| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #include "src/codegen/mips64/assembler-mips64.h" |
| |
| #if V8_TARGET_ARCH_MIPS64 |
| |
| #include "src/base/cpu.h" |
| #include "src/codegen/machine-type.h" |
| #include "src/codegen/mips64/assembler-mips64-inl.h" |
| #include "src/codegen/safepoint-table.h" |
| #include "src/codegen/string-constants.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/objects/heap-number-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Get the CPU features enabled by the build. For cross compilation the |
| // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS |
| // can be defined to enable FPU instructions when building the |
| // snapshot. |
| static unsigned CpuFeaturesImpliedByCompiler() { |
| unsigned answer = 0; |
| #ifdef CAN_USE_FPU_INSTRUCTIONS |
| answer |= 1u << FPU; |
| #endif // def CAN_USE_FPU_INSTRUCTIONS |
| |
| // If the compiler is allowed to use FPU then we can use FPU too in our code |
| // generation even when generating snapshots. This won't work for cross |
| // compilation. |
| #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0 |
| answer |= 1u << FPU; |
| #endif |
| |
| return answer; |
| } |
| |
| bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); } |
| |
| void CpuFeatures::ProbeImpl(bool cross_compile) { |
| supported_ |= CpuFeaturesImpliedByCompiler(); |
| |
| // Only use statically determined features for cross compile (snapshot). |
| if (cross_compile) return; |
| |
| // If the compiler is allowed to use fpu then we can use fpu too in our |
| // code generation. |
| #ifndef __mips__ |
| // For the simulator build, use FPU. |
| supported_ |= 1u << FPU; |
| #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA) |
| supported_ |= 1u << MIPS_SIMD; |
| #endif |
| #else |
| // Probe for additional features at runtime. |
| base::CPU cpu; |
| if (cpu.has_fpu()) supported_ |= 1u << FPU; |
| #if defined(_MIPS_MSA) |
| supported_ |= 1u << MIPS_SIMD; |
| #else |
| if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD; |
| #endif |
| #endif |
| |
| // Set a static value on whether Simd is supported. |
| // This variable is only used for certain archs to query SupportWasmSimd128() |
| // at runtime in builtins using an extern ref. Other callers should use |
| // CpuFeatures::SupportWasmSimd128(). |
| CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128(); |
| } |
| |
| void CpuFeatures::PrintTarget() {} |
| void CpuFeatures::PrintFeatures() {} |
| |
| int ToNumber(Register reg) { |
| DCHECK(reg.is_valid()); |
| const int kNumbers[] = { |
| 0, // zero_reg |
| 1, // at |
| 2, // v0 |
| 3, // v1 |
| 4, // a0 |
| 5, // a1 |
| 6, // a2 |
| 7, // a3 |
| 8, // a4 |
| 9, // a5 |
| 10, // a6 |
| 11, // a7 |
| 12, // t0 |
| 13, // t1 |
| 14, // t2 |
| 15, // t3 |
| 16, // s0 |
| 17, // s1 |
| 18, // s2 |
| 19, // s3 |
| 20, // s4 |
| 21, // s5 |
| 22, // s6 |
| 23, // s7 |
| 24, // t8 |
| 25, // t9 |
| 26, // k0 |
| 27, // k1 |
| 28, // gp |
| 29, // sp |
| 30, // fp |
| 31, // ra |
| }; |
| return kNumbers[reg.code()]; |
| } |
| |
| Register ToRegister(int num) { |
| DCHECK(num >= 0 && num < kNumRegisters); |
| const Register kRegisters[] = { |
| zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3, |
| s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra}; |
| return kRegisters[num]; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo. |
| |
| const int RelocInfo::kApplyMask = |
| RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | |
| RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on MIPS means that it is a lui/ori instruction, and that is |
| // always the case inside code objects. |
| return true; |
| } |
| |
| bool RelocInfo::IsInConstantPool() { return false; } |
| |
| uint32_t RelocInfo::wasm_call_tag() const { |
| DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); |
| return static_cast<uint32_t>( |
| Assembler::target_address_at(pc_, constant_pool_)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand. |
| // See assembler-mips-inl.h for inlined constructors. |
| |
| Operand::Operand(Handle<HeapObject> handle) |
| : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) { |
| value_.immediate = static_cast<intptr_t>(handle.address()); |
| } |
| |
| Operand Operand::EmbeddedNumber(double value) { |
| int32_t smi; |
| if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.is_heap_object_request_ = true; |
| result.value_.heap_object_request = HeapObjectRequest(value); |
| return result; |
| } |
| |
| Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.is_heap_object_request_ = true; |
| result.value_.heap_object_request = HeapObjectRequest(str); |
| return result; |
| } |
| |
| MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { |
| offset_ = offset; |
| } |
| |
| MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier, |
| OffsetAddend offset_addend) |
| : Operand(rm) { |
| offset_ = unit * multiplier + offset_addend; |
| } |
| |
| void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { |
| DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); |
| for (auto& request : heap_object_requests_) { |
| Handle<HeapObject> object; |
| switch (request.kind()) { |
| case HeapObjectRequest::kHeapNumber: |
| object = isolate->factory()->NewHeapNumber<AllocationType::kOld>( |
| request.heap_number()); |
| break; |
| case HeapObjectRequest::kStringConstant: |
| const StringConstantBase* str = request.string(); |
| CHECK_NOT_NULL(str); |
| object = str->AllocateStringConstant(isolate); |
| break; |
| } |
| Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset(); |
| set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location())); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| |
| // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r) |
| // operations as post-increment of sp. |
| const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) | |
| (sp.code() << kRtShift) | |
| (kPointerSize & kImm16Mask); |
| // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp. |
| const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) | |
| (sp.code() << kRtShift) | |
| (-kPointerSize & kImm16Mask); |
| // Sd(r, MemOperand(sp, 0)) |
| const Instr kPushRegPattern = SD | (sp.code() << kRsShift) | (0 & kImm16Mask); |
| // Ld(r, MemOperand(sp, 0)) |
| const Instr kPopRegPattern = LD | (sp.code() << kRsShift) | (0 & kImm16Mask); |
| |
| const Instr kLwRegFpOffsetPattern = |
| LW | (fp.code() << kRsShift) | (0 & kImm16Mask); |
| |
| const Instr kSwRegFpOffsetPattern = |
| SW | (fp.code() << kRsShift) | (0 & kImm16Mask); |
| |
| const Instr kLwRegFpNegOffsetPattern = |
| LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); |
| |
| const Instr kSwRegFpNegOffsetPattern = |
| SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); |
| // A mask for the Rt register for push, pop, lw, sw instructions. |
| const Instr kRtMask = kRtFieldMask; |
| const Instr kLwSwInstrTypeMask = 0xFFE00000; |
| const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; |
| const Instr kLwSwOffsetMask = kImm16Mask; |
| |
| Assembler::Assembler(const AssemblerOptions& options, |
| std::unique_ptr<AssemblerBuffer> buffer) |
| : AssemblerBase(options, std::move(buffer)), |
| scratch_register_list_({at, s0}) { |
| if (CpuFeatures::IsSupported(MIPS_SIMD)) { |
| EnableCpuFeature(MIPS_SIMD); |
| } |
| reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); |
| |
| last_trampoline_pool_end_ = 0; |
| no_trampoline_pool_before_ = 0; |
| trampoline_pool_blocked_nesting_ = 0; |
| // We leave space (16 * kTrampolineSlotsSize) |
| // for BlockTrampolinePoolScope buffer. |
| next_buffer_check_ = FLAG_force_long_branches |
| ? kMaxInt |
| : kMaxBranchOffset - kTrampolineSlotsSize * 16; |
| internal_trampoline_exception_ = false; |
| last_bound_pos_ = 0; |
| |
| trampoline_emitted_ = FLAG_force_long_branches; |
| unbound_labels_count_ = 0; |
| block_buffer_growth_ = false; |
| } |
| |
| void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, |
| SafepointTableBuilder* safepoint_table_builder, |
| int handler_table_offset) { |
| // As a crutch to avoid having to add manual Align calls wherever we use a |
| // raw workflow to create Code objects (mostly in tests), add another Align |
| // call here. It does no harm - the end of the Code object is aligned to the |
| // (larger) kCodeAlignment anyways. |
| // TODO(jgruber): Consider moving responsibility for proper alignment to |
| // metadata table builders (safepoint, handler, constant pool, code |
| // comments). |
| DataAlign(Code::kMetadataAlignment); |
| |
| EmitForbiddenSlotInstruction(); |
| |
| int code_comments_size = WriteCodeComments(); |
| |
| DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. |
| |
| AllocateAndInstallRequestedHeapObjects(isolate); |
| |
| // Set up code descriptor. |
| // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to |
| // this point to make CodeDesc initialization less fiddly. |
| |
| static constexpr int kConstantPoolSize = 0; |
| const int instruction_size = pc_offset(); |
| const int code_comments_offset = instruction_size - code_comments_size; |
