blob: bcb11adf699be3e669775062c9f7edfcea9fef32 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif
#ifndef V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
#define V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
#include "src/codegen/assembler.h"
#include "src/codegen/mips64/assembler-mips64.h"
#include "src/common/globals.h"
#include "src/objects/tagged-index.h"
namespace v8 {
namespace internal {
// Forward declarations.
enum class AbortReason : uint8_t;
// Reserved Register Usage Summary.
//
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// Per the MIPS ABI, register t9 must be used for indirect function call
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// MIPS generated code calls C code, it must be via t9 register.
// Flags used for LeaveExitFrame function.
enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };
// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT };
// Flags used for the li macro-assembler function.
enum LiFlags {
// If the constant value can be represented in just 16 bits, then
// optimize the li to use a single instruction, rather than lui/ori/dsll
// sequence. A number of other optimizations that emits less than
// maximum number of instructions exists.
OPTIMIZE_SIZE = 0,
// Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4
// instructions for release 6 (lui/ori/dahi/dati), even if the constant
// could be loaded with just one, so that this value is patchable later.
CONSTANT_SIZE = 1,
// For address loads only 4 instruction are required. Used to mark
// constant load that will be used as address without relocation
// information. It ensures predictable code size, so specific sites
// in code are patchable.
ADDRESS_LOAD = 2
};
enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
// -----------------------------------------------------------------------------
// Static helper functions.
#if defined(V8_TARGET_LITTLE_ENDIAN)
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Generate a MemOperand for storing arguments 5..N on the stack
// when calling CallCFunction().
// TODO(plind): Currently ONLY used for O32. Should be fixed for
// n64, and used in RegExp code, and other places
// with more than 8 arguments.
inline MemOperand CFunctionArgumentOperand(int index) {
DCHECK_GT(index, kCArgSlotCount);
// Argument 5 takes the slot just past the four Arg-slots.
int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
return MemOperand(sp, offset);
}
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
public:
using TurboAssemblerBase::TurboAssemblerBase;
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on mips.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
void AllocateStackSpace(Register bytes) { Dsubu(sp, sp, bytes); }
void AllocateStackSpace(int bytes) {
DCHECK_GE(bytes, 0);
if (bytes == 0) return;
Dsubu(sp, sp, Operand(bytes));
}
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
void InitializeRootRegister() {
ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
li(kRootRegister, Operand(isolate_root));
}
// Jump unconditionally to given label.
// We NEED a nop in the branch delay slot, as it used by v8, for example in
// CodeGenerator::ProcessDeferred().
// Currently the branch delay slot is filled by the MacroAssembler.
// Use rather b(Label) for code generation.
void jmp(Label* L) { Branch(L); }
// -------------------------------------------------------------------------
// Debugging.
void Trap();
void DebugBreak();
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
// Like Assert(), but always enabled.
void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
// Print a message to stdout and abort execution.
void Abort(AbortReason msg);
// Arguments macros.
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
#define COND_ARGS cond, r1, r2
// Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
void Name(target_type target, BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, target_type target) { \
Name(target, bd); \
} \
void Name(target_type target, COND_TYPED_ARGS, \
BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \
Name(target, COND_ARGS, bd); \
}
#define DECLARE_BRANCH_PROTOTYPES(Name) \
DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
DECLARE_BRANCH_PROTOTYPES(BranchShort)
#undef DECLARE_BRANCH_PROTOTYPES
#undef COND_TYPED_ARGS
#undef COND_ARGS
// Floating point branches
void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
CompareF(S, cc, cmp1, cmp2);
}
void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
CompareIsNanF(S, cmp1, cmp2);
}
void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
CompareF(D, cc, cmp1, cmp2);
}
void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
CompareIsNanF(D, cmp1, cmp2);
}
void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);
void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);
// MSA branches
void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
MSARegister wt, BranchDelaySlot bd = PROTECT);
void BranchLong(int32_t offset, BranchDelaySlot bdslot = PROTECT);
void Branch(Label* L, Condition cond, Register rs, RootIndex index,
BranchDelaySlot bdslot = PROTECT);
static int InstrCountForLi64Bit(int64_t value);
inline void LiLower32BitHelper(Register rd, Operand j);
void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
// Load int32 in the rd register.
void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
li(rd, Operand(j), mode);
}
// inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
// li(rd, Operand(static_cast<int64_t>(j)), mode);
// }
void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
void li(Register dst, const StringConstantBase* string,
LiFlags mode = OPTIMIZE_SIZE);
void LoadFromConstantsTable(Register destination, int constant_index) final;
void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
void LoadRootRelative(Register destination, int32_t offset) final;
inline void Move(Register output, MemOperand operand) { Ld(output, operand); }
// Jump, Call, and Ret pseudo instructions implementing inter-working.
#define COND_ARGS \
Condition cond = al, Register rs = zero_reg, \
const Operand &rt = Operand(zero_reg), \
BranchDelaySlot bd = PROTECT
void Jump(Register target, COND_ARGS);
void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
// Deffer from li, this method save target to the memory, and then load
// it to register use ld, it can be used in wasm jump table for concurrent
// patching.
void PatchAndJump(Address target);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
void Jump(const ExternalReference& reference);
void Call(Register target, COND_ARGS);
void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
COND_ARGS);
void Call(Label* target);
void LoadAddress(Register dst, Label* target);
// Load the builtin given by the Smi in |builtin_index| into the same
// register.
void LoadEntryFromBuiltinIndex(Register builtin);
void LoadEntryFromBuiltin(Builtin builtin, Register destination);
MemOperand EntryFromBuiltinAsOperand(Builtin builtin);
void CallBuiltinByIndex(Register builtin);
void CallBuiltin(Builtin builtin);
void LoadCodeObjectEntry(Register destination, Register code_object);
void CallCodeObject(Register code_object);
void JumpCodeObject(Register code_object,
JumpMode jump_mode = JumpMode::kJump);
// Generates an instruction sequence s.t. the return address points to the
// instruction following the call.
// The return address on the stack is used by frame iteration.
void StoreReturnAddressAndCall(Register target);
void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
DeoptimizeKind kind, Label* ret,
Label* jump_deoptimization_entry_label);
void Ret(COND_ARGS);
inline void Ret(BranchDelaySlot bd, Condition cond = al,
Register rs = zero_reg,
const Operand& rt = Operand(zero_reg)) {
Ret(cond, rs, rt, bd);
}
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
const Operand& op = Operand(no_reg));
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
void DropArguments(Register count, ArgumentsCountType type,
ArgumentsCountMode mode, Register scratch = no_reg);
void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
ArgumentsCountType type,
ArgumentsCountMode mode,
Register scratch = no_reg);
// Trivial case of DropAndRet that utilizes the delay slot.
void DropAndRet(int drop);
void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);
void Ld(Register rd, const MemOperand& rs);
void Sd(Register rd, const MemOperand& rs);
void push(Register src) {
Daddu(sp, sp, Operand(-kPointerSize));
Sd(src, MemOperand(sp, 0));
}
void Push(Register src) { push(src); }
void Push(Handle<HeapObject> handle);
void Push(Smi smi);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
Dsubu(sp, sp, Operand(2 * kPointerSize));
Sd(src1, MemOperand(sp, 1 * kPointerSize));
Sd(src2, MemOperand(sp, 0 * kPointerSize));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
Dsubu(sp, sp, Operand(3 * kPointerSize));
Sd(src1, MemOperand(sp, 2 * kPointerSize));
Sd(src2, MemOperand(sp, 1 * kPointerSize));
Sd(src3, MemOperand(sp, 0 * kPointerSize));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
Dsubu(sp, sp, Operand(4 * kPointerSize));
Sd(src1, MemOperand(sp, 3 * kPointerSize));
Sd(src2, MemOperand(sp, 2 * kPointerSize));
Sd(src3, MemOperand(sp, 1 * kPointerSize));
Sd(src4, MemOperand(sp, 0 * kPointerSize));
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5) {
Dsubu(sp, sp, Operand(5 * kPointerSize));
Sd(src1, MemOperand(sp, 4 * kPointerSize));
Sd(src2, MemOperand(sp, 3 * kPointerSize));
Sd(src3, MemOperand(sp, 2 * kPointerSize));
Sd(src4, MemOperand(sp, 1 * kPointerSize));
Sd(src5, MemOperand(sp, 0 * kPointerSize));
}
void Push(Register src, Condition cond, Register tst1, Register tst2) {
// Since we don't have conditional execution we use a Branch.
Branch(3, cond, tst1, Operand(tst2));
Dsubu(sp, sp, Operand(kPointerSize));
Sd(src, MemOperand(sp, 0));
}
enum PushArrayOrder { kNormal, kReverse };
void PushArray(Register array, Register size, Register scratch,
Register scratch2, PushArrayOrder order = kNormal);
void MaybeSaveRegisters(RegList registers);
void MaybeRestoreRegisters(RegList registers);
void CallEphemeronKeyBarrier(Register object, Register slot_address,
SaveFPRegsMode fp_mode);
void CallRecordWriteStubSaveRegisters(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void CallRecordWriteStub(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
// Push multiple registers on the stack.
// Registers are saved in numerical order, with higher numbered registers
// saved in higher memory addresses.
void MultiPush(RegList regs);
void MultiPushFPU(RegList regs);
void MultiPushMSA(RegList regs);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
void pop(Register dst) {
Ld(dst, MemOperand(sp, 0));
Daddu(sp, sp, Operand(kPointerSize));
}
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
DCHECK(src1 != src2);
Ld(src2, MemOperand(sp, 0 * kPointerSize));
Ld(src1, MemOperand(sp, 1 * kPointerSize));
Daddu(sp, sp, 2 * kPointerSize);
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
Ld(src3, MemOperand(sp, 0 * kPointerSize));
Ld(src2, MemOperand(sp, 1 * kPointerSize));
Ld(src1, MemOperand(sp, 2 * kPointerSize));
Daddu(sp, sp, 3 * kPointerSize);
}
void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); }
// Pops multiple values from the stack and load them in the
// registers specified in regs. Pop order is the opposite as in MultiPush.
void MultiPop(RegList regs);
void MultiPopFPU(RegList regs);
void MultiPopMSA(RegList regs);
#define DEFINE_INSTRUCTION(instr) \
void instr(Register rd, Register rs, const Operand& rt); \
void instr(Register rd, Register rs, Register rt) { \
instr(rd, rs, Operand(rt)); \
} \
void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
#define DEFINE_INSTRUCTION2(instr) \
void instr(Register rs, const Operand& rt); \
void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
DEFINE_INSTRUCTION(Addu)
DEFINE_INSTRUCTION(Daddu)
DEFINE_INSTRUCTION(Div)
DEFINE_INSTRUCTION(Divu)
DEFINE_INSTRUCTION(Ddivu)
DEFINE_INSTRUCTION(Mod)
DEFINE_INSTRUCTION(Modu)
DEFINE_INSTRUCTION(Ddiv)
DEFINE_INSTRUCTION(Subu)
DEFINE_INSTRUCTION(Dsubu)
DEFINE_INSTRUCTION(Dmod)
DEFINE_INSTRUCTION(Dmodu)
DEFINE_INSTRUCTION(Mul)
DEFINE_INSTRUCTION(Mulh)
DEFINE_INSTRUCTION(Mulhu)
DEFINE_INSTRUCTION(Dmul)
DEFINE_INSTRUCTION(Dmulh)
DEFINE_INSTRUCTION2(Mult)
DEFINE_INSTRUCTION2(Dmult)
DEFINE_INSTRUCTION2(Multu)
DEFINE_INSTRUCTION2(Dmultu)
DEFINE_INSTRUCTION2(Div)
DEFINE_INSTRUCTION2(Ddiv)
DEFINE_INSTRUCTION2(Divu)
DEFINE_INSTRUCTION2(Ddivu)
DEFINE_INSTRUCTION(And)
DEFINE_INSTRUCTION(Or)
DEFINE_INSTRUCTION(Xor)
DEFINE_INSTRUCTION(Nor)
DEFINE_INSTRUCTION2(Neg)
DEFINE_INSTRUCTION(Slt)
DEFINE_INSTRUCTION(Sltu)
DEFINE_INSTRUCTION(Sle)
DEFINE_INSTRUCTION(Sleu)
DEFINE_INSTRUCTION(Sgt)
DEFINE_INSTRUCTION(Sgtu)
DEFINE_INSTRUCTION(Sge)
DEFINE_INSTRUCTION(Sgeu)
// MIPS32 R2 instruction macro.
DEFINE_INSTRUCTION(Ror)
DEFINE_INSTRUCTION(Dror)
#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
#undef DEFINE_INSTRUCTION3
void SmiUntag(Register dst, const MemOperand& src);
void SmiUntag(Register dst, Register src) {
if (SmiValuesAre32Bits()) {
dsra32(dst, src, kSmiShift - 32);
} else {
DCHECK(SmiValuesAre31Bits());
sra(dst, src, kSmiShift);
}
}
void SmiUntag(Register reg) { SmiUntag(reg, reg); }
// Left-shifted from int32 equivalent of Smi.
void SmiScale(Register dst, Register src, int scale) {
if (SmiValuesAre32Bits()) {
// The int portion is upper 32-bits of 64-bit word.
dsra(dst, src, kSmiShift - scale);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK_GE(scale, kSmiTagSize);
sll(dst, src, scale - kSmiTagSize);
}
}
// On MIPS64, we should sign-extend 32-bit values.
void SmiToInt32(Register smi) {
if (FLAG_enable_slow_asserts) {
AssertSmi(smi);
}
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
SmiUntag(smi);
}
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
// Before calling a C-function from generated code, align arguments on stack
// and add space for the four mips argument slots.
// After aligning the frame, non-register arguments must be stored on the
// stack, after the argument-slots using helper: CFunctionArgumentOperand().
// The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
// Arguments 1-4 are placed in registers a0 through a3 respectively.
// Arguments 5..n are stored to stack using following:
// Sw(a4, CFunctionArgumentOperand(5));
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
void MovFromFloatResult(DoubleRegister dst);
void MovFromFloatParameter(DoubleRegister dst);
// There are two ways of passing double arguments on MIPS, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// See comments at the beginning of Builtins::Generate_CEntry.
inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
inline void PrepareCEntryFunction(const ExternalReference& ref) {
li(a1, ref);
}
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
#undef COND_ARGS
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
DoubleRegister double_input, StubCallMode stub_mode);
// Conditional move.
void Movz(Register rd, Register rs, Register rt);
void Movn(Register rd, Register rs, Register rt);
void Movt(Register rd, Register rs, uint16_t cc = 0);
void Movf(Register rd, Register rs, uint16_t cc = 0);
void LoadZeroIfFPUCondition(Register dest);
void LoadZeroIfNotFPUCondition(Register dest);
void LoadZeroIfConditionNotZero(Register dest, Register condition);
void LoadZeroIfConditionZero(Register dest, Register condition);
void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
Condition cond);
void Clz(Register rd, Register rs);
void Dclz(Register rd, Register rs);
void Ctz(Register rd, Register rs);
void Dctz(Register rd, Register rs);
void Popcnt(Register rd, Register rs);
void Dpopcnt(Register rd, Register rs);
// MIPS64 R2 instruction macro.
void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
void ExtractBits(Register dest, Register source, Register pos, int size,
bool sign_extend = false);
void InsertBits(Register dest, Register source, Register pos, int size);
void Neg_s(FPURegister fd, FPURegister fs);
void Neg_d(FPURegister fd, FPURegister fs);
// MIPS64 R6 instruction macros.
void Bovc(Register rt, Register rs, Label* L);
void Bnvc(Register rt, Register rs, Label* L);
// Convert single to unsigned word.
void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);
// Change endianness
void ByteSwapSigned(Register dest, Register src, int operand_size);
void ByteSwapUnsigned(Register dest, Register src, int operand_size);
void Ulh(Register rd, const MemOperand& rs);
void Ulhu(Register rd, const MemOperand& rs);
void Ush(Register rd, const MemOperand& rs, Register scratch);
void Ulw(Register rd, const MemOperand& rs);
void Ulwu(Register rd, const MemOperand& rs);
void Usw(Register rd, const MemOperand& rs);
void Uld(Register rd, const MemOperand& rs);
void Usd(Register rd, const MemOperand& rs);
void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
void Lb(Register rd, const MemOperand& rs);
void Lbu(Register rd, const MemOperand& rs);
void Sb(Register rd, const MemOperand& rs);
void Lh(Register rd, const MemOperand& rs);
void Lhu(Register rd, const MemOperand& rs);
void Sh(Register rd, const MemOperand& rs);
void Lw(Register rd, const MemOperand& rs);
void Lwu(Register rd, const MemOperand& rs);
void Sw(Register rd, const MemOperand& rs);
void Lwc1(FPURegister fd, const MemOperand& src);
void Swc1(FPURegister fs, const MemOperand& dst);
void Ldc1(FPURegister fd, const MemOperand& src);
void Sdc1(FPURegister fs, const MemOperand& dst);
void Ll(Register rd, const MemOperand& rs);
void Sc(Register rd, const MemOperand& rs);
void Lld(Register rd, const MemOperand& rs);
void Scd(Register rd, const MemOperand& rs);
// Perform a floating-point min or max operation with the
// (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
// Some cases, typically NaNs or +/-0.0, are expected to be rare and are
// handled in out-of-line code. The specific behaviour depends on supported
// instructions.
//
// These functions assume (and assert) that src1!=src2. It is permitted
// for the result to alias either input register.
void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
Label* out_of_line);
void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
Label* out_of_line);
void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
Label* out_of_line);
void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
Label* out_of_line);
// Generate out-of-line cases for the macros above.
void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }
inline void Move(Register dst, Register src) {
if (dst != src) {
mov(dst, src);
}
}
inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
inline void Move(Register dst_low, Register dst_high, FPURegister src) {
mfc1(dst_low, src);
mfhc1(dst_high, src);
}
inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
inline void FmoveHigh(Register dst_high, FPURegister src) {
mfhc1(dst_high, src);
}
inline void FmoveHigh(FPURegister dst, Register src_high) {
mthc1(src_high, dst);
}
inline void FmoveLow(Register dst_low, FPURegister src) {
mfc1(dst_low, src);
}
void FmoveLow(FPURegister dst, Register src_low);
inline void Move(FPURegister dst, Register src_low, Register src_high) {
mtc1(src_low, dst);
mthc1(src_high, dst);
}
inline void Move_d(FPURegister dst, FPURegister src) {
if (dst != src) {
mov_d(dst, src);
}
}
inline void Move_s(FPURegister dst, FPURegister src) {
if (dst != src) {
mov_s(dst, src);
}
}
void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
void Move(FPURegister dst, uint32_t src);
void Move(FPURegister dst, uint64_t src);
// DaddOverflow sets overflow register to a negative value if
// overflow occured, otherwise it is zero or positive
void DaddOverflow(Register dst, Register left, const Operand& right,
Register overflow);
// DsubOverflow sets overflow register to a negative value if
// overflow occured, otherwise it is zero or positive
void DsubOverflow(Register dst, Register left, const Operand& right,
Register overflow);
// MulOverflow sets overflow register to zero if no overflow occured
void MulOverflow(Register dst, Register left, const Operand& right,
Register overflow);
// Number of instructions needed for calculation of switch table entry address
#ifdef _MIPS_ARCH_MIPS64R6
static const int kSwitchTablePrologueSize = 6;
#else
static const int kSwitchTablePrologueSize = 11;
#endif
// GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
// functor/function with 'Label *func(size_t index)' declaration.
template <typename Func>
void GenerateSwitchTable(Register index, size_t case_count,
Func GetLabelFunction);
// Load an object from the root table.
void LoadRoot(Register destination, RootIndex index) final;
void LoadRoot(Register destination, RootIndex index, Condition cond,
Register src1, const Operand& src2);
void LoadMap(Register destination, Register object);
// If the value is a NaN, canonicalize the value else, do nothing.
void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
// ---------------------------------------------------------------------------
// FPU macros. These do not handle special cases like NaN or +- inf.
// Convert unsigned word to double.
void Cvt_d_uw(FPURegister fd, FPURegister fs);
void Cvt_d_uw(FPURegister fd, Register rs);
// Convert unsigned long to double.
void Cvt_d_ul(FPURegister fd, FPURegister fs);
void Cvt_d_ul(FPURegister fd, Register rs);
// Convert unsigned word to float.
void Cvt_s_uw(FPURegister fd, FPURegister fs);
void Cvt_s_uw(FPURegister fd, Register rs);
// Convert unsigned long to float.
void Cvt_s_ul(FPURegister fd, FPURegister fs);
void Cvt_s_ul(FPURegister fd, Register rs);
// Convert double to unsigned word.
void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);
// Convert double to unsigned long.
void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
Register result = no_reg);
void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch,
Register result = no_reg);
// Convert single to unsigned long.
void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
Register result = no_reg);
void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch,
Register result = no_reg);
// Round double functions
void Trunc_d_d(FPURegister fd, FPURegister fs);
void Round_d_d(FPURegister fd, FPURegister fs);
void Floor_d_d(FPURegister fd, FPURegister fs);
void Ceil_d_d(FPURegister fd, FPURegister fs);
// Round float functions
void Trunc_s_s(FPURegister fd, FPURegister fs);
void Round_s_s(FPURegister fd, FPURegister fs);
void Floor_s_s(FPURegister fd, FPURegister fs);
void Ceil_s_s(FPURegister fd, FPURegister fs);
void LoadLane(MSASize sz, MSARegister dst, uint8_t laneidx, MemOperand src);
void StoreLane(MSASize sz, MSARegister src, uint8_t laneidx, MemOperand dst);
void ExtMulLow(MSADataType type, MSARegister dst, MSARegister src1,
MSARegister src2);
void ExtMulHigh(MSADataType type, MSARegister dst, MSARegister src1,
MSARegister src2);
void LoadSplat(MSASize sz, MSARegister dst, MemOperand src);
void ExtAddPairwise(MSADataType type, MSARegister dst, MSARegister src);
void MSARoundW(MSARegister dst, MSARegister src, FPURoundingMode mode);
void MSARoundD(MSARegister dst, MSARegister src, FPURoundingMode mode);
// Jump the register contains a smi.
void JumpIfSmi(Register value, Label* smi_label,
BranchDelaySlot bd = PROTECT);
void JumpIfEqual(Register a, int32_t b, Label* dest) {
li(kScratchReg, Operand(b));
Branch(dest, eq, a, Operand(kScratchReg));
}
void JumpIfLessThan(Register a, int32_t b, Label* dest) {
li(kScratchReg, Operand(b));
Branch(dest, lt, a, Operand(kScratchReg));
}
// Push a standard frame, consisting of ra, fp, context and JS function.
void PushStandardFrame(Register function_reg);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
// Load Scaled Address instructions. Parameter sa (shift argument) must be
// between [1, 31] (inclusive). On pre-r6 architectures the scratch register
// may be clobbered.
void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
Register scratch = at);
void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
Register scratch = at);
// Compute the start of the generated instruction stream from the current PC.
// This is an alternative to embedding the {CodeObject} handle as a reference.
void ComputeCodeStartAddress(Register dst);
// Control-flow integrity:
// Define a function entrypoint. This doesn't emit any code for this
// architecture, as control-flow integrity is not supported for it.
void CodeEntry() {}
// Define an exception handler.
void ExceptionHandler() {}
// Define an exception handler and bind a label.
void BindExceptionHandler(Label* label) { bind(label); }
protected:
inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
private:
bool has_double_zero_reg_set_ = false;
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
Label* done);
void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
FPURegister cmp2);
void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
FPURegister cmp2);
void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
MSARegister wt, BranchDelaySlot bd = PROTECT);
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments);
// TODO(mips) Reorder parameters so out parameters come last.
bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits);
bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
Register* scratch, const Operand& rt);
void BranchShortHelperR6(int32_t offset, Label* L);
void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt);
bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot);
bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot);
void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
void BranchAndLinkShortHelper(int16_t offset, Label* L,
BranchDelaySlot bdslot);
void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt);
bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot);
bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot);
void BranchLong(Label* L, BranchDelaySlot bdslot);
void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
template <typename RoundFunc>
void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
RoundFunc round);
template <typename RoundFunc>
void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
RoundFunc round);
// Push a fixed frame, consisting of ra, fp.
void PushCommonFrame(Register marker_reg = no_reg);
};
// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
public:
using TurboAssembler::TurboAssembler;
// It assumes that the arguments are located below the stack pointer.
// argc is the number of arguments not including the receiver.
// TODO(victorgomes): Remove this function once we stick with the reversed
// arguments order.
void LoadReceiver(Register dest, Register argc) {
Ld(dest, MemOperand(sp, 0));
}
void StoreReceiver(Register rec, Register argc, Register scratch) {
Sd(rec, MemOperand(sp, 0));
}
bool IsNear(Label* L, Condition cond, int rs_reg);
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1, Register reg2, Register scratch = no_reg);
void PushRoot(RootIndex index) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Push(scratch);
}
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Branch(if_equal, eq, with, Operand(scratch));
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Branch(if_not_equal, ne, with, Operand(scratch));
}
// Checks if value is in range [lower_limit, higher_limit] using a single
// comparison.
void JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range);
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
RAStatus ra_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
SmiCheck smi_check = SmiCheck::kInline);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object, Register address, Register value, RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
SmiCheck smi_check = SmiCheck::kInline);
void Pref(int32_t hint, const MemOperand& rs);
// ---------------------------------------------------------------------------
// Pseudo-instructions.
void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
// Convert double to unsigned long.
void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
void Trunc_l_d(FPURegister fd, FPURegister fs);
void Round_l_d(FPURegister fd, FPURegister fs);
void Floor_l_d(FPURegister fd, FPURegister fs);
void Ceil_l_d(FPURegister fd, FPURegister fs);
void Trunc_w_d(FPURegister fd, FPURegister fs);
void Round_w_d(FPURegister fd, FPURegister fs);
void Floor_w_d(FPURegister fd, FPURegister fs);
void Ceil_w_d(FPURegister fd, FPURegister fs);
void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
FPURegister scratch);
void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
FPURegister scratch);
void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
FPURegister scratch);
void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
FPURegister scratch);
void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
MSARegister wt, BranchDelaySlot bd = PROTECT);
// Enter exit frame.
// argc - argument count to be dropped by LeaveExitFrame.
// save_doubles - saves FPU registers on stack, currently disabled.
// stack_space - extra stack space.
void EnterExitFrame(bool save_doubles, int stack_space = 0,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame.
void LeaveExitFrame(bool save_doubles, Register arg_count,
bool do_return = NO_EMIT_RETURN,
bool argument_count_is_length = false);
// Make sure the stack is aligned. Only emits code in debug mode.
void AssertStackIsAligned();
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
}
void LoadNativeContextSlot(Register dst, int index);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function, Register map,
Register scratch);
// -------------------------------------------------------------------------
// JavaScript invokes.
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunctionWithNewTarget(Register function, Register new_target,
Register actual_parameter_count,
InvokeType type);
void InvokeFunction(Register function, Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// Exception handling.
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// -------------------------------------------------------------------------
// Support functions.
void GetObjectType(Register function, Register map, Register type_reg);
void GetInstanceTypeRange(Register map, Register type_reg,
InstanceType lower_limit, Register range);
// -------------------------------------------------------------------------
// Runtime calls.
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to the builtin routine.
void JumpToExternalReference(const ExternalReference& builtin,
BranchDelaySlot bd = PROTECT,
bool builtin_exit_frame = false);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToOffHeapInstructionStream(Address entry);
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
// -------------------------------------------------------------------------
// StatsCounter support.
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitIncrementCounter(counter, value, scratch1, scratch2);
}
void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitDecrementCounter(counter, value, scratch1, scratch2);
}
void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// -------------------------------------------------------------------------
// Stack limit utilities
enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
void LoadStackLimit(Register destination, StackLimitKind kind);
void StackOverflowCheck(Register num_args, Register scratch1,
Register scratch2, Label* stack_overflow);
// ---------------------------------------------------------------------------
// Smi utilities.
void SmiTag(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (SmiValuesAre32Bits()) {
dsll32(dst, src, 0);
} else {
DCHECK(SmiValuesAre31Bits());
Addu(dst, src, src);
}
}
void SmiTag(Register reg) { SmiTag(reg, reg); }
// Test if the register contains a smi.
inline void SmiTst(Register value, Register scratch) {
And(scratch, value, Operand(kSmiTagMask));
}
// Jump if the register contains a non-smi.
void JumpIfNotSmi(Register value, Label* not_smi_label,
BranchDelaySlot bd = PROTECT);
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a callable JSFunction, enabled via
// --debug-code.
void AssertCallableFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
template <typename Field>
void DecodeField(Register dst, Register src) {
Ext(dst, src, Field::kShift, Field::kSize);
}
template <typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
private:
// Helper functions for generating invokes.
void InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count, Label* done,
InvokeType type);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class CommonFrame;
DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};
template <typename Func>
void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
Func GetLabelFunction) {
// Ensure that dd-ed labels following this instruction use 8 bytes aligned
// addresses.
BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
kSwitchTablePrologueSize);
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
if (kArchVariant >= kMips64r6) {
// Opposite of Align(8) as we have odd number of instructions in this case.
if ((pc_offset() & 7) == 0) {
nop();
}
addiupc(scratch, 5);
Dlsa(scratch, scratch, index, kPointerSizeLog2);
Ld(scratch, MemOperand(scratch));
} else {
Label here;
Align(8);
push(ra);
bal(&here);
dsll(scratch, index, kPointerSizeLog2); // Branch delay slot.
bind(&here);
daddu(scratch, scratch, ra);
pop(ra);
Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
}
jr(scratch);
nop(); // Branch delay slot nop.
for (size_t index = 0; index < case_count; ++index) {
dd(GetLabelFunction(index));
}
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_