blob: 631c118df24d499ce577e773c2e35d927e65f614 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cstdint>
#if V8_TARGET_ARCH_X64
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/callable.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/external-reference-table.h"
#include "src/codegen/interface-descriptors-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/string-constants.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/codegen/x64/register-x64.h"
#include "src/common/globals.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frames-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/sandbox/external-pointer.h"
#include "src/snapshot/snapshot.h"
// Satisfy cpplint check, but don't include platform-specific header. It is
// included recursively via macro-assembler.h.
#if 0
#include "src/codegen/x64/macro-assembler-x64.h"
#endif
namespace v8 {
namespace internal {
Operand StackArgumentsAccessor::GetArgumentOperand(int index) const {
DCHECK_GE(index, 0);
// arg[0] = rsp + kPCOnStackSize;
// arg[i] = arg[0] + i * kSystemPointerSize;
return Operand(rsp, kPCOnStackSize + index * kSystemPointerSize);
}
void MacroAssembler::Load(Register destination, ExternalReference source) {
if (root_array_available_ && options().enable_root_relative_access) {
intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), source);
if (is_int32(delta)) {
movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
if (destination == rax && !options().isolate_independent_code) {
load_rax(source);
} else {
movq(destination, ExternalReferenceAsOperand(source));
}
}
void MacroAssembler::Store(ExternalReference destination, Register source) {
if (root_array_available_ && options().enable_root_relative_access) {
intptr_t delta =
RootRegisterOffsetForExternalReference(isolate(), destination);
if (is_int32(delta)) {
movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
return;
}
}
// Safe code.
if (source == rax && !options().isolate_independent_code) {
store_rax(destination);
} else {
movq(ExternalReferenceAsOperand(destination), source);
}
}
void TurboAssembler::LoadFromConstantsTable(Register destination,
int constant_index) {
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable));
LoadRoot(destination, RootIndex::kBuiltinsConstantsTable);
LoadTaggedPointerField(
destination,
FieldOperand(destination, FixedArray::OffsetOfElementAt(constant_index)));
}
void TurboAssembler::LoadRootRegisterOffset(Register destination,
intptr_t offset) {
DCHECK(is_int32(offset));
if (offset == 0) {
Move(destination, kRootRegister);
} else {
leaq(destination, Operand(kRootRegister, static_cast<int32_t>(offset)));
}
}
void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
movq(destination, Operand(kRootRegister, offset));
}
void TurboAssembler::LoadAddress(Register destination,
ExternalReference source) {
if (root_array_available_ && options().enable_root_relative_access) {
intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), source);
if (is_int32(delta)) {
leaq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
// TODO(jgruber,v8:8887): Also consider a root-relative load when generating
// non-isolate-independent code. In many cases it might be cheaper than
// embedding the relocatable value.
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadExternalReference(destination, source);
return;
}
Move(destination, source);
}
Operand TurboAssembler::ExternalReferenceAsOperand(ExternalReference reference,
Register scratch) {
if (root_array_available_ && options().enable_root_relative_access) {
int64_t delta =
RootRegisterOffsetForExternalReference(isolate(), reference);
if (is_int32(delta)) {
return Operand(kRootRegister, static_cast<int32_t>(delta));
}
}
if (root_array_available_ && options().isolate_independent_code) {
if (IsAddressableThroughRootRegister(isolate(), reference)) {
// Some external references can be efficiently loaded as an offset from
// kRootRegister.
intptr_t offset =
RootRegisterOffsetForExternalReference(isolate(), reference);
CHECK(is_int32(offset));
return Operand(kRootRegister, static_cast<int32_t>(offset));
} else {
// Otherwise, do a memory load from the external reference table.
movq(scratch, Operand(kRootRegister,
RootRegisterOffsetForExternalReferenceTableEntry(
isolate(), reference)));
return Operand(scratch, 0);
}
}
Move(scratch, reference);
return Operand(scratch, 0);
}
void MacroAssembler::PushAddress(ExternalReference source) {
LoadAddress(kScratchRegister, source);
Push(kScratchRegister);
}
Operand TurboAssembler::RootAsOperand(RootIndex index) {
DCHECK(root_array_available());
return Operand(kRootRegister, RootRegisterOffsetForRootIndex(index));
}
void TurboAssembler::LoadRoot(Register destination, RootIndex index) {
DCHECK(root_array_available_);
movq(destination, RootAsOperand(index));
}
void MacroAssembler::PushRoot(RootIndex index) {
DCHECK(root_array_available_);
Push(RootAsOperand(index));
}
void TurboAssembler::CompareRoot(Register with, RootIndex index) {
DCHECK(root_array_available_);
if (base::IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot,
RootIndex::kLastStrongOrReadOnlyRoot)) {
cmp_tagged(with, RootAsOperand(index));
} else {
// Some smi roots contain system pointer size values like stack limits.
cmpq(with, RootAsOperand(index));
}
}
void TurboAssembler::CompareRoot(Operand with, RootIndex index) {
DCHECK(root_array_available_);
DCHECK(!with.AddressUsesRegister(kScratchRegister));
LoadRoot(kScratchRegister, index);
if (base::IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot,
RootIndex::kLastStrongOrReadOnlyRoot)) {
cmp_tagged(with, kScratchRegister);
} else {
// Some smi roots contain system pointer size values like stack limits.
cmpq(with, kScratchRegister);
}
}
void TurboAssembler::LoadMap(Register destination, Register object) {
LoadTaggedPointerField(destination,
FieldOperand(object, HeapObject::kMapOffset));
#ifdef V8_MAP_PACKING
UnpackMapWord(destination);
#endif
}
void TurboAssembler::LoadTaggedPointerField(Register destination,
Operand field_operand) {
if (COMPRESS_POINTERS_BOOL) {
DecompressTaggedPointer(destination, field_operand);
} else {
mov_tagged(destination, field_operand);
}
}
#ifdef V8_MAP_PACKING
void TurboAssembler::UnpackMapWord(Register r) {
// Clear the top two bytes (which may include metadata). Must be in sync with
// MapWord::Unpack, and vice versa.
shlq(r, Immediate(16));
shrq(r, Immediate(16));
xorq(r, Immediate(Internals::kMapWordXorMask));
}
#endif
void TurboAssembler::LoadTaggedSignedField(Register destination,
Operand field_operand) {
if (COMPRESS_POINTERS_BOOL) {
DecompressTaggedSigned(destination, field_operand);
} else {
mov_tagged(destination, field_operand);
}
}
void TurboAssembler::LoadAnyTaggedField(Register destination,
Operand field_operand) {
if (COMPRESS_POINTERS_BOOL) {
DecompressAnyTagged(destination, field_operand);
} else {
mov_tagged(destination, field_operand);
}
}
void TurboAssembler::PushTaggedPointerField(Operand field_operand,
Register scratch) {
if (COMPRESS_POINTERS_BOOL) {
DCHECK(!field_operand.AddressUsesRegister(scratch));
DecompressTaggedPointer(scratch, field_operand);
Push(scratch);
} else {
Push(field_operand);
}
}
void TurboAssembler::PushTaggedAnyField(Operand field_operand,
Register scratch) {
if (COMPRESS_POINTERS_BOOL) {
DCHECK(!field_operand.AddressUsesRegister(scratch));
DecompressAnyTagged(scratch, field_operand);
Push(scratch);
} else {
Push(field_operand);
}
}
void TurboAssembler::SmiUntagField(Register dst, Operand src) {
SmiUntag(dst, src);
}
void TurboAssembler::StoreTaggedField(Operand dst_field_operand,
Immediate value) {
if (COMPRESS_POINTERS_BOOL) {
movl(dst_field_operand, value);
} else {
movq(dst_field_operand, value);
}
}
void TurboAssembler::StoreTaggedField(Operand dst_field_operand,
Register value) {
if (COMPRESS_POINTERS_BOOL) {
movl(dst_field_operand, value);
} else {
movq(dst_field_operand, value);
}
}
void TurboAssembler::StoreTaggedSignedField(Operand dst_field_operand,
Smi value) {
if (SmiValuesAre32Bits()) {
Move(kScratchRegister, value);
movq(dst_field_operand, kScratchRegister);
} else {
StoreTaggedField(dst_field_operand, Immediate(value));
}
}
void TurboAssembler::AtomicStoreTaggedField(Operand dst_field_operand,
Register value) {
if (COMPRESS_POINTERS_BOOL) {
movl(kScratchRegister, value);
xchgl(kScratchRegister, dst_field_operand);
} else {
movq(kScratchRegister, value);
xchgq(kScratchRegister, dst_field_operand);
}
}
void TurboAssembler::DecompressTaggedSigned(Register destination,
Operand field_operand) {
ASM_CODE_COMMENT(this);
movl(destination, field_operand);
}
void TurboAssembler::DecompressTaggedPointer(Register destination,
Operand field_operand) {
ASM_CODE_COMMENT(this);
movl(destination, field_operand);
addq(destination, kPtrComprCageBaseRegister);
}
void TurboAssembler::DecompressTaggedPointer(Register destination,
Register source) {
ASM_CODE_COMMENT(this);
movl(destination, source);
addq(destination, kPtrComprCageBaseRegister);
}
void TurboAssembler::DecompressAnyTagged(Register destination,
Operand field_operand) {
ASM_CODE_COMMENT(this);
movl(destination, field_operand);
addq(destination, kPtrComprCageBaseRegister);
}
void MacroAssembler::RecordWriteField(Register object, int offset,
Register value, Register slot_address,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(object, value, slot_address));
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == SmiCheck::kInline) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so the offset must be a multiple of kTaggedSize.
