrImmediate(LUI, zero_reg, rd, j);
}
void Assembler::aui(Register rt, Register rs, int32_t j) {
// This instruction uses same opcode as 'lui'. The difference in encoding is
// 'lui' has zero reg. for rs field.
DCHECK(is_uint16(j));
GenInstrImmediate(LUI, rs, rt, j);
}
void Assembler::daui(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
DCHECK(rs != zero_reg);
GenInstrImmediate(DAUI, rs, rt, j);
}
void Assembler::dahi(Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(REGIMM, rs, DAHI, j);
}
void Assembler::dati(Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(REGIMM, rs, DATI, j);
}
void Assembler::ldl(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
}
void Assembler::ldr(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
}
void Assembler::sdl(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
}
void Assembler::sdr(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK_EQ(kArchVariant, kMips64r2);
GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
}
void Assembler::ld(Register rd, const MemOperand& rs) {
GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
}
void Assembler::sd(Register rd, const MemOperand& rs) {
GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
}
// ---------PC-Relative instructions-----------
void Assembler::addiupc(Register rs, int32_t imm19) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.is_valid() && is_int19(imm19));
uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::lwpc(Register rs, int32_t offset19) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.is_valid() && is_int19(offset19));
uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::lwupc(Register rs, int32_t offset19) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.is_valid() && is_int19(offset19));
uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::ldpc(Register rs, int32_t offset18) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.is_valid() && is_int18(offset18));
uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::auipc(Register rs, int16_t imm16) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.is_valid());
uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::aluipc(Register rs, int16_t imm16) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK(rs.is_valid());
uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
// -------------Misc-instructions--------------
// Break / Trap instructions.
void Assembler::break_(uint32_t code, bool break_as_stop) {
DCHECK_EQ(code & ~0xFFFFF, 0);
// We need to invalidate breaks that could be stops as well because the
// simulator expects a char pointer after the stop instruction.
// See constants-mips.h for explanation.
DCHECK(
(break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
(!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
Instr break_instr = SPECIAL | BREAK | (code << 6);
emit(break_instr);
}
void Assembler::stop(uint32_t code) {
DCHECK_GT(code, kMaxWatchpointCode);
DCHECK_LE(code, kMaxStopCode);
#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
break_(0x54321);
#else // V8_HOST_ARCH_MIPS
break_(code, true);
#endif
}
void Assembler::tge(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
code << 6;
emit(instr);
}
void Assembler::tlt(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tltu(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
code << 6;
emit(instr);
}
void Assembler::teq(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tne(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::sync() {
Instr sync_instr = SPECIAL | SYNC;
emit(sync_instr);
}
// Move from HI/LO register.
void Assembler::mfhi(Register rd) {
GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
}
void Assembler::mflo(Register rd) {
GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
}
// Set on less than instructions.
void Assembler::slt(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
}
void Assembler::sltu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
}
void Assembler::slti(Register rt, Register rs, int32_t j) {
GenInstrImmediate(SLTI, rs, rt, j);
}
void Assembler::sltiu(Register rt, Register rs, int32_t j) {
GenInstrImmediate(SLTIU, rs, rt, j);
}
// Conditional move.
void Assembler::movz(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
}
void Assembler::movn(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
}
void Assembler::movt(Register rd, Register rs, uint16_t cc) {
Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}
void Assembler::movf(Register rd, Register rs, uint16_t cc) {
Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}
void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
min(S, fd, fs, ft);
}
void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
min(D, fd, fs, ft);
}
void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
max(S, fd, fs, ft);
}
void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
max(D, fd, fs, ft);
}
void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
mina(S, fd, fs, ft);
}
void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
mina(D, fd, fs, ft);
}
void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
maxa(S, fd, fs, ft);
}
void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
maxa(D, fd, fs, ft);
}
void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
}
void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK_EQ(kArchVariant, kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
}
// GPR.
void Assembler::seleqz(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
}
// GPR.
void Assembler::selnez(Register rd, Register rs, Register rt) {
DCHECK_EQ(kArchVariant, kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
}
// Bit twiddling.
void Assembler::clz(Register rd, Register rs) {
if (kArchVariant != kMips64r6) {
// clz instr requires same GPR number in 'rd' and 'rt' fields.
GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
} else {
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
}
}
void Assembler::dclz(Register rd, Register rs) {
if (kArchVariant != kMips64r6) {
// dclz instr requires same GPR number in 'rd' and 'rt' fields.
GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
} else {
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
}
}
void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Ins.
// ins instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
}
void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dins.
// dins instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
}
void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dins.
// dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM);
}
void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dins.
// dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU);
}
void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Ext.
// ext instr has 'rt' field as dest, and two uint5: msbd, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
}
void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dext.
// dext instr has 'rt' field as dest, and two uint5: msbd, lsb.
DCHECK