| const int constant_pool_offset = code_comments_offset - kConstantPoolSize; |
| const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) |
| ? constant_pool_offset |
| : handler_table_offset; |
| const int safepoint_table_offset = |
| (safepoint_table_builder == kNoSafepointTable) |
| ? handler_table_offset2 |
| : safepoint_table_builder->safepoint_table_offset(); |
| const int reloc_info_offset = |
| static_cast<int>(reloc_info_writer.pos() - buffer_->start()); |
| CodeDesc::Initialize(desc, this, safepoint_table_offset, |
| handler_table_offset2, constant_pool_offset, |
| code_comments_offset, reloc_info_offset); |
| } |
| |
| void Assembler::Align(int m) { |
| DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); |
| EmitForbiddenSlotInstruction(); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| void Assembler::CodeTargetAlign() { |
| // No advantage to aligning branch/call targets to more than |
| // single instruction, that I am aware of. |
| Align(4); |
| } |
| |
| Register Assembler::GetRtReg(Instr instr) { |
| return Register::from_code((instr & kRtFieldMask) >> kRtShift); |
| } |
| |
| Register Assembler::GetRsReg(Instr instr) { |
| return Register::from_code((instr & kRsFieldMask) >> kRsShift); |
| } |
| |
| Register Assembler::GetRdReg(Instr instr) { |
| return Register::from_code((instr & kRdFieldMask) >> kRdShift); |
| } |
| |
| uint32_t Assembler::GetRt(Instr instr) { |
| return (instr & kRtFieldMask) >> kRtShift; |
| } |
| |
| uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; } |
| |
| uint32_t Assembler::GetRs(Instr instr) { |
| return (instr & kRsFieldMask) >> kRsShift; |
| } |
| |
| uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; } |
| |
| uint32_t Assembler::GetRd(Instr instr) { |
| return (instr & kRdFieldMask) >> kRdShift; |
| } |
| |
| uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; } |
| |
| uint32_t Assembler::GetSa(Instr instr) { |
| return (instr & kSaFieldMask) >> kSaShift; |
| } |
| |
| uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; } |
| |
| uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; } |
| |
| uint32_t Assembler::GetFunction(Instr instr) { |
| return (instr & kFunctionFieldMask) >> kFunctionShift; |
| } |
| |
| uint32_t Assembler::GetFunctionField(Instr instr) { |
| return instr & kFunctionFieldMask; |
| } |
| |
| uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; } |
| |
| uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; } |
| |
| bool Assembler::IsPop(Instr instr) { |
| return (instr & ~kRtMask) == kPopRegPattern; |
| } |
| |
| bool Assembler::IsPush(Instr instr) { |
| return (instr & ~kRtMask) == kPushRegPattern; |
| } |
| |
| bool Assembler::IsSwRegFpOffset(Instr instr) { |
| return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); |
| } |
| |
| bool Assembler::IsLwRegFpOffset(Instr instr) { |
| return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); |
| } |
| |
| bool Assembler::IsSwRegFpNegOffset(Instr instr) { |
| return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
| kSwRegFpNegOffsetPattern); |
| } |
| |
| bool Assembler::IsLwRegFpNegOffset(Instr instr) { |
| return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
| kLwRegFpNegOffsetPattern); |
| } |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| |
| // The link chain is terminated by a value in the instruction of -1, |
| // which is an otherwise illegal value (branch -1 is inf loop). |
| // The instruction 16-bit offset field addresses 32-bit words, but in |
| // code is conv to an 18-bit value addressing bytes, hence the -4 value. |
| |
| const int kEndOfChain = -4; |
| // Determines the end of the Jump chain (a subset of the label link chain). |
| const int kEndOfJumpChain = 0; |
| |
| bool Assembler::IsMsaBranch(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rs_field = GetRsField(instr); |
| if (opcode == COP1) { |
| switch (rs_field) { |
| case BZ_V: |
| case BZ_B: |
| case BZ_H: |
| case BZ_W: |
| case BZ_D: |
| case BNZ_V: |
| case BNZ_B: |
| case BNZ_H: |
| case BNZ_W: |
| case BNZ_D: |
| return true; |
| default: |
| return false; |
| } |
| } else { |
| return false; |
| } |
| } |
| |
| bool Assembler::IsBranch(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rt_field = GetRtField(instr); |
| uint32_t rs_field = GetRsField(instr); |
| // Checks if the instruction is a branch. |
| bool isBranch = |
| opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || |
| opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL || |
| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || |
| rt_field == BLTZAL || rt_field == BGEZAL)) || |
| (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. |
| (opcode == COP1 && rs_field == BC1EQZ) || |
| (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr); |
| if (!isBranch && kArchVariant == kMips64r6) { |
| // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and |
| // POP30 (BNVC, BNEC, BNEZALC) are branch ops. |
| isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC || |
| opcode == BALC || |
| (opcode == POP66 && rs_field != 0) || // BEQZC |
| (opcode == POP76 && rs_field != 0); // BNEZC |
| } |
| return isBranch; |
| } |
| |
| bool Assembler::IsBc(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a BC or BALC. |
| return opcode == BC || opcode == BALC; |
| } |
| |
| bool Assembler::IsNal(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rt_field = GetRtField(instr); |
| uint32_t rs_field = GetRsField(instr); |
| return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0; |
| } |
| |
| bool Assembler::IsBzc(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is BEQZC or BNEZC. |
| return (opcode == POP66 && GetRsField(instr) != 0) || |
| (opcode == POP76 && GetRsField(instr) != 0); |
| } |
| |
| bool Assembler::IsEmittedConstant(Instr instr) { |
| uint32_t label_constant = GetLabelConst(instr); |
| return label_constant == 0; // Emitted label const in reg-exp engine. |
| } |
| |
| bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; } |
| |
| bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; } |
| |
| bool Assembler::IsBeqzc(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| return opcode == POP66 && GetRsField(instr) != 0; |
| } |
| |
| bool Assembler::IsBnezc(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| return opcode == POP76 && GetRsField(instr) != 0; |
| } |
| |
| bool Assembler::IsBeqc(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rs = GetRsField(instr); |
| uint32_t rt = GetRtField(instr); |
| return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0 |
| } |
| |
| bool Assembler::IsBnec(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rs = GetRsField(instr); |
| uint32_t rt = GetRtField(instr); |
| return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0 |
| } |
| |
| bool Assembler::IsMov(Instr instr, Register rd, Register rs) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rd_field = GetRd(instr); |
| uint32_t rs_field = GetRs(instr); |
| uint32_t rt_field = GetRt(instr); |
| uint32_t rd_reg = static_cast<uint32_t>(rd.code()); |
| uint32_t rs_reg = static_cast<uint32_t>(rs.code()); |
| uint32_t function_field = GetFunctionField(instr); |
| // Checks if the instruction is a OR with zero_reg argument (aka MOV). |
| bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg && |
| rs_field == rs_reg && rt_field == 0; |
| return res; |
| } |
| |
| bool Assembler::IsJump(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rt_field = GetRtField(instr); |
| uint32_t rd_field = GetRdField(instr); |
| uint32_t function_field = GetFunctionField(instr); |
| // Checks if the instruction is a jump. |
| return opcode == J || opcode == JAL || |
| (opcode == SPECIAL && rt_field == 0 && |
| ((function_field == JALR) || |
| (rd_field == 0 && (function_field == JR)))); |
| } |
| |
| bool Assembler::IsJ(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a jump. |
| return opcode == J; |
| } |
| |
| bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; } |
| |
| bool Assembler::IsJr(Instr instr) { |
| return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR; |
| } |
| |
| bool Assembler::IsJalr(Instr instr) { |
| return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR; |
| } |
| |
| bool Assembler::IsLui(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a load upper immediate. |
| return opcode == LUI; |
| } |
| |
| bool Assembler::IsOri(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a load upper immediate. |
| return opcode == ORI; |
| } |
| |
| bool Assembler::IsNop(Instr instr, unsigned int type) { |
| // See Assembler::nop(type). |
| DCHECK_LT(type, 32); |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t function = GetFunctionField(instr); |
| uint32_t rt = GetRt(instr); |
| uint32_t rd = GetRd(instr); |
| uint32_t sa = GetSa(instr); |
| |
| // Traditional mips nop == sll(zero_reg, zero_reg, 0) |
| // When marking non-zero type, use sll(zero_reg, at, type) |
| // to avoid use of mips ssnop and ehb special encodings |
| // of the sll instruction. |