DCHECK(IsAligned(offset, kTaggedSize));
leaq(slot_address, FieldOperand(object, offset));
if (FLAG_debug_code) {
ASM_CODE_COMMENT_STRING(this, "Debug check slot_address");
Label ok;
testb(slot_address, Immediate(kTaggedSize - 1));
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
RecordWrite(object, slot_address, value, save_fp, remembered_set_action,
SmiCheck::kOmit);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (FLAG_debug_code) {
ASM_CODE_COMMENT_STRING(this, "Zap scratch registers");
Move(value, kZapValue, RelocInfo::NO_INFO);
Move(slot_address, kZapValue, RelocInfo::NO_INFO);
}
}
void TurboAssembler::EncodeSandboxedPointer(Register value) {
ASM_CODE_COMMENT(this);
#ifdef V8_SANDBOXED_POINTERS
subq(value, kPtrComprCageBaseRegister);
shlq(value, Immediate(kSandboxedPointerShift));
#else
UNREACHABLE();
#endif
}
void TurboAssembler::DecodeSandboxedPointer(Register value) {
ASM_CODE_COMMENT(this);
#ifdef V8_SANDBOXED_POINTERS
shrq(value, Immediate(kSandboxedPointerShift));
addq(value, kPtrComprCageBaseRegister);
#else
UNREACHABLE();
#endif
}
void TurboAssembler::LoadSandboxedPointerField(Register destination,
Operand field_operand) {
ASM_CODE_COMMENT(this);
movq(destination, field_operand);
DecodeSandboxedPointer(destination);
}
void TurboAssembler::StoreSandboxedPointerField(Operand dst_field_operand,
Register value) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(value, kScratchRegister));
DCHECK(!dst_field_operand.AddressUsesRegister(kScratchRegister));
movq(kScratchRegister, value);
EncodeSandboxedPointer(kScratchRegister);
movq(dst_field_operand, kScratchRegister);
}
void TurboAssembler::LoadExternalPointerField(
Register destination, Operand field_operand, ExternalPointerTag tag,
Register scratch, IsolateRootLocation isolateRootLocation) {
DCHECK(!AreAliased(destination, scratch));
#ifdef V8_SANDBOXED_EXTERNAL_POINTERS
DCHECK_NE(kExternalPointerNullTag, tag);
DCHECK(!field_operand.AddressUsesRegister(scratch));
if (isolateRootLocation == IsolateRootLocation::kInRootRegister) {
DCHECK(root_array_available_);
movq(scratch, Operand(kRootRegister,
IsolateData::external_pointer_table_offset() +
Internals::kExternalPointerTableBufferOffset));
} else {
DCHECK(isolateRootLocation == IsolateRootLocation::kInScratchRegister);
movq(scratch,
Operand(scratch, IsolateData::external_pointer_table_offset() +
Internals::kExternalPointerTableBufferOffset));
}
movl(destination, field_operand);
shrq(destination, Immediate(kExternalPointerIndexShift));
movq(destination, Operand(scratch, destination, times_8, 0));
movq(scratch, Immediate64(~tag));
andq(destination, scratch);
#else
movq(destination, field_operand);
#endif // V8_SANDBOXED_EXTERNAL_POINTERS
}
void TurboAssembler::MaybeSaveRegisters(RegList registers) {
for (Register reg : registers) {
pushq(reg);
}
}
void TurboAssembler::MaybeRestoreRegisters(RegList registers) {
for (Register reg : base::Reversed(registers)) {
popq(reg);
}
}
void TurboAssembler::CallEphemeronKeyBarrier(Register object,
Register slot_address,
SaveFPRegsMode fp_mode) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(object, slot_address));
RegList registers =
WriteBarrierDescriptor::ComputeSavedRegisters(object, slot_address);
MaybeSaveRegisters(registers);
Register object_parameter = WriteBarrierDescriptor::ObjectRegister();
Register slot_address_parameter =
WriteBarrierDescriptor::SlotAddressRegister();
MovePair(slot_address_parameter, slot_address, object_parameter, object);
Call(isolate()->builtins()->code_handle(
Builtins::GetEphemeronKeyBarrierStub(fp_mode)),
RelocInfo::CODE_TARGET);
MaybeRestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStubSaveRegisters(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(object, slot_address));
RegList registers =
WriteBarrierDescriptor::ComputeSavedRegisters(object, slot_address);
MaybeSaveRegisters(registers);
Register object_parameter = WriteBarrierDescriptor::ObjectRegister();
Register slot_address_parameter =
WriteBarrierDescriptor::SlotAddressRegister();
MovePair(object_parameter, object, slot_address_parameter, slot_address);
CallRecordWriteStub(object_parameter, slot_address_parameter,
remembered_set_action, fp_mode, mode);
MaybeRestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode) {
ASM_CODE_COMMENT(this);
// Use CallRecordWriteStubSaveRegisters if the object and slot registers
// need to be caller saved.
DCHECK_EQ(WriteBarrierDescriptor::ObjectRegister(), object);
DCHECK_EQ(WriteBarrierDescriptor::SlotAddressRegister(), slot_address);
#if V8_ENABLE_WEBASSEMBLY
if (mode == StubCallMode::kCallWasmRuntimeStub) {
// Use {near_call} for direct Wasm call within a module.
auto wasm_target =
wasm::WasmCode::GetRecordWriteStub(remembered_set_action, fp_mode);
near_call(wasm_target, RelocInfo::WASM_STUB_CALL);
#else
if (false) {
#endif
} else {
Builtin builtin =
Builtins::GetRecordWriteStub(remembered_set_action, fp_mode);
if (options().inline_offheap_trampolines) {
CallBuiltin(builtin);
} else {
Handle<CodeT> code_target = isolate()->builtins()->code_handle(builtin);
Call(code_target, RelocInfo::CODE_TARGET);
}
}
}
#ifdef V8_IS_TSAN
void TurboAssembler::CallTSANStoreStub(Register address, Register value,
SaveFPRegsMode fp_mode, int size,
StubCallMode mode,
std::memory_order order) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(address, value));
TSANStoreDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
MaybeSaveRegisters(registers);
Register address_parameter(
descriptor.GetRegisterParameter(TSANStoreDescriptor::kAddress));
Register value_parameter(
descriptor.GetRegisterParameter(TSANStoreDescriptor::kValue));
// Prepare argument registers for calling GetTSANStoreStub.
MovePair(address_parameter, address, value_parameter, value);
if (isolate()) {
Builtin builtin = CodeFactory::GetTSANStoreStub(fp_mode, size, order);
Handle<CodeT> code_target = isolate()->builtins()->code_handle(builtin);
Call(code_target, RelocInfo::CODE_TARGET);
}
#if V8_ENABLE_WEBASSEMBLY
// There are two different kinds of wasm-to-js functions: one lives in the
// wasm code space, and another one lives on the heap. Both of them have the
// same CodeKind (WASM_TO_JS_FUNCTION), but depending on where they are they
// have to either use the wasm stub calls, or call the builtin using the
// isolate like JS does. In order to know which wasm-to-js function we are
// compiling right now, we check if the isolate is null.
// TODO(solanes, v8:11600): Split CodeKind::WASM_TO_JS_FUNCTION into two
// different CodeKinds and pass the CodeKind as a parameter so that we can use
// that instead of a nullptr check.
// NOLINTNEXTLINE(readability/braces)
else {
DCHECK_EQ(mode, StubCallMode::kCallWasmRuntimeStub);
// Use {near_call} for direct Wasm call within a module.
auto wasm_target = wasm::WasmCode::GetTSANStoreStub(fp_mode, size, order);
near_call(wasm_target, RelocInfo::WASM_STUB_CALL);
}
#endif // V8_ENABLE_WEBASSEMBLY
MaybeRestoreRegisters(registers);
}
void TurboAssembler::CallTSANRelaxedLoadStub(Register address,
SaveFPRegsMode fp_mode, int size,
StubCallMode mode) {
TSANLoadDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
MaybeSaveRegisters(registers);
Register address_parameter(
descriptor.GetRegisterParameter(TSANLoadDescriptor::kAddress));
// Prepare argument registers for calling TSANRelaxedLoad.
Move(address_parameter, address);
if (isolate()) {
Builtin builtin = CodeFactory::GetTSANRelaxedLoadStub(fp_mode, size);
Handle<CodeT> code_target = isolate()->builtins()->code_handle(builtin);
Call(code_target, RelocInfo::CODE_TARGET);
}
#if V8_ENABLE_WEBASSEMBLY
// There are two different kinds of wasm-to-js functions: one lives in the
// wasm code space, and another one lives on the heap. Both of them have the
// same CodeKind (WASM_TO_JS_FUNCTION), but depending on where they are they
// have to either use the wasm stub calls, or call the builtin using the
// isolate like JS does. In order to know which wasm-to-js function we are
// compiling right now, we check if the isolate is null.
// TODO(solanes, v8:11600): Split CodeKind::WASM_TO_JS_FUNCTION into two
// different CodeKinds and pass the CodeKind as a parameter so that we can use
// that instead of a nullptr check.
// NOLINTNEXTLINE(readability/braces)
else {
DCHECK_EQ(mode, StubCallMode::kCallWasmRuntimeStub);
// Use {near_call} for direct Wasm call within a module.
auto wasm_target = wasm::WasmCode::GetTSANRelaxedLoadStub(fp_mode, size);
near_call(wasm_target, RelocInfo::WASM_STUB_CALL);
}
#endif // V8_ENABLE_WEBASSEMBLY
MaybeRestoreRegisters(registers);
}
#endif // V8_IS_TSAN
void MacroAssembler::RecordWrite(Register object, Register slot_address,
Register value, SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(object, slot_address, value));
AssertNotSmi(object);
if ((remembered_set_action == RememberedSetAction::kOmit &&
!FLAG_incremental_marking) ||
FLAG_disable_write_barriers) {
return;
}
if (FLAG_debug_code) {
ASM_CODE_COMMENT_STRING(this, "Debug check slot_address");
Label ok;
cmp_tagged(value, Operand(slot_address, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == SmiCheck::kInline) {
// Skip barrier if writing a smi.
