blob: f1aba1355c8bd1eaee69b43fe71cc99ef43d502e [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif
#ifndef V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_
#define V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_
#include "src/base/flags.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/shared-ia32-x64/macro-assembler-shared-ia32-x64.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/common/globals.h"
#include "src/execution/isolate-data.h"
#include "src/objects/contexts.h"
#include "src/objects/tagged-index.h"
namespace v8 {
namespace internal {
// Convenience for platform-independent signatures.
using MemOperand = Operand;
class StringConstantBase;
struct SmiIndex {
SmiIndex(Register index_register, ScaleFactor scale)
: reg(index_register), scale(scale) {}
Register reg;
ScaleFactor scale;
};
// TODO(victorgomes): Move definition to macro-assembler.h, once all other
// platforms are updated.
enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };
// Convenient class to access arguments below the stack pointer.
class StackArgumentsAccessor {
public:
// argc = the number of arguments not including the receiver.
explicit StackArgumentsAccessor(Register argc) : argc_(argc) {
DCHECK_NE(argc_, no_reg);
}
// Argument 0 is the receiver (despite argc not including the receiver).
Operand operator[](int index) const { return GetArgumentOperand(index); }
Operand GetArgumentOperand(int index) const;
Operand GetReceiverOperand() const { return GetArgumentOperand(0); }
private:
const Register argc_;
DISALLOW_IMPLICIT_CONSTRUCTORS(StackArgumentsAccessor);
};
class V8_EXPORT_PRIVATE TurboAssembler
: public SharedTurboAssemblerBase<TurboAssembler> {
public:
using SharedTurboAssemblerBase<TurboAssembler>::SharedTurboAssemblerBase;
void PushReturnAddressFrom(Register src) { pushq(src); }
void PopReturnAddressTo(Register dst) { popq(dst); }
void Ret();
// Call incsspq with {number_of_words} only if the cpu supports it.
// NOTE: This shouldn't be embedded in optimized code, since the check
// for CPU support would be redundant (we could check at compiler time).
void IncsspqIfSupported(Register number_of_words, Register scratch);
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
// Operations on roots in the root-array.
Operand RootAsOperand(RootIndex index);
void LoadRoot(Register destination, RootIndex index) final;
void LoadRoot(Operand destination, RootIndex index) {
LoadRoot(kScratchRegister, index);
movq(destination, kScratchRegister);
}
void Push(Register src);
void Push(Operand src);
void Push(Immediate value);
void Push(Smi smi);
void Push(TaggedIndex index) {
Push(Immediate(static_cast<uint32_t>(index.ptr())));
}
void Push(Handle<HeapObject> source);
enum class PushArrayOrder { kNormal, kReverse };
// `array` points to the first element (the lowest address).
// `array` and `size` are not modified.
void PushArray(Register array, Register size, Register scratch,
PushArrayOrder order = PushArrayOrder::kNormal);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in rsp[0], rsp[8],
// etc., not pushed. The argument count assumes all arguments are word sized.
// The number of slots reserved for arguments depends on platform. On Windows
// stack slots are reserved for the arguments passed in registers. On other
// platforms stack slots are only reserved for the arguments actually passed
// on the stack.
void PrepareCallCFunction(int num_arguments);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Calculate the number of stack slots to reserve for arguments when calling a
// C function.
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
// Define movq here instead of using AVX_OP. movq is defined using templates
// and there is a function template `void movq(P1)`, while technically
// impossible, will be selected when deducing the arguments for AvxHelper.