| |
| Register nop_rt_reg = (type == 0) ? zero_reg : at; |
| bool ret = (opcode == SPECIAL && function == SLL && |
| rd == static_cast<uint32_t>(ToNumber(zero_reg)) && |
| rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type); |
| |
| return ret; |
| } |
| |
| int32_t Assembler::GetBranchOffset(Instr instr) { |
| DCHECK(IsBranch(instr)); |
| return (static_cast<int16_t>(instr & kImm16Mask)) << 2; |
| } |
| |
| bool Assembler::IsLw(Instr instr) { |
| return (static_cast<uint32_t>(instr & kOpcodeMask) == LW); |
| } |
| |
| int16_t Assembler::GetLwOffset(Instr instr) { |
| DCHECK(IsLw(instr)); |
| return ((instr & kImm16Mask)); |
| } |
| |
| Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { |
| DCHECK(IsLw(instr)); |
| |
| // We actually create a new lw instruction based on the original one. |
| Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) | |
| (offset & kImm16Mask); |
| |
| return temp_instr; |
| } |
| |
| bool Assembler::IsSw(Instr instr) { |
| return (static_cast<uint32_t>(instr & kOpcodeMask) == SW); |
| } |
| |
| Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { |
| DCHECK(IsSw(instr)); |
| return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
| } |
| |
| bool Assembler::IsAddImmediate(Instr instr) { |
| return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU); |
| } |
| |
| Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { |
| DCHECK(IsAddImmediate(instr)); |
| return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
| } |
| |
| bool Assembler::IsAndImmediate(Instr instr) { |
| return GetOpcodeField(instr) == ANDI; |
| } |
| |
| static Assembler::OffsetSize OffsetSizeInBits(Instr instr) { |
| if (kArchVariant == kMips64r6) { |
| if (Assembler::IsBc(instr)) { |
| return Assembler::OffsetSize::kOffset26; |
| } else if (Assembler::IsBzc(instr)) { |
| return Assembler::OffsetSize::kOffset21; |
| } |
| } |
| return Assembler::OffsetSize::kOffset16; |
| } |
| |
| static inline int32_t AddBranchOffset(int pos, Instr instr) { |
| int bits = OffsetSizeInBits(instr); |
| const int32_t mask = (1 << bits) - 1; |
| bits = 32 - bits; |
| |
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
| // the compiler uses arithmetic shifts for signed integers. |
| int32_t imm = ((instr & mask) << bits) >> (bits - 2); |
| |
| if (imm == kEndOfChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| return pos + Assembler::kBranchPCOffset + imm; |
| } |
| } |
| |
| int Assembler::target_at(int pos, bool is_internal) { |
| if (is_internal) { |
| int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos); |
| int64_t address = *p; |
| if (address == kEndOfJumpChain) { |
| return kEndOfChain; |
| } else { |
| int64_t instr_address = reinterpret_cast<int64_t>(p); |
| DCHECK(instr_address - address < INT_MAX); |
| int delta = static_cast<int>(instr_address - address); |
| DCHECK(pos > delta); |
| return pos - delta; |
| } |
| } |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| // Emitted label constant, not part of a branch. |
| if (instr == 0) { |
| return kEndOfChain; |
| } else { |
| int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| return (imm18 + pos); |
| } |
| } |
| // Check we have a branch or jump instruction. |
| DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) || |
| IsMov(instr, t8, ra)); |
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
| // the compiler uses arithmetic shifts for signed integers. |
| if (IsBranch(instr)) { |
| return AddBranchOffset(pos, instr); |
| } else if (IsMov(instr, t8, ra)) { |
| int32_t imm32; |
| Instr instr_lui = instr_at(pos + 2 * kInstrSize); |
| Instr instr_ori = instr_at(pos + 3 * kInstrSize); |
| DCHECK(IsLui(instr_lui)); |
| DCHECK(IsOri(instr_ori)); |
| imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; |
| imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask)); |
| if (imm32 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } |
| return pos + Assembler::kLongBranchPCOffset + imm32; |
| } else if (IsLui(instr)) { |
| if (IsNal(instr_at(pos + kInstrSize))) { |
| int32_t imm32; |
| Instr instr_lui = instr_at(pos + 0 * kInstrSize); |
| Instr instr_ori = instr_at(pos + 2 * kInstrSize); |
| DCHECK(IsLui(instr_lui)); |
| DCHECK(IsOri(instr_ori)); |
| imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; |
| imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask)); |
| if (imm32 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } |
| return pos + Assembler::kLongBranchPCOffset + imm32; |
| } else { |
| Instr instr_lui = instr_at(pos + 0 * kInstrSize); |
| Instr instr_ori = instr_at(pos + 1 * kInstrSize); |
| Instr instr_ori2 = instr_at(pos + 3 * kInstrSize); |
| DCHECK(IsOri(instr_ori)); |
| DCHECK(IsOri(instr_ori2)); |
| |
| // TODO(plind) create named constants for shift values. |
| int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48; |
| imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32; |
| imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16; |
| // Sign extend address; |
| imm >>= 16; |
| |
| if (imm == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos); |
| DCHECK(instr_address - imm < INT_MAX); |
| int delta = static_cast<int>(instr_address - imm); |
| DCHECK(pos > delta); |
| return pos - delta; |
| } |
| } |
| } else { |
| DCHECK(IsJ(instr) || IsJal(instr)); |
| int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2; |
| if (imm28 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| // Sign extend 28-bit offset. |
| int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4); |
| return pos + delta; |
| } |
| } |
| } |
| |
| static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos, |
| Instr instr) { |
| int32_t bits = OffsetSizeInBits(instr); |
| int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset); |
| DCHECK_EQ(imm & 3, 0); |
| imm >>= 2; |
| |
| const int32_t mask = (1 << bits) - 1; |
| instr &= ~mask; |
| DCHECK(is_intn(imm, bits)); |
| |
| return instr | (imm & mask); |
| } |
| |
| void Assembler::target_at_put(int pos, int target_pos, bool is_internal) { |
| if (is_internal) { |
| uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos; |
| *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm; |
| return; |
| } |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| DCHECK(target_pos == kEndOfChain || target_pos >= 0); |
| // Emitted label constant, not part of a branch. |
| // Make label relative to Code pointer of generated Code object. |
| instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| return; |
| } |
| |
| if (IsBranch(instr)) { |
| instr = SetBranchOffset(pos, target_pos, instr); |
| instr_at_put(pos, instr); |
| } else if (IsLui(instr)) { |
| if (IsNal(instr_at(pos + kInstrSize))) { |
| Instr instr_lui = instr_at(pos + 0 * kInstrSize); |
| Instr instr_ori = instr_at(pos + 2 * kInstrSize); |
| DCHECK(IsLui(instr_lui)); |
| DCHECK(IsOri(instr_ori)); |
| int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset); |
| DCHECK_EQ(imm & 3, 0); |
| if (is_int16(imm + Assembler::kLongBranchPCOffset - |
| Assembler::kBranchPCOffset)) { |
| // Optimize by converting to regular branch and link with 16-bit |
| // offset. |
| Instr instr_b = REGIMM | BGEZAL; // Branch and link. |
| instr_b = SetBranchOffset(pos, target_pos, instr_b); |
| // Correct ra register to point to one instruction after jalr from |
| // TurboAssembler::BranchAndLinkLong. |
| Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift | |
| kOptimizedBranchAndLinkLongReturnOffset; |
| |
| instr_at_put(pos, instr_b); |
| instr_at_put(pos + 1 * kInstrSize, instr_a); |
| } else { |
| instr_lui &= ~kImm16Mask; |
| instr_ori &= ~kImm16Mask; |
| |
| instr_at_put(pos + 0 * kInstrSize, |
| instr_lui | ((imm >> kLuiShift) & kImm16Mask)); |
| instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask)); |
| } |
| } else { |
| Instr instr_lui = instr_at(pos + 0 * kInstrSize); |
| Instr instr_ori = instr_at(pos + 1 * kInstrSize); |
| Instr instr_ori2 = instr_at(pos + 3 * kInstrSize); |
| DCHECK(IsOri(instr_ori)); |
| DCHECK(IsOri(instr_ori2)); |
| |
| uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos; |
| DCHECK_EQ(imm & 3, 0); |
| |
| instr_lui &= ~kImm16Mask; |
| instr_ori &= ~kImm16Mask; |
| instr_ori2 &= ~kImm16Mask; |
| |
| instr_at_put(pos + 0 * kInstrSize, |
| instr_lui | ((imm >> 32) & kImm16Mask)); |
| instr_at_put(pos + 1 * kInstrSize, |
| instr_ori | ((imm >> 16) & kImm16Mask)); |
| instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask)); |
| } |
| } else if (IsMov(instr, t8, ra)) { |
| Instr instr_lui = instr_at(pos + 2 * kInstrSize); |
| Instr instr_ori = instr_at(pos + 3 * kInstrSize); |
| DCHECK(IsLui(instr_lui)); |
| DCHECK(IsOri(instr_ori)); |
| |
| int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset); |
| |
| if (is_int16(imm_short)) { |
| // Optimize by converting to regular branch with 16-bit |
| // offset |
| Instr instr_b = BEQ; |
| instr_b = SetBranchOffset(pos, target_pos, instr_b); |
| |
| Instr instr_j = instr_at(pos + 5 * kInstrSize); |
| Instr instr_branch_delay; |
| |
| if (IsJump(instr_j)) { |
| // Case when branch delay slot is protected. |
| instr_branch_delay = nopInstr; |
| } else { |
| // Case when branch delay slot is used. |
| instr_branch_delay = instr_at(pos + 7 * kInstrSize); |
| } |
| instr_at_put(pos, instr_b); |
| instr_at_put(pos + 1 * kInstrSize, instr_branch_delay); |
| } else { |
| int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset); |
| DCHECK_EQ(imm & 3, 0); |
| |
| instr_lui &= ~kImm16Mask; |
| instr_ori &= ~kImm16Mask; |
| |
| instr_at_put(pos + 2 * kInstrSize, |
| instr_lui | ((imm >> kLuiShift) & kImm16Mask)); |
| instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask)); |
| } |
| } else if (IsJ(instr) || IsJal(instr)) { |
| int32_t imm28 = target_pos - pos; |
| DCHECK_EQ(imm28 & 3, 0); |
| |
| uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2); |
| DCHECK(is_uint26(imm26)); |
| // Place 26-bit signed offset with markings. |
| // When code is committed it will be resolved to j/jal. |
| int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark; |
| instr_at_put(pos, mark | (imm26 & kImm26Mask)); |
| } else { |
| int32_t imm28 = target_pos - pos; |
| DCHECK_EQ(imm28 & 3, 0); |
| |
| uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2); |
| DCHECK(is_uint26(imm26)); |
| // Place raw 26-bit signed offset. |
| // When code is committed it will be resolved to j/jal. |
| instr &= ~kImm26Mask; |
| instr_at_put(pos, instr | (imm26 & kImm26Mask)); |
| } |
| } |
| |
| void Assembler::print(const Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l; |
| l.link_to(L->pos()); |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~kImm16Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| PrintF("%d\n", instr); |
| } |
| next(&l, is_internal_reference(&l)); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position. |
| int trampoline_pos = kInvalidSlotPos; |
| bool is_internal = false; |
| if (L->is_linked() && !trampoline_emitted_) { |
| unbound_labels_count_--; |
| if (!is_internal_reference(L)) { |
| next_buffer_check_ += kTrampolineSlotsSize; |
| } |
| } |
| |
| while (L->is_linked()) { |
| int fixup_pos = L->pos(); |
| int dist = pos - fixup_pos; |
| is_internal = is_internal_reference(L); |
| next(L, is_internal); // Call next before overwriting link with target at |
| // fixup_pos. |
| Instr instr = instr_at(fixup_pos); |
| if (is_internal) { |
| target_at_put(fixup_pos, pos, is_internal); |
| } else { |
| if (IsBranch(instr)) { |
| int branch_offset = BranchOffset(instr); |
| if (dist > branch_offset) { |
| if (trampoline_pos == kInvalidSlotPos) { |
| trampoline_pos = get_trampoline_entry(fixup_pos); |
| CHECK_NE(trampoline_pos, kInvalidSlotPos); |
| } |
| CHECK((trampoline_pos - fixup_pos) <= branch_offset); |
| target_at_put(fixup_pos, trampoline_pos, false); |
| fixup_pos = trampoline_pos; |
| } |
| target_at_put(fixup_pos, pos, false); |
| } else { |
| DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) || |
| IsEmittedConstant(instr) || IsMov(instr, t8, ra)); |
| target_at_put(fixup_pos, pos, false); |
| } |
| } |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) last_bound_pos_ = pos; |
| } |
| |
| void Assembler::bind(Label* L) { |
| DCHECK(!L->is_bound()); // Label can only be bound once. |
| bind_to(L, pc_offset()); |
| } |
| |
| void Assembler::next(Label* L, bool is_internal) { |
| DCHECK(L->is_linked()); |
| int link = target_at(L->pos(), is_internal); |
| if (link == kEndOfChain) { |
| L->Unuse(); |
| } else { |
| DCHECK_GE(link, 0); |
| L->link_to(link); |
| } |
| } |
| |
| bool Assembler::is_near(Label* L) { |
| DCHECK(L->is_bound()); |
| return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; |
| } |
| |
| bool Assembler::is_near(Label* L, OffsetSize bits) { |
| if (L == nullptr || !L->is_bound()) return true; |
| return ((pc_offset() - L->pos()) < |
| (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize); |
| } |
| |
| bool Assembler::is_near_branch(Label* L) { |
| DCHECK(L->is_bound()); |
| return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L); |
| } |
| |
| int Assembler::BranchOffset(Instr instr) { |
| // At pre-R6 and for other R6 branches the offset is 16 bits. |
| int bits = OffsetSize::kOffset16; |
| |
| if (kArchVariant == kMips64r6) { |
| uint32_t opcode = GetOpcodeField(instr); |
| switch (opcode) { |
| // Checks BC or BALC. |
| case BC: |
| case BALC: |
| bits = OffsetSize::kOffset26; |
| break; |
| |
| // Checks BEQZC or BNEZC. |
| case POP66: |
| case POP76: |
| if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return (1 << (bits + 2 - 1)) - 1; |
| } |
| |
| // We have to use a temporary register for things that can be relocated even |
| // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| bool Assembler::MustUseReg(RelocInfo::Mode rmode) { |
| return !RelocInfo::IsNoInfo(rmode); |
| } |
| |
| void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, |
| Register rd, uint16_t sa, |
| SecondaryField func) { |
| DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | |
| (rd.code() << kRdShift) | (sa << kSaShift) | func; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, |
| uint16_t msb, uint16_t lsb, |
| SecondaryField func) { |
| DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | |
| (msb << kRdShift) | (lsb << kSaShift) | func; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, |
| FPURegister ft, FPURegister fs, FPURegister fd, |
| SecondaryField func) { |
| DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid()); |
| Instr instr = opcode | fmt | (ft.code() << kFtShift) | |
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft, |
| FPURegister fs, FPURegister fd, |
| SecondaryField func) { |
| DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid()); |
| Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) | |
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, |
| FPURegister fs, FPURegister fd, |
| SecondaryField func) { |
| DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid()); |
| Instr instr = opcode | fmt | (rt.code() << kRtShift) | |
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, |
| FPUControlRegister fs, SecondaryField func) { |
| DCHECK(fs.is_valid() && rt.is_valid()); |
| Instr instr = |
| opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; |
| emit(instr); |
| } |
| |
| // Instructions with immediate value. |
| // Registers are in the order of the instruction encoding, from left to right. |
| void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, |
| int32_t j, |
| CompactBranchType is_compact_branch) { |
| DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | |
| (j & kImm16Mask); |
| emit(instr, is_compact_branch); |
| } |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt, |
| int32_t offset9, int bit6, |
| SecondaryField func) { |
| DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) && |
| is_uint1(bit6)); |
| Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) | |
| ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift | |
| func; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, |
| int32_t j, |
| CompactBranchType is_compact_branch) { |
| DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); |
| emit(instr, is_compact_branch); |
| } |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, |
| int32_t j, |
| CompactBranchType is_compact_branch) { |
| DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | |
| (j & kImm16Mask); |
| emit(instr, is_compact_branch); |
| } |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21, |
| CompactBranchType is_compact_branch) { |
| DCHECK(rs.is_valid() && (is_int21(offset21))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask); |
| emit(instr, is_compact_branch); |
| } |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, Register rs, |
| uint32_t offset21) { |
| DCHECK(rs.is_valid() && (is_uint21(offset21))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26, |
| CompactBranchType is_compact_branch) { |
| DCHECK(is_int26(offset26)); |
| Instr instr = opcode | (offset26 & kImm26Mask); |
| emit(instr, is_compact_branch); |
| } |
| |
| void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| DCHECK(is_uint26(address)); |
| Instr instr = opcode | address; |
| emit(instr); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| // MSA instructions |
| void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8, |
| MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8)); |
| Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df, |
| int32_t imm5, MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(ws.is_valid() && wd.is_valid()); |
| DCHECK((operation == MAXI_S) || (operation == MINI_S) || |
| (operation == CEQI) || (operation == CLTI_S) || |
| (operation == CLEI_S) |
| ? is_int5(imm5) |
| : is_uint5(imm5)); |
| Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df, |
| uint32_t m, MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m)); |
| Instr instr = MSA | operation | df | (m << kWtShift) | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df, |
| int32_t imm10, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(wd.is_valid() && is_int10(imm10)); |
| Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) | |
| (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| template <typename RegType> |
| void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df, |
| RegType t, MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid()); |
| Instr instr = MSA | operation | df | (t.code() << kWtShift) | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| template <typename DstType, typename SrcType> |
| void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df, |
| uint32_t n, SrcType src, DstType dst) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n)); |
| Instr instr = MSA | operation | df | (n << kWtShift) | |
| (src.code() << kWsShift) | (dst.code() << kWdShift) | |
| MSA_ELM_MINOR; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df, |
| MSARegister wt, MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid()); |
| DCHECK_LT(df, 2); |
| Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt, |
| MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid()); |
| Instr instr = MSA | operation | (wt.code() << kWtShift) | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift) | |
| MSA_VEC_2R_2RF_MINOR; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10, |
| Register rs, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10)); |
| Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) | |
| (rs.code() << kWsShift) | (wd.code() << kWdShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df, |
| MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(ws.is_valid() && wd.is_valid()); |
| Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) | |
| (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df, |
| MSARegister ws, MSARegister wd) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(ws.is_valid() && wd.is_valid()); |
| Instr instr = MSA | MSA_2RF_FORMAT | operation | df | |
| (ws.code() << kWsShift) | (wd.code() << kWdShift) | |
| MSA_VEC_2R_2RF_MINOR; |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt, |
| int32_t offset16) { |
| DCHECK(IsEnabled(MIPS_SIMD)); |
| DCHECK(wt.is_valid() && is_int16(offset16)); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| Instr instr = |
| COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask); |
| emit(instr); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| // Returns the next free trampoline entry. |
| int32_t Assembler::get_trampoline_entry(int32_t pos) { |
| int32_t trampoline_entry = kInvalidSlotPos; |
| if (!internal_trampoline_exception_) { |
| if (trampoline_.start() > pos) { |
| trampoline_entry = trampoline_.take_slot(); |
| } |
| |
| if (kInvalidSlotPos == trampoline_entry) { |
| internal_trampoline_exception_ = true; |
| } |
| } |
| return trampoline_entry; |
| } |
| |
| uint64_t Assembler::jump_address(Label* L) { |
| int64_t target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| return kEndOfJumpChain; |
| } |
| } |
| uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos; |
| DCHECK_EQ(imm & 3, 0); |
| |
| return imm; |
| } |
| |
| uint64_t Assembler::jump_offset(Label* L) { |
| int64_t target_pos; |
| int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0; |
| |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| L->link_to(pc_offset() + pad); |
| } else { |
| L->link_to(pc_offset() + pad); |
| return kEndOfJumpChain; |
| } |
| } |
| int64_t imm = target_pos - (pc_offset() + pad); |
| DCHECK_EQ(imm & 3, 0); |
| |
| return static_cast<uint64_t>(imm); |
| } |
| |
| uint64_t Assembler::branch_long_offset(Label* L) { |
| int64_t target_pos; |
| |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| return kEndOfJumpChain; |
| } |
| } |
| int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset); |
| DCHECK_EQ(offset & 3, 0); |
| |
| return static_cast<uint64_t>(offset); |
| } |
| |
| int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) { |
| int32_t target_pos; |
| int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0; |
| |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); |
| L->link_to(pc_offset() + pad); |
| } else { |
| L->link_to(pc_offset() + pad); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| return kEndOfChain; |
| } |
| } |
| |
| int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad); |
| DCHECK(is_intn(offset, bits + 2)); |
| DCHECK_EQ(offset & 3, 0); |
| |
| return offset; |
| } |
| |
| void Assembler::label_at_put(Label* L, int at_offset) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| int32_t imm18 = target_pos - at_offset; |
| DCHECK_EQ(imm18 & 3, 0); |
| int32_t imm16 = imm18 >> 2; |
| DCHECK(is_int16(imm16)); |
| instr_at_put(at_offset, (imm16 & kImm16Mask)); |
| } else { |
| target_pos = kEndOfChain; |
| instr_at_put(at_offset, 0); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| } |
| L->link_to(at_offset); |
| } |
| } |
| |
| //------- Branch and jump instructions -------- |
| |
| void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); } |
| |
| void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); } |
| |
| void Assembler::bc(int32_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::balc(int32_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::beq(Register rs, Register rt, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BEQ, rs, rt, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bgez(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BGEZ, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bgezc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bgeuc(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| DCHECK(rt != zero_reg); |
| DCHECK(rs.code() != rt.code()); |
| GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bgec(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| DCHECK(rt != zero_reg); |
| DCHECK(rs.code() != rt.code()); |
| GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bgezal(Register rs, int16_t offset) { |
| DCHECK(kArchVariant != kMips64r6 || rs == zero_reg); |
| DCHECK(rs != ra); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BGEZAL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bgtz(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BGTZ, rs, zero_reg, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bgtzc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| GenInstrImmediate(BGTZL, zero_reg, rt, offset, |
| CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::blez(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BLEZ, rs, zero_reg, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::blezc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| GenInstrImmediate(BLEZL, zero_reg, rt, offset, |
| CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bltzc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bltuc(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| DCHECK(rt != zero_reg); |
| DCHECK(rs.code() != rt.code()); |
| GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bltc(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| DCHECK(rt != zero_reg); |
| DCHECK(rs.code() != rt.code()); |
| GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bltz(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BLTZ, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bltzal(Register rs, int16_t offset) { |
| DCHECK(kArchVariant != kMips64r6 || rs == zero_reg); |
| DCHECK(rs != ra); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BLTZAL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bne(Register rs, Register rt, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BNE, rs, rt, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bovc(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| if (rs.code() >= rt.code()) { |
| GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } else { |
| GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| } |
| |
| void Assembler::bnvc(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| if (rs.code() >= rt.code()) { |
| GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } else { |
| GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| } |
| |
| void Assembler::blezalc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| DCHECK(rt != ra); |
| GenInstrImmediate(BLEZ, zero_reg, rt, offset, |
| CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bgezalc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| DCHECK(rt != ra); |
| GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bgezall(Register rs, int16_t offset) { |
| DCHECK_NE(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| DCHECK(rs != ra); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BGEZALL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::bltzalc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| DCHECK(rt != ra); |
| GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bgtzalc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| DCHECK(rt != ra); |
| GenInstrImmediate(BGTZ, zero_reg, rt, offset, |
| CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::beqzalc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| DCHECK(rt != ra); |
| GenInstrImmediate(ADDI, zero_reg, rt, offset, |
| CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bnezalc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rt != zero_reg); |
| DCHECK(rt != ra); |
| GenInstrImmediate(DADDI, zero_reg, rt, offset, |
| CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::beqc(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0); |
| if (rs.code() < rt.code()) { |
| GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } else { |
| GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| } |
| |
| void Assembler::beqzc(Register rs, int32_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::bnec(Register rs, Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0); |
| if (rs.code() < rt.code()) { |
| GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); |
| } else { |
| GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| } |
| |
| void Assembler::bnezc(Register rs, int32_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs != zero_reg); |
| GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH); |
| } |
| |
| void Assembler::j(int64_t target) { |
| // Deprecated. Use PC-relative jumps instead. |
| UNREACHABLE(); |
| } |
| |
| void Assembler::j(Label* target) { |
| // Deprecated. Use PC-relative jumps instead. |
| UNREACHABLE(); |
| } |
| |
| void Assembler::jal(Label* target) { |
| // Deprecated. Use PC-relative jumps instead. |
| UNREACHABLE(); |
| } |
| |
| void Assembler::jal(int64_t target) { |
| // Deprecated. Use PC-relative jumps instead. |
| UNREACHABLE(); |
| } |
| |
| void Assembler::jr(Register rs) { |
| if (kArchVariant != kMips64r6) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } else { |
| jalr(rs, zero_reg); |
| } |
| } |
| |
| void Assembler::jalr(Register rs, Register rd) { |
| DCHECK(rs.code() != rd.code()); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| void Assembler::jic(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrImmediate(POP66, zero_reg, rt, offset); |
| } |
| |
| void Assembler::jialc(Register rt, int16_t offset) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrImmediate(POP76, zero_reg, rt, offset); |
| } |
| |
| // -------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| |
| void Assembler::addu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); |
| } |
| |
| void Assembler::addiu(Register rd, Register rs, int32_t j) { |
| GenInstrImmediate(ADDIU, rs, rd, j); |
| } |
| |
| void Assembler::subu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); |
| } |
| |
| void Assembler::mul(Register rd, Register rs, Register rt) { |
| if (kArchVariant == kMips64r6) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH); |
| } else { |
| GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); |
| } |
| } |
| |
| void Assembler::muh(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH); |
| } |
| |
| void Assembler::mulu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U); |
| } |
| |
| void Assembler::muhu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U); |
| } |
| |
| void Assembler::dmul(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH); |
| } |
| |
| void Assembler::dmuh(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH); |
| } |
| |
| void Assembler::dmulu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U); |
| } |
| |
| void Assembler::dmuhu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U); |
| } |
| |
| void Assembler::mult(Register rs, Register rt) { |
| DCHECK_NE(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); |
| } |
| |
| void Assembler::multu(Register rs, Register rt) { |
| DCHECK_NE(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); |
| } |
| |
| void Assembler::daddiu(Register rd, Register rs, int32_t j) { |
| GenInstrImmediate(DADDIU, rs, rd, j); |
| } |
| |
| void Assembler::div(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); |
| } |
| |
| void Assembler::div(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD); |
| } |
| |
| void Assembler::mod(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD); |
| } |
| |
| void Assembler::divu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); |
| } |
| |
| void Assembler::divu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U); |
| } |
| |
| void Assembler::modu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U); |
| } |
| |
| void Assembler::daddu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU); |
| } |
| |
| void Assembler::dsubu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU); |
| } |
| |
| void Assembler::dmult(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT); |
| } |
| |
| void Assembler::dmultu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU); |
| } |
| |
| void Assembler::ddiv(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV); |
| } |
| |
| void Assembler::ddiv(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD); |
| } |
| |
| void Assembler::dmod(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD); |
| } |
| |
| void Assembler::ddivu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU); |
| } |
| |
| void Assembler::ddivu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U); |
| } |
| |
| void Assembler::dmodu(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U); |
| } |
| |
| // Logical. |
| |
| void Assembler::and_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); |
| } |
| |
| void Assembler::andi(Register rt, Register rs, int32_t j) { |
| DCHECK(is_uint16(j)); |
| GenInstrImmediate(ANDI, rs, rt, j); |
| } |
| |
| void Assembler::or_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); |
| } |
| |
| void Assembler::ori(Register rt, Register rs, int32_t j) { |
| DCHECK(is_uint16(j)); |
| GenInstrImmediate(ORI, rs, rt, j); |
| } |
| |
| void Assembler::xor_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); |
| } |
| |
| void Assembler::xori(Register rt, Register rs, int32_t j) { |
| DCHECK(is_uint16(j)); |
| GenInstrImmediate(XORI, rs, rt, j); |
| } |
| |
| void Assembler::nor(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); |
| } |
| |
| // Shifts. |
| void Assembler::sll(Register rd, Register rt, uint16_t sa, |
| bool coming_from_nop) { |
| // Don't allow nop instructions in the form sll zero_reg, zero_reg to be |
| // generated using the sll instruction. They must be generated using |
| // nop(int/NopMarkerTypes). |
| DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg)); |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL); |
| } |
| |
| void Assembler::sllv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); |
| } |
| |
| void Assembler::srl(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL); |
| } |
| |
| void Assembler::srlv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); |
| } |
| |
| void Assembler::sra(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA); |
| } |
| |
| void Assembler::srav(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); |
| } |
| |
| void Assembler::rotr(Register rd, Register rt, uint16_t sa) { |
| // Should be called via MacroAssembler::Ror. |
| DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); |
| DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); |
| Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | |
| (rd.code() << kRdShift) | (sa << kSaShift) | SRL; |
| emit(instr); |
| } |
| |
| void Assembler::rotrv(Register rd, Register rt, Register rs) { |
| // Should be called via MacroAssembler::Ror. |
| DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); |
| DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); |
| Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | |
| (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; |
| emit(instr); |
| } |
| |
| void Assembler::dsll(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL); |
| } |
| |
| void Assembler::dsllv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV); |
| } |
| |
| void Assembler::dsrl(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL); |
| } |
| |
| void Assembler::dsrlv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV); |
| } |
| |
| void Assembler::drotr(Register rd, Register rt, uint16_t sa) { |
| DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); |
| Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | |
| (rd.code() << kRdShift) | (sa << kSaShift) | DSRL; |
| emit(instr); |
| } |
| |
| void Assembler::drotr32(Register rd, Register rt, uint16_t sa) { |
| DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); |
| Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | |
| (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32; |
| emit(instr); |
| } |
| |
| void Assembler::drotrv(Register rd, Register rt, Register rs) { |
| DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); |
| Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | |
| (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV; |
| emit(instr); |
| } |
| |
| void Assembler::dsra(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA); |
| } |
| |
| void Assembler::dsrav(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV); |
| } |
| |
| void Assembler::dsll32(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32); |
| } |
| |
| void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32); |
| } |
| |
| void Assembler::dsra32(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32); |
| } |
| |
| void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) { |
| DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); |
| DCHECK_LE(sa, 3); |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift | |
| rd.code() << kRdShift | sa << kSaShift | LSA; |
| emit(instr); |
| } |
| |
| void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) { |
| DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); |
| DCHECK_LE(sa, 3); |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift | |
| rd.code() << kRdShift | sa << kSaShift | DLSA; |
| emit(instr); |
| } |
| |
| // ------------Memory-instructions------------- |
| |
| void Assembler::AdjustBaseAndOffset(MemOperand* src, |
| OffsetAccessType access_type, |
| int second_access_add_to_offset) { |
| // This method is used to adjust the base register and offset pair |
| // for a load/store when the offset doesn't fit into int16_t. |
| // It is assumed that 'base + offset' is sufficiently aligned for memory |
| // operands that are machine word in size or smaller. For doubleword-sized |
| // operands it's assumed that 'base' is a multiple of 8, while 'offset' |
| // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments |
| // and spilled variables on the stack accessed relative to the stack |
| // pointer register). |
| // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8. |
| |
| bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0; |
| bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned; |
| DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7. |
| |
| // is_int16 must be passed a signed value, hence the static cast below. |
| if (is_int16(src->offset()) && |
| (!two_accesses || is_int16(static_cast<int32_t>( |
| src->offset() + second_access_add_to_offset)))) { |
| // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified |
| // value) fits into int16_t. |
| return; |
| } |
| |
| DCHECK(src->rm() != |
| at); // Must not overwrite the register 'base' while loading 'offset'. |
| |
| #ifdef DEBUG |
| // Remember the "(mis)alignment" of 'offset', it will be checked at the end. |
| uint32_t misalignment = src->offset() & (kDoubleSize - 1); |
| #endif |
| |
| // Do not load the whole 32-bit 'offset' if it can be represented as |
| // a sum of two 16-bit signed offsets. This can save an instruction or two. |
| // To simplify matters, only do this for a symmetric range of offsets from |
| // about -64KB to about +64KB, allowing further addition of 4 when accessing |
| // 64-bit variables with two 32-bit accesses. |
| constexpr int32_t kMinOffsetForSimpleAdjustment = |
| 0x7FF8; // Max int16_t that's a multiple of 8. |
| constexpr int32_t kMaxOffsetForSimpleAdjustment = |
| 2 * kMinOffsetForSimpleAdjustment; |
| |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) { |
| daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment); |
| src->offset_ -= kMinOffsetForSimpleAdjustment; |
| } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() && |
| src->offset() < 0) { |
| daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment); |
| src->offset_ += kMinOffsetForSimpleAdjustment; |
| } else if (kArchVariant == kMips64r6) { |
| // On r6 take advantage of the daui instruction, e.g.: |
| // daui at, base, offset_high |
| // [dahi at, 1] // When `offset` is close to +2GB. |
| // lw reg_lo, offset_low(at) |
| // [lw reg_hi, (offset_low+4)(at)] // If misaligned 64-bit load. |
| // or when offset_low+4 overflows int16_t: |
| // daui at, base, offset_high |
| // daddiu at, at, 8 |
| // lw reg_lo, (offset_low-8)(at) |
| // lw reg_hi, (offset_low-4)(at) |
| int16_t offset_low = static_cast<uint16_t>(src->offset()); |
| int32_t offset_low32 = offset_low; |
| int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16); |
| bool increment_hi16 = offset_low < 0; |
| bool overflow_hi16 = false; |
| |
| if (increment_hi16) { |
| offset_high++; |
| overflow_hi16 = (offset_high == -32768); |
| } |
| daui(scratch, src->rm(), static_cast<uint16_t>(offset_high)); |
| |
| if (overflow_hi16) { |
| dahi(scratch, 1); |
| } |
| |
| if (two_accesses && !is_int16(static_cast<int32_t>( |
| offset_low32 + second_access_add_to_offset))) { |
| // Avoid overflow in the 16-bit offset of the load/store instruction when |
| // adding 4. |
| daddiu(scratch, scratch, kDoubleSize); |
| offset_low32 -= kDoubleSize; |
| } |
| |
| src->offset_ = offset_low32; |
| } else { |
| // Do not load the whole 32-bit 'offset' if it can be represented as |
| // a sum of three 16-bit signed offsets. This can save an instruction. |
| // To simplify matters, only do this for a symmetric range of offsets from |
| // about -96KB to about +96KB, allowing further addition of 4 when accessing |
| // 64-bit variables with two 32-bit accesses. |
| constexpr int32_t kMinOffsetForMediumAdjustment = |
| 2 * kMinOffsetForSimpleAdjustment; |
| constexpr int32_t kMaxOffsetForMediumAdjustment = |
| 3 * kMinOffsetForSimpleAdjustment; |
| if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) { |
| daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2); |
| daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2); |
| src->offset_ -= kMinOffsetForMediumAdjustment; |
| } else if (-kMaxOffsetForMediumAdjustment <= src->offset() && |
| src->offset() < 0) { |
| daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2); |
| daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2); |
| src->offset_ += kMinOffsetForMediumAdjustment; |
| } else { |
| // Now that all shorter options have been exhausted, load the full 32-bit |
| // offset. |
| int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize); |
| lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask); |
| ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset. |
| daddu(scratch, scratch, src->rm()); |
| src->offset_ -= loaded_offset; |
| } |
| } |
| src->rm_ = scratch; |
| |
| DCHECK(is_int16(src->offset())); |
| if (two_accesses) { |
| DCHECK(is_int16( |
| static_cast<int32_t>(src->offset() + second_access_add_to_offset))); |
| } |
| DCHECK(misalignment == (src->offset() & (kDoubleSize - 1))); |
| } |
| |
| void Assembler::lb(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lbu(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lh(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lhu(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lw(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lwu(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lwl(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::lwr(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::sb(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::sh(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::sw(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::swl(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::swr(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::ll(Register rd, const MemOperand& rs) { |
| if (kArchVariant == kMips64r6) { |
| DCHECK(is_int9(rs.offset_)); |
| GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6); |
| } else { |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| DCHECK(is_int16(rs.offset_)); |
| GenInstrImmediate(LL, rs.rm(), rd, rs.offset_); |
| } |
| } |
| |
| void Assembler::lld(Register rd, const MemOperand& rs) { |
| if (kArchVariant == kMips64r6) { |
| DCHECK(is_int9(rs.offset_)); |
| GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6); |
| } else { |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| DCHECK(is_int16(rs.offset_)); |
| GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_); |
| } |
| } |
| |
| void Assembler::sc(Register rd, const MemOperand& rs) { |
| if (kArchVariant == kMips64r6) { |
| DCHECK(is_int9(rs.offset_)); |
| GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6); |
| } else { |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(SC, rs.rm(), rd, rs.offset_); |
| } |
| } |
| |
| void Assembler::scd(Register rd, const MemOperand& rs) { |
| if (kArchVariant == kMips64r6) { |
| DCHECK(is_int9(rs.offset_)); |
| GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6); |
| } else { |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_); |
| } |
| } |
| |
| void Assembler::lui(Register rd, int32_t j) { |
| DCHECK(is_uint16(j) || is_int16(j)); |
| GenInstrImmediate(LUI, zero_reg, rd, j); |
| } |
| |
| void Assembler::aui(Register rt, Register rs, int32_t j) { |
| // This instruction uses same opcode as 'lui'. The difference in encoding is |
| // 'lui' has zero reg. for rs field. |
| DCHECK(is_uint16(j)); |
| GenInstrImmediate(LUI, rs, rt, j); |
| } |
| |
| void Assembler::daui(Register rt, Register rs, int32_t j) { |
| DCHECK(is_uint16(j)); |
| DCHECK(rs != zero_reg); |
| GenInstrImmediate(DAUI, rs, rt, j); |
| } |
| |
| void Assembler::dahi(Register rs, int32_t j) { |
| DCHECK(is_uint16(j)); |
| GenInstrImmediate(REGIMM, rs, DAHI, j); |
| } |
| |
| void Assembler::dati(Register rs, int32_t j) { |
| DCHECK(is_uint16(j)); |
| GenInstrImmediate(REGIMM, rs, DATI, j); |
| } |
| |
| void Assembler::ldl(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::ldr(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::sdl(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::sdr(Register rd, const MemOperand& rs) { |
| DCHECK(is_int16(rs.offset_)); |
| DCHECK_EQ(kArchVariant, kMips64r2); |
| GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::ld(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LD, rs.rm(), rd, rs.offset_); |
| } |
| |
| void Assembler::sd(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SD, rs.rm(), rd, rs.offset_); |
| } |
| |
| // ---------PC-Relative instructions----------- |
| |
| void Assembler::addiupc(Register rs, int32_t imm19) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.is_valid() && is_int19(imm19)); |
| uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask); |
| GenInstrImmediate(PCREL, rs, imm21); |
| } |
| |
| void Assembler::lwpc(Register rs, int32_t offset19) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.is_valid() && is_int19(offset19)); |
| uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask); |
| GenInstrImmediate(PCREL, rs, imm21); |
| } |
| |
| void Assembler::lwupc(Register rs, int32_t offset19) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.is_valid() && is_int19(offset19)); |
| uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask); |
| GenInstrImmediate(PCREL, rs, imm21); |
| } |
| |
| void Assembler::ldpc(Register rs, int32_t offset18) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.is_valid() && is_int18(offset18)); |
| uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask); |
| GenInstrImmediate(PCREL, rs, imm21); |
| } |
| |
| void Assembler::auipc(Register rs, int16_t imm16) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.is_valid()); |
| uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask); |
| GenInstrImmediate(PCREL, rs, imm21); |
| } |
| |
| void Assembler::aluipc(Register rs, int16_t imm16) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK(rs.is_valid()); |
| uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask); |
| GenInstrImmediate(PCREL, rs, imm21); |
| } |
| |
| // -------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void Assembler::break_(uint32_t code, bool break_as_stop) { |
| DCHECK_EQ(code & ~0xFFFFF, 0); |
| // We need to invalidate breaks that could be stops as well because the |
| // simulator expects a char pointer after the stop instruction. |
| // See constants-mips.h for explanation. |
| DCHECK( |
| (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) || |
| (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode))); |
| Instr break_instr = SPECIAL | BREAK | (code << 6); |
| emit(break_instr); |
| } |
| |
| void Assembler::stop(uint32_t code) { |
| DCHECK_GT(code, kMaxWatchpointCode); |
| DCHECK_LE(code, kMaxStopCode); |
| #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64) |
| break_(0x54321); |
| #else // V8_HOST_ARCH_MIPS |
| break_(code, true); |
| #endif |
| } |
| |
| void Assembler::tge(Register rs, Register rt, uint16_t code) { |
| DCHECK(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| void Assembler::tgeu(Register rs, Register rt, uint16_t code) { |
| DCHECK(is_uint10(code)); |
| Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift | |
| code << 6; |
| emit(instr); |
| } |
| |
| void Assembler::tlt(Register rs, Register rt, uint16_t code) { |
| DCHECK(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| void Assembler::tltu(Register rs, Register rt, uint16_t code) { |
| DCHECK(is_uint10(code)); |
| Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | |
| code << 6; |
| emit(instr); |
| } |
| |
| void Assembler::teq(Register rs, Register rt, uint16_t code) { |
| DCHECK(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| void Assembler::tne(Register rs, Register rt, uint16_t code) { |
| DCHECK(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| void Assembler::sync() { |
| Instr sync_instr = SPECIAL | SYNC; |
| emit(sync_instr); |
| } |
| |
| // Move from HI/LO register. |
| |
| void Assembler::mfhi(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); |
| } |
| |
| void Assembler::mflo(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); |
| } |
| |
| // Set on less than instructions. |
| void Assembler::slt(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); |
| } |
| |
| void Assembler::sltu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); |
| } |
| |
| void Assembler::slti(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTI, rs, rt, j); |
| } |
| |
| void Assembler::sltiu(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTIU, rs, rt, j); |
| } |
| |
| // Conditional move. |
| void Assembler::movz(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); |
| } |
| |
| void Assembler::movn(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); |
| } |
| |
| void Assembler::movt(Register rd, Register rs, uint16_t cc) { |
| Register rt = Register::from_code((cc & 0x0007) << 2 | 1); |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
| } |
| |
| void Assembler::movf(Register rd, Register rs, uint16_t cc) { |
| Register rt = Register::from_code((cc & 0x0007) << 2 | 0); |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
| } |
| |
| void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) { |
| min(S, fd, fs, ft); |
| } |
| |
| void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| min(D, fd, fs, ft); |
| } |
| |
| void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) { |
| max(S, fd, fs, ft); |
| } |
| |
| void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| max(D, fd, fs, ft); |
| } |
| |
| void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) { |
| mina(S, fd, fs, ft); |
| } |
| |
| void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| mina(D, fd, fs, ft); |
| } |
| |
| void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) { |
| maxa(S, fd, fs, ft); |
| } |
| |
| void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| maxa(D, fd, fs, ft); |
| } |
| |
| void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs, |
| FPURegister ft) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK((fmt == D) || (fmt == S)); |
| GenInstrRegister(COP1, fmt, ft, fs, fd, MAX); |
| } |
| |
| void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs, |
| FPURegister ft) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| DCHECK((fmt == D) || (fmt == S)); |
| GenInstrRegister(COP1, fmt, ft, fs, fd, MIN); |
| } |
| |
| // GPR. |
| void Assembler::seleqz(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S); |
| } |
| |
| // GPR. |
| void Assembler::selnez(Register rd, Register rs, Register rt) { |
| DCHECK_EQ(kArchVariant, kMips64r6); |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S); |
| } |
| |
| // Bit twiddling. |
| void Assembler::clz(Register rd, Register rs) { |
| if (kArchVariant != kMips64r6) { |
| // clz instr requires same GPR number in 'rd' and 'rt' fields. |
| GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); |
| } else { |
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6); |
| } |
| } |
| |
| void Assembler::dclz(Register rd, Register rs) { |
| if (kArchVariant != kMips64r6) { |
| // dclz instr requires same GPR number in 'rd' and 'rt' fields. |
| GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ); |
| } else { |
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6); |
| } |
| } |
| |
| void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Ins. |
| // ins instr has 'rt' field as dest, and two uint5: msb, lsb. |
| DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6)); |
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); |
| } |
| |
| void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Dins. |
| // dins instr has 'rt' field as dest, and two uint5: msb, lsb. |
| DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); |
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS); |
| } |
| |
| void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Dins. |
| // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb. |
| DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); |
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM); |
| } |
| |
| void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Dins. |
| // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32. |
| DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); |
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU); |
| } |
| |
| void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Ext. |
| // ext instr has 'rt' field as dest, and two uint5: msbd, lsb. |
| DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); |
| GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); |
| } |
| |
| void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Dext. |
| // dext instr has 'rt' field as dest, and two uint5: msbd, lsb. |
| DCHECK |