JumpIfSmi(value, &done);
}
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask, zero, &done,
Label::kNear);
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done,
Label::kNear);
CallRecordWriteStub(object, slot_address, remembered_set_action, fp_mode);
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (FLAG_debug_code) {
ASM_CODE_COMMENT_STRING(this, "Zap scratch registers");
Move(slot_address, kZapValue, RelocInfo::NO_INFO);
Move(value, kZapValue, RelocInfo::NO_INFO);
}
}
void TurboAssembler::Assert(Condition cc, AbortReason reason) {
if (FLAG_debug_code) Check(cc, reason);
}
void TurboAssembler::AssertUnreachable(AbortReason reason) {
if (FLAG_debug_code) Abort(reason);
}
void TurboAssembler::Check(Condition cc, AbortReason reason) {
Label L;
j(cc, &L, Label::kNear);
Abort(reason);
// Control will not return here.
bind(&L);
}
void TurboAssembler::CheckStackAlignment() {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kSystemPointerSize) {
ASM_CODE_COMMENT(this);
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
Label alignment_as_expected;
testq(rsp, Immediate(frame_alignment_mask));
j(zero, &alignment_as_expected, Label::kNear);
// Abort if stack is not aligned.
int3();
bind(&alignment_as_expected);
}
}
void TurboAssembler::Abort(AbortReason reason) {
ASM_CODE_COMMENT(this);
if (FLAG_code_comments) {
const char* msg = GetAbortReason(reason);
RecordComment("Abort message: ");
RecordComment(msg);
}
// Avoid emitting call to builtin if requested.
if (trap_on_abort()) {
int3();
return;
}
if (should_abort_hard()) {
// We don't care if we constructed a frame. Just pretend we did.
FrameScope assume_frame(this, StackFrame::NO_FRAME_TYPE);
Move(arg_reg_1, static_cast<int>(reason));
PrepareCallCFunction(1);
LoadAddress(rax, ExternalReference::abort_with_reason());
call(rax);
return;
}
Move(rdx, Smi::FromInt(static_cast<int>(reason)));
if (!has_frame()) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NO_FRAME_TYPE);
Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
} else {
Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
}
// Control will not return here.
int3();
}
void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles) {
ASM_CODE_COMMENT(this);
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Move(rax, num_arguments);
LoadAddress(rbx, ExternalReference::Create(f));
Handle<CodeT> code =
CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
Call(code, RelocInfo::CODE_TARGET);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : argument num_arguments - 1
// ...
// -- rsp[8 * num_arguments] : argument 0 (receiver)
//
// For runtime functions with variable arguments:
// -- rax : number of arguments
// -----------------------------------
ASM_CODE_COMMENT(this);
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
Move(rax, function->nargs);
}
JumpToExternalReference(ExternalReference::Create(fid));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame) {
ASM_CODE_COMMENT(this);
// Set the entry point and jump to the C entry runtime stub.
LoadAddress(rbx, ext);
Handle<CodeT> code =
CodeFactory::CEntry(isolate(), 1, SaveFPRegsMode::kIgnore,
ArgvMode::kStack, builtin_exit_frame);
Jump(code, RelocInfo::CODE_TARGET);
}
static constexpr Register saved_regs[] = {rax, rcx, rdx, rbx, rbp, rsi,
rdi, r8, r9, r10, r11};
static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) const {
int bytes = 0;
for (int i = 0; i < kNumberOfSavedRegs; i++) {
Register reg = saved_regs[i];
if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) {
bytes += kSystemPointerSize;
}
}
// R12 to r15 are callee save on all platforms.
if (fp_mode == SaveFPRegsMode::kSave) {
bytes += kStackSavedSavedFPSize * XMMRegister::kNumRegisters;
}
return bytes;
}
int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
Register exclusion2, Register exclusion3) {
ASM_CODE_COMMENT(this);
// We don't allow a GC in a write barrier slow path so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
int bytes = 0;
for (int i = 0; i < kNumberOfSavedRegs; i++) {
Register reg = saved_regs[i];
if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) {
pushq(reg);
bytes += kSystemPointerSize;
}
}
// R12 to r15 are callee save on all platforms.
if (fp_mode == SaveFPRegsMode::kSave) {
const int delta = kStackSavedSavedFPSize * XMMRegister::kNumRegisters;
AllocateStackSpace(delta);
for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
#if V8_ENABLE_WEBASSEMBLY
Movdqu(Operand(rsp, i * kStackSavedSavedFPSize), reg);
#else
Movsd(Operand(rsp, i * kStackSavedSavedFPSize), reg);
#endif // V8_ENABLE_WEBASSEMBLY
}
bytes += delta;
}
return bytes;
}
int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
Register exclusion2, Register exclusion3) {
ASM_CODE_COMMENT(this);
int bytes = 0;
if (fp_mode == SaveFPRegsMode::kSave) {
for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
#if V8_ENABLE_WEBASSEMBLY
Movdqu(reg, Operand(rsp, i * kStackSavedSavedFPSize));
#else
Movsd(reg, Operand(rsp, i * kStackSavedSavedFPSize));
#endif // V8_ENABLE_WEBASSEMBLY
}
const int delta = kStackSavedSavedFPSize * XMMRegister::kNumRegisters;
addq(rsp, Immediate(delta));
bytes += delta;
}
for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
Register reg = saved_regs[i];
if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) {
popq(reg);
bytes += kSystemPointerSize;
}
}
return bytes;
}
void TurboAssembler::Movq(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(this, AVX);
vmovq(dst, src);
} else {
movq(dst, src);
}
}
void TurboAssembler::Movq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(this, AVX);
vmovq(dst, src);
} else {
movq(dst, src);
}
}
void TurboAssembler::Pextrq(Register dst, XMMRegister src, int8_t imm8) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(this, AVX);
vpextrq(dst, src, imm8);
} else {
CpuFeatureScope sse_scope(this, SSE4_1);
pextrq(dst, src, imm8);
}
}
void TurboAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtss2sd(dst, src, src);
} else {
cvtss2sd(dst, src);
}
}
void TurboAssembler::Cvtss2sd(XMMRegister dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtss2sd(dst, dst, src);
} else {
cvtss2sd(dst, src);
}
}
void TurboAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2ss(dst, src, src);
} else {
cvtsd2ss(dst, src);
}
}
void TurboAssembler::Cvtsd2ss(XMMRegister dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2ss(dst, dst, src);
} else {
cvtsd2ss(dst, src);
}
}
void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtlsi2sd(dst, kScratchDoubleReg, src);
} else {
xorpd(dst, dst);
cvtlsi2sd(dst, src);
}
}
void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtlsi2sd(dst, kScratchDoubleReg, src);
} else {
xorpd(dst, dst);
cvtlsi2sd(dst, src);
}
}
void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtlsi2ss(dst, kScratchDoubleReg, src);
} else {
xorps(dst, dst);
cvtlsi2ss(dst, src);
}
}
void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtlsi2ss(dst, kScratchDoubleReg, src);
} else {
xorps(dst, dst);
cvtlsi2ss(dst, src);
}
}
void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtqsi2ss(dst, kScratchDoubleReg, src);
} else {
xorps(dst, dst);
cvtqsi2ss(dst, src);
}
}
void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtqsi2ss(dst, kScratchDoubleReg, src);
} else {
xorps(dst, dst);
cvtqsi2ss(dst, src);
}
}
void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtqsi2sd(dst, kScratchDoubleReg, src);
} else {
xorpd(dst, dst);
cvtqsi2sd(dst, src);
}
}
void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtqsi2sd(dst, kScratchDoubleReg, src);
} else {
xorpd(dst, dst);
cvtqsi2sd(dst, src);
}
}
void TurboAssembler::Cvtlui2ss(XMMRegister dst, Register src) {
// Zero-extend the 32 bit value to 64 bit.
movl(kScratchRegister, src);
Cvtqsi2ss(dst, kScratchRegister);
}
void TurboAssembler::Cvtlui2ss(XMMRegister dst, Operand src) {
// Zero-extend the 32 bit value to 64 bit.
movl(kScratchRegister, src);
Cvtqsi2ss(dst, kScratchRegister);
}
void TurboAssembler::Cvtlui2sd(XMMRegister dst, Register src) {
// Zero-extend the 32 bit value to 64 bit.
movl(kScratchRegister, src);
Cvtqsi2sd(dst, kScratchRegister);
}
void TurboAssembler::Cvtlui2sd(XMMRegister dst, Operand src) {
// Zero-extend the 32 bit value to 64 bit.
movl(kScratchRegister, src);
Cvtqsi2sd(dst, kScratchRegister);
}
void TurboAssembler::Cvtqui2ss(XMMRegister dst, Register src) {
Label done;
Cvtqsi2ss(dst, src);
testq(src, src);
j(positive, &done, Label::kNear);
// Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors).
if (src != kScratchRegister) movq(kScratchRegister, src);
shrq(kScratchRegister, Immediate(1));
// The LSB is shifted into CF. If it is set, set the LSB in {tmp}.
Label msb_not_set;
j(not_carry, &msb_not_set, Label::kNear);
orq(kScratchRegister, Immediate(1));
bind(&msb_not_set);
Cvtqsi2ss(dst, kScratchRegister);
Addss(dst, dst);
bind(&done);
}
void TurboAssembler::Cvtqui2ss(XMMRegister dst, Operand src) {
movq(kScratchRegister, src);
Cvtqui2ss(dst, kScratchRegister);
}
void TurboAssembler::Cvtqui2sd(XMMRegister dst, Register src) {
Label done;
Cvtqsi2sd(dst, src);
testq(src, src);
j(positive, &done, Label::kNear);
// Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors).
if (src != kScratchRegister) movq(kScratchRegister, src);
shrq(kScratchRegister, Immediate(1));
// The LSB is shifted into CF. If it is set, set the LSB in {tmp}.
Label msb_not_set;
j(not_carry, &msb_not_set, Label::kNear);
orq(kScratchRegister, Immediate(1));
bind(&msb_not_set);
Cvtqsi2sd(dst, kScratchRegister);
Addsd(dst, dst);
bind(&done);
}
void TurboAssembler::Cvtqui2sd(XMMRegister dst, Operand src) {
movq(kScratchRegister, src);
Cvtqui2sd(dst, kScratchRegister);
}
void TurboAssembler::Cvttss2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2si(dst, src);
} else {
cvttss2si(dst, src);
}
}
void TurboAssembler::Cvttss2si(Register dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2si(dst, src);
} else {
cvttss2si(dst, src);
}
}
void TurboAssembler::Cvttsd2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2si(dst, src);
} else {
cvttsd2si(dst, src);
}
}
void TurboAssembler::Cvttsd2si(Register dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2si(dst, src);
} else {
cvttsd2si(dst, src);
}
}
void TurboAssembler::Cvttss2siq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2siq(dst, src);
} else {
cvttss2siq(dst, src);
}
}
void TurboAssembler::Cvttss2siq(Register dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2siq(dst, src);
} else {
cvttss2siq(dst, src);
}
}
void TurboAssembler::Cvttsd2siq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2siq(dst, src);
} else {
cvttsd2siq(dst, src);
}
}
void TurboAssembler::Cvttsd2siq(Register dst, Operand src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2siq(dst, src);
} else {
cvttsd2siq(dst, src);
}
}
namespace {
template <typename OperandOrXMMRegister, bool is_double>
void ConvertFloatToUint64(TurboAssembler* tasm, Register dst,
OperandOrXMMRegister src, Label* fail) {
Label success;
// There does not exist a native float-to-uint instruction, so we have to use
// a float-to-int, and postprocess the result.
if (is_double) {
tasm->Cvttsd2siq(dst, src);
} else {
tasm->Cvttss2siq(dst, src);
}
// If the result of the conversion is positive, we are already done.
tasm->testq(dst, dst);
tasm->j(positive, &success);
// The result of the first conversion was negative, which means that the
// input value was not within the positive int64 range. We subtract 2^63
// and convert it again to see if it is within the uint64 range.
if (is_double) {
tasm->Move(kScratchDoubleReg, -9223372036854775808.0);
tasm->Addsd(kScratchDoubleReg, src);
tasm->Cvttsd2siq(dst, kScratchDoubleReg);
} else {
tasm->Move(kScratchDoubleReg, -9223372036854775808.0f);
tasm->Addss(kScratchDoubleReg, src);
tasm->Cvttss2siq(dst, kScratchDoubleReg);
}
tasm->testq(dst, dst);
// The only possible negative value here is 0x80000000000000000, which is
// used on x64 to indicate an integer overflow.
tasm->j(negative, fail ? fail : &success);
// The input value is within uint64 range and the second conversion worked
// successfully, but we still have to undo the subtraction we did
// earlier.
tasm->Move(kScratchRegister, 0x8000000000000000);
tasm->orq(dst, kScratchRegister);
tasm->bind(&success);
}
} // namespace
void TurboAssembler::Cvttsd2uiq(Register dst, Operand src, Label* fail) {
ConvertFloatToUint64<Operand, true>(this, dst, src, fail);
}
void TurboAssembler::Cvttsd2uiq(Register dst, XMMRegister src, Label* fail) {
ConvertFloatToUint64<XMMRegister, true>(this, dst, src, fail);
}
void TurboAssembler::Cvttss2uiq(Register dst, Operand src, Label* fail) {
ConvertFloatToUint64<Operand, false>(this, dst, src, fail);
}
void TurboAssembler::Cvttss2uiq(Register dst, XMMRegister src, Label* fail) {
ConvertFloatToUint64<XMMRegister, false>(this, dst, src, fail);
}
// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.
Register TurboAssembler::GetSmiConstant(Smi source) {
Move(kScratchRegister, source);
return kScratchRegister;
}
void TurboAssembler::Cmp(Register dst, int32_t src) {
if (src == 0) {
testl(dst, dst);
} else {
cmpl(dst, Immediate(src));
}
}
void TurboAssembler::SmiTag(Register reg) {
STATIC_ASSERT(kSmiTag == 0);
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
if (COMPRESS_POINTERS_BOOL) {
shll(reg, Immediate(kSmiShift));
} else {
shlq(reg, Immediate(kSmiShift));
}
}
void TurboAssembler::SmiTag(Register dst, Register src) {
DCHECK(dst != src);
if (COMPRESS_POINTERS_BOOL) {
movl(dst, src);
} else {
movq(dst, src);
}
SmiTag(dst);
}
void TurboAssembler::SmiUntag(Register reg) {
STATIC_ASSERT(kSmiTag == 0);
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
// TODO(v8:7703): Is there a way to avoid this sign extension when pointer
// compression is enabled?
if (COMPRESS_POINTERS_BOOL) {
movsxlq(reg, reg);
}
sarq(reg, Immediate(kSmiShift));
}
void TurboAssembler::SmiUntag(Register dst, Register src) {
DCHECK(dst != src);
if (COMPRESS_POINTERS_BOOL) {
movsxlq(dst, src);
} else {
movq(dst, src);
}
// TODO(v8:7703): Call SmiUntag(reg) if we can find a way to avoid the extra
// mov when pointer compression is enabled.
STATIC_ASSERT(kSmiTag == 0);
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
sarq(dst, Immediate(kSmiShift));
}
void TurboAssembler::SmiUntag(Register dst, Operand src) {
if (SmiValuesAre32Bits()) {
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
// Sign extend to 64-bit.
movsxlq(dst, dst);
} else {
DCHECK(SmiValuesAre31Bits());
if (COMPRESS_POINTERS_BOOL) {
movsxlq(dst, src);
} else {
movq(dst, src);
}
sarq(dst, Immediate(kSmiShift));
}
}
void TurboAssembler::SmiToInt32(Register reg) {
STATIC_ASSERT(kSmiTag == 0);
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
if (COMPRESS_POINTERS_BOOL) {
sarl(reg, Immediate(kSmiShift));
} else {
shrq(reg, Immediate(kSmiShift));
}
}
void TurboAssembler::SmiCompare(Register smi1, Register smi2) {
AssertSmi(smi1);
AssertSmi(smi2);
cmp_tagged(smi1, smi2);
}
void TurboAssembler::SmiCompare(Register dst, Smi src) {
AssertSmi(dst);
Cmp(dst, src);
}
void TurboAssembler::Cmp(Register dst, Smi src) {
if (src.value() == 0) {
test_tagged(dst, dst);
} else {
DCHECK_NE(dst, kScratchRegister);
Register constant_reg = GetSmiConstant(src);
cmp_tagged(dst, constant_reg);
}
}
void TurboAssembler::SmiCompare(Register dst, Operand src) {
AssertSmi(dst);
AssertSmi(src);
cmp_tagged(dst, src);
}
void TurboAssembler::SmiCompare(Operand dst, Register src) {
AssertSmi(dst);
AssertSmi(src);
cmp_tagged(dst, src);
}
void TurboAssembler::SmiCompare(Operand dst, Smi src) {
AssertSmi(dst);
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src.value()));
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(dst, Immediate(src));
}
}
void TurboAssembler::Cmp(Operand dst, Smi src) {
// The Operand cannot use the smi register.
Register smi_reg = GetSmiConstant(src);
DCHECK(!dst.AddressUsesRegister(smi_reg));
cmp_tagged(dst, smi_reg);
}
Condition TurboAssembler::CheckSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition TurboAssembler::CheckSmi(Operand src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
void TurboAssembler::JumpIfSmi(Register src, Label* on_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(smi, on_smi, near_jump);
}
void TurboAssembler::JumpIfNotSmi(Register src, Label* on_not_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi, near_jump);
}
void TurboAssembler::JumpIfNotSmi(Operand src, Label* on_not_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi, near_jump);
}
void TurboAssembler::SmiAddConstant(Operand dst, Smi constant) {
if (constant.value() != 0) {
if (SmiValuesAre32Bits()) {
addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant.value()));
} else {
DCHECK(SmiValuesAre31Bits());
if (kTaggedSize == kInt64Size) {
// Sign-extend value after addition
movl(kScratchRegister, dst);
addl(kScratchRegister, Immediate(constant));
movsxlq(kScratchRegister, kScratchRegister);
movq(dst, kScratchRegister);
} else {
DCHECK_EQ(kTaggedSize, kInt32Size);
addl(dst, Immediate(constant));
}
}
}
}
SmiIndex TurboAssembler::SmiToIndex(Register dst, Register src, int shift) {
if (SmiValuesAre32Bits()) {
DCHECK(is_uint6(shift));
// There is a possible optimization if shift is in the range 60-63, but that
// will (and must) never happen.
if (dst != src) {
movq(dst, src);
}
if (shift < kSmiShift) {
sarq(dst, Immediate(kSmiShift - shift));
} else {
shlq(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
// We have to sign extend the index register to 64-bit as the SMI might
// be negative.
movsxlq(dst, src);
if (shift < kSmiShift) {
sarq(dst, Immediate(kSmiShift - shift));
} else if (shift != kSmiShift) {
if (shift - kSmiShift <= static_cast<int>(times_8)) {
return SmiIndex(dst, static_cast<ScaleFactor>(shift - kSmiShift));
}
shlq(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
}
}
void TurboAssembler::Push(Smi source) {
intptr_t smi = static_cast<intptr_t>(source.ptr());
if (is_int32(smi)) {
Push(Immediate(static_cast<int32_t>(smi)));
return;
}
int first_byte_set = base::bits::CountTrailingZeros64(smi) / 8;
int last_byte_set = (63 - base::bits::CountLeadingZeros64(smi)) / 8;
if (first_byte_set == last_byte_set) {
// This sequence has only 7 bytes, compared to the 12 bytes below.
Push(Immediate(0));
movb(Operand(rsp, first_byte_set),
Immediate(static_cast<int8_t>(smi >> (8 * first_byte_set))));
return;
}
Register constant = GetSmiConstant(source);
Push(constant);
}
// ----------------------------------------------------------------------------
void TurboAssembler::Move(Register dst, Smi source) {
STATIC_ASSERT(kSmiTag == 0);
int value = source.value();
if (value == 0) {
xorl(dst, dst);
} else if (SmiValuesAre32Bits()) {
Move(dst, source.ptr(), RelocInfo::NO_INFO);
} else {
intptr_t svalue = static_cast<intptr_t>(source.ptr());
Move(dst, svalue);
}
}
void TurboAssembler::Move(Operand dst, intptr_t x) {
if (is_int32(x)) {
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
Move(kScratchRegister, x);
movq(dst, kScratchRegister);
}
}
void TurboAssembler::Move(Register dst, ExternalReference ext) {
// TODO(jgruber,v8:8887): Also consider a root-relative load when generating
// non-isolate-independent code. In many cases it might be cheaper than
// embedding the relocatable value.
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadExternalReference(dst, ext);
return;
}
movq(dst, Immediate64(ext.address(), RelocInfo::EXTERNAL_REFERENCE));
}
void TurboAssembler::Move(Register dst, Register src) {
if (dst != src) {
movq(dst, src);
}
}
void TurboAssembler::Move(Register dst, Operand src) { movq(dst, src); }
void TurboAssembler::Move(Register dst, Immediate src) {
if (src.rmode() == RelocInfo::Mode::NO_INFO) {
Move(dst, src.value());
} else {
movl(dst, src);
}
}
void TurboAssembler::Move(XMMRegister dst, XMMRegister src) {
if (dst != src) {
Movaps(dst, src);
}
}
void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1,
Register src1) {
if (dst0 != src1) {
// Normal case: Writing to dst0 does not destroy src1.
Move(dst0, src0);
Move(dst1, src1);
} else if (dst1 != src0) {
// Only dst0 and src1 are the same register,
// but writing to dst1 does not destroy src0.
Move(dst1, src1);
Move(dst0, src0);
} else {
// dst0 == src1, and dst1 == src0, a swap is required:
// dst0 \/ src0
// dst1 /\ src1
xchgq(dst0, dst1);
}
}
void TurboAssembler::MoveNumber(Register dst, double value) {
int32_t smi;
if (DoubleToSmiInteger(value, &smi)) {
Move(dst, Smi::FromInt(smi));
} else {
movq_heap_number(dst, value);
}
}
void TurboAssembler::Move(XMMRegister dst, uint32_t src) {
if (src == 0) {
Xorps(dst, dst);
} else {
unsigned nlz = base::bits::CountLeadingZeros(src);
unsigned ntz = base::bits::CountTrailingZeros(src);
unsigned pop = base::bits::CountPopulation(src);
DCHECK_NE(0u, pop);
if (pop + ntz + nlz == 32) {
Pcmpeqd(dst, dst);
if (ntz) Pslld(dst, static_cast<byte>(ntz + nlz));
if (nlz) Psrld(dst, static_cast<byte>(nlz));
} else {
movl(kScratchRegister, Immediate(src));
Movd(dst, kScratchRegister);
}
}
}
void TurboAssembler::Move(XMMRegister dst, uint64_t src) {
if (src == 0) {
Xorpd(dst, dst);
} else {
unsigned nlz = base::bits::CountLeadingZeros(src);
unsigned ntz = base::bits::CountTrailingZeros(src);
unsigned pop = base::bits::CountPopulation(src);
DCHECK_NE(0u, pop);
if (pop + ntz + nlz == 64) {
Pcmpeqd(dst, dst);
if (ntz) Psllq(dst, static_cast<byte>(ntz + nlz));
if (nlz) Psrlq(dst, static_cast<byte>(nlz));
} else {
uint32_t lower = static_cast<uint32_t>(src);
uint32_t upper = static_cast<uint32_t>(src >> 32);
if (upper == 0) {
Move(dst, lower);
} else {
movq(kScratchRegister, src);
Movq(dst, kScratchRegister);
}
}
}
}
void TurboAssembler::Move(XMMRegister dst, uint64_t high, uint64_t low) {
if (high == low) {
Move(dst, low);
Punpcklqdq(dst, dst);
return;
}
Move(dst, low);
movq(kScratchRegister, high);
Pinsrq(dst, dst, kScratchRegister, uint8_t{1});
}
// ----------------------------------------------------------------------------
void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
Move(kScratchRegister, Handle<HeapObject>::cast(source));
cmp_tagged(dst, kScratchRegister);
}
}
void MacroAssembler::Cmp(Operand dst, Handle<Object> source) {
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
Move(kScratchRegister, Handle<HeapObject>::cast(source));
cmp_tagged(dst, kScratchRegister);
}
}
void MacroAssembler::CompareRange(Register value, unsigned lower_limit,
unsigned higher_limit) {
ASM_CODE_COMMENT(this);
DCHECK_LT(lower_limit, higher_limit);
if (lower_limit != 0) {
leal(kScratchRegister, Operand(value, 0u - lower_limit));
cmpl(kScratchRegister, Immediate(higher_limit - lower_limit));
} else {
cmpl(value, Immediate(higher_limit));
}
}
void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range,
Label::Distance near_jump) {
CompareRange(value, lower_limit, higher_limit);
j(below_equal, on_in_range, near_jump);
}
void TurboAssembler::Push(Handle<HeapObject> source) {
Move(kScratchRegister, source);
Push(kScratchRegister);
}
void TurboAssembler::PushArray(Register array, Register size, Register scratch,
PushArrayOrder order) {
DCHECK(!AreAliased(array, size, scratch));
Register counter = scratch;
Label loop, entry;
if (order == PushArrayOrder::kReverse) {
Move(counter, 0);
jmp(&entry);
bind(&loop);
Push(Operand(array, counter, times_system_pointer_size, 0));
incq(counter);
bind(&entry);
cmpq(counter, size);
j(less, &loop, Label::kNear);
} else {
movq(counter, size);
jmp(&entry);
bind(&loop);
Push(Operand(array, counter, times_system_pointer_size, 0));
bind(&entry);
decq(counter);
j(greater_equal, &loop, Label::kNear);
}
}
void TurboAssembler::Move(Register result, Handle<HeapObject> object,
RelocInfo::Mode rmode) {
// TODO(jgruber,v8:8887): Also consider a root-relative load when generating
// non-isolate-independent code. In many cases it might be cheaper than
// embedding the relocatable value.
if (root_array_available_ && options().isolate_independent_code) {
// TODO(v8:9706): Fix-it! This load will always uncompress the value
// even when we are loading a compressed embedded object.
IndirectLoadConstant(result, object);
} else if (RelocInfo::IsCompressedEmbeddedObject(rmode)) {
EmbeddedObjectIndex index = AddEmbeddedObject(object);
DCHECK(is_uint32(index));
movl(result, Immediate(static_cast<int>(index), rmode));
} else {
DCHECK(RelocInfo::IsFullEmbeddedObject(rmode));
movq(result, Immediate64(object.address(), rmode));
}
}
void TurboAssembler::Move(Operand dst, Handle<HeapObject> object,
RelocInfo::Mode rmode) {
Move(kScratchRegister, object, rmode);
movq(dst, kScratchRegister);
}
void TurboAssembler::MoveStringConstant(Register result,
const StringConstantBase* string,
RelocInfo::Mode rmode) {
movq_string(result, string);
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
addq(rsp, Immediate(stack_elements * kSystemPointerSize));
}
}
void MacroAssembler::DropUnderReturnAddress(int stack_elements,
Register scratch) {
DCHECK_GT(stack_elements, 0);
if (stack_elements == 1) {
popq(MemOperand(rsp, 0));
return;
}
PopReturnAddressTo(scratch);
Drop(stack_elements);
PushReturnAddressFrom(scratch);
}
void TurboAssembler::DropArguments(Register count, ArgumentsCountType type,
ArgumentsCountMode mode) {
int receiver_bytes =
(mode == kCountExcludesReceiver) ? kSystemPointerSize : 0;
switch (type) {
case kCountIsInteger: {
leaq(rsp, Operand(rsp, count, times_system_pointer_size, receiver_bytes));
break;
}
case kCountIsSmi: {
SmiIndex index = SmiToIndex(count, count, kSystemPointerSizeLog2);
leaq(rsp, Operand(rsp, index.reg, index.scale, receiver_bytes));
break;
}
case kCountIsBytes: {
if (receiver_bytes == 0) {
addq(rsp, count);
} else {
leaq(rsp, Operand(rsp, count, times_1, receiver_bytes));
}
break;
}
}
}
void TurboAssembler::DropArguments(Register count, Register scratch,
ArgumentsCountType type,
ArgumentsCountMode mode) {
DCHECK(!AreAliased(count, scratch));
PopReturnAddressTo(scratch);
DropArguments(count, type, mode);
PushReturnAddressFrom(scratch);
}
void TurboAssembler::DropArgumentsAndPushNewReceiver(Register argc,
Register receiver,
Register scratch,
ArgumentsCountType type,
ArgumentsCountMode mode) {
DCHECK(!AreAliased(argc, receiver, scratch));
PopReturnAddressTo(scratch);
DropArguments(argc, type, mode);
Push(receiver);
PushReturnAddressFrom(scratch);
}
void TurboAssembler::DropArgumentsAndPushNewReceiver(Register argc,
Operand receiver,
Register scratch,
ArgumentsCountType type,
ArgumentsCountMode mode) {
DCHECK(!AreAliased(argc, scratch));
DCHECK(!receiver.AddressUsesRegister(scratch));
PopReturnAddressTo(scratch);
DropArguments(argc, type, mode);
Push(receiver);
PushReturnAddressFrom(scratch);
}
void TurboAssembler::Push(Register src) { pushq(src); }
void TurboAssembler::Push(Operand src) { pushq(src); }
void MacroAssembler::PushQuad(Operand src) { pushq(src); }
void TurboAssembler::Push(Immediate value) { pushq(value); }
void MacroAssembler::PushImm32(int32_t imm32) { pushq_imm32(imm32); }
void MacroAssembler::Pop(Register dst) { popq(dst); }
void MacroAssembler::Pop(Operand dst) { popq(dst); }
void MacroAssembler::PopQuad(Operand dst) { popq(dst); }
void TurboAssembler::Jump(const ExternalReference& reference) {
DCHECK(root_array_available());
jmp(Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry(
isolate(), reference)));
}
void TurboAssembler::Jump(Operand op) { jmp(op); }
void TurboAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
Move(kScratchRegister, destination, rmode);
jmp(kScratchRegister);
}
void TurboAssembler::Jump(Handle<CodeT> code_object, RelocInfo::Mode rmode,
Condition cc) {
DCHECK_IMPLIES(
options().isolate_independent_code,
Builtins::IsIsolateIndependentBuiltin(FromCodeT(*code_object)));
if (options().inline_offheap_trampolines) {
Builtin builtin = Builtin::kNoBuiltinId;
if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin)) {
Label skip;
if (cc != always) {
if (cc == never) return;
j(NegateCondition(cc), &skip, Label::kNear);
}
TailCallBuiltin(builtin);
bind(&skip);
return;
}
}
j(cc, code_object, rmode);
}
void MacroAssembler::JumpToOffHeapInstructionStream(Address entry) {
Move(kOffHeapTrampolineRegister, entry, RelocInfo::OFF_HEAP_TARGET);
jmp(kOffHeapTrampolineRegister);
}
void TurboAssembler::Call(ExternalReference ext) {
LoadAddress(kScratchRegister, ext);
call(kScratchRegister);
}
void TurboAssembler::Call(Operand op) {
if (!CpuFeatures::IsSupported(INTEL_ATOM)) {
call(op);
} else {
movq(kScratchRegister, op);
call(kScratchRegister);
}
}
void TurboAssembler::Call(Address destination, RelocInfo::Mode rmode) {
Move(kScratchRegister, destination, rmode);
call(kScratchRegister);
}
void TurboAssembler::Call(Handle<CodeT> code_object, RelocInfo::Mode rmode) {
// TODO(v8:11880): avoid roundtrips between cdc and code.
DCHECK_IMPLIES(
options().isolate_independent_code,
Builtins::IsIsolateIndependentBuiltin(FromCodeT(*code_object)));
if (options().inline_offheap_trampolines) {
Builtin builtin = Builtin::kNoBuiltinId;
if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin)) {
// Inline the trampoline.
CallBuiltin(builtin);
return;
}
}
DCHECK(RelocInfo::IsCodeTarget(rmode));
call(code_object, rmode);
}
Operand TurboAssembler::EntryFromBuiltinAsOperand(Builtin builtin) {
DCHECK(root_array_available());
return Operand(kRootRegister, IsolateData::BuiltinEntrySlotOffset(builtin));
}
Operand TurboAssembler::EntryFromBuiltinIndexAsOperand(Register builtin_index) {
if (SmiValuesAre32Bits()) {
// The builtin_index register contains the builtin index as a Smi.
SmiUntag(builtin_index);
return Operand(kRootRegister, builtin_index, times_system_pointer_size,
IsolateData::builtin_entry_table_offset());
} else {
DCHECK(SmiValuesAre31Bits());
// The builtin_index register contains the builtin index as a Smi.
// Untagging is folded into the indexing operand below (we use
// times_half_system_pointer_size since smis are already shifted by one).
return Operand(kRootRegister, builtin_index, times_half_system_pointer_size,
IsolateData::builtin_entry_table_offset());
}
}
void TurboAssembler::CallBuiltinByIndex(Register builtin_index) {
Call(EntryFromBuiltinIndexAsOperand(builtin_index));
}
void TurboAssembler::CallBuiltin(Builtin builtin) {
ASM_CODE_COMMENT_STRING(this, CommentForOffHeapTrampoline("call", builtin));
if (options().short_builtin_calls) {
call(BuiltinEntry(builtin), RelocInfo::RUNTIME_ENTRY);
} else {
Move(kScratchRegister, BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET);
call(kScratchRegister);
}
}
void TurboAssembler::TailCallBuiltin(Builtin builtin) {
ASM_CODE_COMMENT_STRING(this,
CommentForOffHeapTrampoline("tail call", builtin));
if (options().short_builtin_calls) {
jmp(BuiltinEntry(builtin), RelocInfo::RUNTIME_ENTRY);
} else {
Jump(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET);
}
}
void TurboAssembler::LoadCodeObjectEntry(Register destination,
Register code_object) {
ASM_CODE_COMMENT(this);
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
LoadExternalPointerField(
destination,
FieldOperand(code_object, CodeDataContainer::kCodeEntryPointOffset),
kCodeEntryPointTag, kScratchRegister);
return;
}
// Code objects are called differently depending on whether we are generating
// builtin code (which will later be embedded into the binary) or compiling
// user JS code at runtime.
// * Builtin code runs in --jitless mode and thus must not call into on-heap
// Code targets. Instead, we dispatch through the builtins entry table.
// * Codegen at runtime does not have this restriction and we can use the
// shorter, branchless instruction sequence. The assumption here is that
// targets are usually generated code and not builtin Code objects.
if (options().isolate_independent_code) {
DCHECK(root_array_available());
Label if_code_is_off_heap, out;
// Check whether the Code object is an off-heap trampoline. If so, call its
// (off-heap) entry point directly without going through the (on-heap)
// trampoline. Otherwise, just call the Code object as always.
testl(FieldOperand(code_object, Code::kFlagsOffset),
Immediate(Code::IsOffHeapTrampoline::kMask));
j(not_equal, &if_code_is_off_heap);
// Not an off-heap trampoline, the entry point is at
// Code::raw_instruction_start().
Move(destination, code_object);
addq(destination, Immediate(Code::kHeaderSize - kHeapObjectTag));
jmp(&out);
// An off-heap trampoline, the entry point is loaded from the builtin entry
// table.
bind(&if_code_is_off_heap);
movl(destination, FieldOperand(code_object, Code::kBuiltinIndexOffset));
movq(destination,
Operand(kRootRegister, destination, times_system_pointer_size,
IsolateData::builtin_entry_table_offset()));
bind(&out);
} else {
Move(destination, code_object);
addq(destination, Immediate(Code::kHeaderSize - kHeapObjectTag));
}
}
void TurboAssembler::CallCodeObject(Register code_object) {
LoadCodeObjectEntry(code_object, code_object);
call(code_object);
}
void TurboAssembler::JumpCodeObject(Register code_object, JumpMode jump_mode) {
LoadCodeObjectEntry(code_object, code_object);
switch (jump_mode) {
case JumpMode::kJump:
jmp(code_object);
return;
case JumpMode::kPushAndReturn:
pushq(code_object);
Ret();
return;
}
}
void TurboAssembler::LoadCodeDataContainerEntry(
Register destination, Register code_data_container_object) {
ASM_CODE_COMMENT(this);
CHECK(V8_EXTERNAL_CODE_SPACE_BOOL);
LoadExternalPointerField(
destination,
FieldOperand(code_data_container_object,
CodeDataContainer::kCodeEntryPointOffset),
kCodeEntryPointTag, kScratchRegister);
}
void TurboAssembler::LoadCodeDataContainerCodeNonBuiltin(
Register destination, Register code_data_container_object) {
ASM_CODE_COMMENT(this);
CHECK(V8_EXTERNAL_CODE_SPACE_BOOL);
// Given the fields layout we can read the Code reference as a full word.
STATIC_ASSERT(!V8_EXTERNAL_CODE_SPACE_BOOL ||
(CodeDataContainer::kCodeCageBaseUpper32BitsOffset ==
CodeDataContainer::kCodeOffset + kTaggedSize));
movq(destination, FieldOperand(code_data_container_object,
CodeDataContainer::kCodeOffset));
}
void TurboAssembler::CallCodeDataContainerObject(
Register code_data_container_object) {
LoadCodeDataContainerEntry(code_data_container_object,
code_data_container_object);
call(code_data_container_object);
}
void TurboAssembler::JumpCodeDataContainerObject(
Register code_data_container_object, JumpMode jump_mode) {
LoadCodeDataContainerEntry(code_data_container_object,
code_data_container_object);
switch (jump_mode) {
case JumpMode::kJump:
jmp(code_data_container_object);
return;
case JumpMode::kPushAndReturn:
pushq(code_data_container_object);
Ret();
return;
}
}
void TurboAssembler::LoadCodeTEntry(Register destination, Register code) {
ASM_CODE_COMMENT(this);
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
LoadCodeDataContainerEntry(destination, code);
} else {
leaq(destination, Operand(code, Code::kHeaderSize - kHeapObjectTag));
}
}
void TurboAssembler::CallCodeTObject(Register code) {
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
CallCodeDataContainerObject(code);
} else {
CallCodeObject(code);
}
}
void TurboAssembler::JumpCodeTObject(Register code, JumpMode jump_mode) {
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
JumpCodeDataContainerObject(code, jump_mode);
} else {
JumpCodeObject(code, jump_mode);
}
}
void TurboAssembler::PextrdPreSse41(Register dst, XMMRegister src,
uint8_t imm8) {
if (imm8 == 0) {
Movd(dst, src);
return;
}
DCHECK_EQ(1, imm8);
movq(dst, src);
shrq(dst, Immediate(32));
}
namespace {
template <typename Op>
void PinsrdPreSse41Helper(TurboAssembler* tasm, XMMRegister dst, Op src,
uint8_t imm8, uint32_t* load_pc_offset) {
tasm->Movd(kScratchDoubleReg, src);
if (load_pc_offset) *load_pc_offset = tasm->pc_offset();
if (imm8 == 1) {
tasm->punpckldq(dst, kScratchDoubleReg);
} else {
DCHECK_EQ(0, imm8);
tasm->Movss(dst, kScratchDoubleReg);
}
}
} // namespace
void TurboAssembler::PinsrdPreSse41(XMMRegister dst, Register src, uint8_t imm8,
uint32_t* load_pc_offset) {
PinsrdPreSse41Helper(this, dst, src, imm8, load_pc_offset);
}
void TurboAssembler::PinsrdPreSse41(XMMRegister dst, Operand src, uint8_t imm8,
uint32_t* load_pc_offset) {
PinsrdPreSse41Helper(this, dst, src, imm8, load_pc_offset);
}
void TurboAssembler::Pinsrq(XMMRegister dst, XMMRegister src1, Register src2,
uint8_t imm8, uint32_t* load_pc_offset) {
PinsrHelper(this, &Assembler::vpinsrq, &Assembler::pinsrq, dst, src1, src2,
imm8, load_pc_offset, {SSE4_1});
}
void TurboAssembler::Pinsrq(XMMRegister dst, XMMRegister src1, Operand src2,
uint8_t imm8, uint32_t* load_pc_offset) {
PinsrHelper(this, &Assembler::vpinsrq, &Assembler::pinsrq, dst, src1, src2,
imm8, load_pc_offset, {SSE4_1});
}
void TurboAssembler::Lzcntl(Register dst, Register src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntl(dst, src);
return;
}
Label not_zero_src;
bsrl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Move(dst, 63); // 63^31 == 32
bind(&not_zero_src);
xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x
}
void TurboAssembler::Lzcntl(Register dst, Operand src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntl(dst, src);
return;
}
Label not_zero_src;
bsrl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Move(dst, 63); // 63^31 == 32
bind(&not_zero_src);
xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x
}
void TurboAssembler::Lzcntq(Register dst, Register src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntq(dst, src);
return;
}
Label not_zero_src;
bsrq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Move(dst, 127); // 127^63 == 64
bind(&not_zero_src);
xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x
}
void TurboAssembler::Lzcntq(Register dst, Operand src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntq(dst, src);
return;
}
Label not_zero_src;
bsrq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Move(dst, 127); // 127^63 == 64
bind(&not_zero_src);
xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x
}
void TurboAssembler::Tzcntq(Register dst, Register src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntq(dst, src);
return;
}
Label not_zero_src;
bsfq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
// Define the result of tzcnt(0) separately, because bsf(0) is undefined.
Move(dst, 64);
bind(&not_zero_src);
}
void TurboAssembler::Tzcntq(Register dst, Operand src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntq(dst, src);
return;
}
Label not_zero_src;
bsfq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
// Define the result of tzcnt(0) separately, because bsf(0) is undefined.
Move(dst, 64);
bind(&not_zero_src);
}
void TurboAssembler::Tzcntl(Register dst, Register src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntl(dst, src);
return;
}
Label not_zero_src;
bsfl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Move(dst, 32); // The result of tzcnt is 32 if src = 0.
bind(&not_zero_src);
}
void TurboAssembler::Tzcntl(Register dst, Operand src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntl(dst, src);
return;
}
Label not_zero_src;
bsfl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Move(dst, 32); // The result of tzcnt is 32 if src = 0.
bind(&not_zero_src);
}
void TurboAssembler::Popcntl(Register dst, Register src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntl(dst, src);
return;
}
UNREACHABLE();
}
void TurboAssembler::Popcntl(Register dst, Operand src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntl(dst, src);
return;
}
UNREACHABLE();
}
void TurboAssembler::Popcntq(Register dst, Register src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntq(dst, src);
return;
}
UNREACHABLE();
}
void TurboAssembler::Popcntq(Register dst, Operand src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntq(dst, src);
return;
}
UNREACHABLE();
}
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
Push(Immediate(0)); // Padding.
// Link the current handler as the next handler.
ExternalReference handler_address =
ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate());
Push(ExternalReferenceAsOperand(handler_address));
// Set this new handler as the current one.
movq(ExternalReferenceAsOperand(handler_address), rsp);
}
void MacroAssembler::PopStackHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
ExternalReference handler_address =
ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate());
Pop(ExternalReferenceAsOperand(handler_address));
addq(rsp, Immediate(StackHandlerConstants::kSize - kSystemPointerSize));
}
void TurboAssembler::Ret() { ret(0); }
void TurboAssembler::Ret(int bytes_dropped, Register scratch) {
if (is_uint16(bytes_dropped)) {
ret(bytes_dropped);
} else {
PopReturnAddressTo(scratch);
addq(rsp, Immediate(bytes_dropped));
PushReturnAddressFrom(scratch);
ret(0);
}
}
void TurboAssembler::IncsspqIfSupported(Register number_of_words,
Register scratch) {
// Optimized code can validate at runtime whether the cpu supports the
// incsspq instruction, so it shouldn't use this method.
CHECK(isolate()->IsGeneratingEmbeddedBuiltins());
DCHECK_NE(number_of_words, scratch);
Label not_supported;
ExternalReference supports_cetss =
ExternalReference::supports_cetss_address();
Operand supports_cetss_operand =
ExternalReferenceAsOperand(supports_cetss, scratch);
cmpb(supports_cetss_operand, Immediate(0));
j(equal, &not_supported, Label::kNear);
incsspq(number_of_words);
bind(&not_supported);
}
void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type,
Register map) {
LoadMap(map, heap_object);
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type));
}
void MacroAssembler::CmpInstanceTypeRange(Register map,
Register instance_type_out,
InstanceType lower_limit,
InstanceType higher_limit) {
DCHECK_LT(lower_limit, higher_limit);
movzxwl(instance_type_out, FieldOperand(map, Map::kInstanceTypeOffset));
CompareRange(instance_type_out, lower_limit, higher_limit);
}
void TurboAssembler::AssertNotSmi(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
Condition is_smi = CheckSmi(object);
Check(NegateCondition(is_smi), AbortReason::kOperandIsASmi);
}
void TurboAssembler::AssertSmi(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
Condition is_smi = CheckSmi(object);
Check(is_smi, AbortReason::kOperandIsNotASmi);
}
void TurboAssembler::AssertSmi(Operand object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
Condition is_smi = CheckSmi(object);
Check(is_smi, AbortReason::kOperandIsNotASmi);
}
void TurboAssembler::AssertZeroExtended(Register int32_register) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
DCHECK_NE(int32_register, kScratchRegister);
movq(kScratchRegister, int64_t{0x0000000100000000});
cmpq(kScratchRegister, int32_register);
Check(above, AbortReason::k32BitValueInRegisterIsNotZeroExtended);
}
void MacroAssembler::AssertCodeT(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
testb(object, Immediate(kSmiTagMask));
Check(not_equal, AbortReason::kOperandIsNotACodeT);
Push(object);
LoadMap(object, object);
CmpInstanceType(object, CODET_TYPE);
Pop(object);
Check(equal, AbortReason::kOperandIsNotACodeT);
}
void MacroAssembler::AssertConstructor(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
testb(object, Immediate(kSmiTagMask));
Check(not_equal, AbortReason::kOperandIsASmiAndNotAConstructor);
Push(object);
LoadMap(object, object);
testb(FieldOperand(object, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
Pop(object);
Check(not_zero, AbortReason::kOperandIsNotAConstructor);
}
void MacroAssembler::AssertFunction(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
testb(object, Immediate(kSmiTagMask));
Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction);
Push(object);
LoadMap(object, object);
CmpInstanceTypeRange(object, object, FIRST_JS_FUNCTION_TYPE,
LAST_JS_FUNCTION_TYPE);
Pop(object);
Check(below_equal, AbortReason::kOperandIsNotAFunction);
}
void MacroAssembler::AssertCallableFunction(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
testb(object, Immediate(kSmiTagMask));
Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction);
Push(object);
LoadMap(object, object);
CmpInstanceTypeRange(object, object, FIRST_CALLABLE_JS_FUNCTION_TYPE,
LAST_CALLABLE_JS_FUNCTION_TYPE);
Pop(object);
Check(below_equal, AbortReason::kOperandIsNotACallableFunction);
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
testb(object, Immediate(kSmiTagMask));
Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction);
Push(object);
CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object);
Pop(object);
Check(equal, AbortReason::kOperandIsNotABoundFunction);
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
testb(object, Immediate(kSmiTagMask));
Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject);
// Load map
Register map = object;
Push(object);
LoadMap(map, object);
Label do_check;
// Check if JSGeneratorObject
CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE);
j(equal, &do_check);
// Check if JSAsyncFunctionObject
CmpInstanceType(map, JS_ASYNC_FUNCTION_OBJECT_TYPE);
j(equal, &do_check);
// Check if JSAsyncGeneratorObject
CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE);
bind(&do_check);
// Restore generator object to register and perform assertion
Pop(object);
Check(equal, AbortReason::kOperandIsNotAGeneratorObject);
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
if (!FLAG_debug_code) return;
ASM_CODE_COMMENT(this);
Label done_checking;
AssertNotSmi(object);
Cmp(object, isolate()->factory()->undefined_value());
j(equal, &done_checking);
Register map = object;
Push(object);
LoadMap(map, object);
Cmp(map, isolate()->factory()->allocation_site_map());
Pop(object);
Assert(equal, AbortReason::kExpectedUndefinedOrCell);
bind(&done_checking);
}
void MacroAssembler::LoadWeakValue(Register in_out, Label* target_if_cleared) {
cmpl(in_out, Immediate(kClearedWeakHeapObjectLower32));
j(equal, target_if_cleared);
andq(in_out, Immediate(~static_cast<int32_t>(kWeakHeapObjectMask)));
}
void MacroAssembler::EmitIncrementCounter(StatsCounter* counter, int value) {
DCHECK_GT(value, 0);
if (FLAG_native_code_counters && counter->Enabled()) {
ASM_CODE_COMMENT(this);
Operand counter_operand =
ExternalReferenceAsOperand(ExternalReference::Create(counter));
// This operation has to be exactly 32-bit wide in case the external
// reference table redirects the counter to a uint32_t dummy_stats_counter_
// field.
if (value == 1) {
incl(counter_operand);
} else {
addl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::EmitDecrementCounter(StatsCounter* counter, int value) {
DCHECK_GT(value, 0);
if (FLAG_native_code_counters && counter->Enabled()) {
ASM_CODE_COMMENT(this);
Operand counter_operand =
ExternalReferenceAsOperand(ExternalReference::Create(counter));
// This operation has to be exactly 32-bit wide in case the external
// reference table redirects the counter to a uint32_t dummy_stats_counter_
// field.
if (value == 1) {
decl(counter_operand);
} else {
subl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::InvokeFunction(Register function, Register new_target,
Register actual_parameter_count,
InvokeType type) {
ASM_CODE_COMMENT(this);
LoadTaggedPointerField(
rbx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
movzxwq(rbx,
FieldOperand(rbx, SharedFunctionInfo::kFormalParameterCountOffset));
InvokeFunction(function, new_target, rbx, actual_parameter_count, type);
}
void MacroAssembler::InvokeFunction(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count,
InvokeType type) {
DCHECK_EQ(function, rdi);
LoadTaggedPointerField(rsi,
FieldOperand(function, JSFunction::kContextOffset));
InvokeFunctionCode(rdi, new_target, expected_parameter_count,
actual_parameter_count, type);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count,
InvokeType type) {
ASM_CODE_COMMENT(this);
// You can't call a function without a valid frame.
DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
DCHECK_EQ(function, rdi);
DCHECK_IMPLIES(new_target.is_valid(), new_target == rdx);
// On function call, call into the debugger if necessary.
Label debug_hook, continue_after_hook;
{
ExternalReference debug_hook_active =
ExternalReference::debug_hook_on_function_call_address(isolate());
Operand debug_hook_active_operand =
ExternalReferenceAsOperand(debug_hook_active);
cmpb(debug_hook_active_operand, Immediate(0));
j(not_equal, &debug_hook);
}
bind(&continue_after_hook);
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
LoadRoot(rdx, RootIndex::kUndefinedValue);
}
Label done;
InvokePrologue(expected_parameter_count, actual_parameter_count, &done, type);
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
LoadTaggedPointerField(rcx, FieldOperand(function, JSFunction::kCodeOffset));
switch (type) {
case InvokeType::kCall:
CallCodeTObject(rcx);
break;
case InvokeType::kJump:
JumpCodeTObject(rcx);
break;
}
jmp(&done, Label::kNear);
// Deferred debug hook.
bind(&debug_hook);
CallDebugOnFunctionCall(function, new_target, expected_parameter_count,
actual_parameter_count);
jmp(&continue_after_hook);
bind(&done);
}
Operand MacroAssembler::StackLimitAsOperand(StackLimitKind kind) {
DCHECK(root_array_available());
Isolate* isolate = this->isolate();
ExternalReference limit =
kind == StackLimitKind::kRealStackLimit
? ExternalReference::address_of_real_jslimit(isolate)
: ExternalReference::address_of_jslimit(isolate);
DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit));
intptr_t offset =
TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit);
CHECK(is_int32(offset));
return Operand(kRootRegister, static_cast<int32_t>(offset));
}
void MacroAssembler::StackOverflowCheck(
Register num_args, Label* stack_overflow,
Label::Distance stack_overflow_distance) {
ASM_CODE_COMMENT(this);
DCHECK_NE(num_args, kScratchRegister);
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
movq(kScratchRegister, rsp);
// Make kScratchRegister the space we have left. The stack might already be
// overflowed here which will cause kScratchRegister to become negative.
subq(kScratchRegister, StackLimitAsOperand(StackLimitKind::kRealStackLimit));
// TODO(victorgomes): Use ia32 approach with leaq, since it requires less
// instructions.
sarq(kScratchRegister, Immediate(kSystemPointerSizeLog2));
// Check if the arguments will overflow the stack.
cmpq(kScratchRegister, num_args);
// Signed comparison.
// TODO(victorgomes): Save some bytes in the builtins that use stack checks
// by jumping to a builtin that throws the exception.
j(less_equal, stack_overflow, stack_overflow_distance);
}
void MacroAssembler::InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count,
Label* done, InvokeType type) {
ASM_CODE_COMMENT(this);
if (expected_parameter_count == actual_parameter_count) {
Move(rax, actual_parameter_count);
return;
}
Label regular_invoke;
// If the expected parameter count is equal to the adaptor sentinel, no need
// to push undefined value as arguments.
if (kDontAdaptArgumentsSentinel != 0) {
cmpl(expected_parameter_count, Immediate(kDontAdaptArgumentsSentinel));
j(equal, &regular_invoke, Label::kFar);
}
// If overapplication or if the actual argument count is equal to the
// formal parameter count, no need to push extra undefined values.
subq(expected_parameter_count, actual_parameter_count);
j(less_equal, &regular_invoke, Label::kFar);
Label stack_overflow;
StackOverflowCheck(expected_parameter_count, &stack_overflow);
// Underapplication. Move the arguments already in the stack, including the
// receiver and the return address.
{
Label copy, check;
Register src = r8, dest = rsp, num = r9, current = r11;
movq(src, rsp);
leaq(kScratchRegister,
Operand(expected_parameter_count, times_system_pointer_size, 0));
AllocateStackSpace(kScratchRegister);
// Extra words are for the return address (if a jump).
int extra_words =
type == InvokeType::kCall ? 0 : kReturnAddressStackSlotCount;
leaq(num, Operand(rax, extra_words)); // Number of words to copy.
Move(current, 0);
// Fall-through to the loop body because there are non-zero words to copy.
bind(&copy);
movq(kScratchRegister,
Operand(src, current, times_system_pointer_size, 0));
movq(Operand(dest, current, times_system_pointer_size, 0),
kScratchRegister);
incq(current);
bind(&check);
cmpq(current, num);
j(less, &copy);
leaq(r8, Operand(rsp, num, times_system_pointer_size, 0));
}
// Fill remaining expected arguments with undefined values.
LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
{
Label loop;
bind(&loop);
decq(expected_parameter_count);
movq(Operand(r8, expected_parameter_count, times_system_pointer_size, 0),
kScratchRegister);
j(greater, &loop, Label::kNear);
}
jmp(&regular_invoke);
bind(&stack_overflow);
{
FrameScope frame(
this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL);
CallRuntime(Runtime::kThrowStackOverflow);
int3(); // This should be unreachable.
}
bind(&regular_invoke);
}
void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count) {
ASM_CODE_COMMENT(this);
FrameScope frame(
this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL);
SmiTag(expected_parameter_count);
Push(expected_parameter_count);
SmiTag(actual_parameter_count);
Push(actual_parameter_count);
SmiUntag(actual_parameter_count);
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun);
Push(fun);
// Arguments are located 2 words below the base pointer.
Operand receiver_op = Operand(rbp, kSystemPointerSize * 2);
Push(receiver_op);
CallRuntime(Runtime::kDebugOnFunctionCall);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
Pop(actual_parameter_count);
SmiUntag(actual_parameter_count);
Pop(expected_parameter_count);
SmiUntag(expected_parameter_count);
}
void TurboAssembler::StubPrologue(StackFrame::Type type) {
ASM_CODE_COMMENT(this);
pushq(rbp); // Caller's frame pointer.
movq(rbp, rsp);
Push(Immediate(StackFrame::TypeToMarker(type)));
}
void TurboAssembler::Prologue() {
ASM_CODE_COMMENT(this);
pushq(rbp); // Caller's frame pointer.
movq(rbp, rsp);
Push(kContextRegister); // Callee's context.
Push(kJSFunctionRegister); // Callee's JS function.
Push(kJavaScriptCallArgCountRegister); // Actual argument count.
}
void TurboAssembler::EnterFrame(StackFrame::Type type) {
ASM_CODE_COMMENT(this);
pushq(rbp);
movq(rbp, rsp);
if (!StackFrame::IsJavaScript(type)) {
Push(Immediate(StackFrame::TypeToMarker(type)));
}
#if V8_ENABLE_WEBASSEMBLY
if (type == StackFrame::WASM) Push(kWasmInstanceRegister);
#endif // V8_ENABLE_WEBASSEMBLY
}
void TurboAssembler::LeaveFrame(StackFrame::Type type) {
ASM_CODE_COMMENT(this);
// TODO(v8:11429): Consider passing BASELINE instead, and checking for
// IsJSFrame or similar. Could then unify with manual frame leaves in the
// interpreter too.
if (FLAG_debug_code && !StackFrame::IsJavaScript(type)) {
cmpq(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(type)));
Check(equal, AbortReason::kStackFrameTypesMustMatch);
}
movq(rsp, rbp);
popq(rbp);
}
#if defined(V8_TARGET_OS_WIN) || defined(V8_TARGET_OS_MACOS)
void TurboAssembler::AllocateStackSpace(Register bytes_scratch) {
ASM_CODE_COMMENT(this);
// On Windows and on macOS, we cannot increment the stack size by more than
// one page (minimum page size is 4KB) without accessing at least one byte on
// the page. Check this:
// https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx.
Label check_offset;
Label touch_next_page;
jmp(&check_offset);
bind(&touch_next_page);
subq(rsp, Immediate(kStackPageSize));
// Just to touch the page, before we increment further.
movb(Operand(rsp, 0), Immediate(0));
subq(bytes_scratch, Immediate(kStackPageSize));
bind(&check_offset);
cmpq(bytes_scratch, Immediate(kStackPageSize));
j(greater_equal, &touch_next_page);
subq(rsp, bytes_scratch);
}
void TurboAssembler::AllocateStackSpace(int bytes) {
ASM_CODE_COMMENT(this);
DCHECK_GE(bytes, 0);
while (bytes >= kStackPageSize) {
subq(rsp, Immediate(kStackPageSize));
movb(Operand(rsp, 0), Immediate(0));
bytes -= kStackPageSize;
}
if (bytes == 0) return;
subq(rsp, Immediate(bytes));
}
#endif
void MacroAssembler::EnterExitFramePrologue(Register saved_rax_reg,
StackFrame::Type frame_type) {
ASM_CODE_COMMENT(this);
DCHECK(frame_type == StackFrame::EXIT ||
frame_type == StackFrame::BUILTIN_EXIT);
// Set up the frame structure on the stack.
// All constants are relative to the frame pointer of the exit frame.
DCHECK_EQ(kFPOnStackSize + kPCOnStackSize,
ExitFrameConstants::kCallerSPDisplacement);
DCHECK_EQ(kFPOnStackSize, ExitFrameConstants::kCallerPCOffset);
DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset);
pushq(rbp);
movq(rbp, rsp);
// Reserve room for entry stack pointer.
Push(Immediate(StackFrame::TypeToMarker(frame_type)));
DCHECK_EQ(-2 * kSystemPointerSize, ExitFrameConstants::kSPOffset);
Push(Immediate(0)); // Saved entry sp, patched before call.
// Save the frame pointer and the context in top.
if (saved_rax_reg != no_reg) {
movq(saved_rax_reg, rax); // Backup rax in callee-save register.
}
Store(
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()),
rbp);
Store(ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()),
rsi);
Store(
ExternalReference::Create(IsolateAddressId::kCFunctionAddress, isolate()),
rbx);
}
#ifdef V8_TARGET_OS_WIN
static const int kRegisterPassedArguments = 4;
#else
static const int kRegisterPassedArguments = 6;
#endif
void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
bool save_doubles) {
ASM_CODE_COMMENT(this);
#ifdef V8_TARGET_OS_WIN
arg_stack_space += kRegisterPassedArguments;
#endif
// Optionally save all XMM registers.
if (save_doubles) {
int space = XMMRegister::kNumRegisters * kDoubleSize +
arg_stack_space * kSystemPointerSize;
AllocateStackSpace(space);
int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
DoubleRegister reg =
DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
Movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
}
} else if (arg_stack_space > 0) {
AllocateStackSpace(arg_stack_space * kSystemPointerSize);
}
// Get the required frame alignment for the OS.
const int kFrameAlignment = base::OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {