| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H |
| #error This header must be included via macro-assembler.h |
| #endif |
| |
| #ifndef V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_ |
| #define V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_ |
| |
| #include "src/codegen/assembler.h" |
| #include "src/codegen/mips64/assembler-mips64.h" |
| #include "src/common/globals.h" |
| #include "src/objects/tagged-index.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations. |
| enum class AbortReason : uint8_t; |
| |
| // Reserved Register Usage Summary. |
| // |
| // Registers t8, t9, and at are reserved for use by the MacroAssembler. |
| // |
| // The programmer should know that the MacroAssembler may clobber these three, |
| // but won't touch other registers except in special cases. |
| // |
| // Per the MIPS ABI, register t9 must be used for indirect function call |
| // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when |
| // trying to update gp register for position-independent-code. Whenever |
| // MIPS generated code calls C code, it must be via t9 register. |
| |
| // Flags used for LeaveExitFrame function. |
| enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false }; |
| |
| // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. |
| enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT }; |
| |
| // Flags used for the li macro-assembler function. |
| enum LiFlags { |
| // If the constant value can be represented in just 16 bits, then |
| // optimize the li to use a single instruction, rather than lui/ori/dsll |
| // sequence. A number of other optimizations that emits less than |
| // maximum number of instructions exists. |
| OPTIMIZE_SIZE = 0, |
| // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4 |
| // instructions for release 6 (lui/ori/dahi/dati), even if the constant |
| // could be loaded with just one, so that this value is patchable later. |
| CONSTANT_SIZE = 1, |
| // For address loads only 4 instruction are required. Used to mark |
| // constant load that will be used as address without relocation |
| // information. It ensures predictable code size, so specific sites |
| // in code are patchable. |
| ADDRESS_LOAD = 2 |
| }; |
| |
| enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, |
| Register reg3 = no_reg, |
| Register reg4 = no_reg, |
| Register reg5 = no_reg, |
| Register reg6 = no_reg); |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| #define SmiWordOffset(offset) (offset + kPointerSize / 2) |
| #else |
| #define SmiWordOffset(offset) offset |
| #endif |
| |
| // Generate a MemOperand for loading a field from an object. |
| inline MemOperand FieldMemOperand(Register object, int offset) { |
| return MemOperand(object, offset - kHeapObjectTag); |
| } |
| |
| // Generate a MemOperand for storing arguments 5..N on the stack |
| // when calling CallCFunction(). |
| // TODO(plind): Currently ONLY used for O32. Should be fixed for |
| // n64, and used in RegExp code, and other places |
| // with more than 8 arguments. |
| inline MemOperand CFunctionArgumentOperand(int index) { |
| DCHECK_GT(index, kCArgSlotCount); |
| // Argument 5 takes the slot just past the four Arg-slots. |
| int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; |
| return MemOperand(sp, offset); |
| } |
| |
| class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { |
| public: |
| using TurboAssemblerBase::TurboAssemblerBase; |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { |
| // Out-of-line constant pool not implemented on mips. |
| UNREACHABLE(); |
| } |
| void LeaveFrame(StackFrame::Type type); |
| |
| void AllocateStackSpace(Register bytes) { Dsubu(sp, sp, bytes); } |
| |
| void AllocateStackSpace(int bytes) { |
| DCHECK_GE(bytes, 0); |
| if (bytes == 0) return; |
| Dsubu(sp, sp, Operand(bytes)); |
| } |
| |
| // Generates function and stub prologue code. |
| void StubPrologue(StackFrame::Type type); |
| void Prologue(); |
| |
| void InitializeRootRegister() { |
| ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); |
| li(kRootRegister, Operand(isolate_root)); |
| } |
| |
| // Jump unconditionally to given label. |
| // We NEED a nop in the branch delay slot, as it used by v8, for example in |
| // CodeGenerator::ProcessDeferred(). |
| // Currently the branch delay slot is filled by the MacroAssembler. |
| // Use rather b(Label) for code generation. |
| void jmp(Label* L) { Branch(L); } |
| |
| // ------------------------------------------------------------------------- |
| // Debugging. |
| |
| void Trap(); |
| void DebugBreak(); |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, AbortReason reason, Register rs, Operand rt); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, AbortReason reason, Register rs, Operand rt); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(AbortReason msg); |
| |
| // Arguments macros. |
| #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2 |
| #define COND_ARGS cond, r1, r2 |
| |
| // Cases when relocation is not needed. |
| #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ |
| void Name(target_type target, BranchDelaySlot bd = PROTECT); \ |
| inline void Name(BranchDelaySlot bd, target_type target) { \ |
| Name(target, bd); \ |
| } \ |
| void Name(target_type target, COND_TYPED_ARGS, \ |
| BranchDelaySlot bd = PROTECT); \ |
| inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \ |
| Name(target, COND_ARGS, bd); \ |
| } |
| |
| #define DECLARE_BRANCH_PROTOTYPES(Name) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, int32_t) |
| |
| DECLARE_BRANCH_PROTOTYPES(Branch) |
| DECLARE_BRANCH_PROTOTYPES(BranchAndLink) |
| DECLARE_BRANCH_PROTOTYPES(BranchShort) |
| |
| #undef DECLARE_BRANCH_PROTOTYPES |
| #undef COND_TYPED_ARGS |
| #undef COND_ARGS |
| |
| // Floating point branches |
| void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) { |
| CompareF(S, cc, cmp1, cmp2); |
| } |
| |
| void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) { |
| CompareIsNanF(S, cmp1, cmp2); |
| } |
| |
| void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) { |
| CompareF(D, cc, cmp1, cmp2); |
| } |
| |
| void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) { |
| CompareIsNanF(D, cmp1, cmp2); |
| } |
| |
| void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT); |
| void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT); |
| |
| void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT); |
| void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT); |
| |
| // MSA branches |
| void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond, |
| MSARegister wt, BranchDelaySlot bd = PROTECT); |
| |
| void BranchLong(int32_t offset, BranchDelaySlot bdslot = PROTECT); |
| void Branch(Label* L, Condition cond, Register rs, RootIndex index, |
| BranchDelaySlot bdslot = PROTECT); |
| |
| static int InstrCountForLi64Bit(int64_t value); |
| inline void LiLower32BitHelper(Register rd, Operand j); |
| void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); |
| // Load int32 in the rd register. |
| void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); |
| inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) { |
| li(rd, Operand(j), mode); |
| } |
| // inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) { |
| // li(rd, Operand(static_cast<int64_t>(j)), mode); |
| // } |
| void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE); |
| void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE); |
| void li(Register dst, const StringConstantBase* string, |
| LiFlags mode = OPTIMIZE_SIZE); |
| |
| void LoadFromConstantsTable(Register destination, int constant_index) final; |
| void LoadRootRegisterOffset(Register destination, intptr_t offset) final; |
| void LoadRootRelative(Register destination, int32_t offset) final; |
| |
| inline void Move(Register output, MemOperand operand) { Ld(output, operand); } |
| |
| // Jump, Call, and Ret pseudo instructions implementing inter-working. |
| #define COND_ARGS \ |
| Condition cond = al, Register rs = zero_reg, \ |
| const Operand &rt = Operand(zero_reg), \ |
| BranchDelaySlot bd = PROTECT |
| |
| void Jump(Register target, COND_ARGS); |
| void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| // Deffer from li, this method save target to the memory, and then load |
| // it to register use ld, it can be used in wasm jump table for concurrent |
| // patching. |
| void PatchAndJump(Address target); |
| void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(const ExternalReference& reference); |
| void Call(Register target, COND_ARGS); |
| void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
| COND_ARGS); |
| void Call(Label* target); |
| void LoadAddress(Register dst, Label* target); |
| |
| // Load the builtin given by the Smi in |builtin_index| into the same |
| // register. |
| void LoadEntryFromBuiltinIndex(Register builtin); |
| void LoadEntryFromBuiltin(Builtin builtin, Register destination); |
| MemOperand EntryFromBuiltinAsOperand(Builtin builtin); |
| |
| void CallBuiltinByIndex(Register builtin); |
| void CallBuiltin(Builtin builtin); |
| |
| void LoadCodeObjectEntry(Register destination, Register code_object); |
| void CallCodeObject(Register code_object); |
| void JumpCodeObject(Register code_object, |
| JumpMode jump_mode = JumpMode::kJump); |
| |
| // Generates an instruction sequence s.t. the return address points to the |
| // instruction following the call. |
| // The return address on the stack is used by frame iteration. |
| void StoreReturnAddressAndCall(Register target); |
| |
| void CallForDeoptimization(Builtin target, int deopt_id, Label* exit, |
| DeoptimizeKind kind, Label* ret, |
| Label* jump_deoptimization_entry_label); |
| |
| void Ret(COND_ARGS); |
| inline void Ret(BranchDelaySlot bd, Condition cond = al, |
| Register rs = zero_reg, |
| const Operand& rt = Operand(zero_reg)) { |
| Ret(cond, rs, rt, bd); |
| } |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the sp register. |
| void Drop(int count, Condition cond = cc_always, Register reg = no_reg, |
| const Operand& op = Operand(no_reg)); |
| |
| enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver }; |
| enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes }; |
| void DropArguments(Register count, ArgumentsCountType type, |
| ArgumentsCountMode mode, Register scratch = no_reg); |
| void DropArgumentsAndPushNewReceiver(Register argc, Register receiver, |
| ArgumentsCountType type, |
| ArgumentsCountMode mode, |
| Register scratch = no_reg); |
| |
| // Trivial case of DropAndRet that utilizes the delay slot. |
| void DropAndRet(int drop); |
| |
| void DropAndRet(int drop, Condition cond, Register reg, const Operand& op); |
| |
| void Ld(Register rd, const MemOperand& rs); |
| void Sd(Register rd, const MemOperand& rs); |
| |
| void push(Register src) { |
| Daddu(sp, sp, Operand(-kPointerSize)); |
| Sd(src, MemOperand(sp, 0)); |
| } |
| void Push(Register src) { push(src); } |
| void Push(Handle<HeapObject> handle); |
| void Push(Smi smi); |
| |
| // Push two registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2) { |
| Dsubu(sp, sp, Operand(2 * kPointerSize)); |
| Sd(src1, MemOperand(sp, 1 * kPointerSize)); |
| Sd(src2, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push three registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3) { |
| Dsubu(sp, sp, Operand(3 * kPointerSize)); |
| Sd(src1, MemOperand(sp, 2 * kPointerSize)); |
| Sd(src2, MemOperand(sp, 1 * kPointerSize)); |
| Sd(src3, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push four registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4) { |
| Dsubu(sp, sp, Operand(4 * kPointerSize)); |
| Sd(src1, MemOperand(sp, 3 * kPointerSize)); |
| Sd(src2, MemOperand(sp, 2 * kPointerSize)); |
| Sd(src3, MemOperand(sp, 1 * kPointerSize)); |
| Sd(src4, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push five registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4, |
| Register src5) { |
| Dsubu(sp, sp, Operand(5 * kPointerSize)); |
| Sd(src1, MemOperand(sp, 4 * kPointerSize)); |
| Sd(src2, MemOperand(sp, 3 * kPointerSize)); |
| Sd(src3, MemOperand(sp, 2 * kPointerSize)); |
| Sd(src4, MemOperand(sp, 1 * kPointerSize)); |
| Sd(src5, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| void Push(Register src, Condition cond, Register tst1, Register tst2) { |
| // Since we don't have conditional execution we use a Branch. |
| Branch(3, cond, tst1, Operand(tst2)); |
| Dsubu(sp, sp, Operand(kPointerSize)); |
| Sd(src, MemOperand(sp, 0)); |
| } |
| |
| enum PushArrayOrder { kNormal, kReverse }; |
| void PushArray(Register array, Register size, Register scratch, |
| Register scratch2, PushArrayOrder order = kNormal); |
| |
| void MaybeSaveRegisters(RegList registers); |
| void MaybeRestoreRegisters(RegList registers); |
| |
| void CallEphemeronKeyBarrier(Register object, Register slot_address, |
| SaveFPRegsMode fp_mode); |
| |
| void CallRecordWriteStubSaveRegisters( |
| Register object, Register slot_address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| StubCallMode mode = StubCallMode::kCallBuiltinPointer); |
| void CallRecordWriteStub( |
| Register object, Register slot_address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| StubCallMode mode = StubCallMode::kCallBuiltinPointer); |
| |
| // Push multiple registers on the stack. |
| // Registers are saved in numerical order, with higher numbered registers |
| // saved in higher memory addresses. |
| void MultiPush(RegList regs); |
| void MultiPushFPU(RegList regs); |
| void MultiPushMSA(RegList regs); |
| |
| // Calculate how much stack space (in bytes) are required to store caller |
| // registers excluding those specified in the arguments. |
| int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg) const; |
| |
| // Push caller saved registers on the stack, and return the number of bytes |
| // stack pointer is adjusted. |
| int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg); |
| // Restore caller saved registers from the stack, and return the number of |
| // bytes stack pointer is adjusted. |
| int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg); |
| |
| void pop(Register dst) { |
| Ld(dst, MemOperand(sp, 0)); |
| Daddu(sp, sp, Operand(kPointerSize)); |
| } |
| void Pop(Register dst) { pop(dst); } |
| |
| // Pop two registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2) { |
| DCHECK(src1 != src2); |
| Ld(src2, MemOperand(sp, 0 * kPointerSize)); |
| Ld(src1, MemOperand(sp, 1 * kPointerSize)); |
| Daddu(sp, sp, 2 * kPointerSize); |
| } |
| |
| // Pop three registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2, Register src3) { |
| Ld(src3, MemOperand(sp, 0 * kPointerSize)); |
| Ld(src2, MemOperand(sp, 1 * kPointerSize)); |
| Ld(src1, MemOperand(sp, 2 * kPointerSize)); |
| Daddu(sp, sp, 3 * kPointerSize); |
| } |
| |
| void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); } |
| |
| // Pops multiple values from the stack and load them in the |
| // registers specified in regs. Pop order is the opposite as in MultiPush. |
| void MultiPop(RegList regs); |
| void MultiPopFPU(RegList regs); |
| void MultiPopMSA(RegList regs); |
| |
| #define DEFINE_INSTRUCTION(instr) \ |
| void instr(Register rd, Register rs, const Operand& rt); \ |
| void instr(Register rd, Register rs, Register rt) { \ |
| instr(rd, rs, Operand(rt)); \ |
| } \ |
| void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); } |
| |
| #define DEFINE_INSTRUCTION2(instr) \ |
| void instr(Register rs, const Operand& rt); \ |
| void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \ |
| void instr(Register rs, int32_t j) { instr(rs, Operand(j)); } |
| |
| DEFINE_INSTRUCTION(Addu) |
| DEFINE_INSTRUCTION(Daddu) |
| DEFINE_INSTRUCTION(Div) |
| DEFINE_INSTRUCTION(Divu) |
| DEFINE_INSTRUCTION(Ddivu) |
| DEFINE_INSTRUCTION(Mod) |
| DEFINE_INSTRUCTION(Modu) |
| DEFINE_INSTRUCTION(Ddiv) |
| DEFINE_INSTRUCTION(Subu) |
| DEFINE_INSTRUCTION(Dsubu) |
| DEFINE_INSTRUCTION(Dmod) |
| DEFINE_INSTRUCTION(Dmodu) |
| DEFINE_INSTRUCTION(Mul) |
| DEFINE_INSTRUCTION(Mulh) |
| DEFINE_INSTRUCTION(Mulhu) |
| DEFINE_INSTRUCTION(Dmul) |
| DEFINE_INSTRUCTION(Dmulh) |
| DEFINE_INSTRUCTION2(Mult) |
| DEFINE_INSTRUCTION2(Dmult) |
| DEFINE_INSTRUCTION2(Multu) |
| DEFINE_INSTRUCTION2(Dmultu) |
| DEFINE_INSTRUCTION2(Div) |
| DEFINE_INSTRUCTION2(Ddiv) |
| DEFINE_INSTRUCTION2(Divu) |
| DEFINE_INSTRUCTION2(Ddivu) |
| |
| DEFINE_INSTRUCTION(And) |
| DEFINE_INSTRUCTION(Or) |
| DEFINE_INSTRUCTION(Xor) |
| DEFINE_INSTRUCTION(Nor) |
| DEFINE_INSTRUCTION2(Neg) |
| |
| DEFINE_INSTRUCTION(Slt) |
| DEFINE_INSTRUCTION(Sltu) |
| DEFINE_INSTRUCTION(Sle) |
| DEFINE_INSTRUCTION(Sleu) |
| DEFINE_INSTRUCTION(Sgt) |
| DEFINE_INSTRUCTION(Sgtu) |
| DEFINE_INSTRUCTION(Sge) |
| DEFINE_INSTRUCTION(Sgeu) |
| |
| // MIPS32 R2 instruction macro. |
| DEFINE_INSTRUCTION(Ror) |
| DEFINE_INSTRUCTION(Dror) |
| |
| #undef DEFINE_INSTRUCTION |
| #undef DEFINE_INSTRUCTION2 |
| #undef DEFINE_INSTRUCTION3 |
| |
| void SmiUntag(Register dst, const MemOperand& src); |
| void SmiUntag(Register dst, Register src) { |
| if (SmiValuesAre32Bits()) { |
| dsra32(dst, src, kSmiShift - 32); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| sra(dst, src, kSmiShift); |
| } |
| } |
| |
| void SmiUntag(Register reg) { SmiUntag(reg, reg); } |
| |
| // Left-shifted from int32 equivalent of Smi. |
| void SmiScale(Register dst, Register src, int scale) { |
| if (SmiValuesAre32Bits()) { |
| // The int portion is upper 32-bits of 64-bit word. |
| dsra(dst, src, kSmiShift - scale); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| DCHECK_GE(scale, kSmiTagSize); |
| sll(dst, src, scale - kSmiTagSize); |
| } |
| } |
| |
| // On MIPS64, we should sign-extend 32-bit values. |
| void SmiToInt32(Register smi) { |
| if (FLAG_enable_slow_asserts) { |
| AssertSmi(smi); |
| } |
| DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); |
| SmiUntag(smi); |
| } |
| |
| // Abort execution if argument is a smi, enabled via --debug-code. |
| void AssertNotSmi(Register object); |
| void AssertSmi(Register object); |
| |
| int CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments); |
| |
| // Before calling a C-function from generated code, align arguments on stack |
| // and add space for the four mips argument slots. |
| // After aligning the frame, non-register arguments must be stored on the |
| // stack, after the argument-slots using helper: CFunctionArgumentOperand(). |
| // The argument count assumes all arguments are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, |
| Register scratch); |
| void PrepareCallCFunction(int num_reg_arguments, Register scratch); |
| |
| // Arguments 1-4 are placed in registers a0 through a3 respectively. |
| // Arguments 5..n are stored to stack using following: |
| // Sw(a4, CFunctionArgumentOperand(5)); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| void CallCFunction(ExternalReference function, int num_reg_arguments, |
| int num_double_arguments); |
| void CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments); |
| void MovFromFloatResult(DoubleRegister dst); |
| void MovFromFloatParameter(DoubleRegister dst); |
| |
| // There are two ways of passing double arguments on MIPS, depending on |
| // whether soft or hard floating point ABI is used. These functions |
| // abstract parameter passing for the three different ways we call |
| // C functions from generated code. |
| void MovToFloatParameter(DoubleRegister src); |
| void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); |
| void MovToFloatResult(DoubleRegister src); |
| |
| // See comments at the beginning of Builtins::Generate_CEntry. |
| inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } |
| inline void PrepareCEntryFunction(const ExternalReference& ref) { |
| li(a1, ref); |
| } |
| |
| void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, |
| Label* condition_met); |
| #undef COND_ARGS |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. |
| // Exits with 'result' holding the answer. |
| void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, |
| DoubleRegister double_input, StubCallMode stub_mode); |
| |
| // Conditional move. |
| void Movz(Register rd, Register rs, Register rt); |
| void Movn(Register rd, Register rs, Register rt); |
| void Movt(Register rd, Register rs, uint16_t cc = 0); |
| void Movf(Register rd, Register rs, uint16_t cc = 0); |
| |
| void LoadZeroIfFPUCondition(Register dest); |
| void LoadZeroIfNotFPUCondition(Register dest); |
| |
| void LoadZeroIfConditionNotZero(Register dest, Register condition); |
| void LoadZeroIfConditionZero(Register dest, Register condition); |
| void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt, |
| Condition cond); |
| |
| void Clz(Register rd, Register rs); |
| void Dclz(Register rd, Register rs); |
| void Ctz(Register rd, Register rs); |
| void Dctz(Register rd, Register rs); |
| void Popcnt(Register rd, Register rs); |
| void Dpopcnt(Register rd, Register rs); |
| |
| // MIPS64 R2 instruction macro. |
| void Ext(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void Dext(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void Ins(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void Dins(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void ExtractBits(Register dest, Register source, Register pos, int size, |
| bool sign_extend = false); |
| void InsertBits(Register dest, Register source, Register pos, int size); |
| void Neg_s(FPURegister fd, FPURegister fs); |
| void Neg_d(FPURegister fd, FPURegister fs); |
| |
| // MIPS64 R6 instruction macros. |
| void Bovc(Register rt, Register rs, Label* L); |
| void Bnvc(Register rt, Register rs, Label* L); |
| |
| // Convert single to unsigned word. |
| void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch); |
| void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch); |
| |
| // Change endianness |
| void ByteSwapSigned(Register dest, Register src, int operand_size); |
| void ByteSwapUnsigned(Register dest, Register src, int operand_size); |
| |
| void Ulh(Register rd, const MemOperand& rs); |
| void Ulhu(Register rd, const MemOperand& rs); |
| void Ush(Register rd, const MemOperand& rs, Register scratch); |
| |
| void Ulw(Register rd, const MemOperand& rs); |
| void Ulwu(Register rd, const MemOperand& rs); |
| void Usw(Register rd, const MemOperand& rs); |
| |
| void Uld(Register rd, const MemOperand& rs); |
| void Usd(Register rd, const MemOperand& rs); |
| |
| void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| |
| void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| |
| void Lb(Register rd, const MemOperand& rs); |
| void Lbu(Register rd, const MemOperand& rs); |
| void Sb(Register rd, const MemOperand& rs); |
| |
| void Lh(Register rd, const MemOperand& rs); |
| void Lhu(Register rd, const MemOperand& rs); |
| void Sh(Register rd, const MemOperand& rs); |
| |
| void Lw(Register rd, const MemOperand& rs); |
| void Lwu(Register rd, const MemOperand& rs); |
| void Sw(Register rd, const MemOperand& rs); |
| |
| void Lwc1(FPURegister fd, const MemOperand& src); |
| void Swc1(FPURegister fs, const MemOperand& dst); |
| |
| void Ldc1(FPURegister fd, const MemOperand& src); |
| void Sdc1(FPURegister fs, const MemOperand& dst); |
| |
| void Ll(Register rd, const MemOperand& rs); |
| void Sc(Register rd, const MemOperand& rs); |
| |
| void Lld(Register rd, const MemOperand& rs); |
| void Scd(Register rd, const MemOperand& rs); |
| |
| // Perform a floating-point min or max operation with the |
| // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt. |
| // Some cases, typically NaNs or +/-0.0, are expected to be rare and are |
| // handled in out-of-line code. The specific behaviour depends on supported |
| // instructions. |
| // |
| // These functions assume (and assert) that src1!=src2. It is permitted |
| // for the result to alias either input register. |
| void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2, |
| Label* out_of_line); |
| void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2, |
| Label* out_of_line); |
| void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2, |
| Label* out_of_line); |
| void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2, |
| Label* out_of_line); |
| |
| // Generate out-of-line cases for the macros above. |
| void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); |
| |
| bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } |
| |
| void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } |
| |
| inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); } |
| inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); } |
| |
| inline void Move(Register dst, Register src) { |
| if (dst != src) { |
| mov(dst, src); |
| } |
| } |
| |
| inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); } |
| |
| inline void Move(Register dst_low, Register dst_high, FPURegister src) { |
| mfc1(dst_low, src); |
| mfhc1(dst_high, src); |
| } |
| |
| inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); } |
| |
| inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); } |
| |
| inline void FmoveHigh(Register dst_high, FPURegister src) { |
| mfhc1(dst_high, src); |
| } |
| |
| inline void FmoveHigh(FPURegister dst, Register src_high) { |
| mthc1(src_high, dst); |
| } |
| |
| inline void FmoveLow(Register dst_low, FPURegister src) { |
| mfc1(dst_low, src); |
| } |
| |
| void FmoveLow(FPURegister dst, Register src_low); |
| |
| inline void Move(FPURegister dst, Register src_low, Register src_high) { |
| mtc1(src_low, dst); |
| mthc1(src_high, dst); |
| } |
| |
| inline void Move_d(FPURegister dst, FPURegister src) { |
| if (dst != src) { |
| mov_d(dst, src); |
| } |
| } |
| |
| inline void Move_s(FPURegister dst, FPURegister src) { |
| if (dst != src) { |
| mov_s(dst, src); |
| } |
| } |
| |
| void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); } |
| void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); } |
| void Move(FPURegister dst, uint32_t src); |
| void Move(FPURegister dst, uint64_t src); |
| |
| // DaddOverflow sets overflow register to a negative value if |
| // overflow occured, otherwise it is zero or positive |
| void DaddOverflow(Register dst, Register left, const Operand& right, |
| Register overflow); |
| // DsubOverflow sets overflow register to a negative value if |
| // overflow occured, otherwise it is zero or positive |
| void DsubOverflow(Register dst, Register left, const Operand& right, |
| Register overflow); |
| // MulOverflow sets overflow register to zero if no overflow occured |
| void MulOverflow(Register dst, Register left, const Operand& right, |
| Register overflow); |
| |
| // Number of instructions needed for calculation of switch table entry address |
| #ifdef _MIPS_ARCH_MIPS64R6 |
| static const int kSwitchTablePrologueSize = 6; |
| #else |
| static const int kSwitchTablePrologueSize = 11; |
| #endif |
| |
| // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a |
| // functor/function with 'Label *func(size_t index)' declaration. |
| template <typename Func> |
| void GenerateSwitchTable(Register index, size_t case_count, |
| Func GetLabelFunction); |
| |
| // Load an object from the root table. |
| void LoadRoot(Register destination, RootIndex index) final; |
| void LoadRoot(Register destination, RootIndex index, Condition cond, |
| Register src1, const Operand& src2); |
| |
| void LoadMap(Register destination, Register object); |
| |
| // If the value is a NaN, canonicalize the value else, do nothing. |
| void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); |
| |
| // --------------------------------------------------------------------------- |
| // FPU macros. These do not handle special cases like NaN or +- inf. |
| |
| // Convert unsigned word to double. |
| void Cvt_d_uw(FPURegister fd, FPURegister fs); |
| void Cvt_d_uw(FPURegister fd, Register rs); |
| |
| // Convert unsigned long to double. |
| void Cvt_d_ul(FPURegister fd, FPURegister fs); |
| void Cvt_d_ul(FPURegister fd, Register rs); |
| |
| // Convert unsigned word to float. |
| void Cvt_s_uw(FPURegister fd, FPURegister fs); |
| void Cvt_s_uw(FPURegister fd, Register rs); |
| |
| // Convert unsigned long to float. |
| void Cvt_s_ul(FPURegister fd, FPURegister fs); |
| void Cvt_s_ul(FPURegister fd, Register rs); |
| |
| // Convert double to unsigned word. |
| void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch); |
| void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch); |
| |
| // Convert double to unsigned long. |
| void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch, |
| Register result = no_reg); |
| void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch, |
| Register result = no_reg); |
| |
| // Convert single to unsigned long. |
| void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch, |
| Register result = no_reg); |
| void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch, |
| Register result = no_reg); |
| |
| // Round double functions |
| void Trunc_d_d(FPURegister fd, FPURegister fs); |
| void Round_d_d(FPURegister fd, FPURegister fs); |
| void Floor_d_d(FPURegister fd, FPURegister fs); |
| void Ceil_d_d(FPURegister fd, FPURegister fs); |
| |
| // Round float functions |
| void Trunc_s_s(FPURegister fd, FPURegister fs); |
| void Round_s_s(FPURegister fd, FPURegister fs); |
| void Floor_s_s(FPURegister fd, FPURegister fs); |
| void Ceil_s_s(FPURegister fd, FPURegister fs); |
| |
| void LoadLane(MSASize sz, MSARegister dst, uint8_t laneidx, MemOperand src); |
| void StoreLane(MSASize sz, MSARegister src, uint8_t laneidx, MemOperand dst); |
| void ExtMulLow(MSADataType type, MSARegister dst, MSARegister src1, |
| MSARegister src2); |
| void ExtMulHigh(MSADataType type, MSARegister dst, MSARegister src1, |
| MSARegister src2); |
| void LoadSplat(MSASize sz, MSARegister dst, MemOperand src); |
| void ExtAddPairwise(MSADataType type, MSARegister dst, MSARegister src); |
| void MSARoundW(MSARegister dst, MSARegister src, FPURoundingMode mode); |
| void MSARoundD(MSARegister dst, MSARegister src, FPURoundingMode mode); |
| |
| // Jump the register contains a smi. |
| void JumpIfSmi(Register value, Label* smi_label, |
| BranchDelaySlot bd = PROTECT); |
| |
| void JumpIfEqual(Register a, int32_t b, Label* dest) { |
| li(kScratchReg, Operand(b)); |
| Branch(dest, eq, a, Operand(kScratchReg)); |
| } |
| |
| void JumpIfLessThan(Register a, int32_t b, Label* dest) { |
| li(kScratchReg, Operand(b)); |
| Branch(dest, lt, a, Operand(kScratchReg)); |
| } |
| |
| // Push a standard frame, consisting of ra, fp, context and JS function. |
| void PushStandardFrame(Register function_reg); |
| |
| // Get the actual activation frame alignment for target environment. |
| static int ActivationFrameAlignment(); |
| |
| // Load Scaled Address instructions. Parameter sa (shift argument) must be |
| // between [1, 31] (inclusive). On pre-r6 architectures the scratch register |
| // may be clobbered. |
| void Lsa(Register rd, Register rs, Register rt, uint8_t sa, |
| Register scratch = at); |
| void Dlsa(Register rd, Register rs, Register rt, uint8_t sa, |
| Register scratch = at); |
| |
| // Compute the start of the generated instruction stream from the current PC. |
| // This is an alternative to embedding the {CodeObject} handle as a reference. |
| void ComputeCodeStartAddress(Register dst); |
| |
| // Control-flow integrity: |
| |
| // Define a function entrypoint. This doesn't emit any code for this |
| // architecture, as control-flow integrity is not supported for it. |
| void CodeEntry() {} |
| // Define an exception handler. |
| void ExceptionHandler() {} |
| // Define an exception handler and bind a label. |
| void BindExceptionHandler(Label* label) { bind(label); } |
| |
| protected: |
| inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch); |
| inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits); |
| |
| private: |
| bool has_double_zero_reg_set_ = false; |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it |
| // succeeds, otherwise falls through if result is saturated. On return |
| // 'result' either holds answer, or is clobbered on fall through. |
| void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, |
| Label* done); |
| |
| void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1, |
| FPURegister cmp2); |
| |
| void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1, |
| FPURegister cmp2); |
| |
| void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond, |
| MSARegister wt, BranchDelaySlot bd = PROTECT); |
| |
| void CallCFunctionHelper(Register function, int num_reg_arguments, |
| int num_double_arguments); |
| |
| // TODO(mips) Reorder parameters so out parameters come last. |
| bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits); |
| bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits, |
| Register* scratch, const Operand& rt); |
| |
| void BranchShortHelperR6(int32_t offset, Label* L); |
| void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot); |
| bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt); |
| bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs, |
| const Operand& rt, BranchDelaySlot bdslot); |
| bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, |
| const Operand& rt, BranchDelaySlot bdslot); |
| |
| void BranchAndLinkShortHelperR6(int32_t offset, Label* L); |
| void BranchAndLinkShortHelper(int16_t offset, Label* L, |
| BranchDelaySlot bdslot); |
| void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT); |
| void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT); |
| bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt); |
| bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt, |
| BranchDelaySlot bdslot); |
| bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt, |
| BranchDelaySlot bdslot); |
| void BranchLong(Label* L, BranchDelaySlot bdslot); |
| void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot); |
| |
| template <typename RoundFunc> |
| void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode, |
| RoundFunc round); |
| |
| template <typename RoundFunc> |
| void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode, |
| RoundFunc round); |
| |
| // Push a fixed frame, consisting of ra, fp. |
| void PushCommonFrame(Register marker_reg = no_reg); |
| }; |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler { |
| public: |
| using TurboAssembler::TurboAssembler; |
| |
| // It assumes that the arguments are located below the stack pointer. |
| // argc is the number of arguments not including the receiver. |
| // TODO(victorgomes): Remove this function once we stick with the reversed |
| // arguments order. |
| void LoadReceiver(Register dest, Register argc) { |
| Ld(dest, MemOperand(sp, 0)); |
| } |
| |
| void StoreReceiver(Register rec, Register argc, Register scratch) { |
| Sd(rec, MemOperand(sp, 0)); |
| } |
| |
| bool IsNear(Label* L, Condition cond, int rs_reg); |
| |
| // Swap two registers. If the scratch register is omitted then a slightly |
| // less efficient form using xor instead of mov is emitted. |
| void Swap(Register reg1, Register reg2, Register scratch = no_reg); |
| |
| void PushRoot(RootIndex index) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Push(scratch); |
| } |
| |
| // Compare the object in a register to a value and jump if they are equal. |
| void JumpIfRoot(Register with, RootIndex index, Label* if_equal) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Branch(if_equal, eq, with, Operand(scratch)); |
| } |
| |
| // Compare the object in a register to a value and jump if they are not equal. |
| void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Branch(if_not_equal, ne, with, Operand(scratch)); |
| } |
| |
| // Checks if value is in range [lower_limit, higher_limit] using a single |
| // comparison. |
| void JumpIfIsInRange(Register value, unsigned lower_limit, |
| unsigned higher_limit, Label* on_in_range); |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| |
| // Notify the garbage collector that we wrote a pointer into an object. |
| // |object| is the object being stored into, |value| is the object being |
| // stored. value and scratch registers are clobbered by the operation. |
| // The offset is the offset from the start of the object, not the offset from |
| // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
| void RecordWriteField( |
| Register object, int offset, Register value, Register scratch, |
| RAStatus ra_status, SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = RememberedSetAction::kEmit, |
| SmiCheck smi_check = SmiCheck::kInline); |
| |
| // For a given |object| notify the garbage collector that the slot |address| |
| // has been written. |value| is the object being stored. The value and |
| // address registers are clobbered by the operation. |
| void RecordWrite( |
| Register object, Register address, Register value, RAStatus ra_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = RememberedSetAction::kEmit, |
| SmiCheck smi_check = SmiCheck::kInline); |
| |
| void Pref(int32_t hint, const MemOperand& rs); |
| |
| // --------------------------------------------------------------------------- |
| // Pseudo-instructions. |
| |
| void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at); |
| void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at); |
| |
| // Convert double to unsigned long. |
| void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch); |
| |
| void Trunc_l_d(FPURegister fd, FPURegister fs); |
| void Round_l_d(FPURegister fd, FPURegister fs); |
| void Floor_l_d(FPURegister fd, FPURegister fs); |
| void Ceil_l_d(FPURegister fd, FPURegister fs); |
| |
| void Trunc_w_d(FPURegister fd, FPURegister fs); |
| void Round_w_d(FPURegister fd, FPURegister fs); |
| void Floor_w_d(FPURegister fd, FPURegister fs); |
| void Ceil_w_d(FPURegister fd, FPURegister fs); |
| |
| void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| |
| void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond, |
| MSARegister wt, BranchDelaySlot bd = PROTECT); |
| |
| // Enter exit frame. |
| // argc - argument count to be dropped by LeaveExitFrame. |
| // save_doubles - saves FPU registers on stack, currently disabled. |
| // stack_space - extra stack space. |
| void EnterExitFrame(bool save_doubles, int stack_space = 0, |
| StackFrame::Type frame_type = StackFrame::EXIT); |
| |
| // Leave the current exit frame. |
| void LeaveExitFrame(bool save_doubles, Register arg_count, |
| bool do_return = NO_EMIT_RETURN, |
| bool argument_count_is_length = false); |
| |
| // Make sure the stack is aligned. Only emits code in debug mode. |
| void AssertStackIsAligned(); |
| |
| // Load the global proxy from the current context. |
| void LoadGlobalProxy(Register dst) { |
| LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); |
| } |
| |
| void LoadNativeContextSlot(Register dst, int index); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same, function is then overwritten. |
| void LoadGlobalFunctionInitialMap(Register function, Register map, |
| Register scratch); |
| |
| // ------------------------------------------------------------------------- |
| // JavaScript invokes. |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeFunctionCode(Register function, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count, InvokeType type); |
| |
| // On function call, call into the debugger if necessary. |
| void CheckDebugHook(Register fun, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunctionWithNewTarget(Register function, Register new_target, |
| Register actual_parameter_count, |
| InvokeType type); |
| void InvokeFunction(Register function, Register expected_parameter_count, |
| Register actual_parameter_count, InvokeType type); |
| |
| // Exception handling. |
| |
| // Push a new stack handler and link into stack handler chain. |
| void PushStackHandler(); |
| |
| // Unlink the stack handler on top of the stack from the stack handler chain. |
| // Must preserve the result register. |
| void PopStackHandler(); |
| |
| // ------------------------------------------------------------------------- |
| // Support functions. |
| |
| void GetObjectType(Register function, Register map, Register type_reg); |
| |
| void GetInstanceTypeRange(Register map, Register type_reg, |
| InstanceType lower_limit, Register range); |
| |
| // ------------------------------------------------------------------------- |
| // Runtime calls. |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| CallRuntime(function, function->nargs, save_doubles); |
| } |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, int num_arguments, |
| SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { |
| CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); |
| } |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid); |
| |
| // Jump to the builtin routine. |
| void JumpToExternalReference(const ExternalReference& builtin, |
| BranchDelaySlot bd = PROTECT, |
| bool builtin_exit_frame = false); |
| |
| // Generates a trampoline to jump to the off-heap instruction stream. |
| void JumpToOffHeapInstructionStream(Address entry); |
| |
| // --------------------------------------------------------------------------- |
| // In-place weak references. |
| void LoadWeakValue(Register out, Register in, Label* target_if_cleared); |
| |
| // ------------------------------------------------------------------------- |
| // StatsCounter support. |
| |
| void IncrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2) { |
| if (!FLAG_native_code_counters) return; |
| EmitIncrementCounter(counter, value, scratch1, scratch2); |
| } |
| void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2); |
| void DecrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2) { |
| if (!FLAG_native_code_counters) return; |
| EmitDecrementCounter(counter, value, scratch1, scratch2); |
| } |
| void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2); |
| |
| // ------------------------------------------------------------------------- |
| // Stack limit utilities |
| |
| enum StackLimitKind { kInterruptStackLimit, kRealStackLimit }; |
| void LoadStackLimit(Register destination, StackLimitKind kind); |
| void StackOverflowCheck(Register num_args, Register scratch1, |
| Register scratch2, Label* stack_overflow); |
| |
| // --------------------------------------------------------------------------- |
| // Smi utilities. |
| |
| void SmiTag(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (SmiValuesAre32Bits()) { |
| dsll32(dst, src, 0); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| Addu(dst, src, src); |
| } |
| } |
| |
| void SmiTag(Register reg) { SmiTag(reg, reg); } |
| |
| // Test if the register contains a smi. |
| inline void SmiTst(Register value, Register scratch) { |
| And(scratch, value, Operand(kSmiTagMask)); |
| } |
| |
| // Jump if the register contains a non-smi. |
| void JumpIfNotSmi(Register value, Label* not_smi_label, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Abort execution if argument is not a Constructor, enabled via --debug-code. |
| void AssertConstructor(Register object); |
| |
| // Abort execution if argument is not a JSFunction, enabled via --debug-code. |
| void AssertFunction(Register object); |
| |
| // Abort execution if argument is not a callable JSFunction, enabled via |
| // --debug-code. |
| void AssertCallableFunction(Register object); |
| |
| // Abort execution if argument is not a JSBoundFunction, |
| // enabled via --debug-code. |
| void AssertBoundFunction(Register object); |
| |
| // Abort execution if argument is not a JSGeneratorObject (or subclass), |
| // enabled via --debug-code. |
| void AssertGeneratorObject(Register object); |
| |
| // Abort execution if argument is not undefined or an AllocationSite, enabled |
| // via --debug-code. |
| void AssertUndefinedOrAllocationSite(Register object, Register scratch); |
| |
| template <typename Field> |
| void DecodeField(Register dst, Register src) { |
| Ext(dst, src, Field::kShift, Field::kSize); |
| } |
| |
| template <typename Field> |
| void DecodeField(Register reg) { |
| DecodeField<Field>(reg, reg); |
| } |
| |
| private: |
| // Helper functions for generating invokes. |
| void InvokePrologue(Register expected_parameter_count, |
| Register actual_parameter_count, Label* done, |
| InvokeType type); |
| |
| // Compute memory operands for safepoint stack slots. |
| static int SafepointRegisterStackIndex(int reg_code); |
| |
| // Needs access to SafepointRegisterStackIndex for compiled frame |
| // traversal. |
| friend class CommonFrame; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler); |
| }; |
| |
| template <typename Func> |
| void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count, |
| Func GetLabelFunction) { |
| // Ensure that dd-ed labels following this instruction use 8 bytes aligned |
| // addresses. |
| BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + |
| kSwitchTablePrologueSize); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| if (kArchVariant >= kMips64r6) { |
| // Opposite of Align(8) as we have odd number of instructions in this case. |
| if ((pc_offset() & 7) == 0) { |
| nop(); |
| } |
| addiupc(scratch, 5); |
| Dlsa(scratch, scratch, index, kPointerSizeLog2); |
| Ld(scratch, MemOperand(scratch)); |
| } else { |
| Label here; |
| Align(8); |
| push(ra); |
| bal(&here); |
| dsll(scratch, index, kPointerSizeLog2); // Branch delay slot. |
| bind(&here); |
| daddu(scratch, scratch, ra); |
| pop(ra); |
| Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize)); |
| } |
| jr(scratch); |
| nop(); // Branch delay slot nop. |
| for (size_t index = 0; index < case_count; ++index) { |
| dd(GetLabelFunction(index)); |
| } |
| } |
| |
| #define ACCESS_MASM(masm) masm-> |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_ |