| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/codegen/x64/assembler-x64.h" |
| |
| #include <cstring> |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #if V8_LIBC_MSVCRT |
| #include <intrin.h> // _xgetbv() |
| #endif |
| #if V8_OS_DARWIN |
| #include <sys/sysctl.h> |
| #endif |
| |
| #include "src/base/bits.h" |
| #include "src/base/cpu.h" |
| #include "src/base/platform/wrappers.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/string-constants.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/init/v8.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of CpuFeatures |
| |
| namespace { |
| |
| #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| |
| V8_INLINE uint64_t xgetbv(unsigned int xcr) { |
| #if V8_LIBC_MSVCRT |
| return _xgetbv(xcr); |
| #else |
| unsigned eax, edx; |
| // Check xgetbv; this uses a .byte sequence instead of the instruction |
| // directly because older assemblers do not include support for xgetbv and |
| // there is no easy way to conditionally compile based on the assembler |
| // used. |
| __asm__ volatile(".byte 0x0F, 0x01, 0xD0" : "=a"(eax), "=d"(edx) : "c"(xcr)); |
| return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32); |
| #endif |
| } |
| |
| bool OSHasAVXSupport() { |
| #if V8_OS_DARWIN |
| // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being |
| // caused by ISRs, so we detect that here and disable AVX in that case. |
| char buffer[128]; |
| size_t buffer_size = arraysize(buffer); |
| int ctl_name[] = {CTL_KERN, KERN_OSRELEASE}; |
| if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) { |
| FATAL("V8 failed to get kernel version"); |
| } |
| // The buffer now contains a string of the form XX.YY.ZZ, where |
| // XX is the major kernel version component. |
| char* period_pos = strchr(buffer, '.'); |
| DCHECK_NOT_NULL(period_pos); |
| *period_pos = '\0'; |
| long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT |
| if (kernel_version_major <= 13) return false; |
| #endif // V8_OS_DARWIN |
| // Check whether OS claims to support AVX. |
| uint64_t feature_mask = xgetbv(0); // XCR_XFEATURE_ENABLED_MASK |
| return (feature_mask & 0x6) == 0x6; |
| } |
| |
| #endif // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| |
| } // namespace |
| |
| bool CpuFeatures::SupportsWasmSimd128() { |
| #if V8_ENABLE_WEBASSEMBLY |
| if (IsSupported(SSE4_1)) return true; |
| if (FLAG_wasm_simd_ssse3_codegen && IsSupported(SSSE3)) return true; |
| #endif // V8_ENABLE_WEBASSEMBLY |
| return false; |
| } |
| |
| void CpuFeatures::ProbeImpl(bool cross_compile) { |
| // Only use statically determined features for cross compile (snapshot). |
| if (cross_compile) return; |
| |
| #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| base::CPU cpu; |
| CHECK(cpu.has_sse2()); // SSE2 support is mandatory. |
| CHECK(cpu.has_cmov()); // CMOV support is mandatory. |
| |
| if (cpu.has_sse42()) SetSupported(SSE4_2); |
| if (cpu.has_sse41()) SetSupported(SSE4_1); |
| if (cpu.has_ssse3()) SetSupported(SSSE3); |
| if (cpu.has_sse3()) SetSupported(SSE3); |
| if (cpu.has_avx() && cpu.has_osxsave() && OSHasAVXSupport()) { |
| SetSupported(AVX); |
| if (cpu.has_avx2()) SetSupported(AVX2); |
| if (cpu.has_fma3()) SetSupported(FMA3); |
| } |
| |
| // SAHF is not generally available in long mode. |
| if (cpu.has_sahf() && FLAG_enable_sahf) SetSupported(SAHF); |
| if (cpu.has_bmi1() && FLAG_enable_bmi1) SetSupported(BMI1); |
| if (cpu.has_bmi2() && FLAG_enable_bmi2) SetSupported(BMI2); |
| if (cpu.has_lzcnt() && FLAG_enable_lzcnt) SetSupported(LZCNT); |
| if (cpu.has_popcnt() && FLAG_enable_popcnt) SetSupported(POPCNT); |
| if (strcmp(FLAG_mcpu, "auto") == 0) { |
| if (cpu.is_atom()) SetSupported(INTEL_ATOM); |
| } else if (strcmp(FLAG_mcpu, "atom") == 0) { |
| SetSupported(INTEL_ATOM); |
| } |
| |
| // Ensure that supported cpu features make sense. E.g. it is wrong to support |
| // AVX but not SSE4_2, if we have --enable-avx and --no-enable-sse4-2, the |
| // code above would set AVX to supported, and SSE4_2 to unsupported, then the |
| // checks below will set AVX to unsupported. |
| if (!FLAG_enable_sse3) SetUnsupported(SSE3); |
| if (!FLAG_enable_ssse3 || !IsSupported(SSE3)) SetUnsupported(SSSE3); |
| if (!FLAG_enable_sse4_1 || !IsSupported(SSSE3)) SetUnsupported(SSE4_1); |
| if (!FLAG_enable_sse4_2 || !IsSupported(SSE4_1)) SetUnsupported(SSE4_2); |
| if (!FLAG_enable_avx || !IsSupported(SSE4_2)) SetUnsupported(AVX); |
| if (!FLAG_enable_avx2 || !IsSupported(AVX)) SetUnsupported(AVX2); |
| if (!FLAG_enable_fma3 || !IsSupported(AVX)) SetUnsupported(FMA3); |
| |
| // Set a static value on whether Simd is supported. |
| // This variable is only used for certain archs to query SupportWasmSimd128() |
| // at runtime in builtins using an extern ref. Other callers should use |
| // CpuFeatures::SupportWasmSimd128(). |
| CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128(); |
| |
| if (cpu.has_cetss()) SetSupported(CETSS); |
| // The static variable is used for codegen of certain CETSS instructions. |
| CpuFeatures::supports_cetss_ = IsSupported(CETSS); |
| #endif // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| } |
| |
| void CpuFeatures::PrintTarget() {} |
| void CpuFeatures::PrintFeatures() { |
| printf( |
| "SSE3=%d SSSE3=%d SSE4_1=%d SSE4_2=%d SAHF=%d AVX=%d AVX2=%d FMA3=%d " |
| "BMI1=%d " |
| "BMI2=%d " |
| "LZCNT=%d " |
| "POPCNT=%d ATOM=%d\n", |
| CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSSE3), |
| CpuFeatures::IsSupported(SSE4_1), CpuFeatures::IsSupported(SSE4_2), |
| CpuFeatures::IsSupported(SAHF), CpuFeatures::IsSupported(AVX), |
| CpuFeatures::IsSupported(AVX2), CpuFeatures::IsSupported(FMA3), |
| CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2), |
| CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT), |
| CpuFeatures::IsSupported(INTEL_ATOM)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| uint32_t RelocInfo::wasm_call_tag() const { |
| DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); |
| return ReadUnalignedValue<uint32_t>(pc_); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand |
| |
| Operand::Operand(Operand operand, int32_t offset) { |
| DCHECK_GE(operand.data().len, 1); |
| // Operand encodes REX ModR/M [SIB] [Disp]. |
| byte modrm = operand.data().buf[0]; |
| DCHECK_LT(modrm, 0xC0); // Disallow mode 3 (register target). |
| bool has_sib = ((modrm & 0x07) == 0x04); |
| byte mode = modrm & 0xC0; |
| int disp_offset = has_sib ? 2 : 1; |
| int base_reg = (has_sib ? operand.data().buf[1] : modrm) & 0x07; |
| // Mode 0 with rbp/r13 as ModR/M or SIB base register always has a 32-bit |
| // displacement. |
| bool is_baseless = (mode == 0) && (base_reg == 0x05); // No base or RIP base. |
| int32_t disp_value = 0; |
| if (mode == 0x80 || is_baseless) { |
| // Mode 2 or mode 0 with rbp/r13 as base: Word displacement. |
| disp_value = ReadUnalignedValue<int32_t>( |
| reinterpret_cast<Address>(&operand.data().buf[disp_offset])); |
| } else if (mode == 0x40) { |
| // Mode 1: Byte displacement. |
| disp_value = static_cast<signed char>(operand.data().buf[disp_offset]); |
| } |
| |
| // Write new operand with same registers, but with modified displacement. |
| DCHECK(offset >= 0 ? disp_value + offset > disp_value |
| : disp_value + offset < disp_value); // No overflow. |
| disp_value += offset; |
| data_.rex = operand.data().rex; |
| if (!is_int8(disp_value) || is_baseless) { |
| // Need 32 bits of displacement, mode 2 or mode 1 with register rbp/r13. |
| data_.buf[0] = (modrm & 0x3F) | (is_baseless ? 0x00 : 0x80); |
| data_.len = disp_offset + 4; |
| WriteUnalignedValue(reinterpret_cast<Address>(&data_.buf[disp_offset]), |
| disp_value); |
| } else if (disp_value != 0 || (base_reg == 0x05)) { |
| // Need 8 bits of displacement. |
| data_.buf[0] = (modrm & 0x3F) | 0x40; // Mode 1. |
| data_.len = disp_offset + 1; |
| data_.buf[disp_offset] = static_cast<byte>(disp_value); |
| } else { |
| // Need no displacement. |
| data_.buf[0] = (modrm & 0x3F); // Mode 0. |
| data_.len = disp_offset; |
| } |
| if (has_sib) { |
| data_.buf[1] = operand.data().buf[1]; |
| } |
| } |
| |
| bool Operand::AddressUsesRegister(Register reg) const { |
| int code = reg.code(); |
| DCHECK_NE(data_.buf[0] & 0xC0, 0xC0); // Always a memory operand. |
| // Start with only low three bits of base register. Initial decoding |
| // doesn't distinguish on the REX.B bit. |
| int base_code = data_.buf[0] & 0x07; |
| if (base_code == rsp.code()) { |
| // SIB byte present in buf_[1]. |
| // Check the index register from the SIB byte + REX.X prefix. |
| int index_code = ((data_.buf[1] >> 3) & 0x07) | ((data_.rex & 0x02) << 2); |
| // Index code (including REX.X) of 0x04 (rsp) means no index register. |
| if (index_code != rsp.code() && index_code == code) return true; |
| // Add REX.B to get the full base register code. |
| base_code = (data_.buf[1] & 0x07) | ((data_.rex & 0x01) << 3); |
| // A base register of 0x05 (rbp) with mod = 0 means no base register. |
| if (base_code == rbp.code() && ((data_.buf[0] & 0xC0) == 0)) return false; |
| return code == base_code; |
| } else { |
| // A base register with low bits of 0x05 (rbp or r13) and mod = 0 means |
| // no base register. |
| if (base_code == rbp.code() && ((data_.buf[0] & 0xC0) == 0)) return false; |
| base_code |= ((data_.rex & 0x01) << 3); |
| return code == base_code; |
| } |
| } |
| |
| void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { |
| DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); |
| for (auto& request : heap_object_requests_) { |
| Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset(); |
| switch (request.kind()) { |
| case HeapObjectRequest::kHeapNumber: { |
| Handle<HeapNumber> object = |
| isolate->factory()->NewHeapNumber<AllocationType::kOld>( |
| request.heap_number()); |
| WriteUnalignedValue(pc, object); |
| break; |
| } |
| case HeapObjectRequest::kStringConstant: { |
| const StringConstantBase* str = request.string(); |
| CHECK_NOT_NULL(str); |
| Handle<String> allocated = str->AllocateStringConstant(isolate); |
| WriteUnalignedValue(pc, allocated); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Partial Constant Pool. |
| bool ConstPool::AddSharedEntry(uint64_t data, int offset) { |
| auto existing = entries_.find(data); |
| if (existing == entries_.end()) { |
| entries_.insert(std::make_pair(data, offset + kMoveImm64Offset)); |
| return false; |
| } |
| |
| // Make sure this is called with strictly ascending offsets. |
| DCHECK_GT(offset + kMoveImm64Offset, existing->second); |
| |
| entries_.insert(std::make_pair(data, offset + kMoveRipRelativeDispOffset)); |
| return true; |
| } |
| |
| bool ConstPool::TryRecordEntry(intptr_t data, RelocInfo::Mode mode) { |
| if (!FLAG_partial_constant_pool) return false; |
| DCHECK_WITH_MSG( |
| FLAG_text_is_readable, |
| "The partial constant pool requires a readable .text section"); |
| if (!RelocInfo::IsShareableRelocMode(mode)) return false; |
| |
| // Currently, partial constant pool only handles the following kinds of |
| // RelocInfo. |
| if (mode != RelocInfo::NO_INFO && mode != RelocInfo::EXTERNAL_REFERENCE && |
| mode != RelocInfo::OFF_HEAP_TARGET) |
| return false; |
| |
| uint64_t raw_data = static_cast<uint64_t>(data); |
| int offset = assm_->pc_offset(); |
| return AddSharedEntry(raw_data, offset); |
| } |
| |
| bool ConstPool::IsMoveRipRelative(Address instr) { |
| return (ReadUnalignedValue<uint32_t>(instr) & kMoveRipRelativeMask) == |
| kMoveRipRelativeInstr; |
| } |
| |
| void ConstPool::Clear() { entries_.clear(); } |
| |
| void ConstPool::PatchEntries() { |
| for (EntryMap::iterator iter = entries_.begin(); iter != entries_.end(); |
| iter = entries_.upper_bound(iter->first)) { |
| std::pair<EntryMap::iterator, EntryMap::iterator> range = |
| entries_.equal_range(iter->first); |
| int constant_entry_offset = 0; |
| for (EntryMap::iterator it = range.first; it != range.second; it++) { |
| if (it == range.first) { |
| constant_entry_offset = it->second; |
| continue; |
| } |
| |
| DCHECK_GT(constant_entry_offset, 0); |
| DCHECK_LT(constant_entry_offset, it->second); |
| int32_t disp32 = |
| constant_entry_offset - (it->second + kRipRelativeDispSize); |
| Address disp_addr = assm_->addr_at(it->second); |
| |
| // Check if the instruction is actually a rip-relative move. |
| DCHECK(IsMoveRipRelative(disp_addr - kMoveRipRelativeDispOffset)); |
| // The displacement of the rip-relative move should be 0 before patching. |
| DCHECK(ReadUnalignedValue<uint32_t>(disp_addr) == 0); |
| WriteUnalignedValue(disp_addr, disp32); |
| } |
| } |
| Clear(); |
| } |
| |
| void Assembler::PatchConstPool() { |
| // There is nothing to do if there are no pending entries. |
| if (constpool_.IsEmpty()) { |
| return; |
| } |
| constpool_.PatchEntries(); |
| } |
| |
| bool Assembler::UseConstPoolFor(RelocInfo::Mode rmode) { |
| if (!FLAG_partial_constant_pool) return false; |
| return (rmode == RelocInfo::NO_INFO || |
| rmode == RelocInfo::EXTERNAL_REFERENCE || |
| rmode == RelocInfo::OFF_HEAP_TARGET); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Assembler. |
| |
| Assembler::Assembler(const AssemblerOptions& options, |
| std::unique_ptr<AssemblerBuffer> buffer) |
| : AssemblerBase(options, std::move(buffer)), constpool_(this) { |
| reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); |
| if (CpuFeatures::IsSupported(SSE4_2)) { |
| EnableCpuFeature(SSE4_1); |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| EnableCpuFeature(SSSE3); |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| EnableCpuFeature(SSE3); |
| } |
| |
| #if defined(V8_OS_WIN_X64) |
| if (options.collect_win64_unwind_info) { |
| xdata_encoder_ = std::make_unique<win64_unwindinfo::XdataEncoder>(*this); |
| } |
| #endif |
| } |
| |
| void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, |
| SafepointTableBuilder* safepoint_table_builder, |
| int handler_table_offset) { |
| // As a crutch to avoid having to add manual Align calls wherever we use a |
| // raw workflow to create Code objects (mostly in tests), add another Align |
| // call here. It does no harm - the end of the Code object is aligned to the |
| // (larger) kCodeAlignment anyways. |
| // TODO(jgruber): Consider moving responsibility for proper alignment to |
| // metadata table builders (safepoint, handler, constant pool, code |
| // comments). |
| DataAlign(Code::kMetadataAlignment); |
| |
| PatchConstPool(); |
| DCHECK(constpool_.IsEmpty()); |
| |
| const int code_comments_size = WriteCodeComments(); |
| |
| // At this point overflow() may be true, but the gap ensures |
| // that we are still not overlapping instructions and relocation info. |
| DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. |
| |
| AllocateAndInstallRequestedHeapObjects(isolate); |
| |
| // Set up code descriptor. |
| // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to |
| // this point to make CodeDesc initialization less fiddly. |
| |
| static constexpr int kConstantPoolSize = 0; |
| const int instruction_size = pc_offset(); |
| const int code_comments_offset = instruction_size - code_comments_size; |
| const int constant_pool_offset = code_comments_offset - kConstantPoolSize; |
| const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) |
| ? constant_pool_offset |
| : handler_table_offset; |
| const int safepoint_table_offset = |
| (safepoint_table_builder == kNoSafepointTable) |
| ? handler_table_offset2 |
| : safepoint_table_builder->safepoint_table_offset(); |
| const int reloc_info_offset = |
| static_cast<int>(reloc_info_writer.pos() - buffer_->start()); |
| CodeDesc::Initialize(desc, this, safepoint_table_offset, |
| handler_table_offset2, constant_pool_offset, |
| code_comments_offset, reloc_info_offset); |
| } |
| |
| void Assembler::FinalizeJumpOptimizationInfo() { |
| // Collection stage |
| auto jump_opt = jump_optimization_info(); |
| if (jump_opt && jump_opt->is_collecting()) { |
| auto& bitmap = jump_opt->farjmp_bitmap(); |
| int num = static_cast<int>(farjmp_positions_.size()); |
| if (num && bitmap.empty()) { |
| bool can_opt = false; |
| |
| bitmap.resize((num + 31) / 32, 0); |
| for (int i = 0; i < num; i++) { |
| int disp_pos = farjmp_positions_[i]; |
| int disp = long_at(disp_pos); |
| if (is_int8(disp)) { |
| bitmap[i / 32] |= 1 << (i & 31); |
| can_opt = true; |
| } |
| } |
| if (can_opt) { |
| jump_opt->set_optimizable(); |
| } |
| } |
| } |
| } |
| |
| #if defined(V8_OS_WIN_X64) |
| win64_unwindinfo::BuiltinUnwindInfo Assembler::GetUnwindInfo() const { |
| DCHECK(options().collect_win64_unwind_info); |
| DCHECK_NOT_NULL(xdata_encoder_); |
| return xdata_encoder_->unwinding_info(); |
| } |
| #endif |
| |
| void Assembler::Align(int m) { |
| DCHECK(base::bits::IsPowerOfTwo(m)); |
| int delta = (m - (pc_offset() & (m - 1))) & (m - 1); |
| Nop(delta); |
| } |
| |
| void Assembler::CodeTargetAlign() { |
| Align(16); // Preferred alignment of jump targets on x64. |
| } |
| |
| void Assembler::LoopHeaderAlign() { |
| Align(64); // Preferred alignment of loop header on x64. |
| } |
| |
| bool Assembler::IsNop(Address addr) { |
| byte* a = reinterpret_cast<byte*>(addr); |
| while (*a == 0x66) a++; |
| if (*a == 0x90) return true; |
| if (a[0] == 0xF && a[1] == 0x1F) return true; |
| return false; |
| } |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| DCHECK(!L->is_bound()); // Label may only be bound once. |
| DCHECK(0 <= pos && pos <= pc_offset()); // Position must be valid. |
| if (L->is_linked()) { |
| int current = L->pos(); |
| int next = long_at(current); |
| while (next != current) { |
| if (current >= 4 && long_at(current - 4) == 0) { |
| // Absolute address. |
| intptr_t imm64 = reinterpret_cast<intptr_t>(buffer_start_ + pos); |
| WriteUnalignedValue(addr_at(current - 4), imm64); |
| internal_reference_positions_.push_back(current - 4); |
| } else { |
| // Relative address, relative to point after address. |
| int imm32 = pos - (current + sizeof(int32_t)); |
| long_at_put(current, imm32); |
| } |
| current = next; |
| next = long_at(next); |
| } |
| // Fix up last fixup on linked list. |
| if (current >= 4 && long_at(current - 4) == 0) { |
| // Absolute address. |
| intptr_t imm64 = reinterpret_cast<intptr_t>(buffer_start_ + pos); |
| WriteUnalignedValue(addr_at(current - 4), imm64); |
| internal_reference_positions_.push_back(current - 4); |
| } else { |
| // Relative address, relative to point after address. |
| int imm32 = pos - (current + sizeof(int32_t)); |
| long_at_put(current, imm32); |
| } |
| } |
| while (L->is_near_linked()) { |
| int fixup_pos = L->near_link_pos(); |
| int offset_to_next = |
| static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos))); |
| DCHECK_LE(offset_to_next, 0); |
| int disp = pos - (fixup_pos + sizeof(int8_t)); |
| CHECK(is_int8(disp)); |
| set_byte_at(fixup_pos, disp); |
| if (offset_to_next < 0) { |
| L->link_to(fixup_pos + offset_to_next, Label::kNear); |
| } else { |
| L->UnuseNear(); |
| } |
| } |
| |
| // Optimization stage |
| auto jump_opt = jump_optimization_info(); |
| if (jump_opt && jump_opt->is_optimizing()) { |
| auto it = label_farjmp_maps_.find(L); |
| if (it != label_farjmp_maps_.end()) { |
| auto& pos_vector = it->second; |
| for (auto fixup_pos : pos_vector) { |
| int disp = pos - (fixup_pos + sizeof(int8_t)); |
| CHECK(is_int8(disp)); |
| set_byte_at(fixup_pos, disp); |
| } |
| label_farjmp_maps_.erase(it); |
| } |
| } |
| L->bind_to(pos); |
| } |
| |
| void Assembler::bind(Label* L) { bind_to(L, pc_offset()); } |
| |
| void Assembler::record_farjmp_position(Label* L, int pos) { |
| auto& pos_vector = label_farjmp_maps_[L]; |
| pos_vector.push_back(pos); |
| } |
| |
| bool Assembler::is_optimizable_farjmp(int idx) { |
| if (predictable_code_size()) return false; |
| |
| auto jump_opt = jump_optimization_info(); |
| CHECK(jump_opt->is_optimizing()); |
| |
| auto& bitmap = jump_opt->farjmp_bitmap(); |
| CHECK(idx < static_cast<int>(bitmap.size() * 32)); |
| return !!(bitmap[idx / 32] & (1 << (idx & 31))); |
| } |
| |
| void Assembler::GrowBuffer() { |
| DCHECK(buffer_overflow()); |
| |
| // Compute new buffer size. |
| DCHECK_EQ(buffer_start_, buffer_->start()); |
| int old_size = buffer_->size(); |
| int new_size = 2 * old_size; |
| |
| // Some internal data structures overflow for very large buffers, |
| // they must ensure that kMaximalBufferSize is not too large. |
| if (new_size > kMaximalBufferSize) { |
| V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); |
| } |
| |
| // Set up new buffer. |
| std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size); |
| DCHECK_EQ(new_size, new_buffer->size()); |
| byte* new_start = new_buffer->start(); |
| |
| // Copy the data. |
| intptr_t pc_delta = new_start - buffer_start_; |
| intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size); |
| size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos(); |
| MemMove(new_start, buffer_start_, pc_offset()); |
| MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(), |
| reloc_size); |
| |
| // Switch buffers. |
| buffer_ = std::move(new_buffer); |
| buffer_start_ = new_start; |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // Relocate internal references. |
| for (auto pos : internal_reference_positions_) { |
| Address p = reinterpret_cast<Address>(buffer_start_ + pos); |
| WriteUnalignedValue(p, ReadUnalignedValue<intptr_t>(p) + pc_delta); |
| } |
| |
| DCHECK(!buffer_overflow()); |
| } |
| |
| void Assembler::emit_operand(int code, Operand adr) { |
| DCHECK(is_uint3(code)); |
| const unsigned length = adr.data().len; |
| DCHECK_GT(length, 0); |
| |
| // Emit updated ModR/M byte containing the given register. |
| DCHECK_EQ(adr.data().buf[0] & 0x38, 0); |
| *pc_++ = adr.data().buf[0] | code << 3; |
| |
| // Recognize RIP relative addressing. |
| if (adr.data().buf[0] == 5) { |
| DCHECK_EQ(9u, length); |
| Label* label = ReadUnalignedValue<Label*>( |
| reinterpret_cast<Address>(&adr.data().buf[1])); |
| if (label->is_bound()) { |
| int offset = |
| label->pos() - pc_offset() - sizeof(int32_t) + adr.data().addend; |
| DCHECK_GE(0, offset); |
| emitl(offset); |
| } else if (label->is_linked()) { |
| emitl(label->pos()); |
| label->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| DCHECK(label->is_unused()); |
| int32_t current = pc_offset(); |
| emitl(current); |
| label->link_to(current); |
| } |
| } else { |
| // Emit the rest of the encoded operand. |
| for (unsigned i = 1; i < length; i++) *pc_++ = adr.data().buf[i]; |
| } |
| } |
| |
| // Assembler Instruction implementations. |
| |
| void Assembler::arithmetic_op(byte opcode, Register reg, Operand op, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(reg, op, size); |
| emit(opcode); |
| emit_operand(reg, op); |
| } |
| |
| void Assembler::arithmetic_op(byte opcode, Register reg, Register rm_reg, |
| int size) { |
| EnsureSpace ensure_space(this); |
| DCHECK_EQ(opcode & 0xC6, 2); |
| if (rm_reg.low_bits() == 4) { // Forces SIB byte. |
| // Swap reg and rm_reg and change opcode operand order. |
| emit_rex(rm_reg, reg, size); |
| emit(opcode ^ 0x02); |
| emit_modrm(rm_reg, reg); |
| } else { |
| emit_rex(reg, rm_reg, size); |
| emit(opcode); |
| emit_modrm(reg, rm_reg); |
| } |
| } |
| |
| void Assembler::arithmetic_op_16(byte opcode, Register reg, Register rm_reg) { |
| EnsureSpace ensure_space(this); |
| DCHECK_EQ(opcode & 0xC6, 2); |
| if (rm_reg.low_bits() == 4) { // Forces SIB byte. |
| // Swap reg and rm_reg and change opcode operand order. |
| emit(0x66); |
| emit_optional_rex_32(rm_reg, reg); |
| emit(opcode ^ 0x02); |
| emit_modrm(rm_reg, reg); |
| } else { |
| emit(0x66); |
| emit_optional_rex_32(reg, rm_reg); |
| emit(opcode); |
| emit_modrm(reg, rm_reg); |
| } |
| } |
| |
| void Assembler::arithmetic_op_16(byte opcode, Register reg, Operand rm_reg) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(reg, rm_reg); |
| emit(opcode); |
| emit_operand(reg, rm_reg); |
| } |
| |
| void Assembler::arithmetic_op_8(byte opcode, Register reg, Operand op) { |
| EnsureSpace ensure_space(this); |
| if (!reg.is_byte_register()) { |
| emit_rex_32(reg, op); |
| } else { |
| emit_optional_rex_32(reg, op); |
| } |
| emit(opcode); |
| emit_operand(reg, op); |
| } |
| |
| void Assembler::arithmetic_op_8(byte opcode, Register reg, Register rm_reg) { |
| EnsureSpace ensure_space(this); |
| DCHECK_EQ(opcode & 0xC6, 2); |
| if (rm_reg.low_bits() == 4) { // Forces SIB byte. |
| // Swap reg and rm_reg and change opcode operand order. |
| if (!rm_reg.is_byte_register() || !reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(rm_reg, reg); |
| } |
| emit(opcode ^ 0x02); |
| emit_modrm(rm_reg, reg); |
| } else { |
| if (!reg.is_byte_register() || !rm_reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg, rm_reg); |
| } |
| emit(opcode); |
| emit_modrm(reg, rm_reg); |
| } |
| } |
| |
| void Assembler::immediate_arithmetic_op(byte subcode, Register dst, |
| Immediate src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| if (is_int8(src.value_) && RelocInfo::IsNoInfo(src.rmode_)) { |
| emit(0x83); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } else if (dst == rax) { |
| emit(0x05 | (subcode << 3)); |
| emit(src); |
| } else { |
| emit(0x81); |
| emit_modrm(subcode, dst); |
| emit(src); |
| } |
| } |
| |
| void Assembler::immediate_arithmetic_op(byte subcode, Operand dst, |
| Immediate src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| if (is_int8(src.value_) && RelocInfo::IsNoInfo(src.rmode_)) { |
| emit(0x83); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } else { |
| emit(0x81); |
| emit_operand(subcode, dst); |
| emit(src); |
| } |
| } |
| |
| void Assembler::immediate_arithmetic_op_16(byte subcode, Register dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); // Operand size override prefix. |
| emit_optional_rex_32(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } else if (dst == rax) { |
| emit(0x05 | (subcode << 3)); |
| emitw(src.value_); |
| } else { |
| emit(0x81); |
| emit_modrm(subcode, dst); |
| emitw(src.value_); |
| } |
| } |
| |
| void Assembler::immediate_arithmetic_op_16(byte subcode, Operand dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); // Operand size override prefix. |
| emit_optional_rex_32(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } else { |
| emit(0x81); |
| emit_operand(subcode, dst); |
| emitw(src.value_); |
| } |
| } |
| |
| void Assembler::immediate_arithmetic_op_8(byte subcode, Operand dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst); |
| DCHECK(is_int8(src.value_) || is_uint8(src.value_)); |
| emit(0x80); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } |
| |
| void Assembler::immediate_arithmetic_op_8(byte subcode, Register dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| if (!dst.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst); |
| } |
| DCHECK(is_int8(src.value_) || is_uint8(src.value_)); |
| emit(0x80); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } |
| |
| void Assembler::shift(Register dst, Immediate shift_amount, int subcode, |
| int size) { |
| EnsureSpace ensure_space(this); |
| DCHECK(size == kInt64Size ? is_uint6(shift_amount.value_) |
| : is_uint5(shift_amount.value_)); |
| if (shift_amount.value_ == 1) { |
| emit_rex(dst, size); |
| emit(0xD1); |
| emit_modrm(subcode, dst); |
| } else { |
| emit_rex(dst, size); |
| emit(0xC1); |
| emit_modrm(subcode, dst); |
| emit(shift_amount.value_); |
| } |
| } |
| |
| void Assembler::shift(Operand dst, Immediate shift_amount, int subcode, |
| int size) { |
| EnsureSpace ensure_space(this); |
| DCHECK(size == kInt64Size ? is_uint6(shift_amount.value_) |
| : is_uint5(shift_amount.value_)); |
| if (shift_amount.value_ == 1) { |
| emit_rex(dst, size); |
| emit(0xD1); |
| emit_operand(subcode, dst); |
| } else { |
| emit_rex(dst, size); |
| emit(0xC1); |
| emit_operand(subcode, dst); |
| emit(shift_amount.value_); |
| } |
| } |
| |
| void Assembler::shift(Register dst, int subcode, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xD3); |
| emit_modrm(subcode, dst); |
| } |
| |
| void Assembler::shift(Operand dst, int subcode, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xD3); |
| emit_operand(subcode, dst); |
| } |
| |
| void Assembler::bswapl(Register dst) { |
| EnsureSpace ensure_space(this); |
| emit_rex_32(dst); |
| emit(0x0F); |
| emit(0xC8 + dst.low_bits()); |
| } |
| |
| void Assembler::bswapq(Register dst) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst); |
| emit(0x0F); |
| emit(0xC8 + dst.low_bits()); |
| } |
| |
| void Assembler::btq(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xA3); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::btsq(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xAB); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::btsq(Register dst, Immediate imm8) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst); |
| emit(0x0F); |
| emit(0xBA); |
| emit_modrm(0x5, dst); |
| emit(imm8.value_); |
| } |
| |
| void Assembler::btrq(Register dst, Immediate imm8) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst); |
| emit(0x0F); |
| emit(0xBA); |
| emit_modrm(0x6, dst); |
| emit(imm8.value_); |
| } |
| |
| void Assembler::bsrl(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBD); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::bsrl(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBD); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::bsrq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBD); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::bsrq(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBD); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::bsfl(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBC); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::bsfl(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBC); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::bsfq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBC); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::bsfq(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBC); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::pblendw(XMMRegister dst, Operand src, uint8_t mask) { |
| sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0E); |
| emit(mask); |
| } |
| |
| void Assembler::pblendw(XMMRegister dst, XMMRegister src, uint8_t mask) { |
| sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0E); |
| emit(mask); |
| } |
| |
| void Assembler::palignr(XMMRegister dst, Operand src, uint8_t mask) { |
| ssse3_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0F); |
| emit(mask); |
| } |
| |
| void Assembler::palignr(XMMRegister dst, XMMRegister src, uint8_t mask) { |
| ssse3_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0F); |
| emit(mask); |
| } |
| |
| void Assembler::call(Label* L) { |
| EnsureSpace ensure_space(this); |
| // 1110 1000 #32-bit disp. |
| emit(0xE8); |
| if (L->is_bound()) { |
| int offset = L->pos() - pc_offset() - sizeof(int32_t); |
| DCHECK_LE(offset, 0); |
| emitl(offset); |
| } else if (L->is_linked()) { |
| emitl(L->pos()); |
| L->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| DCHECK(L->is_unused()); |
| int32_t current = pc_offset(); |
| emitl(current); |
| L->link_to(current); |
| } |
| } |
| |
| void Assembler::call(Address entry, RelocInfo::Mode rmode) { |
| DCHECK(RelocInfo::IsRuntimeEntry(rmode)); |
| EnsureSpace ensure_space(this); |
| // 1110 1000 #32-bit disp. |
| emit(0xE8); |
| emit_runtime_entry(entry, rmode); |
| } |
| |
| void Assembler::call(Handle<CodeT> target, RelocInfo::Mode rmode) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| DCHECK(FromCodeT(*target).IsExecutable()); |
| EnsureSpace ensure_space(this); |
| // 1110 1000 #32-bit disp. |
| emit(0xE8); |
| RecordRelocInfo(rmode); |
| int code_target_index = AddCodeTarget(target); |
| emitl(code_target_index); |
| } |
| |
| void Assembler::near_call(intptr_t disp, RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| emit(0xE8); |
| DCHECK(is_int32(disp)); |
| RecordRelocInfo(rmode); |
| emitl(static_cast<int32_t>(disp)); |
| } |
| |
| void Assembler::near_jmp(intptr_t disp, RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| emit(0xE9); |
| DCHECK(is_int32(disp)); |
| if (!RelocInfo::IsNoInfo(rmode)) RecordRelocInfo(rmode); |
| emitl(static_cast<int32_t>(disp)); |
| } |
| |
| void Assembler::call(Register adr) { |
| EnsureSpace ensure_space(this); |
| // Opcode: FF /2 r64. |
| emit_optional_rex_32(adr); |
| emit(0xFF); |
| emit_modrm(0x2, adr); |
| } |
| |
| void Assembler::call(Operand op) { |
| EnsureSpace ensure_space(this); |
| // Opcode: FF /2 m64. |
| emit_optional_rex_32(op); |
| emit(0xFF); |
| emit_operand(0x2, op); |
| } |
| |
| void Assembler::clc() { |
| EnsureSpace ensure_space(this); |
| emit(0xF8); |
| } |
| |
| void Assembler::cld() { |
| EnsureSpace ensure_space(this); |
| emit(0xFC); |
| } |
| |
| void Assembler::cdq() { |
| EnsureSpace ensure_space(this); |
| emit(0x99); |
| } |
| |
| void Assembler::cmovq(Condition cc, Register dst, Register src) { |
| if (cc == always) { |
| movq(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| // No need to check CpuInfo for CMOV support, it's a required part of the |
| // 64-bit architecture. |
| DCHECK_GE(cc, 0); // Use mov for unconditional moves. |
| EnsureSpace ensure_space(this); |
| // Opcode: REX.W 0f 40 + cc /r. |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x40 + cc); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::cmovq(Condition cc, Register dst, Operand src) { |
| if (cc == always) { |
| movq(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| DCHECK_GE(cc, 0); |
| EnsureSpace ensure_space(this); |
| // Opcode: REX.W 0f 40 + cc /r. |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x40 + cc); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::cmovl(Condition cc, Register dst, Register src) { |
| if (cc == always) { |
| movl(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| DCHECK_GE(cc, 0); |
| EnsureSpace ensure_space(this); |
| // Opcode: 0f 40 + cc /r. |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x40 + cc); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::cmovl(Condition cc, Register dst, Operand src) { |
| if (cc == always) { |
| movl(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| DCHECK_GE(cc, 0); |
| EnsureSpace ensure_space(this); |
| // Opcode: 0f 40 + cc /r. |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x40 + cc); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::cmpb_al(Immediate imm8) { |
| DCHECK(is_int8(imm8.value_) || is_uint8(imm8.value_)); |
| EnsureSpace ensure_space(this); |
| emit(0x3C); |
| emit(imm8.value_); |
| } |
| |
| void Assembler::lock() { |
| EnsureSpace ensure_space(this); |
| emit(0xF0); |
| } |
| |
| void Assembler::xaddb(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_8(src, dst); |
| emit(0x0F); |
| emit(0xC0); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::xaddw(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0xC1); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::xaddl(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0xC1); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::xaddq(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, dst, kInt64Size); |
| emit(0x0F); |
| emit(0xC1); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::cmpxchgb(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| if (!src.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(src, dst); |
| } else { |
| emit_optional_rex_32(src, dst); |
| } |
| emit(0x0F); |
| emit(0xB0); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::cmpxchgw(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0xB1); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::emit_cmpxchg(Operand dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, dst, size); |
| emit(0x0F); |
| emit(0xB1); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::mfence() { |
| EnsureSpace ensure_space(this); |
| emit(0x0F); |
| emit(0xAE); |
| emit(0xF0); |
| } |
| |
| void Assembler::lfence() { |
| EnsureSpace ensure_space(this); |
| emit(0x0F); |
| emit(0xAE); |
| emit(0xE8); |
| } |
| |
| void Assembler::cpuid() { |
| EnsureSpace ensure_space(this); |
| emit(0x0F); |
| emit(0xA2); |
| } |
| |
| void Assembler::cqo() { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(); |
| emit(0x99); |
| } |
| |
| void Assembler::emit_dec(Register dst, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xFF); |
| emit_modrm(0x1, dst); |
| } |
| |
| void Assembler::emit_dec(Operand dst, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xFF); |
| emit_operand(1, dst); |
| } |
| |
| void Assembler::decb(Register dst) { |
| EnsureSpace ensure_space(this); |
| if (!dst.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst); |
| } |
| emit(0xFE); |
| emit_modrm(0x1, dst); |
| } |
| |
| void Assembler::decb(Operand dst) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst); |
| emit(0xFE); |
| emit_operand(1, dst); |
| } |
| |
| void Assembler::hlt() { |
| EnsureSpace ensure_space(this); |
| emit(0xF4); |
| } |
| |
| void Assembler::emit_idiv(Register src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, size); |
| emit(0xF7); |
| emit_modrm(0x7, src); |
| } |
| |
| void Assembler::emit_div(Register src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, size); |
| emit(0xF7); |
| emit_modrm(0x6, src); |
| } |
| |
| void Assembler::emit_imul(Register src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, size); |
| emit(0xF7); |
| emit_modrm(0x5, src); |
| } |
| |
| void Assembler::emit_imul(Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, size); |
| emit(0xF7); |
| emit_operand(0x5, src); |
| } |
| |
| void Assembler::emit_imul(Register dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| emit(0x0F); |
| emit(0xAF); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::emit_imul(Register dst, Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| emit(0x0F); |
| emit(0xAF); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::emit_imul(Register dst, Register src, Immediate imm, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| if (is_int8(imm.value_)) { |
| emit(0x6B); |
| emit_modrm(dst, src); |
| emit(imm.value_); |
| } else { |
| emit(0x69); |
| emit_modrm(dst, src); |
| emitl(imm.value_); |
| } |
| } |
| |
| void Assembler::emit_imul(Register dst, Operand src, Immediate imm, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| if (is_int8(imm.value_)) { |
| emit(0x6B); |
| emit_operand(dst, src); |
| emit(imm.value_); |
| } else { |
| emit(0x69); |
| emit_operand(dst, src); |
| emitl(imm.value_); |
| } |
| } |
| |
| void Assembler::emit_inc(Register dst, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xFF); |
| emit_modrm(0x0, dst); |
| } |
| |
| void Assembler::emit_inc(Operand dst, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xFF); |
| emit_operand(0, dst); |
| } |
| |
| void Assembler::int3() { |
| EnsureSpace ensure_space(this); |
| emit(0xCC); |
| } |
| |
| void Assembler::j(Condition cc, Label* L, Label::Distance distance) { |
| if (cc == always) { |
| jmp(L, distance); |
| return; |
| } else if (cc == never) { |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| DCHECK(is_uint4(cc)); |
| if (L->is_bound()) { |
| const int short_size = 2; |
| const int long_size = 6; |
| int offs = L->pos() - pc_offset(); |
| DCHECK_LE(offs, 0); |
| // Determine whether we can use 1-byte offsets for backwards branches, |
| // which have a max range of 128 bytes. |
| |
| // We also need to check predictable_code_size() flag here, because on x64, |
| // when the full code generator recompiles code for debugging, some places |
| // need to be padded out to a certain size. The debugger is keeping track of |
| // how often it did this so that it can adjust return addresses on the |
| // stack, but if the size of jump instructions can also change, that's not |
| // enough and the calculated offsets would be incorrect. |
| if (is_int8(offs - short_size) && !predictable_code_size()) { |
| // 0111 tttn #8-bit disp. |
| emit(0x70 | cc); |
| emit((offs - short_size) & 0xFF); |
| } else { |
| // 0000 1111 1000 tttn #32-bit disp. |
| emit(0x0F); |
| emit(0x80 | cc); |
| emitl(offs - long_size); |
| } |
| } else if (distance == Label::kNear) { |
| // 0111 tttn #8-bit disp |
| emit(0x70 | cc); |
| byte disp = 0x00; |
| if (L->is_near_linked()) { |
| int offset = L->near_link_pos() - pc_offset(); |
| DCHECK(is_int8(offset)); |
| disp = static_cast<byte>(offset & 0xFF); |
| } |
| L->link_to(pc_offset(), Label::kNear); |
| emit(disp); |
| } else { |
| auto jump_opt = jump_optimization_info(); |
| if (V8_UNLIKELY(jump_opt)) { |
| if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) { |
| // 0111 tttn #8-bit disp |
| emit(0x70 | cc); |
| record_farjmp_position(L, pc_offset()); |
| emit(0); |
| return; |
| } |
| if (jump_opt->is_collecting()) { |
| farjmp_positions_.push_back(pc_offset() + 2); |
| } |
| } |
| if (L->is_linked()) { |
| // 0000 1111 1000 tttn #32-bit disp. |
| emit(0x0F); |
| emit(0x80 | cc); |
| emitl(L->pos()); |
| L->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| DCHECK(L->is_unused()); |
| emit(0x0F); |
| emit(0x80 | cc); |
| int32_t current = pc_offset(); |
| emitl(current); |
| L->link_to(current); |
| } |
| } |
| } |
| |
| void Assembler::j(Condition cc, Address entry, RelocInfo::Mode rmode) { |
| DCHECK(RelocInfo::IsWasmStubCall(rmode)); |
| EnsureSpace ensure_space(this); |
| DCHECK(is_uint4(cc)); |
| emit(0x0F); |
| emit(0x80 | cc); |
| RecordRelocInfo(rmode); |
| emitl(static_cast<int32_t>(entry)); |
| } |
| |
| void Assembler::j(Condition cc, Handle<CodeT> target, RelocInfo::Mode rmode) { |
| if (cc == always) { |
| jmp(target, rmode); |
| return; |
| } else if (cc == never) { |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| DCHECK(is_uint4(cc)); |
| // 0000 1111 1000 tttn #32-bit disp. |
| emit(0x0F); |
| emit(0x80 | cc); |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| RecordRelocInfo(rmode); |
| int code_target_index = AddCodeTarget(target); |
| emitl(code_target_index); |
| } |
| |
| void Assembler::jmp(Address entry, RelocInfo::Mode rmode) { |
| DCHECK(RelocInfo::IsRuntimeEntry(rmode)); |
| EnsureSpace ensure_space(this); |
| // 1110 1001 #32-bit disp. |
| emit(0xE9); |
| emit_runtime_entry(entry, rmode); |
| } |
| |
| void Assembler::jmp_rel(int32_t offset) { |
| EnsureSpace ensure_space(this); |
| // The offset is encoded relative to the next instruction. |
| constexpr int32_t kShortJmpDisplacement = 1 + sizeof(int8_t); |
| constexpr int32_t kNearJmpDisplacement = 1 + sizeof(int32_t); |
| DCHECK_LE(std::numeric_limits<int32_t>::min() + kNearJmpDisplacement, offset); |
| if (is_int8(offset - kShortJmpDisplacement) && !predictable_code_size()) { |
| // 0xEB #8-bit disp. |
| emit(0xEB); |
| emit(offset - kShortJmpDisplacement); |
| } else { |
| // 0xE9 #32-bit disp. |
| emit(0xE9); |
| emitl(offset - kNearJmpDisplacement); |
| } |
| } |
| |
| void Assembler::jmp(Label* L, Label::Distance distance) { |
| const int long_size = sizeof(int32_t); |
| |
| if (L->is_bound()) { |
| int offset = L->pos() - pc_offset(); |
| DCHECK_LE(offset, 0); // backward jump. |
| jmp_rel(offset); |
| return; |
| } |
| |
| EnsureSpace ensure_space(this); |
| if (distance == Label::kNear) { |
| emit(0xEB); |
| byte disp = 0x00; |
| if (L->is_near_linked()) { |
| int offset = L->near_link_pos() - pc_offset(); |
| DCHECK(is_int8(offset)); |
| disp = static_cast<byte>(offset & 0xFF); |
| } |
| L->link_to(pc_offset(), Label::kNear); |
| emit(disp); |
| } else { |
| auto jump_opt = jump_optimization_info(); |
| if (V8_UNLIKELY(jump_opt)) { |
| if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) { |
| emit(0xEB); |
| record_farjmp_position(L, pc_offset()); |
| emit(0); |
| return; |
| } |
| if (jump_opt->is_collecting()) { |
| farjmp_positions_.push_back(pc_offset() + 1); |
| } |
| } |
| if (L->is_linked()) { |
| // 1110 1001 #32-bit disp. |
| emit(0xE9); |
| emitl(L->pos()); |
| L->link_to(pc_offset() - long_size); |
| } else { |
| // 1110 1001 #32-bit disp. |
| DCHECK(L->is_unused()); |
| emit(0xE9); |
| int32_t current = pc_offset(); |
| emitl(current); |
| L->link_to(current); |
| } |
| } |
| } |
| |
| void Assembler::jmp(Handle<CodeT> target, RelocInfo::Mode rmode) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| EnsureSpace ensure_space(this); |
| // 1110 1001 #32-bit disp. |
| emit(0xE9); |
| RecordRelocInfo(rmode); |
| int code_target_index = AddCodeTarget(target); |
| emitl(code_target_index); |
| } |
| |
| void Assembler::jmp(Register target) { |
| EnsureSpace ensure_space(this); |
| // Opcode FF/4 r64. |
| emit_optional_rex_32(target); |
| emit(0xFF); |
| emit_modrm(0x4, target); |
| } |
| |
| void Assembler::jmp(Operand src) { |
| EnsureSpace ensure_space(this); |
| // Opcode FF/4 m64. |
| emit_optional_rex_32(src); |
| emit(0xFF); |
| emit_operand(0x4, src); |
| } |
| |
| void Assembler::emit_lea(Register dst, Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| emit(0x8D); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::load_rax(Address value, RelocInfo::Mode mode) { |
| EnsureSpace ensure_space(this); |
| emit(0x48); // REX.W |
| emit(0xA1); |
| emit(Immediate64(value, mode)); |
| } |
| |
| void Assembler::load_rax(ExternalReference ref) { |
| load_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE); |
| } |
| |
| void Assembler::leave() { |
| EnsureSpace ensure_space(this); |
| emit(0xC9); |
| } |
| |
| void Assembler::movb(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| if (!dst.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst, src); |
| } else { |
| emit_optional_rex_32(dst, src); |
| } |
| emit(0x8A); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::movb(Register dst, Immediate imm) { |
| EnsureSpace ensure_space(this); |
| if (!dst.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst); |
| } |
| emit(0xB0 + dst.low_bits()); |
| emit(imm.value_); |
| } |
| |
| void Assembler::movb(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| if (!src.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(src, dst); |
| } else { |
| emit_optional_rex_32(src, dst); |
| } |
| emit(0x88); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::movb(Operand dst, Immediate imm) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst); |
| emit(0xC6); |
| emit_operand(0x0, dst); |
| emit(static_cast<byte>(imm.value_)); |
| } |
| |
| void Assembler::movw(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x8B); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::movw(Operand dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x89); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::movw(Operand dst, Immediate imm) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(dst); |
| emit(0xC7); |
| emit_operand(0x0, dst); |
| emit(static_cast<byte>(imm.value_ & 0xFF)); |
| emit(static_cast<byte>(imm.value_ >> 8)); |
| } |
| |
| void Assembler::emit_mov(Register dst, Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| emit(0x8B); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::emit_mov(Register dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| if (src.low_bits() == 4) { |
| emit_rex(src, dst, size); |
| emit(0x89); |
| emit_modrm(src, dst); |
| } else { |
| emit_rex(dst, src, size); |
| emit(0x8B); |
| emit_modrm(dst, src); |
| } |
| |
| #if defined(V8_OS_WIN_X64) |
| if (xdata_encoder_ && dst == rbp && src == rsp) { |
| xdata_encoder_->onMovRbpRsp(); |
| } |
| #endif |
| } |
| |
| void Assembler::emit_mov(Operand dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(src, dst, size); |
| emit(0x89); |
| emit_operand(src, dst); |
| } |
| |
| void Assembler::emit_mov(Register dst, Immediate value, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| if (size == kInt64Size) { |
| emit(0xC7); |
| emit_modrm(0x0, dst); |
| } else { |
| DCHECK_EQ(size, kInt32Size); |
| emit(0xB8 + dst.low_bits()); |
| } |
| emit(value); |
| } |
| |
| void Assembler::emit_mov(Operand dst, Immediate value, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xC7); |
| emit_operand(0x0, dst); |
| emit(value); |
| } |
| |
| void Assembler::emit_mov(Register dst, Immediate64 value, int size) { |
| DCHECK_EQ(size, kInt64Size); |
| if (constpool_.TryRecordEntry(value.value_, value.rmode_)) { |
| // Emit rip-relative move with offset = 0 |
| Label label; |
| emit_mov(dst, Operand(&label, 0), size); |
| bind(&label); |
| } else { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xB8 | dst.low_bits()); |
| emit(value); |
| } |
| } |
| |
| void Assembler::movq_imm64(Register dst, int64_t value) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, kInt64Size); |
| emit(0xB8 | dst.low_bits()); |
| emitq(static_cast<uint64_t>(value)); |
| } |
| |
| void Assembler::movq_heap_number(Register dst, double value) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, kInt64Size); |
| emit(0xB8 | dst.low_bits()); |
| RequestHeapObject(HeapObjectRequest(value)); |
| emit(Immediate64(kNullAddress, RelocInfo::FULL_EMBEDDED_OBJECT)); |
| } |
| |
| void Assembler::movq_string(Register dst, const StringConstantBase* str) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, kInt64Size); |
| emit(0xB8 | dst.low_bits()); |
| RequestHeapObject(HeapObjectRequest(str)); |
| emit(Immediate64(kNullAddress, RelocInfo::FULL_EMBEDDED_OBJECT)); |
| } |
| |
| // Loads the ip-relative location of the src label into the target location |
| // (as a 32-bit offset sign extended to 64-bit). |
| void Assembler::movl(Operand dst, Label* src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst); |
| emit(0xC7); |
| emit_operand(0, dst); |
| if (src->is_bound()) { |
| int offset = src->pos() - pc_offset() - sizeof(int32_t); |
| DCHECK_LE(offset, 0); |
| emitl(offset); |
| } else if (src->is_linked()) { |
| emitl(src->pos()); |
| src->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| DCHECK(src->is_unused()); |
| int32_t current = pc_offset(); |
| emitl(current); |
| src->link_to(current); |
| } |
| } |
| |
| void Assembler::movsxbl(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| if (!src.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst, src); |
| } else { |
| emit_optional_rex_32(dst, src); |
| } |
| emit(0x0F); |
| emit(0xBE); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::movsxbl(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBE); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::movsxbq(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBE); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::movsxbq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBE); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::movsxwl(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBF); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::movsxwl(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xBF); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::movsxwq(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBF); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::movsxwq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBF); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::movsxlq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x63); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::movsxlq(Register dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(dst, src); |
| emit(0x63); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::emit_movzxb(Register dst, Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore |
| // there is no need to make this a 64 bit operation. |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB6); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::emit_movzxb(Register dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore |
| // there is no need to make this a 64 bit operation. |
| if (!src.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst, src); |
| } else { |
| emit_optional_rex_32(dst, src); |
| } |
| emit(0x0F); |
| emit(0xB6); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::emit_movzxw(Register dst, Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore |
| // there is no need to make this a 64 bit operation. |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB7); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::emit_movzxw(Register dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore |
| // there is no need to make this a 64 bit operation. |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB7); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::repmovsb() { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit(0xA4); |
| } |
| |
| void Assembler::repmovsw() { |
| EnsureSpace ensure_space(this); |
| emit(0x66); // Operand size override. |
| emit(0xF3); |
| emit(0xA4); |
| } |
| |
| void Assembler::emit_repmovs(int size) { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit_rex(size); |
| emit(0xA5); |
| } |
| |
| void Assembler::repstosl() { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit(0xAB); |
| } |
| |
| void Assembler::repstosq() { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit_rex_64(); |
| emit(0xAB); |
| } |
| |
| void Assembler::mull(Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(src); |
| emit(0xF7); |
| emit_modrm(0x4, src); |
| } |
| |
| void Assembler::mull(Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(src); |
| emit(0xF7); |
| emit_operand(0x4, src); |
| } |
| |
| void Assembler::mulq(Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(src); |
| emit(0xF7); |
| emit_modrm(0x4, src); |
| } |
| |
| void Assembler::negb(Register reg) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_8(reg); |
| emit(0xF6); |
| emit_modrm(0x3, reg); |
| } |
| |
| void Assembler::negw(Register reg) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(reg); |
| emit(0xF7); |
| emit_modrm(0x3, reg); |
| } |
| |
| void Assembler::negl(Register reg) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(reg); |
| emit(0xF7); |
| emit_modrm(0x3, reg); |
| } |
| |
| void Assembler::negq(Register reg) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(reg); |
| emit(0xF7); |
| emit_modrm(0x3, reg); |
| } |
| |
| void Assembler::negb(Operand op) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(op); |
| emit(0xF6); |
| emit_operand(0x3, op); |
| } |
| |
| void Assembler::negw(Operand op) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(op); |
| emit(0xF7); |
| emit_operand(0x3, op); |
| } |
| |
| void Assembler::negl(Operand op) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(op); |
| emit(0xF7); |
| emit_operand(0x3, op); |
| } |
| |
| void Assembler::negq(Operand op) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(op); |
| emit(0xF7); |
| emit_operand(0x3, op); |
| } |
| |
| void Assembler::nop() { |
| EnsureSpace ensure_space(this); |
| emit(0x90); |
| } |
| |
| void Assembler::emit_not(Register dst, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xF7); |
| emit_modrm(0x2, dst); |
| } |
| |
| void Assembler::emit_not(Operand dst, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, size); |
| emit(0xF7); |
| emit_operand(2, dst); |
| } |
| |
| void Assembler::Nop(int n) { |
| DCHECK_LE(0, n); |
| // The recommended muti-byte sequences of NOP instructions from the Intel 64 |
| // and IA-32 Architectures Software Developer's Manual. |
| // |
| // Len Assembly Byte Sequence |
| // 2 66 NOP 66 90H |
| // 3 NOP DWORD ptr [EAX] 0F 1F 00H |
| // 4 NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H |
| // 5 NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H |
| // 6 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H |
| // 7 NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H |
| // 8 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H |
| // 9 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H |
| |
| constexpr const char* kNopSequences = |
| "\x66\x90" // length 1 (@1) / 2 (@0) |
| "\x0F\x1F\x00" // length 3 (@2) |
| "\x0F\x1F\x40\x00" // length 4 (@5) |
| "\x66\x0F\x1F\x44\x00\x00" // length 5 (@10) / 6 (@9) |
| "\x0F\x1F\x80\x00\x00\x00\x00" // length 7 (@15) |
| "\x66\x0F\x1F\x84\x00\x00\x00\x00\x00"; // length 8 (@23) / 9 (@22) |
| constexpr int8_t kNopOffsets[10] = {0, 1, 0, 2, 5, 10, 9, 15, 23, 22}; |
| |
| do { |
| EnsureSpace ensure_space(this); |
| int nop_bytes = std::min(n, 9); |
| const char* sequence = kNopSequences + kNopOffsets[nop_bytes]; |
| memcpy(pc_, sequence, nop_bytes); |
| pc_ += nop_bytes; |
| n -= nop_bytes; |
| } while (n); |
| } |
| |
| void Assembler::popq(Register dst) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst); |
| emit(0x58 | dst.low_bits()); |
| } |
| |
| void Assembler::popq(Operand dst) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(dst); |
| emit(0x8F); |
| emit_operand(0, dst); |
| } |
| |
| void Assembler::popfq() { |
| EnsureSpace ensure_space(this); |
| emit(0x9D); |
| } |
| |
| void Assembler::pushq(Register src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(src); |
| emit(0x50 | src.low_bits()); |
| |
| #if defined(V8_OS_WIN_X64) |
| if (xdata_encoder_ && src == rbp) { |
| xdata_encoder_->onPushRbp(); |
| } |
| #endif |
| } |
| |
| void Assembler::pushq(Operand src) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(src); |
| emit(0xFF); |
| emit_operand(6, src); |
| } |
| |
| void Assembler::pushq(Immediate value) { |
| EnsureSpace ensure_space(this); |
| if (is_int8(value.value_)) { |
| emit(0x6A); |
| emit(value.value_); // Emit low byte of value. |
| } else { |
| emit(0x68); |
| emitl(value.value_); |
| } |
| } |
| |
| void Assembler::pushq_imm32(int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| emit(0x68); |
| emitl(imm32); |
| } |
| |
| void Assembler::pushfq() { |
| EnsureSpace ensure_space(this); |
| emit(0x9C); |
| } |
| |
| void Assembler::incsspq(Register number_of_words) { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit_rex_64(number_of_words); |
| emit(0x0F); |
| emit(0xAE); |
| emit(0xE8 | number_of_words.low_bits()); |
| } |
| |
| void Assembler::ret(int imm16) { |
| EnsureSpace ensure_space(this); |
| DCHECK(is_uint16(imm16)); |
| if (imm16 == 0) { |
| emit(0xC3); |
| } else { |
| emit(0xC2); |
| emit(imm16 & 0xFF); |
| emit((imm16 >> 8) & 0xFF); |
| } |
| } |
| |
| void Assembler::ud2() { |
| EnsureSpace ensure_space(this); |
| emit(0x0F); |
| emit(0x0B); |
| } |
| |
| void Assembler::setcc(Condition cc, Register reg) { |
| if (cc > last_condition) { |
| movb(reg, Immediate(cc == always ? 1 : 0)); |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| DCHECK(is_uint4(cc)); |
| if (!reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg); |
| } |
| emit(0x0F); |
| emit(0x90 | cc); |
| emit_modrm(0x0, reg); |
| } |
| |
| void Assembler::shld(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xA5); |
| emit_modrm(src, dst); |
| } |
| |
| void Assembler::shrd(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xAD); |
| emit_modrm(src, dst); |
| } |
| |
| void Assembler::xchgb(Register reg, Operand op) { |
| EnsureSpace ensure_space(this); |
| if (!reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg, op); |
| } else { |
| emit_optional_rex_32(reg, op); |
| } |
| emit(0x86); |
| emit_operand(reg, op); |
| } |
| |
| void Assembler::xchgw(Register reg, Operand op) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(reg, op); |
| emit(0x87); |
| emit_operand(reg, op); |
| } |
| |
| void Assembler::emit_xchg(Register dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| if (src == rax || dst == rax) { // Single-byte encoding |
| Register other = src == rax ? dst : src; |
| emit_rex(other, size); |
| emit(0x90 | other.low_bits()); |
| } else if (dst.low_bits() == 4) { |
| emit_rex(dst, src, size); |
| emit(0x87); |
| emit_modrm(dst, src); |
| } else { |
| emit_rex(src, dst, size); |
| emit(0x87); |
| emit_modrm(src, dst); |
| } |
| } |
| |
| void Assembler::emit_xchg(Register dst, Operand src, int size) { |
| EnsureSpace ensure_space(this); |
| emit_rex(dst, src, size); |
| emit(0x87); |
| emit_operand(dst, src); |
| } |
| |
| void Assembler::store_rax(Address dst, RelocInfo::Mode mode) { |
| EnsureSpace ensure_space(this); |
| emit(0x48); // REX.W |
| emit(0xA3); |
| emit(Immediate64(dst, mode)); |
| } |
| |
| void Assembler::store_rax(ExternalReference ref) { |
| store_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE); |
| } |
| |
| void Assembler::sub_sp_32(uint32_t imm) { |
| emit_rex_64(); |
| emit(0x81); // using a literal 32-bit immediate. |
| emit_modrm(0x5, rsp); |
| emitl(imm); |
| } |
| |
| void Assembler::testb(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| emit_test(dst, src, sizeof(int8_t)); |
| } |
| |
| void Assembler::testb(Register reg, Immediate mask) { |
| DCHECK(is_int8(mask.value_) || is_uint8(mask.value_)); |
| emit_test(reg, mask, sizeof(int8_t)); |
| } |
| |
| void Assembler::testb(Operand op, Immediate mask) { |
| DCHECK(is_int8(mask.value_) || is_uint8(mask.value_)); |
| emit_test(op, mask, sizeof(int8_t)); |
| } |
| |
| void Assembler::testb(Operand op, Register reg) { |
| emit_test(op, reg, sizeof(int8_t)); |
| } |
| |
| void Assembler::testw(Register dst, Register src) { |
| emit_test(dst, src, sizeof(uint16_t)); |
| } |
| |
| void Assembler::testw(Register reg, Immediate mask) { |
| emit_test(reg, mask, sizeof(int16_t)); |
| } |
| |
| void Assembler::testw(Operand op, Immediate mask) { |
| emit_test(op, mask, sizeof(int16_t)); |
| } |
| |
| void Assembler::testw(Operand op, Register reg) { |
| emit_test(op, reg, sizeof(int16_t)); |
| } |
| |
| void Assembler::emit_test(Register dst, Register src, int size) { |
| EnsureSpace ensure_space(this); |
| if (src.low_bits() == 4) std::swap(dst, src); |
| if (size == sizeof(int16_t)) { |
| emit(0x66); |
| size = sizeof(int32_t); |
| } |
| bool byte_operand = size == sizeof(int8_t); |
| if (byte_operand) { |
| size = sizeof(int32_t); |
| if (!src.is_byte_register() || !dst.is_byte_register()) { |
| emit_rex_32(dst, src); |
| } |
| } else { |
| emit_rex(dst, src, size); |
| } |
| emit(byte_operand ? 0x84 : 0x85); |
| emit_modrm(dst, src); |
| } |
| |
| void Assembler::emit_test(Register reg, Immediate mask, int size) { |
| if (is_uint8(mask.value_)) { |
| size = sizeof(int8_t); |
| } else if (is_uint16(mask.value_)) { |
| size = sizeof(int16_t); |
| } |
| EnsureSpace ensure_space(this); |
| bool half_word = size == sizeof(int16_t); |
| if (half_word) { |
| emit(0x66); |
| size = sizeof(int32_t); |
| } |
| bool byte_operand = size == sizeof(int8_t); |
| if (byte_operand) { |
| size = sizeof(int32_t); |
| if (!reg.is_byte_register()) emit_rex_32(reg); |
| } else { |
| emit_rex(reg, size); |
| } |
| if (reg == rax) { |
| emit(byte_operand ? 0xA8 : 0xA9); |
| } else { |
| emit(byte_operand ? 0xF6 : 0xF7); |
| emit_modrm(0x0, reg); |
| } |
| if (byte_operand) { |
| emit(mask.value_); |
| } else if (half_word) { |
| emitw(mask.value_); |
| } else { |
| emit(mask); |
| } |
| } |
| |
| void Assembler::emit_test(Operand op, Immediate mask, int size) { |
| if (is_uint8(mask.value_)) { |
| size = sizeof(int8_t); |
| } else if (is_uint16(mask.value_)) { |
| size = sizeof(int16_t); |
| } |
| EnsureSpace ensure_space(this); |
| bool half_word = size == sizeof(int16_t); |
| if (half_word) { |
| emit(0x66); |
| size = sizeof(int32_t); |
| } |
| bool byte_operand = size == sizeof(int8_t); |
| if (byte_operand) { |
| size = sizeof(int32_t); |
| } |
| emit_rex(rax, op, size); |
| emit(byte_operand ? 0xF6 : 0xF7); |
| emit_operand(rax, op); // Operation code 0 |
| if (byte_operand) { |
| emit(mask.value_); |
| } else if (half_word) { |
| emitw(mask.value_); |
| } else { |
| emit(mask); |
| } |
| } |
| |
| void Assembler::emit_test(Operand op, Register reg, int size) { |
| EnsureSpace ensure_space(this); |
| if (size == sizeof(int16_t)) { |
| emit(0x66); |
| size = sizeof(int32_t); |
| } |
| bool byte_operand = size == sizeof(int8_t); |
| if (byte_operand) { |
| size = sizeof(int32_t); |
| if (!reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg, op); |
| } else { |
| emit_optional_rex_32(reg, op); |
| } |
| } else { |
| emit_rex(reg, op, size); |
| } |
| emit(byte_operand ? 0x84 : 0x85); |
| emit_operand(reg, op); |
| } |
| |
| // FPU instructions. |
| |
| void Assembler::fld(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xD9, 0xC0, i); |
| } |
| |
| void Assembler::fld1() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xE8); |
| } |
| |
| void Assembler::fldz() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xEE); |
| } |
| |
| void Assembler::fldpi() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xEB); |
| } |
| |
| void Assembler::fldln2() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xED); |
| } |
| |
| void Assembler::fld_s(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xD9); |
| emit_operand(0, adr); |
| } |
| |
| void Assembler::fld_d(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDD); |
| emit_operand(0, adr); |
| } |
| |
| void Assembler::fstp_s(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xD9); |
| emit_operand(3, adr); |
| } |
| |
| void Assembler::fstp_d(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDD); |
| emit_operand(3, adr); |
| } |
| |
| void Assembler::fstp(int index) { |
| DCHECK(is_uint3(index)); |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDD, 0xD8, index); |
| } |
| |
| void Assembler::fild_s(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(0, adr); |
| } |
| |
| void Assembler::fild_d(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDF); |
| emit_operand(5, adr); |
| } |
| |
| void Assembler::fistp_s(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(3, adr); |
| } |
| |
| void Assembler::fisttp_s(Operand adr) { |
| DCHECK(IsEnabled(SSE3)); |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(1, adr); |
| } |
| |
| void Assembler::fisttp_d(Operand adr) { |
| DCHECK(IsEnabled(SSE3)); |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDD); |
| emit_operand(1, adr); |
| } |
| |
| void Assembler::fist_s(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(2, adr); |
| } |
| |
| void Assembler::fistp_d(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDF); |
| emit_operand(7, adr); |
| } |
| |
| void Assembler::fabs() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xE1); |
| } |
| |
| void Assembler::fchs() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xE0); |
| } |
| |
| void Assembler::fcos() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xFF); |
| } |
| |
| void Assembler::fsin() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xFE); |
| } |
| |
| void Assembler::fptan() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xF2); |
| } |
| |
| void Assembler::fyl2x() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xF1); |
| } |
| |
| void Assembler::f2xm1() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xF0); |
| } |
| |
| void Assembler::fscale() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xFD); |
| } |
| |
| void Assembler::fninit() { |
| EnsureSpace ensure_space(this); |
| emit(0xDB); |
| emit(0xE3); |
| } |
| |
| void Assembler::fadd(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDC, 0xC0, i); |
| } |
| |
| void Assembler::fsub(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDC, 0xE8, i); |
| } |
| |
| void Assembler::fisub_s(Operand adr) { |
| EnsureSpace ensure_space(this); |
| emit_optional_rex_32(adr); |
| emit(0xDA); |
| emit_operand(4, adr); |
| } |
| |
| void Assembler::fmul(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDC, 0xC8, i); |
| } |
| |
| void Assembler::fdiv(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDC, 0xF8, i); |
| } |
| |
| void Assembler::faddp(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDE, 0xC0, i); |
| } |
| |
| void Assembler::fsubp(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDE, 0xE8, i); |
| } |
| |
| void Assembler::fsubrp(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDE, 0xE0, i); |
| } |
| |
| void Assembler::fmulp(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDE, 0xC8, i); |
| } |
| |
| void Assembler::fdivp(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDE, 0xF8, i); |
| } |
| |
| void Assembler::fprem() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xF8); |
| } |
| |
| void Assembler::fprem1() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xF5); |
| } |
| |
| void Assembler::fxch(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xD9, 0xC8, i); |
| } |
| |
| void Assembler::fincstp() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xF7); |
| } |
| |
| void Assembler::ffree(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDD, 0xC0, i); |
| } |
| |
| void Assembler::ftst() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xE4); |
| } |
| |
| void Assembler::fucomp(int i) { |
| EnsureSpace ensure_space(this); |
| emit_farith(0xDD, 0xE8, i); |
| } |
| |
| void Assembler::fucompp() { |
| EnsureSpace ensure_space(this); |
| emit(0xDA); |
| emit(0xE9); |
| } |
| |
| void Assembler::fucomi(int i) { |
| EnsureSpace ensure_space(this); |
| emit(0xDB); |
| emit(0xE8 + i); |
| } |
| |
| void Assembler::fucomip() { |
| EnsureSpace ensure_space(this); |
| emit(0xDF); |
| emit(0xE9); |
| } |
| |
| void Assembler::fcompp() { |
| EnsureSpace ensure_space(this); |
| emit(0xDE); |
| emit(0xD9); |
| } |
| |
| void Assembler::fnstsw_ax() { |
| EnsureSpace ensure_space(this); |
| emit(0xDF); |
| emit(0xE0); |
| } |
| |
| void Assembler::fwait() { |
| EnsureSpace ensure_space(this); |
| emit(0x9B); |
| } |
| |
| void Assembler::frndint() { |
| EnsureSpace ensure_space(this); |
| emit(0xD9); |
| emit(0xFC); |
| } |
| |
| void Assembler::fnclex() { |
| EnsureSpace ensure_space(this); |
| emit(0xDB); |
| emit(0xE2); |
| } |
| |
| void Assembler::sahf() { |
| // TODO(X64): Test for presence. Not all 64-bit intel CPU's have sahf |
| // in 64-bit mode. Test CpuID. |
| DCHECK(IsEnabled(SAHF)); |
| EnsureSpace ensure_space(this); |
| emit(0x9E); |
| } |
| |
| void Assembler::emit_farith(int b1, int b2, int i) { |
| DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode |
| DCHECK(is_uint3(i)); // illegal stack offset |
| emit(b1); |
| emit(b2 + i); |
| } |
| |
| // SSE 2 operations. |
| |
| void Assembler::movd(XMMRegister dst, Register src) { |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movd(XMMRegister dst, Operand src) { |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movd(Register dst, XMMRegister src) { |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0x7E); |
| emit_sse_operand(src, dst); |
| } |
| |
| void Assembler::movq(XMMRegister dst, Register src) { |
| // Mixing AVX and non-AVX is expensive, catch those cases |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movq(XMMRegister dst, Operand src) { |
| // Mixing AVX and non-AVX is expensive, catch those cases |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movq(Register dst, XMMRegister src) { |
| // Mixing AVX and non-AVX is expensive, catch those cases |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x7E); |
| emit_sse_operand(src, dst); |
| } |
| |
| void Assembler::movq(XMMRegister dst, XMMRegister src) { |
| // Mixing AVX and non-AVX is expensive, catch those cases |
| DCHECK(!IsEnabled(AVX)); |
| EnsureSpace ensure_space(this); |
| if (dst.low_bits() == 4) { |
| // Avoid unnecessary SIB byte. |
| emit(0xF3); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x7E); |
| emit_sse_operand(dst, src); |
| } else { |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0xD6); |
| emit_sse_operand(src, dst); |
| } |
| } |
| |
| void Assembler::movdqa(Operand dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x7F); |
| emit_sse_operand(src, dst); |
| } |
| |
| void Assembler::movdqa(XMMRegister dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6F); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movdqa(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x7F); |
| emit_sse_operand(src, dst); |
| } |
| |
| void Assembler::movdqu(Operand dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x7F); |
| emit_sse_operand(src, dst); |
| } |
| |
| void Assembler::movdqu(XMMRegister dst, Operand src) { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6F); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movdqu(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| emit(0xF3); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6F); |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::pinsrw(XMMRegister dst, Register src, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xC4); |
| emit_sse_operand(dst, src); |
| emit(imm8); |
| } |
| |
| void Assembler::pinsrw(XMMRegister dst, Operand src, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xC4); |
| emit_sse_operand(dst, src); |
| emit(imm8); |
| } |
| |
| void Assembler::pextrq(Register dst, XMMRegister src, int8_t imm8) { |
| DCHECK(IsEnabled(SSE4_1)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x3A); |
| emit(0x16); |
| emit_sse_operand(src, dst); |
| emit(imm8); |
| } |
| |
| void Assembler::pinsrq(XMMRegister dst, Register src, uint8_t imm8) { |
| DCHECK(IsEnabled(SSE4_1)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x3A); |
| emit(0x22); |
| emit_sse_operand(dst, src); |
| emit(imm8); |
| } |
| |
| void Assembler::pinsrq(XMMRegister dst, Operand src, uint8_t imm8) { |
| DCHECK(IsEnabled(SSE4_1)); |
| EnsureSpace ensure_space(this); |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x3A); |
| emit(0x22); |
| emit_sse_operand(dst, src); |
| emit(imm8); |
| } |
| |
| void Assembler::pinsrd(XMMRegister dst, Register src, uint8_t imm8) { |
| sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x22, imm8); |
| } |
| |
| void Assembler::pinsrd(XMMRegister dst, Operand src, uint8_t imm8) { |
| sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x22); |
| emit(imm8); |
| } |
| |
| void Assembler::pinsrb(XMMRegister dst, Register src, uint8_t imm8) { |
| sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x20, imm8); |
| } |
| |
| void Assembler::pinsrb(XMMRegister dst, Operand src, uint8_t imm8) { |
| sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x20); |
| emit(imm8); |
| } |
| |
| void Assembler::insertps(XMMRegister dst, XMMRegister src, |