void Movq(XMMRegister dst, Register src);
void Movq(Register dst, XMMRegister src);
void Cvtss2sd(XMMRegister dst, XMMRegister src);
void Cvtss2sd(XMMRegister dst, Operand src);
void Cvtsd2ss(XMMRegister dst, XMMRegister src);
void Cvtsd2ss(XMMRegister dst, Operand src);
void Cvttsd2si(Register dst, XMMRegister src);
void Cvttsd2si(Register dst, Operand src);
void Cvttsd2siq(Register dst, XMMRegister src);
void Cvttsd2siq(Register dst, Operand src);
void Cvttss2si(Register dst, XMMRegister src);
void Cvttss2si(Register dst, Operand src);
void Cvttss2siq(Register dst, XMMRegister src);
void Cvttss2siq(Register dst, Operand src);
void Cvtlui2ss(XMMRegister dst, Register src);
void Cvtlui2ss(XMMRegister dst, Operand src);
void Cvtlui2sd(XMMRegister dst, Register src);
void Cvtlui2sd(XMMRegister dst, Operand src);
void Cvtqui2ss(XMMRegister dst, Register src);
void Cvtqui2ss(XMMRegister dst, Operand src);
void Cvtqui2sd(XMMRegister dst, Register src);
void Cvtqui2sd(XMMRegister dst, Operand src);
void Cvttsd2uiq(Register dst, Operand src, Label* fail = nullptr);
void Cvttsd2uiq(Register dst, XMMRegister src, Label* fail = nullptr);
void Cvttss2uiq(Register dst, Operand src, Label* fail = nullptr);
void Cvttss2uiq(Register dst, XMMRegister src, Label* fail = nullptr);
// cvtsi2sd and cvtsi2ss instructions only write to the low 64/32-bit of dst
// register, which hinders register renaming and makes dependence chains
// longer. So we use xorpd to clear the dst register before cvtsi2sd for
// non-AVX and a scratch XMM register as first src for AVX to solve this
// issue.
void Cvtqsi2ss(XMMRegister dst, Register src);
void Cvtqsi2ss(XMMRegister dst, Operand src);
void Cvtqsi2sd(XMMRegister dst, Register src);
void Cvtqsi2sd(XMMRegister dst, Operand src);
void Cvtlsi2ss(XMMRegister dst, Register src);
void Cvtlsi2ss(XMMRegister dst, Operand src);
void Cvtlsi2sd(XMMRegister dst, Register src);
void Cvtlsi2sd(XMMRegister dst, Operand src);
void PextrdPreSse41(Register dst, XMMRegister src, uint8_t imm8);
void Pextrq(Register dst, XMMRegister src, int8_t imm8);
void PinsrdPreSse41(XMMRegister dst, Register src2, uint8_t imm8,
uint32_t* load_pc_offset = nullptr);
void PinsrdPreSse41(XMMRegister dst, Operand src2, uint8_t imm8,
uint32_t* load_pc_offset = nullptr);
void Pinsrq(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8,
uint32_t* load_pc_offset = nullptr);
void Pinsrq(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8,
uint32_t* load_pc_offset = nullptr);
void Lzcntq(Register dst, Register src);
void Lzcntq(Register dst, Operand src);
void Lzcntl(Register dst, Register src);
void Lzcntl(Register dst, Operand src);
void Tzcntq(Register dst, Register src);
void Tzcntq(Register dst, Operand src);
void Tzcntl(Register dst, Register src);
void Tzcntl(Register dst, Operand src);
void Popcntl(Register dst, Register src);
void Popcntl(Register dst, Operand src);
void Popcntq(Register dst, Register src);
void Popcntq(Register dst, Operand src);
void Cmp(Register dst, Smi src);
void Cmp(Operand dst, Smi src);
void Cmp(Register dst, int32_t src);
// ---------------------------------------------------------------------------
// Conversions between tagged smi values and non-tagged integer values.
// Tag an word-size value. The result must be known to be a valid smi value.
void SmiTag(Register reg);
// Requires dst != src
void SmiTag(Register dst, Register src);
// Simple comparison of smis. Both sides must be known smis to use these,
// otherwise use Cmp.
void SmiCompare(Register smi1, Register smi2);
void SmiCompare(Register dst, Smi src);
void SmiCompare(Register dst, Operand src);
void SmiCompare(Operand dst, Register src);
void SmiCompare(Operand dst, Smi src);
// Functions performing a check on a known or potential smi. Returns
// a condition that is satisfied if the check is successful.
Condition CheckSmi(Register src);
Condition CheckSmi(Operand src);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
// Abort execution if argument is not a smi, enabled via --debug-code.
void AssertSmi(Register object);
void AssertSmi(Operand object);
// Test-and-jump functions. Typically combines a check function
// above with a conditional jump.
// Jump to label if the value is a tagged smi.
void JumpIfSmi(Register src, Label* on_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Register src, Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Operand src, Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Operations on tagged smi values.
// Smis represent a subset of integers. The subset is always equivalent to
// a two's complement interpretation of a fixed number of bits.
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(Operand dst, Smi constant);
// Specialized operations
// Converts, if necessary, a smi to a combination of number and
// multiplier to be used as a scaled index.
// The src register contains a *positive* smi value. The shift is the
// power of two to multiply the index value by (e.g. to index by
// smi-value * kSystemPointerSize, pass the smi and kSystemPointerSizeLog2).
// The returned index register may be either src or dst, depending
// on what is most efficient. If src and dst are different registers,
// src is always unchanged.
SmiIndex SmiToIndex(Register dst, Register src, int shift);
void JumpIfEqual(Register a, int32_t b, Label* dest) {
cmpl(a, Immediate(b));
j(equal, dest);
}
void JumpIfLessThan(Register a, int32_t b, Label* dest) {
cmpl(a, Immediate(b));
j(less, dest);
}
#ifdef V8_MAP_PACKING
void UnpackMapWord(Register r);
#endif
void LoadMap(Register destination, Register object);
void Move(Register dst, intptr_t x) {
if (x == 0) {
xorl(dst, dst);
// The following shorter sequence for uint8 causes performance
// regressions:
// xorl(dst, dst); movb(dst,
// Immediate(static_cast<uint32_t>(x)));
} else if (is_uint32(x)) {
movl(dst, Immediate(static_cast<uint32_t>(x)));
} else if (is_int32(x)) {
// "movq reg64, imm32" is sign extending.
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
movq(dst, Immediate64(x));
}
}
void Move(Operand dst, intptr_t x);
void Move(Register dst, Smi source);
void Move(Operand dst, Smi source) {
Register constant = GetSmiConstant(source);
movq(dst, constant);
}
void Move(Register dst, TaggedIndex source) { Move(dst, source.ptr()); }
void Move(Operand dst, TaggedIndex source) { Move(dst, source.ptr()); }
void Move(Register dst, ExternalReference ext);
void Move(XMMRegister dst, uint32_t src);
void Move(XMMRegister dst, uint64_t src);
void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
void Move(XMMRegister dst, uint64_t high, uint64_t low);
// Move if the registers are not identical.
void Move(Register target, Register source);
void Move(XMMRegister target, XMMRegister source);
void Move(Register target, Operand source);
void Move(Register target, Immediate source);
void Move(Register dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
void Move(Operand dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
// Loads a pointer into a register with a relocation mode.
void Move(Register dst, Address ptr, RelocInfo::Mode rmode) {
// This method must not be used with heap object references. The stored
// address is not GC safe. Use the handle version instead.
DCHECK(rmode == RelocInfo::NO_INFO || rmode > RelocInfo::LAST_GCED_ENUM);
movq(dst, Immediate64(ptr, rmode));
}
// Move src0 to dst0 and src1 to dst1, handling possible overlaps.
void MovePair(Register dst0, Register src0, Register dst1, Register src1);
void MoveStringConstant(
Register result, const StringConstantBase* string,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
// Convert smi to word-size sign-extended value.
void SmiUntag(Register reg);
// Requires dst != src
void SmiUntag(Register dst, Register src);
void SmiUntag(Register dst, Operand src);
// Convert smi to 32-bit value.
void SmiToInt32(Register reg);
// Loads the address of the external reference into the destination
// register.
void LoadAddress(Register destination, ExternalReference source);
void LoadFromConstantsTable(Register destination, int constant_index) final;
void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
void LoadRootRelative(Register destination, int32_t offset) final;
// Operand pointing to an external reference.
// May emit code to set up the scratch register. The operand is
// only guaranteed to be correct as long as the scratch register
// isn't changed.
// If the operand is used more than once, use a scratch register
// that is guaranteed not to be clobbered.
Operand ExternalReferenceAsOperand(ExternalReference reference,
Register scratch = kScratchRegister);
void Call(Register reg) { call(reg); }
void Call(Operand op);
void Call(Handle<CodeT> code_object, RelocInfo::Mode rmode);
void Call(Address destination, RelocInfo::Mode rmode);
void Call(ExternalReference ext);
void Call(Label* target) { call(target); }
Operand EntryFromBuiltinAsOperand(Builtin builtin_index);
Operand EntryFromBuiltinIndexAsOperand(Register builtin_index);
void CallBuiltinByIndex(Register builtin_index);
void CallBuiltin(Builtin builtin);
void TailCallBuiltin(Builtin builtin);
void LoadCodeObjectEntry(Register destination, Register code_object);
void CallCodeObject(Register code_object);
void JumpCodeObject(Register code_object,
JumpMode jump_mode = JumpMode::kJump);
// Load code entry point from the CodeDataContainer object.
void LoadCodeDataContainerEntry(Register destination,
Register code_data_container_object);
// Load code entry point from the CodeDataContainer object and compute
// Code object pointer out of it. Must not be used for CodeDataContainers
// corresponding to builtins, because their entry points values point to
// the embedded instruction stream in .text section.
void LoadCodeDataContainerCodeNonBuiltin(Register destination,
Register code_data_container_object);
void CallCodeDataContainerObject(Register code_data_container_object);
void JumpCodeDataContainerObject(Register code_data_container_object,
JumpMode jump_mode = JumpMode::kJump);
// Helper functions that dispatch either to Call/JumpCodeObject or to
// Call/JumpCodeDataContainerObject.
// TODO(v8:11880): remove since CodeT targets are now default.
void LoadCodeTEntry(Register destination, Register code);
void CallCodeTObject(Register code);
void JumpCodeTObject(Register code, JumpMode jump_mode = JumpMode::kJump);
void Jump(Address destination, RelocInfo::Mode rmode);
void Jump(const ExternalReference& reference);
void Jump(Operand op);
void Jump(Handle<CodeT> code_object, RelocInfo::Mode rmode,
Condition cc = always);
void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
DeoptimizeKind kind, Label* ret,
Label* jump_deoptimization_entry_label);
void Trap();
void DebugBreak();
void CompareRoot(Register with, RootIndex index);
void CompareRoot(Operand with, RootIndex index);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
// Helpers for argument handling
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
void DropArguments(Register count, Register scratch, ArgumentsCountType type,
ArgumentsCountMode mode);
void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
Register scratch,
ArgumentsCountType type,
ArgumentsCountMode mode);
void DropArgumentsAndPushNewReceiver(Register argc, Operand receiver,
Register scratch,
ArgumentsCountType type,
ArgumentsCountMode mode);
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, AbortReason reason);
// Like Assert(), but without condition.
// Use --debug_code to enable.
void AssertUnreachable(AbortReason reason);
// Abort execution if a 64 bit register containing a 32 bit payload does not
// have zeros in the top 32 bits, enabled via --debug-code.
void AssertZeroExtended(Register reg);
// Like Assert(), but always enabled.
void Check(Condition cc, AbortReason reason);
// Print a message to stdout and abort execution.
void Abort(AbortReason msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on x64.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
// Allocate stack space of given size (i.e. decrement {rsp} by the value
// stored in the given register, or by a constant). If you need to perform a
// stack check, do it before calling this function because this function may
// write into the newly allocated space. It may also overwrite the given
// register's value, in the version that takes a register.
#if defined(V8_TARGET_OS_WIN) || defined(V8_TARGET_OS_MACOS)
void AllocateStackSpace(Register bytes_scratch);
void AllocateStackSpace(int bytes);
#else
void AllocateStackSpace(Register bytes) { subq(rsp, bytes); }
void AllocateStackSpace(int bytes) {
DCHECK_GE(bytes, 0);
if (bytes == 0) return;
subq(rsp, Immediate(bytes));
}
#endif
void InitializeRootRegister() {
ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
Move(kRootRegister, isolate_root);
#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
LoadRootRelative(kPtrComprCageBaseRegister,
IsolateData::cage_base_offset());
#endif
}
void MaybeSaveRegisters(RegList registers);
void MaybeRestoreRegisters(RegList registers);
void CallEphemeronKeyBarrier(Register object, Register slot_address,
SaveFPRegsMode fp_mode);
void CallRecordWriteStubSaveRegisters(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void CallRecordWriteStub(
Register object, Register slot_address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
#ifdef V8_IS_TSAN
void CallTSANStoreStub(Register address, Register value,
SaveFPRegsMode fp_mode, int size, StubCallMode mode,
std::memory_order order);
void CallTSANRelaxedLoadStub(Register address, SaveFPRegsMode fp_mode,
int size, StubCallMode mode);
#endif // V8_IS_TSAN
void MoveNumber(Register dst, double value);
void MoveNonSmi(Register dst, double value);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// PushCallerSaved and PopCallerSaved do not arrange the registers in any
// particular order so they are not useful for calls that can cause a GC.
// The caller can exclude up to 3 registers that do not need to be saved and
// restored.
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Compute the start of the generated instruction stream from the current PC.
// This is an alternative to embedding the {CodeObject} handle as a reference.
void ComputeCodeStartAddress(Register dst);
// Control-flow integrity:
// Define a function entrypoint. This doesn't emit any code for this
// architecture, as control-flow integrity is not supported for it.
void CodeEntry() {}
// Define an exception handler.
void ExceptionHandler() {}
// Define an exception handler and bind a label.
void BindExceptionHandler(Label* label) { bind(label); }
// ---------------------------------------------------------------------------
// Pointer compression support
// Loads a field containing a HeapObject and decompresses it if pointer
// compression is enabled.
void LoadTaggedPointerField(Register destination, Operand field_operand);
// Loads a field containing a Smi and decompresses it if pointer compression
// is enabled.
void LoadTaggedSignedField(Register destination, Operand field_operand);
// Loads a field containing any tagged value and decompresses it if necessary.
void LoadAnyTaggedField(Register destination, Operand field_operand);
// Loads a field containing a HeapObject, decompresses it if necessary and
// pushes full pointer to the stack. When pointer compression is enabled,
// uses |scratch| to decompress the value.
void PushTaggedPointerField(Operand field_operand, Register scratch);
// Loads a field containing any tagged value, decompresses it if necessary and
// pushes the full pointer to the stack. When pointer compression is enabled,
// uses |scratch| to decompress the value.
void PushTaggedAnyField(Operand field_operand, Register scratch);
// Loads a field containing smi value and untags it.
void SmiUntagField(Register dst, Operand src);
// Compresses tagged value if necessary and stores it to given on-heap
// location.
void StoreTaggedField(Operand dst_field_operand, Immediate immediate);
void StoreTaggedField(Operand dst_field_operand, Register value);
void StoreTaggedSignedField(Operand dst_field_operand, Smi value);
void AtomicStoreTaggedField(Operand dst_field_operand, Register value);
// The following macros work even when pointer compression is not enabled.
void DecompressTaggedSigned(Register destination, Operand field_operand);
void DecompressTaggedPointer(Register destination, Operand field_operand);
void DecompressTaggedPointer(Register destination, Register source);
void DecompressAnyTagged(Register destination, Operand field_operand);
// ---------------------------------------------------------------------------
// V8 Sandbox support
// Transform a SandboxedPointer from/to its encoded form, which is used when
// the pointer is stored on the heap and ensures that the pointer will always
// point into the sandbox.
void EncodeSandboxedPointer(Register value);
void DecodeSandboxedPointer(Register value);
// Load and decode a SandboxedPointer from the heap.
void LoadSandboxedPointerField(Register destination, Operand field_operand);
// Encode and store a SandboxedPointer to the heap.
void StoreSandboxedPointerField(Operand dst_field_operand, Register value);
enum class IsolateRootLocation { kInScratchRegister, kInRootRegister };
// Loads a field containing off-heap pointer and does necessary decoding
// if sandboxed external pointers are enabled.
void LoadExternalPointerField(Register destination, Operand field_operand,
ExternalPointerTag tag, Register scratch,
IsolateRootLocation isolateRootLocation =
IsolateRootLocation::kInRootRegister);
protected:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
// Returns a register holding the smi value. The register MUST NOT be
// modified. It may be the "smi 1 constant" register.
Register GetSmiConstant(Smi value);
// Drops arguments assuming that the return address was already popped.
void DropArguments(Register count, ArgumentsCountType type = kCountIsInteger,
ArgumentsCountMode mode = kCountExcludesReceiver);
};
// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
public:
using TurboAssembler::TurboAssembler;
// Loads and stores the value of an external reference.
// Special case code for load and store to take advantage of
// load_rax/store_rax if possible/necessary.
// For other operations, just use:
// Operand operand = ExternalReferenceAsOperand(extref);
// operation(operand, ..);
void Load(Register destination, ExternalReference source);
void Store(ExternalReference destination, Register source);
// Pushes the address of the external reference onto the stack.
void PushAddress(ExternalReference source);
// Operations on roots in the root-array.
// Load a root value where the index (or part of it) is variable.
// The variable_offset register is added to the fixed_offset value
// to get the index into the root-array.
void PushRoot(RootIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, RootIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
void JumpIfRoot(Operand with, RootIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
void JumpIfNotRoot(Operand with, RootIndex index, Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register slot_address,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
SmiCheck smi_check = SmiCheck::kInline);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. The address and value registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update
// the write barrier if the value is a smi.
void RecordWrite(
Register object, Register slot_address, Register value,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
SmiCheck smi_check = SmiCheck::kInline);
// Enter specific kind of exit frame; either in normal or
// debug mode. Expects the number of arguments in register rax and
// sets up the number of arguments in register rdi and the pointer
// to the first argument in register rsi.
//
// Allocates arg_stack_space * kSystemPointerSize memory (not GCed) on the
// stack accessible via StackSpaceOperand.
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
StackFrame::Type frame_type = StackFrame::EXIT);
// Enter specific kind of exit frame. Allocates
// (arg_stack_space * kSystemPointerSize) memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterApiExitFrame(int arg_stack_space);
// Leave the current exit frame. Expects/provides the return value in
// register rax:rdx (untouched) and the pointer to the first
// argument in register rsi (if pop_arguments == true).
void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
// Leave the current exit frame. Expects/provides the return value in
// register rax (untouched).
void LeaveApiExitFrame();
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// On function call, call into the debugger.
void CallDebugOnFunctionCall(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
Register actual_parameter_count, InvokeType type);
void InvokeFunction(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// ---------------------------------------------------------------------------
// Macro instructions.
using TurboAssembler::Cmp;
void Cmp(Register dst, Handle<Object> source);
void Cmp(Operand dst, Handle<Object> source);
// Checks if value is in range [lower_limit, higher_limit] using a single
// comparison. Flags CF=1 or ZF=1 indicate the value is in the range
// (condition below_equal).
void CompareRange(Register value, unsigned lower_limit,
unsigned higher_limit);
void JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range,
Label::Distance near_jump = Label::kFar);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the rsp register.
void Drop(int stack_elements);
// Emit code to discard a positive number of pointer-sized elements
// from the stack under the return address which remains on the top,
// clobbering the rsp register.
void DropUnderReturnAddress(int stack_elements,
Register scratch = kScratchRegister);
void PushQuad(Operand src);
void PushImm32(int32_t imm32);
void Pop(Register dst);
void Pop(Operand dst);
void PopQuad(Operand dst);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToOffHeapInstructionStream(Address entry);
// Compare object type for heap object.
// Always use unsigned comparisons: above and below, not less and greater.
// Incoming register is heap_object and outgoing register is map.
// They may be the same register, and may be kScratchRegister.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
// Always use unsigned comparisons: above and below, not less and greater.
void CmpInstanceType(Register map, InstanceType type);
// Compare instance type ranges for a map (low and high inclusive)
// Always use unsigned comparisons: below_equal for a positive result.
void CmpInstanceTypeRange(Register map, Register instance_type_out,
InstanceType low, InstanceType high);
template <typename Field>
void DecodeField(Register reg) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> Field::kShift;
if (shift != 0) {
shrq(reg, Immediate(shift));
}
andq(reg, Immediate(mask));
}
// Abort execution if argument is not a CodeT, enabled via --debug-code.
void AssertCodeT(Register object);
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a callable JSFunction, enabled via
// --debug-code.
void AssertCallableFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link it into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Support functions.
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
}
// Load the native context slot with the current index.
void LoadNativeContextSlot(Register dst, int index);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump)
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routines
void JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame = false);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value) {
if (!FLAG_native_code_counters) return;
EmitIncrementCounter(counter, value);
}
void EmitIncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value) {
if (!FLAG_native_code_counters) return;
EmitDecrementCounter(counter, value);
}
void EmitDecrementCounter(StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Stack limit utilities
Operand StackLimitAsOperand(StackLimitKind kind);
void StackOverflowCheck(
Register num_args, Label* stack_overflow,
Label::Distance stack_overflow_distance = Label::kFar);
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register in_out, Label* target_if_cleared);
private:
// Helper functions for generating invokes.
void InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count, Label* done,
InvokeType type);
void EnterExitFramePrologue(Register saved_rax_reg,
StackFrame::Type frame_type);
// Allocates arg_stack_space * kSystemPointerSize memory (not GCed) on the
// stack accessible via StackSpaceOperand.
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
void LeaveExitFrameEpilogue();
DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
// Provides access to exit frame stack space (not GCed).
inline Operand StackSpaceOperand(int index) {
#ifdef V8_TARGET_OS_WIN
const int kShaddowSpace = 4;
return Operand(rsp, (index + kShaddowSpace) * kSystemPointerSize);
#else
return Operand(rsp, index * kSystemPointerSize);
#endif
}
inline Operand StackOperandForReturnAddress(int32_t disp) {
return Operand(rsp, disp);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_