blob: 2cc4bef12823e1685ff044adcdf7170ae348879e [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "src/base/iterator.h"
#include "src/base/logging.h"
#include "src/base/overflowing-math.h"
#include "src/base/platform/wrappers.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/machine-type.h"
#include "src/compiler/backend/instruction-codes.h"
#include "src/compiler/backend/instruction-selector-impl.h"
#include "src/compiler/backend/instruction.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/opcodes.h"
#include "src/roots/roots-inl.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/simd-shuffle.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
namespace compiler {
// Adds X64-specific methods for generating operands.
class X64OperandGenerator final : public OperandGenerator {
public:
explicit X64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kRelocatableInt32Constant: {
const int32_t value = OpParameter<int32_t>(node->op());
// int32_t min will overflow if displacement mode is
// kNegativeDisplacement.
return value != std::numeric_limits<int32_t>::min();
}
case IrOpcode::kInt64Constant: {
const int64_t value = OpParameter<int64_t>(node->op());
return std::numeric_limits<int32_t>::min() < value &&
value <= std::numeric_limits<int32_t>::max();
}
case IrOpcode::kNumberConstant: {
const double value = OpParameter<double>(node->op());
return bit_cast<int64_t>(value) == 0;
}
default:
return false;
}
}
int32_t GetImmediateIntegerValue(Node* node) {
DCHECK(CanBeImmediate(node));
if (node->opcode() == IrOpcode::kInt32Constant) {
return OpParameter<int32_t>(node->op());
}
DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode());
return static_cast<int32_t>(OpParameter<int64_t>(node->op()));
}
bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input,
int effect_level) {
if ((input->opcode() != IrOpcode::kLoad &&
input->opcode() != IrOpcode::kLoadImmutable) ||
!selector()->CanCover(node, input)) {
return false;
}
if (effect_level != selector()->GetEffectLevel(input)) {
return false;
}
MachineRepresentation rep =
LoadRepresentationOf(input->op()).representation();
switch (opcode) {
case kX64And:
case kX64Or:
case kX64Xor:
case kX64Add:
case kX64Sub:
case kX64Push:
case kX64Cmp:
case kX64Test:
// When pointer compression is enabled 64-bit memory operands can't be
// used for tagged values.
return rep == MachineRepresentation::kWord64 ||
(!COMPRESS_POINTERS_BOOL && IsAnyTagged(rep));
case kX64And32:
case kX64Or32:
case kX64Xor32:
case kX64Add32:
case kX64Sub32:
case kX64Cmp32:
case kX64Test32:
// When pointer compression is enabled 32-bit memory operands can be
// used for tagged values.
return rep == MachineRepresentation::kWord32 ||
(COMPRESS_POINTERS_BOOL &&
(IsAnyTagged(rep) || IsAnyCompressed(rep)));
case kAVXFloat64Add:
case kAVXFloat64Sub:
case kAVXFloat64Mul:
DCHECK_EQ(MachineRepresentation::kFloat64, rep);
return true;
case kAVXFloat32Add:
case kAVXFloat32Sub:
case kAVXFloat32Mul:
DCHECK_EQ(MachineRepresentation::kFloat32, rep);
return true;
case kX64Cmp16:
case kX64Test16:
return rep == MachineRepresentation::kWord16;
case kX64Cmp8:
case kX64Test8:
return rep == MachineRepresentation::kWord8;
default:
break;
}
return false;
}
AddressingMode GenerateMemoryOperandInputs(
Node* index, int scale_exponent, Node* base, Node* displacement,
DisplacementMode displacement_mode, InstructionOperand inputs[],
size_t* input_count,
RegisterUseKind reg_kind = RegisterUseKind::kUseRegister) {
AddressingMode mode = kMode_MRI;
if (base != nullptr && (index != nullptr || displacement != nullptr)) {
if (base->opcode() == IrOpcode::kInt32Constant &&
OpParameter<int32_t>(base->op()) == 0) {
base = nullptr;
} else if (base->opcode() == IrOpcode::kInt64Constant &&
OpParameter<int64_t>(base->op()) == 0) {
base = nullptr;
}
}
if (base != nullptr) {
inputs[(*input_count)++] = UseRegister(base, reg_kind);
if (index != nullptr) {
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
inputs[(*input_count)++] = UseRegister(index, reg_kind);
if (displacement != nullptr) {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale_exponent];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale_exponent];
}
} else {
if (displacement == nullptr) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
if (displacement != nullptr) {
if (index == nullptr) {
inputs[(*input_count)++] = UseRegister(displacement, reg_kind);
mode = kMode_MR;
} else {
inputs[(*input_count)++] = UseRegister(index, reg_kind);
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale_exponent];
}
} else {
inputs[(*input_count)++] = UseRegister(index, reg_kind);
static const AddressingMode kMn_modes[] = {kMode_MR, kMode_MR1,
kMode_M4, kMode_M8};
mode = kMn_modes[scale_exponent];
if (mode == kMode_MR1) {
// [%r1 + %r1*1] has a smaller encoding than [%r1*2+0]
inputs[(*input_count)++] = UseRegister(index, reg_kind);
}
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(
Node* operand, InstructionOperand inputs[], size_t* input_count,
RegisterUseKind reg_kind = RegisterUseKind::kUseRegister) {
{
LoadMatcher<ExternalReferenceMatcher> m(operand);
if (m.index().HasResolvedValue() && m.object().HasResolvedValue() &&
selector()->CanAddressRelativeToRootsRegister(
m.object().ResolvedValue())) {
ptrdiff_t const delta =
m.index().ResolvedValue() +
TurboAssemblerBase::RootRegisterOffsetForExternalReference(
selector()->isolate(), m.object().ResolvedValue());
if (is_int32(delta)) {
inputs[(*input_count)++] = TempImmediate(static_cast<int32_t>(delta));
return kMode_Root;
}
}
}
BaseWithIndexAndDisplacement64Matcher m(operand, AddressOption::kAllowAll);
DCHECK(m.matches());
if (m.displacement() == nullptr || CanBeImmediate(m.displacement())) {
return GenerateMemoryOperandInputs(
m.index(), m.scale(), m.base(), m.displacement(),
m.displacement_mode(), inputs, input_count, reg_kind);
} else if (m.base() == nullptr &&
m.displacement_mode() == kPositiveDisplacement) {
// The displacement cannot be an immediate, but we can use the
// displacement as base instead and still benefit from addressing
// modes for the scale.
return GenerateMemoryOperandInputs(m.index(), m.scale(), m.displacement(),
nullptr, m.displacement_mode(), inputs,
input_count, reg_kind);
} else {
inputs[(*input_count)++] = UseRegister(operand->InputAt(0), reg_kind);
inputs[(*input_count)++] = UseRegister(operand->InputAt(1), reg_kind);
return kMode_MR1;
}
}
InstructionOperand GetEffectiveIndexOperand(Node* index,
AddressingMode* mode) {
if (CanBeImmediate(index)) {
*mode = kMode_MRI;
return UseImmediate(index);
} else {
*mode = kMode_MR1;
return UseUniqueRegister(index);
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
};
namespace {
ArchOpcode GetLoadOpcode(LoadRepresentation load_rep) {
ArchOpcode opcode;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kX64Movss;
break;
case MachineRepresentation::kFloat64:
opcode = kX64Movsd;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl;
break;
case MachineRepresentation::kWord32:
opcode = kX64Movl;
break;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
opcode = kX64Movl;
break;
#else
UNREACHABLE();
#endif
#ifdef V8_COMPRESS_POINTERS
case MachineRepresentation::kTaggedSigned:
opcode = kX64MovqDecompressTaggedSigned;
break;
case MachineRepresentation::kTaggedPointer:
opcode = kX64MovqDecompressTaggedPointer;
break;
case MachineRepresentation::kTagged:
opcode = kX64MovqDecompressAnyTagged;
break;
#else
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord64:
opcode = kX64Movq;
break;
case MachineRepresentation::kSandboxedPointer:
opcode = kX64MovqDecodeSandboxedPointer;
break;
case MachineRepresentation::kSimd128:
opcode = kX64Movdqu;
break;
case MachineRepresentation::kNone: // Fall through.
