blob: c78329ebfff3e89d03867fca7fe4dece0df51fd0 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif
#ifndef V8_CODEGEN_S390_MACRO_ASSEMBLER_S390_H_
#define V8_CODEGEN_S390_MACRO_ASSEMBLER_S390_H_
#include "src/codegen/bailout-reason.h"
#include "src/codegen/s390/assembler-s390.h"
#include "src/common/globals.h"
#include "src/objects/contexts.h"
namespace v8 {
namespace internal {
enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
return MemOperand(object, index, offset - kHeapObjectTag);
}
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
public:
using TurboAssemblerBase::TurboAssemblerBase;
void CallBuiltin(Builtin builtin);
void TailCallBuiltin(Builtin builtin);
void AtomicCmpExchangeHelper(Register addr, Register output,
Register old_value, Register new_value,
int start, int end, int shift_amount, int offset,
Register temp0, Register temp1);
void AtomicCmpExchangeU8(Register addr, Register output, Register old_value,
Register new_value, Register temp0, Register temp1);
void AtomicCmpExchangeU16(Register addr, Register output, Register old_value,
Register new_value, Register temp0, Register temp1);
void AtomicExchangeHelper(Register addr, Register value, Register output,
int start, int end, int shift_amount, int offset,
Register scratch);
void AtomicExchangeU8(Register addr, Register value, Register output,
Register scratch);
void AtomicExchangeU16(Register addr, Register value, Register output,
Register scratch);
void DoubleMax(DoubleRegister result_reg, DoubleRegister left_reg,
DoubleRegister right_reg);
void DoubleMin(DoubleRegister result_reg, DoubleRegister left_reg,
DoubleRegister right_reg);
void FloatMax(DoubleRegister result_reg, DoubleRegister left_reg,
DoubleRegister right_reg);
void FloatMin(DoubleRegister result_reg, DoubleRegister left_reg,
DoubleRegister right_reg);
void CeilF32(DoubleRegister dst, DoubleRegister src);
void CeilF64(DoubleRegister dst, DoubleRegister src);
void FloorF32(DoubleRegister dst, DoubleRegister src);
void FloorF64(DoubleRegister dst, DoubleRegister src);
void TruncF32(DoubleRegister dst, DoubleRegister src);
void TruncF64(DoubleRegister dst, DoubleRegister src);
void NearestIntF32(DoubleRegister dst, DoubleRegister src);
void NearestIntF64(DoubleRegister dst, DoubleRegister src);
void LoadFromConstantsTable(Register destination, int constant_index) final;
void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
void LoadRootRelative(Register destination, int32_t offset) final;
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target, Condition cond = al);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Jump(const ExternalReference& reference);
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label) {
TestIfSmi(value);
beq(smi_label /*, cr0*/); // branch if SMI
}
void JumpIfEqual(Register x, int32_t y, Label* dest);
void JumpIfLessThan(Register x, int32_t y, Label* dest);
void LoadMap(Register destination, Register object);
void Call(Register target);
void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
Condition cond = al);
void Ret() { b(r14); }
void Ret(Condition cond) { b(cond, r14); }
void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
DeoptimizeKind kind, Label* ret,
Label* jump_deoptimization_entry_label);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count);
void Drop(Register count, Register scratch = r0);
void Ret(int drop) {
Drop(drop);
Ret();
}
void Call(Label* target);
// Load the builtin given by the Smi in |builtin_index| into the same
// register.
void LoadEntryFromBuiltinIndex(Register builtin_index);
void LoadEntryFromBuiltin(Builtin builtin, Register destination);
MemOperand EntryFromBuiltinAsOperand(Builtin builtin);
void LoadCodeObjectEntry(Register destination, Register code_object);
void CallCodeObject(Register code_object);
void JumpCodeObject(Register code_object,
JumpMode jump_mode = JumpMode::kJump);
void CallBuiltinByIndex(Register builtin_index);
// Register move. May do nothing if the registers are identical.
void Move(Register dst, Smi smi) { LoadSmiLiteral(dst, smi); }
void Move(Register dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
void Move(Register dst, ExternalReference reference);
void Move(Register dst, const MemOperand& src);
void Move(Register dst, Register src, Condition cond = al);
void Move(DoubleRegister dst, DoubleRegister src);
void MoveChar(const MemOperand& opnd1, const MemOperand& opnd2,
const Operand& length);
void CompareLogicalChar(const MemOperand& opnd1, const MemOperand& opnd2,
const Operand& length);
void ExclusiveOrChar(const MemOperand& opnd1, const MemOperand& opnd2,
const Operand& length);
void RotateInsertSelectBits(Register dst, Register src,
const Operand& startBit, const Operand& endBit,
const Operand& shiftAmt, bool zeroBits);
void BranchRelativeOnIdxHighP(Register dst, Register inc, Label* L);
void MaybeSaveRegisters(RegList registers);
void MaybeRestoreRegisters(RegList registers);
void CallEphemeronKeyBarrier(Register object, Register slot_address,
SaveFPRegsMode fp_mode);
void CallRecordWriteStubSaveRegisters(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void CallRecordWriteStub(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void MultiPush(RegList regs, Register location = sp);
void MultiPop(RegList regs, Register location = sp);
void MultiPushDoubles(RegList dregs, Register location = sp);
void MultiPopDoubles(RegList dregs, Register location = sp);
void MultiPushV128(RegList dregs, Register location = sp);
void MultiPopV128(RegList dregs, Register location = sp);
void MultiPushF64OrV128(RegList dregs, Register location = sp);
void MultiPopF64OrV128(RegList dregs, Register location = sp);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Load an object from the root table.
void LoadRoot(Register destination, RootIndex index) override {
LoadRoot(destination, index, al);
}
void LoadRoot(Register destination, RootIndex index, Condition cond);
//--------------------------------------------------------------------------
// S390 Macro Assemblers for Instructions
//--------------------------------------------------------------------------
// Arithmetic Operations
// Add (Register - Immediate)
void AddS32(Register dst, const Operand& imm);
void AddS64(Register dst, const Operand& imm);
void AddS32(Register dst, Register src, const Operand& imm);
void AddS64(Register dst, Register src, const Operand& imm);
void AddS32(Register dst, Register src, int32_t imm);
void AddS64(Register dst, Register src, int32_t imm);
// Add (Register - Register)
void AddS32(Register dst, Register src);
void AddS64(Register dst, Register src);
void AddS32(Register dst, Register src1, Register src2);
void AddS64(Register dst, Register src1, Register src2);
// Add (Register - Mem)
void AddS32(Register dst, const MemOperand& opnd);
void AddS64(Register dst, const MemOperand& opnd);
// Add (Mem - Immediate)
void AddS32(const MemOperand& opnd, const Operand& imm);
void AddS64(const MemOperand& opnd, const Operand& imm);
// Add Logical (Register - Register)
void AddU32(Register dst, Register src1, Register src2);
// Add Logical (Register - Immediate)
void AddU32(Register dst, const Operand& imm);
void AddU64(Register dst, const Operand& imm);
void AddU64(Register dst, Register src1, Register src2);
// Add Logical (Register - Mem)
void AddU32(Register dst, const MemOperand& opnd);
void AddU64(Register dst, const MemOperand& opnd);
// Subtract (Register - Immediate)
void SubS32(Register dst, const Operand& imm);
void SubS64(Register dst, const Operand& imm);
void SubS32(Register dst, Register src, const Operand& imm);
void SubS64(Register dst, Register src, const Operand& imm);
void SubS32(Register dst, Register src, int32_t imm);
void SubS64(Register dst, Register src, int32_t imm);
// Subtract (Register - Register)
void SubS32(Register dst, Register src);
void SubS64(Register dst, Register src);
void SubS32(Register dst, Register src1, Register src2);
void SubS64(Register dst, Register src1, Register src2);
// Subtract (Register - Mem)
void SubS32(Register dst, const MemOperand& opnd);
void SubS64(Register dst, const MemOperand& opnd);
void LoadAndSub32(Register dst, Register src, const MemOperand& opnd);
void LoadAndSub64(Register dst, Register src, const MemOperand& opnd);
// Subtract Logical (Register - Mem)
void SubU32(Register dst, const MemOperand& opnd);
void SubU64(Register dst, const MemOperand& opnd);
// Subtract Logical 32-bit
void SubU32(Register dst, Register src1, Register src2);
// Multiply
void MulS64(Register dst, const Operand& opnd);
void MulS64(Register dst, Register src);
void MulS64(Register dst, const MemOperand& opnd);
void MulS64(Register dst, Register src1, Register src2) {
if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
msgrkc(dst, src1, src2);
} else {
if (dst == src2) {
MulS64(dst, src1);
} else if (dst == src1) {
MulS64(dst, src2);
} else {
mov(dst, src1);
MulS64(dst, src2);
}
}
}
void MulS32(Register dst, const MemOperand& src1);
void MulS32(Register dst, Register src1);
void MulS32(Register dst, const Operand& src1);
void MulS32(Register dst, Register src1, Register src2) {
if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
msrkc(dst, src1, src2);
} else {
if (dst == src2) {
MulS32(dst, src1);
} else if (dst == src1) {
MulS32(dst, src2);
} else {
mov(dst, src1);
MulS32(dst, src2);
}
}
}
void MulHighS32(Register dst, Register src1, const MemOperand& src2);
void MulHighS32(Register dst, Register src1, Register src2);
void MulHighS32(Register dst, Register src1, const Operand& src2);
void MulHighU32(Register dst, Register src1, const MemOperand& src2);
void MulHighU32(Register dst, Register src1, Register src2);
void MulHighU32(Register dst, Register src1, const Operand& src2);
void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
const MemOperand& src2);
void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2);
void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
const Operand& src2);
// Divide
void DivS32(Register dst, Register src1, const MemOperand& src2);
void DivS32(Register dst, Register src1, Register src2);
void DivU32(Register dst, Register src1, const MemOperand& src2);
void DivU32(Register dst, Register src1, Register src2);
void DivS64(Register dst, Register src1, const MemOperand& src2);
void DivS64(Register dst, Register src1, Register src2);
void DivU64(Register dst, Register src1, const MemOperand& src2);
void DivU64(Register dst, Register src1, Register src2);
// Mod
void ModS32(Register dst, Register src1, const MemOperand& src2);
void ModS32(Register dst, Register src1, Register src2);
void ModU32(Register dst, Register src1, const MemOperand& src2);
void ModU32(Register dst, Register src1, Register src2);
void ModS64(Register dst, Register src1, const MemOperand& src2);
void ModS64(Register dst, Register src1, Register src2);
void ModU64(Register dst, Register src1, const MemOperand& src2);
void ModU64(Register dst, Register src1, Register src2);
// Square root
void Sqrt(DoubleRegister result, DoubleRegister input);
void Sqrt(DoubleRegister result, const MemOperand& input);
// Compare
void CmpS32(Register src1, Register src2);
void CmpS64(Register src1, Register src2);
void CmpS32(Register dst, const Operand& opnd);
void CmpS64(Register dst, const Operand& opnd);
void CmpS32(Register dst, const MemOperand& opnd);
void CmpS64(Register dst, const MemOperand& opnd);
void CmpAndSwap(Register old_val, Register new_val, const MemOperand& opnd);
void CmpAndSwap64(Register old_val, Register new_val, const MemOperand& opnd);
// TODO(john.yan): remove this
template <class T>
void CmpP(Register src1, T src2) {
CmpS64(src1, src2);
}
// Compare Logical
void CmpU32(Register src1, Register src2);
void CmpU64(Register src1, Register src2);
void CmpU32(Register src1, const Operand& opnd);
void CmpU64(Register src1, const Operand& opnd);
void CmpU32(Register dst, const MemOperand& opnd);
void CmpU64(Register dst, const MemOperand& opnd);
// Load
void LoadU64(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadS32(Register dst, const MemOperand& opnd, Register scratch = no_reg);
void LoadS32(Register dst, Register src);
void LoadU32(Register dst, const MemOperand& opnd, Register scratch = no_reg);
void LoadU32(Register dst, Register src);
void LoadU16(Register dst, const MemOperand& opnd);
void LoadU16(Register dst, Register src);
void LoadS16(Register dst, Register src);
void LoadS16(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadS8(Register dst, const MemOperand& opnd);
void LoadS8(Register dst, Register src);
void LoadU8(Register dst, const MemOperand& opnd);
void LoadU8(Register dst, Register src);
void LoadV128(Simd128Register dst, const MemOperand& mem, Register scratch);
void LoadF64(DoubleRegister dst, const MemOperand& opnd);
void LoadF32(DoubleRegister dst, const MemOperand& opnd);
// LE Load
void LoadU64LE(Register dst, const MemOperand& mem,
Register scratch = no_reg);
void LoadS32LE(Register dst, const MemOperand& opnd,
Register scratch = no_reg);
void LoadU32LE(Register dst, const MemOperand& opnd,
Register scratch = no_reg);
void LoadU16LE(Register dst, const MemOperand& opnd);
void LoadS16LE(Register dst, const MemOperand& opnd);
void LoadV128LE(DoubleRegister dst, const MemOperand& mem, Register scratch0,
Register scratch1);
void LoadF64LE(DoubleRegister dst, const MemOperand& opnd, Register scratch);
void LoadF32LE(DoubleRegister dst, const MemOperand& opnd, Register scratch);
// Vector LE Load and Transform instructions.
void LoadAndSplat64x2LE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndSplat32x4LE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndSplat16x8LE(Simd128Register dst, const MemOperand& me,
Register scratch);
void LoadAndSplat8x16LE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndExtend8x8ULE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndExtend8x8SLE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndExtend16x4ULE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndExtend16x4SLE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndExtend32x2ULE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadAndExtend32x2SLE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadV32ZeroLE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadV64ZeroLE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void LoadLane8LE(Simd128Register dst, const MemOperand& mem, int lane,
Register scratch);
void LoadLane16LE(Simd128Register dst, const MemOperand& mem, int lane,
Register scratch);
void LoadLane32LE(Simd128Register dst, const MemOperand& mem, int lane,
Register scratch);
void LoadLane64LE(Simd128Register dst, const MemOperand& mem, int lane,
Register scratch);
void StoreLane8LE(Simd128Register src, const MemOperand& mem, int lane,
Register scratch);
void StoreLane16LE(Simd128Register src, const MemOperand& mem, int lane,
Register scratch);
void StoreLane32LE(Simd128Register src, const MemOperand& mem, int lane,
Register scratch);
void StoreLane64LE(Simd128Register src, const MemOperand& mem, int lane,
Register scratch);
// Load And Test
void LoadAndTest32(Register dst, Register src);
void LoadAndTestP(Register dst, Register src);
void LoadAndTest32(Register dst, const MemOperand& opnd);
void LoadAndTestP(Register dst, const MemOperand& opnd);
// Store
void StoreU64(const MemOperand& mem, const Operand& opnd,
Register scratch = no_reg);
void StoreU64(Register src, const MemOperand& mem, Register scratch = no_reg);
void StoreU32(Register src, const MemOperand& mem, Register scratch = no_reg);
void StoreU16(Register src, const MemOperand& mem, Register scratch = r0);
void StoreU8(Register src, const MemOperand& mem, Register scratch = r0);
void StoreF64(DoubleRegister dst, const MemOperand& opnd);
void StoreF32(DoubleRegister dst, const MemOperand& opnd);
void StoreV128(Simd128Register src, const MemOperand& mem, Register scratch);
// Store LE
void StoreU64LE(Register src, const MemOperand& mem,
Register scratch = no_reg);
void StoreU32LE(Register src, const MemOperand& mem,
Register scratch = no_reg);
void StoreU16LE(Register src, const MemOperand& mem, Register scratch = r0);
void StoreF64LE(DoubleRegister src, const MemOperand& opnd, Register scratch);
void StoreF32LE(DoubleRegister src, const MemOperand& opnd, Register scratch);
void StoreV128LE(Simd128Register src, const MemOperand& mem,
Register scratch1, Register scratch2);
void AddF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void SubF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void MulF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void DivF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void AddF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void SubF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void MulF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void DivF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs);
void AddFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void AddFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void SubFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void SubFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void MulFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void MulFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void DivFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void DivFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
void LoadF32AsF64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch);
// Load On Condition
void LoadOnConditionP(Condition cond, Register dst, Register src);
void LoadPositiveP(Register result, Register input);
void LoadPositive32(Register result, Register input);
void Branch(Condition c, const Operand& opnd);
void BranchOnCount(Register r1, Label* l);
// Shifts
void ShiftLeftU32(Register dst, Register src, Register val,
const Operand& val2 = Operand::Zero());
void ShiftLeftU32(Register dst, Register src, const Operand& val);
void ShiftLeftU64(Register dst, Register src, Register val,
const Operand& val2 = Operand::Zero());
void ShiftLeftU64(Register dst, Register src, const Operand& val);
void ShiftRightU32(Register dst, Register src, Register val,
const Operand& val2 = Operand::Zero());
void ShiftRightU32(Register dst, Register src, const Operand& val);
void ShiftRightU64(Register dst, Register src, Register val,
const Operand& val2 = Operand::Zero());
void ShiftRightU64(Register dst, Register src, const Operand& val);
void ShiftRightS32(Register dst, Register src, Register shift,
const Operand& val2 = Operand::Zero());
void ShiftRightS32(Register dst, Register src, const Operand& val);
void ShiftRightS64(Register dst, Register src, Register shift,
const Operand& val2 = Operand::Zero());
void ShiftRightS64(Register dst, Register src, const Operand& val);
void ClearRightImm(Register dst, Register src, const Operand& val);
// Bitwise operations
void And(Register dst, Register src);
void AndP(Register dst, Register src);
void And(Register dst, Register src1, Register src2);
void AndP(Register dst, Register src1, Register src2);
void And(Register dst, const MemOperand& opnd);
void AndP(Register dst, const MemOperand& opnd);
void And(Register dst, const Operand& opnd);
void AndP(Register dst, const Operand& opnd);
void And(Register dst, Register src, const Operand& opnd);
void AndP(Register dst, Register src, const Operand& opnd);
void Or(Register dst, Register src);
void OrP(Register dst, Register src);
void Or(Register dst, Register src1, Register src2);
void OrP(Register dst, Register src1, Register src2);
void Or(Register dst, const MemOperand& opnd);
void OrP(Register dst, const MemOperand& opnd);
void Or(Register dst, const Operand& opnd);
void OrP(Register dst, const Operand& opnd);
void Or(Register dst, Register src, const Operand& opnd);
void OrP(Register dst, Register src, const Operand& opnd);
void Xor(Register dst, Register src);
void XorP(Register dst, Register src);
void Xor(Register dst, Register src1, Register src2);
void XorP(Register dst, Register src1, Register src2);
void Xor(Register dst, const MemOperand& opnd);
void XorP(Register dst, const MemOperand& opnd);
void Xor(Register dst, const Operand& opnd);
void XorP(Register dst, const Operand& opnd);
void Xor(Register dst, Register src, const Operand& opnd);
void XorP(Register dst, Register src, const Operand& opnd);
void Popcnt32(Register dst, Register src);
void Not32(Register dst, Register src = no_reg);
void Not64(Register dst, Register src = no_reg);
void NotP(Register dst, Register src = no_reg);
#ifdef V8_TARGET_ARCH_S390X
void Popcnt64(Register dst, Register src);
#endif
void mov(Register dst, const Operand& src);
void mov(Register dst, Register src);
void CleanUInt32(Register x) {
#ifdef V8_TARGET_ARCH_S390X
llgfr(x, x);
#endif
}
void push(DoubleRegister src) {
lay(sp, MemOperand(sp, -kSystemPointerSize));
StoreF64(src, MemOperand(sp));
}
void push(Register src) {
lay(sp, MemOperand(sp, -kSystemPointerSize));
StoreU64(src, MemOperand(sp));
}
void pop(DoubleRegister dst) {
LoadF64(dst, MemOperand(sp));
la(sp, MemOperand(sp, kSystemPointerSize));
}
void pop(Register dst) {
LoadU64(dst, MemOperand(sp));
la(sp, MemOperand(sp, kSystemPointerSize));
}
void pop() { la(sp, MemOperand(sp, kSystemPointerSize)); }
void Push(Register src) { push(src); }
// Push a handle.
void Push(Handle<HeapObject> handle);
void Push(Smi smi);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
lay(sp, MemOperand(sp, -kSystemPointerSize * 2));
StoreU64(src1, MemOperand(sp, kSystemPointerSize));
StoreU64(src2, MemOperand(sp, 0));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
lay(sp, MemOperand(sp, -kSystemPointerSize * 3));
StoreU64(src1, MemOperand(sp, kSystemPointerSize * 2));
StoreU64(src2, MemOperand(sp, kSystemPointerSize));
StoreU64(src3, MemOperand(sp, 0));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
lay(sp, MemOperand(sp, -kSystemPointerSize * 4));
StoreU64(src1, MemOperand(sp, kSystemPointerSize * 3));
StoreU64(src2, MemOperand(sp, kSystemPointerSize * 2));
StoreU64(src3, MemOperand(sp, kSystemPointerSize));
StoreU64(src4, MemOperand(sp, 0));
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5) {
DCHECK(src1 != src2);
DCHECK(src1 != src3);
DCHECK(src2 != src3);
DCHECK(src1 != src4);
DCHECK(src2 != src4);
DCHECK(src3 != src4);
DCHECK(src1 != src5);
DCHECK(src2 != src5);
DCHECK(src3 != src5);
DCHECK(src4 != src5);
lay(sp, MemOperand(sp, -kSystemPointerSize * 5));
StoreU64(src1, MemOperand(sp, kSystemPointerSize * 4));
StoreU64(src2, MemOperand(sp, kSystemPointerSize * 3));
StoreU64(src3, MemOperand(sp, kSystemPointerSize * 2));
StoreU64(src4, MemOperand(sp, kSystemPointerSize));
StoreU64(src5, MemOperand(sp, 0));
}
enum PushArrayOrder { kNormal, kReverse };
void PushArray(Register array, Register size, Register scratch,
Register scratch2, PushArrayOrder order = kNormal);
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
LoadU64(src2, MemOperand(sp, 0));
LoadU64(src1, MemOperand(sp, kSystemPointerSize));
la(sp, MemOperand(sp, 2 * kSystemPointerSize));
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
LoadU64(src3, MemOperand(sp, 0));
LoadU64(src2, MemOperand(sp, kSystemPointerSize));
LoadU64(src1, MemOperand(sp, 2 * kSystemPointerSize));
la(sp, MemOperand(sp, 3 * kSystemPointerSize));
}
// Pop four registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4) {
LoadU64(src4, MemOperand(sp, 0));
LoadU64(src3, MemOperand(sp, kSystemPointerSize));
LoadU64(src2, MemOperand(sp, 2 * kSystemPointerSize));
LoadU64(src1, MemOperand(sp, 3 * kSystemPointerSize));
la(sp, MemOperand(sp, 4 * kSystemPointerSize));
}
// Pop five registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4,
Register src5) {
LoadU64(src5, MemOperand(sp, 0));
LoadU64(src4, MemOperand(sp, kSystemPointerSize));
LoadU64(src3, MemOperand(sp, 2 * kSystemPointerSize));
LoadU64(src2, MemOperand(sp, 3 * kSystemPointerSize));
LoadU64(src1, MemOperand(sp, 4 * kSystemPointerSize));
la(sp, MemOperand(sp, 5 * kSystemPointerSize));
}
// Push a fixed frame, consisting of lr, fp, constant pool.
void PushCommonFrame(Register marker_reg = no_reg);
// Push a standard frame, consisting of lr, fp, constant pool,
// context and JS function
void PushStandardFrame(Register function_reg);
void PopCommonFrame(Register marker_reg = no_reg);
// Restore caller's frame pointer and return address prior to being
// overwritten by tail call stack preparation.
void RestoreFrameStateForTailCall();
void InitializeRootRegister() {
ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
mov(kRootRegister, Operand(isolate_root));
}
// If the value is a NaN, canonicalize the value else, do nothing.
void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
void CanonicalizeNaN(const DoubleRegister value) {
CanonicalizeNaN(value, value);
}
// Converts the integer (untagged smi) in |src| to a double, storing
// the result to |dst|
void ConvertIntToDouble(DoubleRegister dst, Register src);
// Converts the unsigned integer (untagged smi) in |src| to
// a double, storing the result to |dst|
void ConvertUnsignedIntToDouble(DoubleRegister dst, Register src);
// Converts the integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertIntToFloat(DoubleRegister dst, Register src);
// Converts the unsigned integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertUnsignedIntToFloat(DoubleRegister dst, Register src);
void ConvertInt64ToFloat(DoubleRegister double_dst, Register src);
void ConvertInt64ToDouble(DoubleRegister double_dst, Register src);
void ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, Register src);
void ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, Register src);
void MovIntToFloat(DoubleRegister dst, Register src);
void MovFloatToInt(Register dst, DoubleRegister src);
void MovDoubleToInt64(Register dst, DoubleRegister src);
void MovInt64ToDouble(DoubleRegister dst, Register src);
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertFloat32ToInt64(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToInt64(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertDoubleToInt32(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertFloat32ToInt32(const Register result,
const DoubleRegister double_input,
FPRoundingMode rounding_mode);
void ConvertFloat32ToUnsignedInt32(
const Register result, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
// Converts the double_input to an unsigned integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToUnsignedInt64(
const Register dst, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertDoubleToUnsignedInt32(
const Register dst, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertFloat32ToUnsignedInt64(
const Register result, const DoubleRegister double_input,
FPRoundingMode rounding_mode = kRoundToZero);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type, Register base = no_reg,
int prologue_offset = 0);
void Prologue(Register base, int prologue_offset = 0);
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
void DropArguments(Register count, ArgumentsCountType type,
ArgumentsCountMode mode);
void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
ArgumentsCountType type,
ArgumentsCountMode mode);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
// ----------------------------------------------------------------
// new S390 macro-assembler interfaces that are slightly higher level
// than assembler-s390 and may generate variable length sequences
// load an SMI value <value> to GPR <dst>
void LoadSmiLiteral(Register dst, Smi smi);
// load a literal double value <value> to FPR <result>
template <class T>
void LoadF64(DoubleRegister result, T value, Register scratch) {
static_assert(sizeof(T) == kDoubleSize, "Expect input size to be 8");
uint64_t int_val = bit_cast<uint64_t, T>(value);
// Load the 64-bit value into a GPR, then transfer it to FPR via LDGR
uint32_t hi_32 = int_val >> 32;
uint32_t lo_32 = static_cast<uint32_t>(int_val);
if (int_val == 0) {
lzdr(result);
} else if (lo_32 == 0) {
llihf(scratch, Operand(hi_32));
ldgr(result, scratch);
} else {
iihf(scratch, Operand(hi_32));
iilf(scratch, Operand(lo_32));
ldgr(result, scratch);
}
}
template <class T>
void LoadF32(DoubleRegister result, T value, Register scratch) {
static_assert(sizeof(T) == kFloatSize, "Expect input size to be 4");
uint32_t int_val = bit_cast<uint32_t, T>(value);
LoadF64(result, static_cast<uint64_t>(int_val) << 32, scratch);
}
void CmpSmiLiteral(Register src1, Smi smi, Register scratch);
// Set new rounding mode RN to FPSCR
void SetRoundingMode(FPRoundingMode RN);
// reset rounding mode to default (kRoundToNearest)
void ResetRoundingMode();
// These exist to provide portability between 32 and 64bit
void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
void SwapP(Register src, Register dst, Register scratch);
void SwapP(Register src, MemOperand dst, Register scratch);
void SwapP(MemOperand src, MemOperand dst, Register scratch_0,
Register scratch_1);
void SwapFloat32(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch);
void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch);
void SwapDouble(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch);
void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch);
void SwapSimd128(Simd128Register src, Simd128Register dst,
Simd128Register scratch);
void SwapSimd128(Simd128Register src, MemOperand dst,
Simd128Register scratch);
void SwapSimd128(MemOperand src, MemOperand dst, Simd128Register scratch);
// Cleanse pointer address on 31bit by zero out top bit.
// This is a NOP on 64-bit.
void CleanseP(Register src) {
#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
nilh(src, Operand(0x7FFF));
#endif
}
// ---------------------------------------------------------------------------
// Runtime calls
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized. If double arguments are used, this function assumes that
// all double arguments are stored before core registers; otherwise the
// correct alignment of the double values is not guaranteed.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
// There are two ways of passing double arguments on ARM, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
void MovFromFloatParameter(DoubleRegister dst);
void MovFromFloatResult(DoubleRegister dst);
void Trap();
void DebugBreak();
// Emit code for a truncating division by a constant. The dividend register is
// unchanged and ip gets clobbered. Dividend and result must be different.
void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
DoubleRegister double_input, StubCallMode stub_mode);
void TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input,
Label* done);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, AbortReason reason, CRegister cr = cr7);
// Like Assert(), but without condition.
// Use --debug-code to enable.
void AssertUnreachable(AbortReason reason);
// Like Assert(), but always enabled.
void Check(Condition cond, AbortReason reason, CRegister cr = cr7);
// Print a message to stdout and abort execution.
void Abort(AbortReason reason);
// ---------------------------------------------------------------------------
// Bit testing/extraction
//
// Bit numbering is such that the least significant bit is bit 0
// (for consistency between 32/64-bit).
// Extract consecutive bits (defined by rangeStart - rangeEnd) from src
// and place them into the least significant bits of dst.
inline void ExtractBitRange(Register dst, Register src, int rangeStart,
int rangeEnd) {
DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerSystemPointer);
// Try to use RISBG if possible.
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int shiftAmount = (64 - rangeEnd) % 64; // Convert to shift left.
int endBit = 63; // End is always LSB after shifting.
int startBit = 63 - rangeStart + rangeEnd;
RotateInsertSelectBits(dst, src, Operand(startBit), Operand(endBit),
Operand(shiftAmount), true);
} else {
if (rangeEnd > 0) // Don't need to shift if rangeEnd is zero.
ShiftRightU64(dst, src, Operand(rangeEnd));
else if (dst != src) // If we didn't shift, we might need to copy
mov(dst, src);
int width = rangeStart - rangeEnd + 1;
#if V8_TARGET_ARCH_S390X
uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
nihf(dst, Operand(mask >> 32));
nilf(dst, Operand(mask & 0xFFFFFFFF));
ltgr(dst, dst);
#else
uint32_t mask = (1 << width) - 1;
AndP(dst, Operand(mask));
#endif
}
}
inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
ExtractBitRange(dst, src, bitNumber, bitNumber);
}
// Extract consecutive bits (defined by mask) from src and place them
// into the least significant bits of dst.
inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
RCBit rc = LeaveRC) {
int start = kBitsPerSystemPointer - 1;
int end;
uintptr_t bit = (1L << start);
while (bit && (mask & bit) == 0) {
start--;
bit >>= 1;
}
end = start;
bit >>= 1;
while (bit && (mask & bit)) {
end--;
bit >>= 1;
}
// 1-bits in mask must be contiguous
DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
ExtractBitRange(dst, src, start, end);
}
// Test single bit in value.
inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
ExtractBitRange(scratch, value, bitNumber, bitNumber);
}
// Test consecutive bit range in value. Range is defined by
// rangeStart - rangeEnd.
inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
Register scratch = r0) {
ExtractBitRange(scratch, value, rangeStart, rangeEnd);
}
// Test consecutive bit range in value. Range is defined by mask.
inline void TestBitMask(Register value, uintptr_t mask,
Register scratch = r0) {
ExtractBitMask(scratch, value, mask, SetRC);
}
inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
inline void TestIfSmi(MemOperand value) {
if (is_uint12(value.offset())) {
tm(value, Operand(1));
} else if (is_int20(value.offset())) {
tmy(value, Operand(1));
} else {
LoadS8(r0, value);
tmll(r0, Operand(1));
}
}
inline void TestIfInt32(Register value) {
// High bits must be identical to fit into an 32-bit integer
cgfr(value, value);
}
void SmiUntag(Register reg) { SmiUntag(reg, reg); }
void SmiUntag(Register dst, const MemOperand& src);
void SmiUntag(Register dst, Register src) {
if (SmiValuesAre31Bits()) {
ShiftRightS32(dst, src, Operand(kSmiShift));
} else {
ShiftRightS64(dst, src, Operand(kSmiShift));
}
lgfr(dst, dst);
}
void SmiToInt32(Register smi) {
if (FLAG_enable_slow_asserts) {
AssertSmi(smi);
}
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
SmiUntag(smi);
}
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
// Activation support.
void EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg = false);
// Returns the pc offset at which the frame ends.
int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
void AllocateStackSpace(int bytes) {
DCHECK_GE(bytes, 0);
if (bytes == 0) return;
lay(sp, MemOperand(sp, -bytes));
}
void AllocateStackSpace(Register bytes) { SubS64(sp, sp, bytes); }
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
void ComputeCodeStartAddress(Register dst);
void LoadPC(Register dst);
// Control-flow integrity:
// Define a function entrypoint. This doesn't emit any code for this
// architecture, as control-flow integrity is not supported for it.
void CodeEntry() {}
// Define an exception handler.
void ExceptionHandler() {}
// Define an exception handler and bind a label.
void BindExceptionHandler(Label* label) { bind(label); }
// Generates an instruction sequence s.t. the return address points to the
// instruction following the call.
// The return address on the stack is used by frame iteration.
void StoreReturnAddressAndCall(Register target);
// ---------------------------------------------------------------------------
// Simd Support.
void F64x2Splat(Simd128Register dst, Simd128Register src);
void F32x4Splat(Simd128Register dst, Simd128Register src);
void I64x2Splat(Simd128Register dst, Register src);
void I32x4Splat(Simd128Register dst, Register src);
void I16x8Splat(Simd128Register dst, Register src);
void I8x16Splat(Simd128Register dst, Register src);
void F64x2ExtractLane(DoubleRegister dst, Simd128Register src,
uint8_t imm_lane_idx, Register = r0);
void F32x4ExtractLane(DoubleRegister dst, Simd128Register src,
uint8_t imm_lane_idx, Register = r0);
void I64x2ExtractLane(Register dst, Simd128Register src, uint8_t imm_lane_idx,
Register = r0);
void I32x4ExtractLane(Register dst, Simd128Register src, uint8_t imm_lane_idx,
Register = r0);
void I16x8ExtractLaneU(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register = r0);
void I16x8ExtractLaneS(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register scratch);
void I8x16ExtractLaneU(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register = r0);
void I8x16ExtractLaneS(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register scratch);
void F64x2ReplaceLane(Simd128Register dst, Simd128Register src1,
DoubleRegister src2, uint8_t imm_lane_idx,
Register scratch);
void F32x4ReplaceLane(Simd128Register dst, Simd128Register src1,
DoubleRegister src2, uint8_t imm_lane_idx,
Register scratch);
void I64x2ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx, Register = r0);
void I32x4ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx, Register = r0);
void I16x8ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx, Register = r0);
void I8x16ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx, Register = r0);
void I64x2Mul(Simd128Register dst, Simd128Register src1, Simd128Register src2,
Register scratch1, Register scratch2, Register scratch3);
void I32x4GeU(Simd128Register dst, Simd128Register src1, Simd128Register src2,
Simd128Register scratch);
void I16x8GeU(Simd128Register dst, Simd128Register src1, Simd128Register src2,
Simd128Register scratch);
void I8x16GeU(Simd128Register dst, Simd128Register src1, Simd128Register src2,
Simd128Register scratch);
void I64x2BitMask(Register dst, Simd128Register src, Register scratch1,
Simd128Register scratch2);
void I32x4BitMask(Register dst, Simd128Register src, Register scratch1,
Simd128Register scratch2);
void I16x8BitMask(Register dst, Simd128Register src, Register scratch1,
Simd128Register scratch2);
void I8x16BitMask(Register dst, Simd128Register src, Register scratch1,
Register scratch2, Simd128Register scratch3);
void V128AnyTrue(Register dst, Simd128Register src, Register scratch);
void I32x4SConvertF32x4(Simd128Register dst, Simd128Register src,
Simd128Register scratch1, Register scratch2);
void I32x4UConvertF32x4(Simd128Register dst, Simd128Register src,
Simd128Register scratch1, Register scratch2);
void F32x4SConvertI32x4(Simd128Register dst, Simd128Register src,
Simd128Register scratch1, Register scratch2);
void F32x4UConvertI32x4(Simd128Register dst, Simd128Register src,
Simd128Register scratch1, Register scratch2);
void I16x8SConvertI32x4(Simd128Register dst, Simd128Register src1,
Simd128Register src2);
void I8x16SConvertI16x8(Simd128Register dst, Simd128Register src1,
Simd128Register src2);
void I16x8UConvertI32x4(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch);
void I8x16UConvertI16x8(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch);
void F64x2PromoteLowF32x4(Simd128Register dst, Simd128Register src,
Simd128Register scratch1, Register scratch2,
Register scratch3, Register scratch4);
void F32x4DemoteF64x2Zero(Simd128Register dst, Simd128Register src,
Simd128Register scratch1, Register scratch2,
Register scratch3, Register scratch4);
void I32x4TruncSatF64x2SZero(Simd128Register dst, Simd128Register src,
Simd128Register scratch);
void I32x4TruncSatF64x2UZero(Simd128Register dst, Simd128Register src,
Simd128Register scratch);
void I8x16Swizzle(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Register scratch1, Register scratch2,
Simd128Register scratch3, Simd128Register scratch4);
void S128Const(Simd128Register dst, uint64_t high, uint64_t low,
Register scratch1, Register scratch2);
void I8x16Shuffle(Simd128Register dst, Simd128Register src1,
Simd128Register src2, uint64_t high, uint64_t low,
Register scratch1, Register scratch2,
Simd128Register scratch3);
void I32x4DotI16x8S(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch);
void I16x8Q15MulRSatS(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch1,
Simd128Register scratch2, Simd128Register scratch3);
void S128Select(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register mask);
#define SIMD_SHIFT_LIST(V) \
V(I64x2Shl) \
V(I64x2ShrS) \
V(I64x2ShrU) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU) \
V(I8x16Shl) \
V(I8x16ShrS) \
V(I8x16ShrU)
#define PROTOTYPE_SIMD_SHIFT(name) \
void name(Simd128Register dst, Simd128Register src1, Register src2, \
Simd128Register scratch); \
void name(Simd128Register dst, Simd128Register src1, const Operand& src2, \
Register scratch1, Simd128Register scratch2);
SIMD_SHIFT_LIST(PROTOTYPE_SIMD_SHIFT)
#undef PROTOTYPE_SIMD_SHIFT
#undef SIMD_SHIFT_LIST
#define SIMD_UNOP_LIST(V) \
V(F64x2Abs) \
V(F64x2Neg) \
V(F64x2Sqrt) \
V(F64x2Ceil) \
V(F64x2Floor) \
V(F64x2Trunc) \
V(F64x2NearestInt) \
V(F64x2ConvertLowI32x4S) \
V(F64x2ConvertLowI32x4U) \
V(F32x4Abs) \
V(F32x4Neg) \
V(F32x4Sqrt) \
V(F32x4Ceil) \
V(F32x4Floor) \
V(F32x4Trunc) \
V(F32x4NearestInt) \
V(I64x2Abs) \
V(I64x2SConvertI32x4Low) \
V(I64x2SConvertI32x4High) \
V(I64x2UConvertI32x4Low) \
V(I64x2UConvertI32x4High) \
V(I64x2Neg) \
V(I32x4Abs) \
V(I32x4Neg) \
V(I32x4SConvertI16x8Low) \
V(I32x4SConvertI16x8High) \
V(I32x4UConvertI16x8Low) \
V(I32x4UConvertI16x8High) \
V(I16x8Abs) \
V(I16x8Neg) \
V(I16x8SConvertI8x16Low) \
V(I16x8SConvertI8x16High) \
V(I16x8UConvertI8x16Low) \
V(I16x8UConvertI8x16High) \
V(I8x16Abs) \
V(I8x16Neg) \
V(I8x16Popcnt) \
V(S128Not) \
V(S128Zero) \
V(S128AllOnes)
#define PROTOTYPE_SIMD_UNOP(name) \
void name(Simd128Register dst, Simd128Register src);
SIMD_UNOP_LIST(PROTOTYPE_SIMD_UNOP)
#undef PROTOTYPE_SIMD_UNOP
#undef SIMD_UNOP_LIST
#define SIMD_BINOP_LIST(V) \
V(F64x2Add) \
V(F64x2Sub) \
V(F64x2Mul) \
V(F64x2Div) \
V(F64x2Min) \
V(F64x2Max) \
V(F64x2Eq) \
V(F64x2Ne) \
V(F64x2Lt) \
V(F64x2Le) \
V(F64x2Pmin) \
V(F64x2Pmax) \
V(F32x4Add) \
V(F32x4Sub) \
V(F32x4Mul) \
V(F32x4Div) \
V(F32x4Min) \
V(F32x4Max) \
V(F32x4Eq) \
V(F32x4Ne) \
V(F32x4Lt) \
V(F32x4Le) \
V(F32x4Pmin) \
V(F32x4Pmax) \
V(I64x2Add) \
V(I64x2Sub) \
V(I64x2Eq) \
V(I64x2Ne) \
V(I64x2GtS) \
V(I64x2GeS) \
V(I32x4Add) \
V(I32x4Sub) \
V(I32x4Mul) \
V(I32x4Eq) \
V(I32x4Ne) \
V(I32x4GtS) \
V(I32x4GeS) \
V(I32x4GtU) \
V(I32x4MinS) \
V(I32x4MinU) \
V(I32x4MaxS) \
V(I32x4MaxU) \
V(I16x8Add) \
V(I16x8Sub) \
V(I16x8Mul) \
V(I16x8Eq) \
V(I16x8Ne) \
V(I16x8GtS) \
V(I16x8GeS) \
V(I16x8GtU) \
V(I16x8MinS) \
V(I16x8MinU) \
V(I16x8MaxS) \
V(I16x8MaxU) \
V(I16x8RoundingAverageU) \
V(I8x16Add) \
V(I8x16Sub) \
V(I8x16Eq) \
V(I8x16Ne) \
V(I8x16GtS) \
V(I8x16GeS) \
V(I8x16GtU) \
V(I8x16MinS) \
V(I8x16MinU) \
V(I8x16MaxS) \
V(I8x16MaxU) \
V(I8x16RoundingAverageU) \
V(S128And) \
V(S128Or) \
V(S128Xor) \
V(S128AndNot)
#define PROTOTYPE_SIMD_BINOP(name) \
void name(Simd128Register dst, Simd128Register src1, Simd128Register src2);
SIMD_BINOP_LIST(PROTOTYPE_SIMD_BINOP)
#undef PROTOTYPE_SIMD_BINOP
#undef SIMD_BINOP_LIST
#define SIMD_EXT_MUL_LIST(V) \
V(I64x2ExtMulLowI32x4S) \
V(I64x2ExtMulHighI32x4S) \
V(I64x2ExtMulLowI32x4U) \
V(I64x2ExtMulHighI32x4U) \
V(I32x4ExtMulLowI16x8S) \
V(I32x4ExtMulHighI16x8S) \
V(I32x4ExtMulLowI16x8U) \
V(I32x4ExtMulHighI16x8U) \
V(I16x8ExtMulLowI8x16S) \
V(I16x8ExtMulHighI8x16S) \
V(I16x8ExtMulLowI8x16U) \
V(I16x8ExtMulHighI8x16U)
#define PROTOTYPE_SIMD_EXT_MUL(name) \
void name(Simd128Register dst, Simd128Register src1, Simd128Register src2, \
Simd128Register scratch);
SIMD_EXT_MUL_LIST(PROTOTYPE_SIMD_EXT_MUL)
#undef PROTOTYPE_SIMD_EXT_MUL
#undef SIMD_EXT_MUL_LIST
#define SIMD_ALL_TRUE_LIST(V) \
V(I64x2AllTrue) \
V(I32x4AllTrue) \
V(I16x8AllTrue) \
V(I8x16AllTrue)
#define PROTOTYPE_SIMD_ALL_TRUE(name) \
void name(Register dst, Simd128Register src, Register scratch1, \
Simd128Register scratch2);
SIMD_ALL_TRUE_LIST(PROTOTYPE_SIMD_ALL_TRUE)
#undef PROTOTYPE_SIMD_ALL_TRUE
#undef SIMD_ALL_TRUE_LIST
#define SIMD_QFM_LIST(V) \
V(F64x2Qfma) \
V(F64x2Qfms) \
V(F32x4Qfma) \
V(F32x4Qfms)
#define PROTOTYPE_SIMD_QFM(name) \
void name(Simd128Register dst, Simd128Register src1, Simd128Register src2, \
Simd128Register src3);
SIMD_QFM_LIST(PROTOTYPE_SIMD_QFM)
#undef PROTOTYPE_SIMD_QFM
#undef SIMD_QFM_LIST
#define SIMD_ADD_SUB_SAT_LIST(V) \
V(I16x8AddSatS) \
V(I16x8SubSatS) \
V(I16x8AddSatU) \
V(I16x8SubSatU) \
V(I8x16AddSatS) \
V(I8x16SubSatS) \
V(I8x16AddSatU) \
V(I8x16SubSatU)
#define PROTOTYPE_SIMD_ADD_SUB_SAT(name) \
void name(Simd128Register dst, Simd128Register src1, Simd128Register src2, \
Simd128Register scratch1, Simd128Register scratch2);
SIMD_ADD_SUB_SAT_LIST(PROTOTYPE_SIMD_ADD_SUB_SAT)
#undef PROTOTYPE_SIMD_ADD_SUB_SAT
#undef SIMD_ADD_SUB_SAT_LIST
#define SIMD_EXT_ADD_PAIRWISE_LIST(V) \
V(I32x4ExtAddPairwiseI16x8S) \
V(I32x4ExtAddPairwiseI16x8U) \
V(I16x8ExtAddPairwiseI8x16S) \
V(I16x8ExtAddPairwiseI8x16U)
#define PROTOTYPE_SIMD_EXT_ADD_PAIRWISE(name) \
void name(Simd128Register dst, Simd128Register src, \
Simd128Register scratch1, Simd128Register scratch2);
SIMD_EXT_ADD_PAIRWISE_LIST(PROTOTYPE_SIMD_EXT_ADD_PAIRWISE)
#undef PROTOTYPE_SIMD_EXT_ADD_PAIRWISE
#undef SIMD_EXT_ADD_PAIRWISE_LIST
// ---------------------------------------------------------------------------
// Pointer compression Support
void SmiToPtrArrayOffset(Register dst, Register src) {
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kSystemPointerSizeLog2);
ShiftLeftU64(dst, src, Operand(kSystemPointerSizeLog2 - kSmiShift));
#else
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kSystemPointerSizeLog2);
ShiftRightS64(dst, src, Operand(kSmiShift - kSystemPointerSizeLog2));
#endif
}
// Loads a field containing a HeapObject and decompresses it if pointer
// compression is enabled.
void LoadTaggedPointerField(const Register& destination,
const MemOperand& field_operand,
const Register& scratch = no_reg);
void LoadTaggedSignedField(Register destination, MemOperand field_operand);
// Loads a field containing any tagged value and decompresses it if necessary.
void LoadAnyTaggedField(const Register& destination,
const MemOperand& field_operand,
const Register& scratch = no_reg);
// Loads a field containing smi value and untags it.
void SmiUntagField(Register dst, const MemOperand& src);
// Compresses and stores tagged value to given on-heap location.
void StoreTaggedField(const Register& value,
const MemOperand& dst_field_operand,
const Register& scratch = no_reg);
void DecompressTaggedSigned(Register destination, MemOperand field_operand);
void DecompressTaggedSigned(Register destination, Register src);
void DecompressTaggedPointer(Register destination, MemOperand field_operand);
void DecompressTaggedPointer(Register destination, Register source);
void DecompressAnyTagged(Register destination, MemOperand field_operand);
void DecompressAnyTagged(Register destination, Register source);
// CountLeadingZeros will corrupt the scratch register pair (eg. r0:r1)
void CountLeadingZerosU32(Register dst, Register src,
Register scratch_pair = r0);
void CountLeadingZerosU64(Register dst, Register src,
Register scratch_pair = r0);
void CountTrailingZerosU32(Register dst, Register src,
Register scratch_pair = r0);
void CountTrailingZerosU64(Register dst, Register src,
Register scratch_pair = r0);
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
};
// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
public:
using TurboAssembler::TurboAssembler;
void LoadStackLimit(Register destination, StackLimitKind kind);
// It assumes that the arguments are located below the stack pointer.
// argc is the number of arguments not including the receiver.
// TODO(victorgomes): Remove this function once we stick with the reversed
// arguments order.
void LoadReceiver(Register dest, Register argc) {
LoadU64(dest, MemOperand(sp, 0));
}
void StoreReceiver(Register rec, Register argc, Register scratch) {
StoreU64(rec, MemOperand(sp, 0));
}
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, SaveFPRegsMode::kSave);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// ---------------------------------------------------------------------------
// Support functions.
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
// Type_reg can be no_reg. In that case ip is used.
void CompareObjectType(Register heap_object, Register map, Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map, Register type_reg, InstanceType type);
// Compare instance type ranges for a map (lower_limit and higher_limit
// inclusive).
//
// Always use unsigned comparisons: ls for a positive result.
void CompareInstanceTypeRange(Register map, Register type_reg,
InstanceType lower_limit,
InstanceType higher_limit);
// Compare the object in a register to a value from the root list.
// Uses the ip register as scratch.
void CompareRoot(Register obj, RootIndex index);
void PushRoot(RootIndex index) {
LoadRoot(r0, index);
Push(r0);
}
template <class T>
void CompareTagged(Register src1, T src2) {
if (COMPRESS_POINTERS_BOOL) {
CmpS32(src1, src2);
} else {
CmpS64(src1, src2);
}
}
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToOffHeapInstructionStream(Address entry);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
CompareRoot(with, index);
beq(if_equal);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
CompareRoot(with, index);
bne(if_not_equal);
}
// Checks if value is in range [lower_limit, higher_limit] using a single
// comparison.
void CompareRange(Register value, unsigned lower_limit,
unsigned higher_limit);
void JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range);
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitIncrementCounter(counter, value, scratch1, scratch2);
}
void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitDecrementCounter(counter, value, scratch1, scratch2);
}
void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// Stack limit utilities
MemOperand StackLimitAsMemOperand(StackLimitKind kind);
void StackOverflowCheck(Register num_args, Register scratch,
Label* stack_overflow);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Set up call kind marking in ecx. The method takes ecx as an
// explicit first parameter to make the code more readable at the
// call sites.
// void SetCallKind(Register dst, CallKind kind);
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// Both |callee_args_count| and |caller_args_count| do not include
// receiver. |callee_args_count| is not modified. |caller_args_count|
// is trashed.
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunctionWithNewTarget(Register function, Register new_target,
Register actual_parameter_count,
InvokeType type);
void InvokeFunction(Register function, Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// Exception handling
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// Enter exit frame.
// stack_space - extra stack space, used for parameters before call to C.
// At least one slot (for the return address) should be provided.
void EnterExitFrame(bool save_doubles, int stack_space = 1,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles, Register argument_count,
bool argument_count_is_length = false);
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
}
void LoadNativeContextSlot(Register dst, int index);
// ---------------------------------------------------------------------------
// Smi utilities
// Shift left by kSmiShift
void SmiTag(Register reg) { SmiTag(reg, reg); }
void SmiTag(Register dst, Register src) {
ShiftLeftU64(dst, src, Operand(kSmiShift));
}
// Jump if either of the registers contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
TestIfSmi(value);
bne(not_smi_label /*, cr0*/);
}
#if !defined(V8_COMPRESS_POINTERS) && !defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
// Ensure it is permissible to read/write int value directly from
// upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kSystemPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object, Register scratch);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a callable JSFunction, enabled via
// --debug-code.
void AssertCallableFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
template <typename Field>
void DecodeField(Register dst, Register src) {
ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
}
template <typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
// ---------------------------------------------------------------------------
// GC Support
void IncrementalMarkingRecordWriteHelper(Register object, Register value,
Register address);
void CallJSEntry(Register target);
static int CallSizeNotPredictableCodeSize(Address target,
RelocInfo::Mode rmode,
Condition cond = al);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register slot_address,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
SmiCheck smi_check = SmiCheck::kInline);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object, Register slot_address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
SmiCheck smi_check = SmiCheck::kInline);
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
// Helper functions for generating invokes.
void InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count, Label* done,
InvokeType type);
DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_S390_MACRO_ASSEMBLER_S390_H_