case MachineRepresentation::kMapWord:
UNREACHABLE();
}
return opcode;
}
ArchOpcode GetStoreOpcode(StoreRepresentation store_rep) {
switch (store_rep.representation()) {
case MachineRepresentation::kFloat32:
return kX64Movss;
case MachineRepresentation::kFloat64:
return kX64Movsd;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
return kX64Movb;
case MachineRepresentation::kWord16:
return kX64Movw;
case MachineRepresentation::kWord32:
return kX64Movl;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
return kX64MovqCompressTagged;
#else
UNREACHABLE();
#endif
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged:
return kX64MovqCompressTagged;
case MachineRepresentation::kWord64:
return kX64Movq;
case MachineRepresentation::kSandboxedPointer:
return kX64MovqEncodeSandboxedPointer;
case MachineRepresentation::kSimd128:
return kX64Movdqu;
case MachineRepresentation::kNone: // Fall through.
case MachineRepresentation::kMapWord:
UNREACHABLE();
}
UNREACHABLE();
}
ArchOpcode GetSeqCstStoreOpcode(StoreRepresentation store_rep) {
switch (store_rep.representation()) {
case MachineRepresentation::kWord8:
return kAtomicStoreWord8;
case MachineRepresentation::kWord16:
return kAtomicStoreWord16;
case MachineRepresentation::kWord32:
return kAtomicStoreWord32;
case MachineRepresentation::kWord64:
return kX64Word64AtomicStoreWord64;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged:
if (COMPRESS_POINTERS_BOOL) return kAtomicStoreWord32;
return kX64Word64AtomicStoreWord64;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
CHECK(COMPRESS_POINTERS_BOOL);
return kAtomicStoreWord32;
default:
UNREACHABLE();
}
}
} // namespace
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int slot = frame_->AllocateSpillSlot(rep.size(), rep.alignment());
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)), 0, nullptr);
}
void InstructionSelector::VisitAbortCSADcheck(Node* node) {
X64OperandGenerator g(this);
Emit(kArchAbortCSADcheck, g.NoOutput(), g.UseFixed(node->InputAt(0), rdx));
}
void InstructionSelector::VisitLoadLane(Node* node) {
LoadLaneParameters params = LoadLaneParametersOf(node->op());
InstructionCode opcode = kArchNop;
if (params.rep == MachineType::Int8()) {
opcode = kX64Pinsrb;
} else if (params.rep == MachineType::Int16()) {
opcode = kX64Pinsrw;
} else if (params.rep == MachineType::Int32()) {
opcode = kX64Pinsrd;
} else if (params.rep == MachineType::Int64()) {
opcode = kX64Pinsrq;
} else {
UNREACHABLE();
}
X64OperandGenerator g(this);
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
// Input 0 is value node, 1 is lane idx, and GetEffectiveAddressMemoryOperand
// uses up to 3 inputs. This ordering is consistent with other operations that
// use the same opcode.
InstructionOperand inputs[5];
size_t input_count = 0;
inputs[input_count++] = g.UseRegister(node->InputAt(2));
inputs[input_count++] = g.UseImmediate(params.laneidx);
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
DCHECK_GE(5, input_count);
// x64 supports unaligned loads.
DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned);
if (params.kind == MemoryAccessKind::kProtected) {
opcode |= AccessModeField::encode(kMemoryAccessProtected);
}
Emit(opcode, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitLoadTransform(Node* node) {
LoadTransformParameters params = LoadTransformParametersOf(node->op());
ArchOpcode opcode;
switch (params.transformation) {
case LoadTransformation::kS128Load8Splat:
opcode = kX64S128Load8Splat;
break;
case LoadTransformation::kS128Load16Splat:
opcode = kX64S128Load16Splat;
break;
case LoadTransformation::kS128Load32Splat:
opcode = kX64S128Load32Splat;
break;
case LoadTransformation::kS128Load64Splat:
opcode = kX64S128Load64Splat;
break;
case LoadTransformation::kS128Load8x8S:
opcode = kX64S128Load8x8S;
break;
case LoadTransformation::kS128Load8x8U:
opcode = kX64S128Load8x8U;
break;
case LoadTransformation::kS128Load16x4S:
opcode = kX64S128Load16x4S;
break;
case LoadTransformation::kS128Load16x4U:
opcode = kX64S128Load16x4U;
break;
case LoadTransformation::kS128Load32x2S:
opcode = kX64S128Load32x2S;
break;
case LoadTransformation::kS128Load32x2U:
opcode = kX64S128Load32x2U;
break;
case LoadTransformation::kS128Load32Zero:
opcode = kX64Movss;
break;
case LoadTransformation::kS128Load64Zero:
opcode = kX64Movsd;
break;
default:
UNREACHABLE();
}
// x64 supports unaligned loads
DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned);
InstructionCode code = opcode;
if (params.kind == MemoryAccessKind::kProtected) {
code |= AccessModeField::encode(kMemoryAccessProtected);
}
VisitLoad(node, node, code);
}
void InstructionSelector::VisitLoad(Node* node, Node* value,
InstructionCode opcode) {
X64OperandGenerator g(this);
#ifdef V8_IS_TSAN
// On TSAN builds we require one scratch register. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count, reg_kind);
InstructionCode code = opcode | AddressingModeField::encode(mode);
if (node->opcode() == IrOpcode::kProtectedLoad) {
code |= AccessModeField::encode(kMemoryAccessProtected);
}
Emit(code, 1, outputs, input_count, inputs, temp_count, temps);
}
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
DCHECK(!load_rep.IsMapWord());
VisitLoad(node, node, GetLoadOpcode(load_rep));
}
void InstructionSelector::VisitProtectedLoad(Node* node) { VisitLoad(node); }
namespace {
// Shared routine for Word32/Word64 Atomic Exchange
void VisitAtomicExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode, AtomicWidth width) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseUniqueRegister(value), g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode)};
InstructionOperand outputs[] = {g.DefineSameAsFirst(node)};
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AtomicWidthField::encode(width);
selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs);
}
void VisitStoreCommon(InstructionSelector* selector, Node* node,
StoreRepresentation store_rep,
base::Optional<AtomicMemoryOrder> atomic_order) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
DCHECK_NE(store_rep.representation(), MachineRepresentation::kMapWord);
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
const bool is_seqcst =
atomic_order && *atomic_order == AtomicMemoryOrder::kSeqCst;
if (FLAG_enable_unconditional_write_barriers &&
CanBeTaggedOrCompressedPointer(store_rep.representation())) {
write_barrier_kind = kFullWriteBarrier;
}
if (write_barrier_kind != kNoWriteBarrier && !FLAG_disable_write_barriers) {
DCHECK(CanBeTaggedOrCompressedPointer(store_rep.representation()));
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode),
g.UseUniqueRegister(value)};
RecordWriteMode record_write_mode =
WriteBarrierKindToRecordWriteMode(write_barrier_kind);
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
InstructionCode code = is_seqcst ? kArchAtomicStoreWithWriteBarrier
: kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
selector->Emit(code, 0, nullptr, arraysize(inputs), inputs,
arraysize(temps), temps);
} else {
#ifdef V8_IS_TSAN
// On TSAN builds we require two scratch registers. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
// Release and non-atomic stores emit MOV and sequentially consistent stores
// emit XCHG.
// https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
ArchOpcode opcode;
AddressingMode addressing_mode;
InstructionOperand inputs[4];
size_t input_count = 0;
if (is_seqcst) {
// SeqCst stores emit XCHG instead of MOV, so encode the inputs as we
// would for XCHG. XCHG can't encode the value as an immediate and has
// fewer addressing modes available.
inputs[input_count++] = g.UseUniqueRegister(value);
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] =
g.GetEffectiveIndexOperand(index, &addressing_mode);
opcode = GetSeqCstStoreOpcode(store_rep);
} else {
if ((ElementSizeLog2Of(store_rep.representation()) <
kSystemPointerSizeLog2) &&
value->opcode() == IrOpcode::kTruncateInt64ToInt32) {
value = value->InputAt(0);
}
addressing_mode = g.GetEffectiveAddressMemoryOperand(
node, inputs, &input_count, reg_kind);
InstructionOperand value_operand = g.CanBeImmediate(value)
? g.UseImmediate(value)
: g.UseRegister(value, reg_kind);
inputs[input_count++] = value_operand;
opcode = GetStoreOpcode(store_rep);
}
InstructionCode code =
opcode | AddressingModeField::encode(addressing_mode);
selector->Emit(code, 0, static_cast<InstructionOperand*>(nullptr),
input_count, inputs, temp_count, temps);
}
}
} // namespace
void InstructionSelector::VisitStore(Node* node) {
return VisitStoreCommon(this, node, StoreRepresentationOf(node->op()),
base::nullopt);
}
void InstructionSelector::VisitProtectedStore(Node* node) {
X64OperandGenerator g(this);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
#ifdef V8_IS_TSAN
// On TSAN builds we require two scratch registers. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count, reg_kind);
InstructionOperand value_operand = g.CanBeImmediate(value)
? g.UseImmediate(value)
: g.UseRegister(value, reg_kind);
inputs[input_count++] = value_operand;
ArchOpcode opcode = GetStoreOpcode(store_rep);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AccessModeField::encode(kMemoryAccessProtected);
Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, inputs,
temp_count, temps);
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitStoreLane(Node* node) {
X64OperandGenerator g(this);
StoreLaneParameters params = StoreLaneParametersOf(node->op());
InstructionCode opcode = kArchNop;
if (params.rep == MachineRepresentation::kWord8) {
opcode = kX64Pextrb;
} else if (params.rep == MachineRepresentation::kWord16) {
opcode = kX64Pextrw;
} else if (params.rep == MachineRepresentation::kWord32) {
opcode = kX64S128Store32Lane;
} else if (params.rep == MachineRepresentation::kWord64) {
opcode = kX64S128Store64Lane;
} else {
UNREACHABLE();
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
if (params.kind == MemoryAccessKind::kProtected) {
opcode |= AccessModeField::encode(kMemoryAccessProtected);
}
InstructionOperand value_operand = g.UseRegister(node->InputAt(2));
inputs[input_count++] = value_operand;
inputs[input_count++] = g.UseImmediate(params.laneidx);
DCHECK_GE(4, input_count);
Emit(opcode, 0, nullptr, input_count, inputs);
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[1];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov rax, [rbp-0x10]
// add rax, [rbp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
int effect_level = selector->GetEffectLevel(node, cont);
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right) &&
(!g.CanBeBetterLeftOperand(left) ||
!g.CanBeMemoryOperand(opcode, node, right, effect_level))) {
std::swap(left, right);
}
if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) {
inputs[input_count++] = g.UseRegister(left);
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
DCHECK_NE(0u, input_count);
DCHECK_EQ(1u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
void InstructionSelector::VisitWord32And(Node* node) {
X64OperandGenerator g(this);
Uint32BinopMatcher m(node);
if (m.right().Is(0xFF)) {
Emit(kX64Movzxbl, g.DefineAsRegister(node), g.Use(m.left().node()));
} else if (m.right().Is(0xFFFF)) {
Emit(kX64Movzxwl, g.DefineAsRegister(node), g.Use(m.left().node()));
} else {
VisitBinop(this, node, kX64And32);
}
}
void InstructionSelector::VisitWord64And(Node* node) {
VisitBinop(this, node, kX64And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kX64Or32);
}
void InstructionSelector::VisitWord64Or(Node* node) {
VisitBinop(this, node, kX64Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
X64OperandGenerator g(this);
Uint32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kX64Not32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kX64Xor32);
}
}
void InstructionSelector::VisitWord64Xor(Node* node) {
X64OperandGenerator g(this);
Uint64BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kX64Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kX64Xor);
}
}
void InstructionSelector::VisitStackPointerGreaterThan(
Node* node, FlagsContinuation* cont) {
StackCheckKind kind = StackCheckKindOf(node->op());
InstructionCode opcode =
kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind));
int effect_level = GetEffectLevel(node, cont);
X64OperandGenerator g(this);
Node* const value = node->InputAt(0);
if (g.CanBeMemoryOperand(kX64Cmp, node, value, effect_level)) {
DCHECK(IrOpcode::kLoad == value->opcode() ||
IrOpcode::kLoadImmutable == value->opcode());
// GetEffectiveAddressMemoryOperand can create at most 3 inputs.
static constexpr int kMaxInputCount = 3;
size_t input_count = 0;
InstructionOperand inputs[kMaxInputCount];
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
DCHECK_LE(input_count, kMaxInputCount);
EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont);
} else {
EmitWithContinuation(opcode, g.UseRegister(value), cont);
}
}
namespace {
bool TryMergeTruncateInt64ToInt32IntoLoad(InstructionSelector* selector,
Node* node, Node* load) {
if ((load->opcode() == IrOpcode::kLoad ||
load->opcode() == IrOpcode::kLoadImmutable) &&
selector->CanCover(node, load)) {
LoadRepresentation load_rep = LoadRepresentationOf(load->op());
MachineRepresentation rep = load_rep.representation();
InstructionCode opcode;
switch (rep) {
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl;
break;
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTagged:
case MachineRepresentation::kCompressed: // Fall through.
opcode = kX64Movl;
break;
default:
UNREACHABLE();
}
X64OperandGenerator g(selector);
#ifdef V8_IS_TSAN
// On TSAN builds we require one scratch register. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
node->InputAt(0), inputs, &input_count, reg_kind);
opcode |= AddressingModeField::encode(mode);
selector->Emit(opcode, 1, outputs, input_count, inputs, temp_count, temps);
return true;
}
return false;
}
// Shared routine for multiple 32-bit shift operations.
// TODO(bmeurer): Merge this with VisitWord64Shift using template magic?
void VisitWord32Shift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) {
left = left->InputAt(0);
}
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, rcx));
}
}
// Shared routine for multiple 64-bit shift operations.
// TODO(bmeurer): Merge this with VisitWord32Shift using template magic?
void VisitWord64Shift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int64BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
if (m.right().IsWord64And()) {
Int64BinopMatcher mright(right);
if (mright.right().Is(0x3F)) {
right = mright.left().node();
}
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, rcx));
}
}
// Shared routine for multiple shift operations with continuation.
template <typename BinopMatcher, int Bits>
bool TryVisitWordShift(InstructionSelector* selector, Node* node,
ArchOpcode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
// If the shift count is 0, the flags are not affected.
if (!g.CanBeImmediate(right) ||
(g.GetImmediateIntegerValue(right) & (Bits - 1)) == 0) {
return false;
}
InstructionOperand output = g.DefineSameAsFirst(node);
InstructionOperand inputs[2];
inputs[0] = g.UseRegister(left);
inputs[1] = g.UseImmediate(right);
selector->EmitWithContinuation(opcode, 1, &output, 2, inputs, cont);
return true;
}
void EmitLea(InstructionSelector* selector, InstructionCode opcode,
Node* result, Node* index, int scale, Node* base,
Node* displacement, DisplacementMode displacement_mode) {
X64OperandGenerator g(selector);
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode =
g.GenerateMemoryOperandInputs(index, scale, base, displacement,
displacement_mode, inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(result);
opcode = AddressingModeField::encode(mode) | opcode;
selector->Emit(opcode, 1, outputs, input_count, inputs);
}
} // namespace
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr,
kPositiveDisplacement);
return;
}
VisitWord32Shift(this, node, kX64Shl32);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
X64OperandGenerator g(this);
Int64ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea, node, index, m.scale(), base, nullptr,
kPositiveDisplacement);
return;
} else {
Int64BinopMatcher bm(node);
if ((bm.left().IsChangeInt32ToInt64() ||
bm.left().IsChangeUint32ToUint64()) &&
bm.right().IsInRange(32, 63)) {
// There's no need to sign/zero-extend to 64-bit if we shift out the upper
// 32 bits anyway.
Emit(kX64Shl, g.DefineSameAsFirst(node),
g.UseRegister(bm.left().node()->InputAt(0)),
g.UseImmediate(bm.right().node()));
return;
}
}
VisitWord64Shift(this, node, kX64Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitWord32Shift(this, node, kX64Shr32);
}
namespace {
inline AddressingMode AddDisplacementToAddressingMode(AddressingMode mode) {
switch (mode) {
case kMode_MR:
return kMode_MRI;
case kMode_MR1:
return kMode_MR1I;
case kMode_MR2:
return kMode_MR2I;
case kMode_MR4:
return kMode_MR4I;
case kMode_MR8:
return kMode_MR8I;
case kMode_M1:
return kMode_M1I;
case kMode_M2:
return kMode_M2I;
case kMode_M4:
return kMode_M4I;
case kMode_M8:
return kMode_M8I;
case kMode_None:
case kMode_MRI:
case kMode_MR1I:
case kMode_MR2I:
case kMode_MR4I:
case kMode_MR8I:
case kMode_M1I:
case kMode_M2I:
case kMode_M4I:
case kMode_M8I:
case kMode_Root:
UNREACHABLE();
}
UNREACHABLE();
}
bool TryMatchLoadWord64AndShiftRight(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
DCHECK(IrOpcode::kWord64Sar == node->opcode() ||
IrOpcode::kWord64Shr == node->opcode());
X64OperandGenerator g(selector);
Int64BinopMatcher m(node);
if (selector->CanCover(m.node(), m.left().node()) && m.left().IsLoad() &&
m.right().Is(32)) {
DCHECK_EQ(selector->GetEffectLevel(node),
selector->GetEffectLevel(m.left().node()));
// Just load and sign-extend the interesting 4 bytes instead. This happens,
// for example, when we're loading and untagging SMIs.
BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(),
AddressOption::kAllowAll);
if (mleft.matches() && (mleft.displacement() == nullptr ||
g.CanBeImmediate(mleft.displacement()))) {
#ifdef V8_IS_TSAN
// On TSAN builds we require one scratch register. Because of this we also
// have to modify the inputs to take into account possible aliasing and
// use UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
m.left().node(), inputs, &input_count, reg_kind);
if (mleft.displacement() == nullptr) {
// Make sure that the addressing mode indicates the presence of an
// immediate displacement. It seems that we never use M1 and M2, but we
// handle them here anyways.
mode = AddDisplacementToAddressingMode(mode);
inputs[input_count++] =
ImmediateOperand(ImmediateOperand::INLINE_INT32, 4);
} else {
// In the case that the base address was zero, the displacement will be
// in a register and replacing it with an immediate is not allowed. This
// usually only happens in dead code anyway.
if (!inputs[input_count - 1].IsImmediate()) return false;
int32_t displacement = g.GetImmediateIntegerValue(mleft.displacement());
inputs[input_count - 1] =
ImmediateOperand(ImmediateOperand::INLINE_INT32, displacement + 4);
}
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
InstructionCode code = opcode | AddressingModeField::encode(mode);
selector->Emit(code, 1, outputs, input_count, inputs, temp_count, temps);
return true;
}
}
return false;
}
} // namespace
void InstructionSelector::VisitWord64Shr(Node* node) {
if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movl)) return;
VisitWord64Shift(this, node, kX64Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
X64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
Emit(kX64Movsxwl, g.DefineAsRegister(node), g.Use(mleft.left().node()));
return;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
Emit(kX64Movsxbl, g.DefineAsRegister(node), g.Use(mleft.left().node()));
return;
}
}
VisitWord32Shift(this, node, kX64Sar32);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movsxlq)) return;
VisitWord64Shift(this, node, kX64Sar);
}
void InstructionSelector::VisitWord32Rol(Node* node) {
VisitWord32Shift(this, node, kX64Rol32);
}
void InstructionSelector::VisitWord64Rol(Node* node) {
VisitWord64Shift(this, node, kX64Rol);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitWord32Shift(this, node, kX64Ror32);
}
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitWord64Shift(this, node, kX64Ror);
}
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Bswap, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Bswap32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitSimd128ReverseBytes(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt32Add(Node* node) {
X64OperandGenerator g(this);
// No need to truncate the values before Int32Add.
DCHECK_EQ(node->InputCount(), 2);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) {
node->ReplaceInput(0, left->InputAt(0));
}
if (right->opcode() == IrOpcode::kTruncateInt64ToInt32) {
node->ReplaceInput(1, right->InputAt(0));
}
// Try to match the Add to a leal pattern
BaseWithIndexAndDisplacement32Matcher m(node);
if (m.matches() &&
(m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
EmitLea(this, kX64Lea32, node, m.index(), m.scale(), m.base(),
m.displacement(), m.displacement_mode());
return;
}
// No leal pattern match, use addl
VisitBinop(this, node, kX64Add32);
}
void InstructionSelector::VisitInt64Add(Node* node) {
X64OperandGenerator g(this);
// Try to match the Add to a leaq pattern
BaseWithIndexAndDisplacement64Matcher m(node);
if (m.matches() &&
(m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
EmitLea(this, kX64Lea, node, m.index(), m.scale(), m.base(),
m.displacement(), m.displacement_mode());
return;
}
// No leal pattern match, use addq
VisitBinop(this, node, kX64Add);
}
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Add, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Add, &cont);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
X64OperandGenerator g(this);
DCHECK_EQ(node->InputCount(), 2);
Node* input1 = node->InputAt(0);
Node* input2 = node->InputAt(1);
if (input1->opcode() == IrOpcode::kTruncateInt64ToInt32 &&
g.CanBeImmediate(input2)) {
int32_t imm = g.GetImmediateIntegerValue(input2);
InstructionOperand int64_input = g.UseRegister(input1->InputAt(0));
if (imm == 0) {
// Emit "movl" for subtraction of 0.
Emit(kX64Movl, g.DefineAsRegister(node), int64_input);
} else {
// Omit truncation and turn subtractions of constant values into immediate
// "leal" instructions by negating the value.
Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), int64_input,
g.TempImmediate(base::NegateWithWraparound(imm)));
}
return;
}
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kX64Neg32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()));
} else if (m.right().Is(0)) {
// {EmitIdentity} reuses the virtual register of the first input
// for the output. This is exactly what we want here.
EmitIdentity(node);
} else if (m.right().HasResolvedValue() &&
g.CanBeImmediate(m.right().node())) {
// Turn subtractions of constant values into immediate "leal" instructions
// by negating the value.
Emit(
kX64Lea32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(base::NegateWithWraparound(m.right().ResolvedValue())));
} else {
VisitBinop(this, node, kX64Sub32);
}
}
void InstructionSelector::VisitInt64Sub(Node* node) {
X64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kX64Neg, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()));
} else {
if (m.right().HasResolvedValue() && g.CanBeImmediate(m.right().node())) {
// Turn subtractions of constant values into immediate "leaq" instructions
// by negating the value.
Emit(kX64Lea | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(-static_cast<int32_t>(m.right().ResolvedValue())));
return;
}
VisitBinop(this, node, kX64Sub);
}
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Sub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Sub, &cont);
}
namespace {
void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
void VisitMulHigh(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (selector->IsLive(left) && !selector->IsLive(right)) {
std::swap(left, right);
}
InstructionOperand temps[] = {g.TempRegister(rax)};
// TODO(turbofan): We use UseUniqueRegister here to improve register
// allocation.
selector->Emit(opcode, g.DefineAsFixed(node, rdx), g.UseFixed(left, rax),
g.UseUniqueRegister(right), arraysize(temps), temps);
}
void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(rdx)};
selector->Emit(
opcode, g.DefineAsFixed(node, rax), g.UseFixed(node->InputAt(0), rax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(rax)};
selector->Emit(
opcode, g.DefineAsFixed(node, rdx), g.UseFixed(node->InputAt(0), rax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
} // namespace
void InstructionSelector::VisitInt32Mul(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr,
kPositiveDisplacement);
return;
}
VisitMul(this, node, kX64Imul32);
}
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
// TODO(mvstanton): Use Int32ScaleMatcher somehow.
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Imul32, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Imul32, &cont);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitMul(this, node, kX64Imul);
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitMulHigh(this, node, kX64ImulHigh32);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kX64Idiv32);
}
void InstructionSelector::VisitInt64Div(Node* node) {
VisitDiv(this, node, kX64Idiv);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitDiv(this, node, kX64Udiv32);
}
void InstructionSelector::VisitUint64Div(Node* node) {
VisitDiv(this, node, kX64Udiv);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kX64Idiv32);
}
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitMod(this, node, kX64Idiv);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitMod(this, node, kX64Udiv32);
}
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitMod(this, node, kX64Udiv);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitMulHigh(this, node, kX64UmulHigh32);
}
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat32ToInt64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat64ToInt64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat32ToUint64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat64ToUint64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) {
DCHECK(SmiValuesAre31Bits());
DCHECK(COMPRESS_POINTERS_BOOL);
EmitIdentity(node);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
DCHECK_EQ(node->InputCount(), 1);
Node* input = node->InputAt(0);
if (input->opcode() == IrOpcode::kTruncateInt64ToInt32) {
node->ReplaceInput(0, input->InputAt(0));
}
X64OperandGenerator g(this);
Node* const value = node->InputAt(0);
if ((value->opcode() == IrOpcode::kLoad ||
value->opcode() == IrOpcode::kLoadImmutable) &&
CanCover(node, value)) {
LoadRepresentation load_rep = LoadRepresentationOf(value->op());
MachineRepresentation rep = load_rep.representation();
InstructionCode opcode;
switch (rep) {
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbq : kX64Movzxbq;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwq : kX64Movzxwq;
break;
case MachineRepresentation::kWord32:
// ChangeInt32ToInt64 must interpret its input as a _signed_ 32-bit
// integer, so here we must sign-extend the loaded value in any case.
opcode = kX64Movsxlq;
break;
default:
UNREACHABLE();
}
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
node->InputAt(0), inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
Emit(opcode, 1, outputs, input_count, inputs);
} else {
Emit(kX64Movsxlq, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
}
bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) {
X64OperandGenerator g(this);
DCHECK_NE(node->opcode(), IrOpcode::kPhi);
switch (node->opcode()) {
case IrOpcode::kWord32And:
case IrOpcode::kWord32Or:
case IrOpcode::kWord32Xor:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Sar:
case IrOpcode::kWord32Rol:
case IrOpcode::kWord32Ror:
case IrOpcode::kWord32Equal:
case IrOpcode::kInt32Add:
case IrOpcode::kInt32Sub:
case IrOpcode::kInt32Mul:
case IrOpcode::kInt32MulHigh:
case IrOpcode::kInt32Div:
case IrOpcode::kInt32LessThan:
case IrOpcode::kInt32LessThanOrEqual:
case IrOpcode::kInt32Mod:
case IrOpcode::kUint32Div:
case IrOpcode::kUint32LessThan:
case IrOpcode::kUint32LessThanOrEqual:
case IrOpcode::kUint32Mod:
case IrOpcode::kUint32MulHigh:
case IrOpcode::kTruncateInt64ToInt32:
// These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
// zero-extension is a no-op.
return true;
case IrOpcode::kProjection: {
Node* const value = node->InputAt(0);
switch (value->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
case IrOpcode::kInt32SubWithOverflow:
case IrOpcode::kInt32MulWithOverflow:
return true;
default:
return false;
}
}
case IrOpcode::kLoad:
case IrOpcode::kLoadImmutable:
case IrOpcode::kProtectedLoad: {
// The movzxbl/movsxbl/movzxwl/movsxwl/movl operations implicitly
// zero-extend to 64-bit on x64, so the zero-extension is a no-op.
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
return true;
default:
return false;
}
}
case IrOpcode::kInt32Constant:
case IrOpcode::kInt64Constant:
// Constants are loaded with movl or movq, or xorl for zero; see
// CodeGenerator::AssembleMove. So any non-negative constant that fits
// in a 32-bit signed integer is zero-extended to 64 bits.
if (g.CanBeImmediate(node)) {
return g.GetImmediateIntegerValue(node) >= 0;
}
return false;
default:
return false;
}
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
X64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (ZeroExtendsWord32ToWord64(value)) {
// These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
// zero-extension is a no-op.
return EmitIdentity(node);
}
Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value));
}
namespace {
void VisitRO(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void VisitRR(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRRO(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
}
void VisitFloatBinop(InstructionSelector* selector, Node* node,
InstructionCode avx_opcode, InstructionCode sse_opcode) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[1];
size_t output_count = 0;
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// movss rax, [rbp-0x10]
// addss rax, [rbp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else {
int effect_level = selector->GetEffectLevel(node);
if (node->op()->HasProperty(Operator::kCommutative) &&
(g.CanBeBetterLeftOperand(right) ||
g.CanBeMemoryOperand(avx_opcode, node, left, effect_level)) &&
(!g.CanBeBetterLeftOperand(left) ||
!g.CanBeMemoryOperand(avx_opcode, node, right, effect_level))) {
std::swap(left, right);
}
if (g.CanBeMemoryOperand(avx_opcode, node, right, effect_level)) {
inputs[input_count++] = g.UseRegister(left);
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
avx_opcode |= AddressingModeField::encode(addressing_mode);
sse_opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
}
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
if (selector->IsSupported(AVX)) {
outputs[output_count++] = g.DefineAsRegister(node);
DCHECK_EQ(1u, output_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->Emit(avx_opcode, output_count, outputs, input_count, inputs);
} else {
outputs[output_count++] = g.DefineSameAsFirst(node);
DCHECK_EQ(1u, output_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->Emit(sse_opcode, output_count, outputs, input_count, inputs);
}
}
void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
if (selector->IsSupported(AVX)) {
selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(input));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(input));
}
}
} // namespace
#define RO_OP_LIST(V) \
V(Word64Clz, kX64Lzcnt) \
V(Word32Clz, kX64Lzcnt32) \
V(Word64Ctz, kX64Tzcnt) \
V(Word32Ctz, kX64Tzcnt32) \
V(Word64Popcnt, kX64Popcnt) \
V(Word32Popcnt, kX64Popcnt32) \
V(Float64Sqrt, kSSEFloat64Sqrt) \
V(Float32Sqrt, kSSEFloat32Sqrt) \
V(ChangeFloat64ToInt32, kSSEFloat64ToInt32) \
V(ChangeFloat64ToInt64, kSSEFloat64ToInt64) \
V(ChangeFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(1)) \
V(TruncateFloat64ToInt64, kSSEFloat64ToInt64) \
V(TruncateFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(0)) \
V(ChangeFloat64ToUint64, kSSEFloat64ToUint64) \
V(TruncateFloat64ToFloat32, kSSEFloat64ToFloat32) \
V(ChangeFloat32ToFloat64, kSSEFloat32ToFloat64) \
V(TruncateFloat32ToInt32, kSSEFloat32ToInt32) \
V(TruncateFloat32ToUint32, kSSEFloat32ToUint32) \
V(ChangeInt32ToFloat64, kSSEInt32ToFloat64) \
V(ChangeInt64ToFloat64, kSSEInt64ToFloat64) \
V(ChangeUint32ToFloat64, kSSEUint32ToFloat64) \
V(RoundFloat64ToInt32, kSSEFloat64ToInt32) \
V(RoundInt32ToFloat32, kSSEInt32ToFloat32) \
V(RoundInt64ToFloat32, kSSEInt64ToFloat32) \
V(RoundUint64ToFloat32, kSSEUint64ToFloat32) \
V(RoundInt64ToFloat64, kSSEInt64ToFloat64) \
V(RoundUint64ToFloat64, kSSEUint64ToFloat64) \
V(RoundUint32ToFloat32, kSSEUint32ToFloat32) \
V(BitcastFloat32ToInt32, kX64BitcastFI) \
V(BitcastFloat64ToInt64, kX64BitcastDL) \
V(BitcastInt32ToFloat32, kX64BitcastIF) \
V(BitcastInt64ToFloat64, kX64BitcastLD) \
V(Float64ExtractLowWord32, kSSEFloat64ExtractLowWord32) \
V(Float64ExtractHighWord32, kSSEFloat64ExtractHighWord32) \
V(SignExtendWord8ToInt32, kX64Movsxbl) \
V(SignExtendWord16ToInt32, kX64Movsxwl) \
V(SignExtendWord8ToInt64, kX64Movsxbq) \
V(SignExtendWord16ToInt64, kX64Movsxwq) \
V(SignExtendWord32ToInt64, kX64Movsxlq)
#define RR_OP_LIST(V) \
V(Float32RoundDown, kSSEFloat32Round | MiscField::encode(kRoundDown)) \
V(Float64RoundDown, kSSEFloat64Round | MiscField::encode(kRoundDown)) \
V(Float32RoundUp, kSSEFloat32Round | MiscField::encode(kRoundUp)) \
V(Float64RoundUp, kSSEFloat64Round | MiscField::encode(kRoundUp)) \
V(Float32RoundTruncate, kSSEFloat32Round | MiscField::encode(kRoundToZero)) \
V(Float64RoundTruncate, kSSEFloat64Round | MiscField::encode(kRoundToZero)) \
V(Float32RoundTiesEven, \
kSSEFloat32Round | MiscField::encode(kRoundToNearest)) \
V(Float64RoundTiesEven, \
kSSEFloat64Round | MiscField::encode(kRoundToNearest)) \
V(F32x4Ceil, kX64F32x4Round | MiscField::encode(kRoundUp)) \
V(F32x4Floor, kX64F32x4Round | MiscField::encode(kRoundDown)) \
V(F32x4Trunc, kX64F32x4Round | MiscField::encode(kRoundToZero)) \
V(F32x4NearestInt, kX64F32x4Round | MiscField::encode(kRoundToNearest)) \
V(F64x2Ceil, kX64F64x2Round | MiscField::encode(kRoundUp)) \
V(F64x2Floor, kX64F64x2Round | MiscField::encode(kRoundDown)) \
V(F64x2Trunc, kX64F64x2Round | MiscField::encode(kRoundToZero)) \
V(F64x2NearestInt, kX64F64x2Round | MiscField::encode(kRoundToNearest))
#define RO_VISITOR(Name, opcode) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRO(this, node, opcode); \
}
RO_OP_LIST(RO_VISITOR)
#undef RO_VISITOR
#undef RO_OP_LIST
#define RR_VISITOR(Name, opcode) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRR(this, node, opcode); \
}
RR_OP_LIST(RR_VISITOR)
#undef RR_VISITOR
#undef RR_OP_LIST
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, node, kArchTruncateDoubleToI);
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
// We rely on the fact that TruncateInt64ToInt32 zero extends the
// value (see ZeroExtendsWord32ToWord64). So all code paths here
// have to satisfy that condition.
X64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (CanCover(node, value)) {
switch (value->opcode()) {
case IrOpcode::kWord64Sar:
case IrOpcode::kWord64Shr: {
Int64BinopMatcher m(value);
if (m.right().Is(32)) {
if (CanCoverTransitively(node, value, value->InputAt(0)) &&
TryMatchLoadWord64AndShiftRight(this, value, kX64Movl)) {
return EmitIdentity(node);
}
Emit(kX64Shr, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()), g.TempImmediate(32));
return;
}
break;
}
case IrOpcode::kLoad:
case IrOpcode::kLoadImmutable: {
if (TryMergeTruncateInt64ToInt32IntoLoad(this, node, value)) {
return;
}
break;
}
default:
break;
}
}
Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value));
}
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Add, kSSEFloat32Add);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Sub, kSSEFloat32Sub);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Mul, kSSEFloat32Mul);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Div, kSSEFloat32Div);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float32Abs);
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitRRO(this, node, kSSEFloat32Max);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitRRO(this, node, kSSEFloat32Min);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Add, kSSEFloat64Add);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Sub, kSSEFloat64Sub);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Mul, kSSEFloat64Mul);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Div, kSSEFloat64Div);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister(rax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
temps);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitRRO(this, node, kSSEFloat64Max);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitRRO(this, node, kSSEFloat64Min);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float64Abs);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float32Neg);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float64Neg);
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
X64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0),
g.UseFixed(node->InputAt(1), xmm1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
X64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0))
->MarkAsCall();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor,
Node* node) {
X64OperandGenerator g(this);
// Prepare for C function call.
if (call_descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>(
call_descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node) {
int slot = static_cast<int>(n);
InstructionOperand value = g.CanBeImmediate(input.node)
? g.UseImmediate(input.node)
: g.UseRegister(input.node);
Emit(kX64Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
} else {
// Push any stack arguments.
int effect_level = GetEffectLevel(node);
int stack_decrement = 0;
for (PushParameter input : base::Reversed(*arguments)) {
stack_decrement += kSystemPointerSize;
// Skip holes in the param array. These represent both extra slots for
// multi-slot values and padding slots for alignment.
if (input.node == nullptr) continue;
InstructionOperand decrement = g.UseImmediate(stack_decrement);
stack_decrement = 0;
if (g.CanBeImmediate(input.node)) {
Emit(kX64Push, g.NoOutput(), decrement, g.UseImmediate(input.node));
} else if (IsSupported(INTEL_ATOM) ||
sequence()->IsFP(GetVirtualRegister(input.node))) {
// TODO(titzer): X64Push cannot handle stack->stack double moves
// because there is no way to encode fixed double slots.
Emit(kX64Push, g.NoOutput(), decrement, g.UseRegister(input.node));
} else if (g.CanBeMemoryOperand(kX64Push, node, input.node,
effect_level)) {
InstructionOperand outputs[1];
InstructionOperand inputs[5];
size_t input_count = 0;
inputs[input_count++] = decrement;
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
input.node, inputs, &input_count);
InstructionCode opcode = kX64Push | AddressingModeField::encode(mode);
Emit(opcode, 0, outputs, input_count, inputs);
} else {
Emit(kX64Push, g.NoOutput(), decrement, g.UseAny(input.node));
}
}
}
}
void InstructionSelector::EmitPrepareResults(
ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor,
Node* node) {
X64OperandGenerator g(this);
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
// Skip any alignment holes in nodes.
if (output.node != nullptr) {
DCHECK(!call_descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
} else if (output.location.GetType() == MachineType::Simd128()) {
MarkAsSimd128(output.node);
}
InstructionOperand result = g.DefineAsRegister(output.node);
int offset = call_descriptor->GetOffsetToReturns();
int reverse_slot = -output.location.GetLocation() - offset;
InstructionOperand slot = g.UseImmediate(reverse_slot);
Emit(kX64Peek, 1, &result, 1, &slot);
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return true; }
namespace {
void VisitCompareWithMemoryOperand(InstructionSelector* selector,
InstructionCode opcode, Node* left,
InstructionOperand right,
FlagsContinuation* cont) {
DCHECK(IrOpcode::kLoad == left->opcode() ||
IrOpcode::kLoadImmutable == left->opcode());
X64OperandGenerator g(selector);
size_t input_count = 0;
InstructionOperand inputs[6];
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
inputs[input_count++] = right;
if (cont->IsSelect()) {
if (opcode == kUnorderedEqual) {
cont->Negate();
inputs[input_count++] = g.UseRegister(cont->true_value());
inputs[input_count++] = g.Use(cont->false_value());
} else {
inputs[input_count++] = g.UseRegister(cont->false_value());
inputs[input_count++] = g.Use(cont->true_value());
}
}
selector->EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont);
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
if (cont->IsSelect()) {
X64OperandGenerator g(selector);
InstructionOperand inputs[4] = {left, right};
if (cont->condition() == kUnorderedEqual) {
cont->Negate();
inputs[2] = g.UseRegister(cont->true_value());
inputs[3] = g.Use(cont->false_value());
} else {
inputs[2] = g.UseRegister(cont->false_value());
inputs[3] = g.Use(cont->true_value());
}
selector->EmitWithContinuation(opcode, 0, nullptr, 4, inputs, cont);
return;
}
selector->EmitWithContinuation(opcode, left, right, cont);
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
Node* left, Node* right, FlagsContinuation* cont,
bool commutative) {
X64OperandGenerator g(selector);
if (commutative && g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
MachineType MachineTypeForNarrow(Node* node, Node* hint_node) {
if (hint_node->opcode() == IrOpcode::kLoad ||
hint_node->opcode() == IrOpcode::kLoadImmutable) {
MachineType hint = LoadRepresentationOf(hint_node->op());
if (node->opcode() == IrOpcode::kInt32Constant ||
node->opcode() == IrOpcode::kInt64Constant) {
int64_t constant = node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(node->op())
: OpParameter<int64_t>(node->op());
if (hint == MachineType::Int8()) {
if (constant >= std::numeric_limits<int8_t>::min() &&
constant <= std::numeric_limits<int8_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint8()) {
if (constant >= std::numeric_limits<uint8_t>::min() &&
constant <= std::numeric_limits<uint8_t>::max()) {
return hint;
}
} else if (hint == MachineType::Int16()) {
if (constant >= std::numeric_limits<int16_t>::min() &&
constant <= std::numeric_limits<int16_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint16()) {
if (constant >= std::numeric_limits<uint16_t>::min() &&
constant <= std::numeric_limits<uint16_t>::max()) {
return hint;
}
} else if (hint == MachineType::Int32()) {
if (constant >= std::numeric_limits<int32_t>::min() &&
constant <= std::numeric_limits<int32_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint32()) {
if (constant >= std::numeric_limits<uint32_t>::min() &&
constant <= std::numeric_limits<uint32_t>::max())
return hint;
}
}
}
return node->opcode() == IrOpcode::kLoad ||
node->opcode() == IrOpcode::kLoadImmutable
? LoadRepresentationOf(node->op())
: MachineType::None();
}
bool IsIntConstant(Node* node) {
return node->opcode() == IrOpcode::kInt32Constant ||
node->opcode() == IrOpcode::kInt64Constant;
}
bool IsWordAnd(Node* node) {
return node->opcode() == IrOpcode::kWord32And ||
node->opcode() == IrOpcode::kWord64And;
}
// The result of WordAnd with a positive interger constant in X64 is known to
// be sign(zero)-extended. Comparing this result with another positive interger
// constant can have narrowed operand.
MachineType MachineTypeForNarrowWordAnd(Node* and_node, Node* constant_node) {
Node* and_left = and_node->InputAt(0);
Node* and_right = and_node->InputAt(1);
Node* and_constant_node = IsIntConstant(and_right)
? and_right
: IsIntConstant(and_left) ? and_left : nullptr;
if (and_constant_node != nullptr) {
int64_t and_constant =
and_constant_node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(and_constant_node->op())
: OpParameter<int64_t>(and_constant_node->op());
int64_t cmp_constant = constant_node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(constant_node->op())
: OpParameter<int64_t>(constant_node->op());
if (and_constant >= 0 && cmp_constant >= 0) {
int64_t constant =
and_constant > cmp_constant ? and_constant : cmp_constant;
if (constant <= std::numeric_limits<int8_t>::max()) {
return MachineType::Int8();
} else if (constant <= std::numeric_limits<uint8_t>::max()) {
return MachineType::Uint8();
} else if (constant <= std::numeric_limits<int16_t>::max()) {
return MachineType::Int16();
} else if (constant <= std::numeric_limits<uint16_t>::max()) {
return MachineType::Uint16();
} else if (constant <= std::numeric_limits<int32_t>::max()) {
return MachineType::Int32();
} else if (constant <= std::numeric_limits<uint32_t>::max()) {
return MachineType::Uint32();
}
}
}
return MachineType::None();
}
// Tries to match the size of the given opcode to that of the operands, if
// possible.
InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left,
Node* right, FlagsContinuation* cont) {
MachineType left_type = MachineType::None();
MachineType right_type = MachineType::None();
if (IsWordAnd(left) && IsIntConstant(right)) {
left_type = MachineTypeForNarrowWordAnd(left, right);
right_type = left_type;
} else if (IsWordAnd(right) && IsIntConstant(left)) {
right_type = MachineTypeForNarrowWordAnd(right, left);
left_type = right_type;
} else {
// TODO(epertoso): we can probably get some size information out phi nodes.
// If the load representations don't match, both operands will be
// zero/sign-extended to 32bit.
left_type = MachineTypeForNarrow(left, right);
right_type = MachineTypeForNarrow(right, left);
}
if (left_type == right_type) {
switch (left_type.representation()) {
case MachineRepresentation::kBit:
case MachineRepresentation::kWord8: {
if (opcode == kX64Test || opcode == kX64Test32) return kX64Test8;
if (opcode == kX64Cmp || opcode == kX64Cmp32) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kX64Cmp8;
}
break;
}
case MachineRepresentation::kWord16:
if (opcode == kX64Test || opcode == kX64Test32) return kX64Test16;
if (opcode == kX64Cmp || opcode == kX64Cmp32) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kX64Cmp16;
}
break;
case MachineRepresentation::kWord32:
if (opcode == kX64Test) return kX64Test32;
if (opcode == kX64Cmp) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kX64Cmp32;
}
break;
#ifdef V8_COMPRESS_POINTERS
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTaggedPointer:
case MachineRepresentation::kTagged:
// When pointer compression is enabled the lower 32-bits uniquely
// identify tagged value.
if (opcode == kX64Cmp) return kX64Cmp32;
break;
#endif
default:
break;
}
}
return opcode;
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// The 32-bit comparisons automatically truncate Word64
// values to Word32 range, no need to do that explicitly.
if (opcode == kX64Cmp32 || opcode == kX64Test32) {
if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) {
left = left->InputAt(0);
}
if (right->opcode() == IrOpcode::kTruncateInt64ToInt32) {
right = right->InputAt(0);
}
}
opcode = TryNarrowOpcodeSize(opcode, left, right, cont);
// If one of the two inputs is an immediate, make sure it's on the right, or
// if one of the two inputs is a memory operand, make sure it's on the left.
int effect_level = selector->GetEffectLevel(node, cont);
if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) ||
(g.CanBeMemoryOperand(opcode, node, right, effect_level) &&
!g.CanBeMemoryOperand(opcode, node, left, effect_level))) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
// Match immediates on right side of comparison.
if (g.CanBeImmediate(right)) {
if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, opcode, left,
g.UseImmediate(right), cont);
}
return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right),
cont);
}
// Match memory operands on left side of comparison.
if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, opcode, left,
g.UseRegister(right), cont);
}
return VisitCompare(selector, opcode, left, right, cont,
node->op()->HasProperty(Operator::kCommutative));
}
void VisitWord64EqualImpl(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
if (selector->CanUseRootsRegister()) {
X64OperandGenerator g(selector);
const RootsTable& roots_table = selector->isolate()->roots_table();
RootIndex root_index;
HeapObjectBinopMatcher m(node);
if (m.right().HasResolvedValue() &&
roots_table.IsRootHandle(m.right().ResolvedValue(), &root_index)) {
InstructionCode opcode =
kX64Cmp | AddressingModeField::encode(kMode_Root);
return VisitCompare(
selector, opcode,
g.TempImmediate(
TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)),
g.UseRegister(m.left().node()), cont);
}
}
VisitWordCompare(selector, node, kX64Cmp, cont);
}
void VisitWord32EqualImpl(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
if (COMPRESS_POINTERS_BOOL && selector->CanUseRootsRegister()) {
X64OperandGenerator g(selector);
const RootsTable& roots_table = selector->isolate()->roots_table();
RootIndex root_index;
Node* left = nullptr;
Handle<HeapObject> right;
// HeapConstants and CompressedHeapConstants can be treated the same when
// using them as an input to a 32-bit comparison. Check whether either is
// present.
{
CompressedHeapObjectBinopMatcher m(node);
if (m.right().HasResolvedValue()) {
left = m.left().node();
right = m.right().ResolvedValue();
} else {
HeapObjectBinopMatcher m2(node);
if (m2.right().HasResolvedValue()) {
left = m2.left().node();
right = m2.right().ResolvedValue();
}
}
}
if (!right.is_null() && roots_table.IsRootHandle(right, &root_index)) {
DCHECK_NE(left, nullptr);
InstructionCode opcode =
kX64Cmp32 | AddressingModeField::encode(kMode_Root);
return VisitCompare(
selector, opcode,
g.TempImmediate(
TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)),
g.UseRegister(left), cont);
}
}
VisitWordCompare(selector, node, kX64Cmp32, cont);
}
// Shared routine for comparison with zero.
void VisitCompareZero(InstructionSelector* selector, Node* user, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
if (cont->IsBranch() &&
(cont->condition() == kNotEqual || cont->condition() == kEqual)) {
switch (node->opcode()) {
#define FLAGS_SET_BINOP_LIST(V) \
V(kInt32Add, VisitBinop, kX64Add32) \
V(kInt32Sub, VisitBinop, kX64Sub32) \
V(kWord32And, VisitBinop, kX64And32) \
V(kWord32Or, VisitBinop, kX64Or32) \
V(kInt64Add, VisitBinop, kX64Add) \
V(kInt64Sub, VisitBinop, kX64Sub) \
V(kWord64And, VisitBinop, kX64And) \
V(kWord64Or, VisitBinop, kX64Or)
#define FLAGS_SET_BINOP(opcode, Visit, archOpcode) \
case IrOpcode::opcode: \
if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \
return Visit(selector, node, archOpcode, cont); \
} \
break;
FLAGS_SET_BINOP_LIST(FLAGS_SET_BINOP)
#undef FLAGS_SET_BINOP_LIST
#undef FLAGS_SET_BINOP
#define TRY_VISIT_WORD32_SHIFT TryVisitWordShift<Int32BinopMatcher, 32>
#define TRY_VISIT_WORD64_SHIFT TryVisitWordShift<Int64BinopMatcher, 64>
// Skip Word64Sar/Word32Sar since no instruction reduction in most cases.
#define FLAGS_SET_SHIFT_LIST(V) \
V(kWord32Shl, TRY_VISIT_WORD32_SHIFT, kX64Shl32) \
V(kWord32Shr, TRY_VISIT_WORD32_SHIFT, kX64Shr32) \
V(kWord64Shl, TRY_VISIT_WORD64_SHIFT, kX64Shl) \
V(kWord64Shr, TRY_VISIT_WORD64_SHIFT, kX64Shr)
#define FLAGS_SET_SHIFT(opcode, TryVisit, archOpcode) \
case IrOpcode::opcode: \
if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \
if (TryVisit(selector, node, archOpcode, cont)) return; \
} \
break;
FLAGS_SET_SHIFT_LIST(FLAGS_SET_SHIFT)
#undef TRY_VISIT_WORD32_SHIFT
#undef TRY_VISIT_WORD64_SHIFT
#undef FLAGS_SET_SHIFT_LIST
#undef FLAGS_SET_SHIFT
default:
break;
}
}
int effect_level = selector->GetEffectLevel(node, cont);
if (node->opcode() == IrOpcode::kLoad ||
node->opcode() == IrOpcode::kLoadImmutable) {
switch (LoadRepresentationOf(node->op()).representation()) {
case MachineRepresentation::kWord8:
if (opcode == kX64Cmp32) {
opcode = kX64Cmp8;
} else if (opcode == kX64Test32) {
opcode = kX64Test8;
}
break;
case MachineRepresentation::kWord16:
if (opcode == kX64Cmp32) {
opcode = kX64Cmp16;
} else if (opcode == kX64Test32) {
opcode = kX64Test16;
}
break;
default:
break;
}
}
if (g.CanBeMemoryOperand(opcode, user, node, effect_level)) {
VisitCompareWithMemoryOperand(selector, opcode, node, g.TempImmediate(0),
cont);
} else {
VisitCompare(selector, opcode, g.Use(node), g.TempImmediate(0), cont);
}
}
// Shared routine for multiple float32 compare operations (inputs commuted).
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
InstructionCode const opcode =
selector->IsSupported(AVX) ? kAVXFloat32Cmp : kSSEFloat32Cmp;
VisitCompare(selector, opcode, right, left, cont, false);
}
// Shared routine for multiple float64 compare operations (inputs commuted).
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
InstructionCode const opcode =
selector->IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp;
VisitCompare(selector, opcode, right, left, cont, false);
}
// Shared routine for Word32/Word64 Atomic Binops
void VisitAtomicBinop(InstructionSelector* selector, Node* node,
ArchOpcode opcode, AtomicWidth width) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseUniqueRegister(value), g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode)};
InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)};
InstructionOperand temps[] = {g.TempRegister()};
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AtomicWidthField::encode(width);
selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs,
arraysize(temps), temps);
}
// Shared routine for Word32/Word64 Atomic CmpExchg
void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode, AtomicWidth width) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseFixed(old_value, rax), g.UseUniqueRegister(new_value),
g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode)};
InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)};
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AtomicWidthField::encode(width);
selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs);
}
// Used instead of CanCover in VisitWordCompareZero: even if CanCover(user,
// node) returns false, if |node| is a comparison, then it does not require any
// registers, and can thus be covered by |user|.
bool CanCoverForCompareZero(InstructionSelector* selector, Node* user,
Node* node) {
if (selector->CanCover(user, node)) {
return true;
}
// Checking if |node| is a comparison. If so, it doesn't required any
// registers, and, as such, it can always be covered by |user|.
switch (node->opcode()) {
#define CHECK_CMP_OP(op) \
case IrOpcode::k##op: \
return true;
MACHINE_COMPARE_BINOP_LIST(CHECK_CMP_OP)
#undef CHECK_CMP_OP
default:
break;
}
return false;
}
} // namespace
// Shared routine for word comparison against zero.
void InstructionSelector::VisitWordCompareZero(Node* user, Node* value,
FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
if (CanCoverForCompareZero(this, user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord32EqualImpl(this, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kWord64Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int64BinopMatcher m(value);
if (m.right().Is(0) && CanCover(user, value)) {
// Try to combine the branch with a comparison.
Node* const eq_user = m.node();
Node* const eq_value = m.left().node();
if (CanCover(eq_user, eq_value)) {
switch (eq_value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWordCompare(this, eq_value, kX64Cmp, cont);
case IrOpcode::kWord64And:
return VisitWordCompare(this, eq_value, kX64Test, cont);
default:
break;
}
}
return VisitCompareZero(this, eq_user, eq_value, kX64Cmp, cont);
}
return VisitWord64EqualImpl(this, value, cont);
}
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kFloat64LessThan: {
Float64BinopMatcher m(value);
if (m.left().Is(0.0) && m.right().IsFloat64Abs()) {
// This matches the pattern
//
// Float64LessThan(#0.0, Float64Abs(x))
//
// which TurboFan generates for NumberToBoolean in the general case,
// and which evaluates to false if x is 0, -0 or NaN. We can compile
// this to a simple (v)ucomisd using not_equal flags condition, which
// avoids the costly Float64Abs.
cont->OverwriteAndNegateIfEqual(kNotEqual);
InstructionCode const opcode =
IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp;
return VisitCompare(this, opcode, m.left().node(),
m.right().InputAt(0), cont, false);
}
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat64Compare(this, value, cont);
}
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch