| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/diagnostics/gdb-jit.h" |
| |
| #include <iterator> |
| #include <map> |
| #include <memory> |
| #include <vector> |
| |
| #include "include/v8-callbacks.h" |
| #include "src/api/api-inl.h" |
| #include "src/base/address-region.h" |
| #include "src/base/bits.h" |
| #include "src/base/hashmap.h" |
| #include "src/base/memory.h" |
| #include "src/base/platform/platform.h" |
| #include "src/base/platform/wrappers.h" |
| #include "src/base/strings.h" |
| #include "src/base/vector.h" |
| #include "src/execution/frames-inl.h" |
| #include "src/execution/frames.h" |
| #include "src/handles/global-handles.h" |
| #include "src/init/bootstrapper.h" |
| #include "src/objects/objects.h" |
| #include "src/utils/ostreams.h" |
| #include "src/zone/zone-chunk-list.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace GDBJITInterface { |
| |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| |
| #ifdef __APPLE__ |
| #define __MACH_O |
| class MachO; |
| class MachOSection; |
| using DebugObject = MachO; |
| using DebugSection = MachOSection; |
| #else |
| #define __ELF |
| class ELF; |
| class ELFSection; |
| using DebugObject = ELF; |
| using DebugSection = ELFSection; |
| #endif |
| |
| class Writer { |
| public: |
| explicit Writer(DebugObject* debug_object) |
| : debug_object_(debug_object), |
| position_(0), |
| capacity_(1024), |
| buffer_(reinterpret_cast<byte*>(base::Malloc(capacity_))) {} |
| |
| ~Writer() { base::Free(buffer_); } |
| |
| uintptr_t position() const { return position_; } |
| |
| template <typename T> |
| class Slot { |
| public: |
| Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) {} |
| |
| T* operator->() { return w_->RawSlotAt<T>(offset_); } |
| |
| void set(const T& value) { |
| base::WriteUnalignedValue(w_->AddressAt<T>(offset_), value); |
| } |
| |
| Slot<T> at(int i) { return Slot<T>(w_, offset_ + sizeof(T) * i); } |
| |
| private: |
| Writer* w_; |
| uintptr_t offset_; |
| }; |
| |
| template <typename T> |
| void Write(const T& val) { |
| Ensure(position_ + sizeof(T)); |
| base::WriteUnalignedValue(AddressAt<T>(position_), val); |
| position_ += sizeof(T); |
| } |
| |
| template <typename T> |
| Slot<T> SlotAt(uintptr_t offset) { |
| Ensure(offset + sizeof(T)); |
| return Slot<T>(this, offset); |
| } |
| |
| template <typename T> |
| Slot<T> CreateSlotHere() { |
| return CreateSlotsHere<T>(1); |
| } |
| |
| template <typename T> |
| Slot<T> CreateSlotsHere(uint32_t count) { |
| uintptr_t slot_position = position_; |
| position_ += sizeof(T) * count; |
| Ensure(position_); |
| return SlotAt<T>(slot_position); |
| } |
| |
| void Ensure(uintptr_t pos) { |
| if (capacity_ < pos) { |
| while (capacity_ < pos) capacity_ *= 2; |
| buffer_ = reinterpret_cast<byte*>(base::Realloc(buffer_, capacity_)); |
| } |
| } |
| |
| DebugObject* debug_object() { return debug_object_; } |
| |
| byte* buffer() { return buffer_; } |
| |
| void Align(uintptr_t align) { |
| uintptr_t delta = position_ % align; |
| if (delta == 0) return; |
| uintptr_t padding = align - delta; |
| Ensure(position_ += padding); |
| DCHECK_EQ(position_ % align, 0); |
| } |
| |
| void WriteULEB128(uintptr_t value) { |
| do { |
| uint8_t byte = value & 0x7F; |
| value >>= 7; |
| if (value != 0) byte |= 0x80; |
| Write<uint8_t>(byte); |
| } while (value != 0); |
| } |
| |
| void WriteSLEB128(intptr_t value) { |
| bool more = true; |
| while (more) { |
| int8_t byte = value & 0x7F; |
| bool byte_sign = byte & 0x40; |
| value >>= 7; |
| |
| if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) { |
| more = false; |
| } else { |
| byte |= 0x80; |
| } |
| |
| Write<int8_t>(byte); |
| } |
| } |
| |
| void WriteString(const char* str) { |
| do { |
| Write<char>(*str); |
| } while (*str++); |
| } |
| |
| private: |
| template <typename T> |
| friend class Slot; |
| |
| template <typename T> |
| Address AddressAt(uintptr_t offset) { |
| DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); |
| return reinterpret_cast<Address>(&buffer_[offset]); |
| } |
| |
| template <typename T> |
| T* RawSlotAt(uintptr_t offset) { |
| DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); |
| return reinterpret_cast<T*>(&buffer_[offset]); |
| } |
| |
| DebugObject* debug_object_; |
| uintptr_t position_; |
| uintptr_t capacity_; |
| byte* buffer_; |
| }; |
| |
| class ELFStringTable; |
| |
| template <typename THeader> |
| class DebugSectionBase : public ZoneObject { |
| public: |
| virtual ~DebugSectionBase() = default; |
| |
| virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) { |
| uintptr_t start = writer->position(); |
| if (WriteBodyInternal(writer)) { |
| uintptr_t end = writer->position(); |
| header->offset = static_cast<uint32_t>(start); |
| #if defined(__MACH_O) |
| header->addr = 0; |
| #endif |
| header->size = end - start; |
| } |
| } |
| |
| virtual bool WriteBodyInternal(Writer* writer) { return false; } |
| |
| using Header = THeader; |
| }; |
| |
| struct MachOSectionHeader { |
| char sectname[16]; |
| char segname[16]; |
| #if V8_TARGET_ARCH_IA32 |
| uint32_t addr; |
| uint32_t size; |
| #else |
| uint64_t addr; |
| uint64_t size; |
| #endif |
| uint32_t offset; |
| uint32_t align; |
| uint32_t reloff; |
| uint32_t nreloc; |
| uint32_t flags; |
| uint32_t reserved1; |
| uint32_t reserved2; |
| }; |
| |
| class MachOSection : public DebugSectionBase<MachOSectionHeader> { |
| public: |
| enum Type { |
| S_REGULAR = 0x0u, |
| S_ATTR_COALESCED = 0xBu, |
| S_ATTR_SOME_INSTRUCTIONS = 0x400u, |
| S_ATTR_DEBUG = 0x02000000u, |
| S_ATTR_PURE_INSTRUCTIONS = 0x80000000u |
| }; |
| |
| MachOSection(const char* name, const char* segment, uint32_t align, |
| uint32_t flags) |
| : name_(name), segment_(segment), align_(align), flags_(flags) { |
| if (align_ != 0) { |
| DCHECK(base::bits::IsPowerOfTwo(align)); |
| align_ = base::bits::WhichPowerOfTwo(align_); |
| } |
| } |
| |
| ~MachOSection() override = default; |
| |
| virtual void PopulateHeader(Writer::Slot<Header> header) { |
| header->addr = 0; |
| header->size = 0; |
| header->offset = 0; |
| header->align = align_; |
| header->reloff = 0; |
| header->nreloc = 0; |
| header->flags = flags_; |
| header->reserved1 = 0; |
| header->reserved2 = 0; |
| memset(header->sectname, 0, sizeof(header->sectname)); |
| memset(header->segname, 0, sizeof(header->segname)); |
| DCHECK(strlen(name_) < sizeof(header->sectname)); |
| DCHECK(strlen(segment_) < sizeof(header->segname)); |
| strncpy(header->sectname, name_, sizeof(header->sectname)); |
| strncpy(header->segname, segment_, sizeof(header->segname)); |
| } |
| |
| private: |
| const char* name_; |
| const char* segment_; |
| uint32_t align_; |
| uint32_t flags_; |
| }; |
| |
| struct ELFSectionHeader { |
| uint32_t name; |
| uint32_t type; |
| uintptr_t flags; |
| uintptr_t address; |
| uintptr_t offset; |
| uintptr_t size; |
| uint32_t link; |
| uint32_t info; |
| uintptr_t alignment; |
| uintptr_t entry_size; |
| }; |
| |
| #if defined(__ELF) |
| class ELFSection : public DebugSectionBase<ELFSectionHeader> { |
| public: |
| enum Type { |
| TYPE_NULL = 0, |
| TYPE_PROGBITS = 1, |
| TYPE_SYMTAB = 2, |
| TYPE_STRTAB = 3, |
| TYPE_RELA = 4, |
| TYPE_HASH = 5, |
| TYPE_DYNAMIC = 6, |
| TYPE_NOTE = 7, |
| TYPE_NOBITS = 8, |
| TYPE_REL = 9, |
| TYPE_SHLIB = 10, |
| TYPE_DYNSYM = 11, |
| TYPE_LOPROC = 0x70000000, |
| TYPE_X86_64_UNWIND = 0x70000001, |
| TYPE_HIPROC = 0x7FFFFFFF, |
| TYPE_LOUSER = 0x80000000, |
| TYPE_HIUSER = 0xFFFFFFFF |
| }; |
| |
| enum Flags { FLAG_WRITE = 1, FLAG_ALLOC = 2, FLAG_EXEC = 4 }; |
| |
| enum SpecialIndexes { INDEX_ABSOLUTE = 0xFFF1 }; |
| |
| ELFSection(const char* name, Type type, uintptr_t align) |
| : name_(name), type_(type), align_(align) {} |
| |
| ~ELFSection() override = default; |
| |
| void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab); |
| |
| void WriteBody(Writer::Slot<Header> header, Writer* w) override { |
| uintptr_t start = w->position(); |
| if (WriteBodyInternal(w)) { |
| uintptr_t end = w->position(); |
| header->offset = start; |
| header->size = end - start; |
| } |
| } |
| |
| bool WriteBodyInternal(Writer* w) override { return false; } |
| |
| uint16_t index() const { return index_; } |
| void set_index(uint16_t index) { index_ = index; } |
| |
| protected: |
| virtual void PopulateHeader(Writer::Slot<Header> header) { |
| header->flags = 0; |
| header->address = 0; |
| header->offset = 0; |
| header->size = 0; |
| header->link = 0; |
| header->info = 0; |
| header->entry_size = 0; |
| } |
| |
| private: |
| const char* name_; |
| Type type_; |
| uintptr_t align_; |
| uint16_t index_; |
| }; |
| #endif // defined(__ELF) |
| |
| #if defined(__MACH_O) |
| class MachOTextSection : public MachOSection { |
| public: |
| MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size) |
| : MachOSection("__text", "__TEXT", align, |
| MachOSection::S_REGULAR | |
| MachOSection::S_ATTR_SOME_INSTRUCTIONS | |
| MachOSection::S_ATTR_PURE_INSTRUCTIONS), |
| addr_(addr), |
| size_(size) {} |
| |
| protected: |
| virtual void PopulateHeader(Writer::Slot<Header> header) { |
| MachOSection::PopulateHeader(header); |
| header->addr = addr_; |
| header->size = size_; |
| } |
| |
| private: |
| uintptr_t addr_; |
| uintptr_t size_; |
| }; |
| #endif // defined(__MACH_O) |
| |
| #if defined(__ELF) |
| class FullHeaderELFSection : public ELFSection { |
| public: |
| FullHeaderELFSection(const char* name, Type type, uintptr_t align, |
| uintptr_t addr, uintptr_t offset, uintptr_t size, |
| uintptr_t flags) |
| : ELFSection(name, type, align), |
| addr_(addr), |
| offset_(offset), |
| size_(size), |
| flags_(flags) {} |
| |
| protected: |
| void PopulateHeader(Writer::Slot<Header> header) override { |
| ELFSection::PopulateHeader(header); |
| header->address = addr_; |
| header->offset = offset_; |
| header->size = size_; |
| header->flags = flags_; |
| } |
| |
| private: |
| uintptr_t addr_; |
| uintptr_t offset_; |
| uintptr_t size_; |
| uintptr_t flags_; |
| }; |
| |
| class ELFStringTable : public ELFSection { |
| public: |
| explicit ELFStringTable(const char* name) |
| : ELFSection(name, TYPE_STRTAB, 1), |
| writer_(nullptr), |
| offset_(0), |
| size_(0) {} |
| |
| uintptr_t Add(const char* str) { |
| if (*str == '\0') return 0; |
| |
| uintptr_t offset = size_; |
| WriteString(str); |
| return offset; |
| } |
| |
| void AttachWriter(Writer* w) { |
| writer_ = w; |
| offset_ = writer_->position(); |
| |
| // First entry in the string table should be an empty string. |
| WriteString(""); |
| } |
| |
| void DetachWriter() { writer_ = nullptr; } |
| |
| void WriteBody(Writer::Slot<Header> header, Writer* w) override { |
| DCHECK_NULL(writer_); |
| header->offset = offset_; |
| header->size = size_; |
| } |
| |
| private: |
| void WriteString(const char* str) { |
| uintptr_t written = 0; |
| do { |
| writer_->Write(*str); |
| written++; |
| } while (*str++); |
| size_ += written; |
| } |
| |
| Writer* writer_; |
| |
| uintptr_t offset_; |
| uintptr_t size_; |
| }; |
| |
| void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header, |
| ELFStringTable* strtab) { |
| header->name = static_cast<uint32_t>(strtab->Add(name_)); |
| header->type = type_; |
| header->alignment = align_; |
| PopulateHeader(header); |
| } |
| #endif // defined(__ELF) |
| |
| #if defined(__MACH_O) |
| class MachO { |
| public: |
| explicit MachO(Zone* zone) : sections_(zone) {} |
| |
| size_t AddSection(MachOSection* section) { |
| sections_.push_back(section); |
| return sections_.size() - 1; |
| } |
| |
| void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) { |
| Writer::Slot<MachOHeader> header = WriteHeader(w); |
| uintptr_t load_command_start = w->position(); |
| Writer::Slot<MachOSegmentCommand> cmd = |
| WriteSegmentCommand(w, code_start, code_size); |
| WriteSections(w, cmd, header, load_command_start); |
| } |
| |
| private: |
| struct MachOHeader { |
| uint32_t magic; |
| uint32_t cputype; |
| uint32_t cpusubtype; |
| uint32_t filetype; |
| uint32_t ncmds; |
| uint32_t sizeofcmds; |
| uint32_t flags; |
| #if V8_TARGET_ARCH_X64 |
| uint32_t reserved; |
| #endif |
| }; |
| |
| struct MachOSegmentCommand { |
| uint32_t cmd; |
| uint32_t cmdsize; |
| char segname[16]; |
| #if V8_TARGET_ARCH_IA32 |
| uint32_t vmaddr; |
| uint32_t vmsize; |
| uint32_t fileoff; |
| uint32_t filesize; |
| #else |
| uint64_t vmaddr; |
| uint64_t vmsize; |
| uint64_t fileoff; |
| uint64_t filesize; |
| #endif |
| uint32_t maxprot; |
| uint32_t initprot; |
| uint32_t nsects; |
| uint32_t flags; |
| }; |
| |
| enum MachOLoadCommandCmd { |
| LC_SEGMENT_32 = 0x00000001u, |
| LC_SEGMENT_64 = 0x00000019u |
| }; |
| |
| Writer::Slot<MachOHeader> WriteHeader(Writer* w) { |
| DCHECK_EQ(w->position(), 0); |
| Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>(); |
| #if V8_TARGET_ARCH_IA32 |
| header->magic = 0xFEEDFACEu; |
| header->cputype = 7; // i386 |
| header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL |
| #elif V8_TARGET_ARCH_X64 |
| header->magic = 0xFEEDFACFu; |
| header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI |
| header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL |
| header->reserved = 0; |
| #else |
| #error Unsupported target architecture. |
| #endif |
| header->filetype = 0x1; // MH_OBJECT |
| header->ncmds = 1; |
| header->sizeofcmds = 0; |
| header->flags = 0; |
| return header; |
| } |
| |
| Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w, |
| uintptr_t code_start, |
| uintptr_t code_size) { |
| Writer::Slot<MachOSegmentCommand> cmd = |
| w->CreateSlotHere<MachOSegmentCommand>(); |
| #if V8_TARGET_ARCH_IA32 |
| cmd->cmd = LC_SEGMENT_32; |
| #else |
| cmd->cmd = LC_SEGMENT_64; |
| #endif |
| cmd->vmaddr = code_start; |
| cmd->vmsize = code_size; |
| cmd->fileoff = 0; |
| cmd->filesize = 0; |
| cmd->maxprot = 7; |
| cmd->initprot = 7; |
| cmd->flags = 0; |
| cmd->nsects = static_cast<uint32_t>(sections_.size()); |
| memset(cmd->segname, 0, 16); |
| cmd->cmdsize = sizeof(MachOSegmentCommand) + |
| sizeof(MachOSection::Header) * cmd->nsects; |
| return cmd; |
| } |
| |
| void WriteSections(Writer* w, Writer::Slot<MachOSegmentCommand> cmd, |
| Writer::Slot<MachOHeader> header, |
| uintptr_t load_command_start) { |
| Writer::Slot<MachOSection::Header> headers = |
| w->CreateSlotsHere<MachOSection::Header>( |
| static_cast<uint32_t>(sections_.size())); |
| cmd->fileoff = w->position(); |
| header->sizeofcmds = |
| static_cast<uint32_t>(w->position() - load_command_start); |
| uint32_t index = 0; |
| for (MachOSection* section : sections_) { |
| section->PopulateHeader(headers.at(index)); |
| section->WriteBody(headers.at(index), w); |
| index++; |
| } |
| cmd->filesize = w->position() - (uintptr_t)cmd->fileoff; |
| } |
| |
| ZoneChunkList<MachOSection*> sections_; |
| }; |
| #endif // defined(__MACH_O) |
| |
| #if defined(__ELF) |
| class ELF { |
| public: |
| explicit ELF(Zone* zone) : sections_(zone) { |
| sections_.push_back(zone->New<ELFSection>("", ELFSection::TYPE_NULL, 0)); |
| sections_.push_back(zone->New<ELFStringTable>(".shstrtab")); |
| } |
| |
| void Write(Writer* w) { |
| WriteHeader(w); |
| WriteSectionTable(w); |
| WriteSections(w); |
| } |
| |
| ELFSection* SectionAt(uint32_t index) { return *sections_.Find(index); } |
| |
| size_t AddSection(ELFSection* section) { |
| sections_.push_back(section); |
| section->set_index(sections_.size() - 1); |
| return sections_.size() - 1; |
| } |
| |
| private: |
| struct ELFHeader { |
| uint8_t ident[16]; |
| uint16_t type; |
| uint16_t machine; |
| uint32_t version; |
| uintptr_t entry; |
| uintptr_t pht_offset; |
| uintptr_t sht_offset; |
| uint32_t flags; |
| uint16_t header_size; |
| uint16_t pht_entry_size; |
| uint16_t pht_entry_num; |
| uint16_t sht_entry_size; |
| uint16_t sht_entry_num; |
| uint16_t sht_strtab_index; |
| }; |
| |
| void WriteHeader(Writer* w) { |
| DCHECK_EQ(w->position(), 0); |
| Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>(); |
| #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM) |
| const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 1, 1, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0}; |
| #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT || \ |
| V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN |
| const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 1, 1, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0}; |
| #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX |
| const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0}; |
| #elif V8_TARGET_ARCH_S390X |
| const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 3, |
| 0, 0, 0, 0, 0, 0, 0, 0}; |
| #elif V8_TARGET_ARCH_S390 |
| const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 2, 1, 3, |
| 0, 0, 0, 0, 0, 0, 0, 0}; |
| #else |
| #error Unsupported target architecture. |
| #endif |
| memcpy(header->ident, ident, 16); |
| header->type = 1; |
| #if V8_TARGET_ARCH_IA32 |
| header->machine = 3; |
| #elif V8_TARGET_ARCH_X64 |
| // Processor identification value for x64 is 62 as defined in |
| // System V ABI, AMD64 Supplement |
| // http://www.x86-64.org/documentation/abi.pdf |
| header->machine = 62; |
| #elif V8_TARGET_ARCH_ARM |
| // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at |
| // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf |
| header->machine = 40; |
| #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX |
| // Set to EM_PPC64, defined as 21, in Power ABI, |
| // Join the next 4 lines, omitting the spaces and double-slashes. |
| // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/ |
| // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf? |
| // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t= |
| // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr |
| header->machine = 21; |
| #elif V8_TARGET_ARCH_S390 |
| // Processor identification value is 22 (EM_S390) as defined in the ABI: |
| // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691 |
| // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599 |
| header->machine = 22; |
| #else |
| #error Unsupported target architecture. |
| #endif |
| header->version = 1; |
| header->entry = 0; |
| header->pht_offset = 0; |
| header->sht_offset = sizeof(ELFHeader); // Section table follows header. |
| header->flags = 0; |
| header->header_size = sizeof(ELFHeader); |
| header->pht_entry_size = 0; |
| header->pht_entry_num = 0; |
| header->sht_entry_size = sizeof(ELFSection::Header); |
| header->sht_entry_num = sections_.size(); |
| header->sht_strtab_index = 1; |
| } |
| |
| void WriteSectionTable(Writer* w) { |
| // Section headers table immediately follows file header. |
| DCHECK(w->position() == sizeof(ELFHeader)); |
| |
| Writer::Slot<ELFSection::Header> headers = |
| w->CreateSlotsHere<ELFSection::Header>( |
| static_cast<uint32_t>(sections_.size())); |
| |
| // String table for section table is the first section. |
| ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1)); |
| strtab->AttachWriter(w); |
| uint32_t index = 0; |
| for (ELFSection* section : sections_) { |
| section->PopulateHeader(headers.at(index), strtab); |
| index++; |
| } |
| strtab->DetachWriter(); |
| } |
| |
| int SectionHeaderPosition(uint32_t section_index) { |
| return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index; |
| } |
| |
| void WriteSections(Writer* w) { |
| Writer::Slot<ELFSection::Header> headers = |
| w->SlotAt<ELFSection::Header>(sizeof(ELFHeader)); |
| |
| uint32_t index = 0; |
| for (ELFSection* section : sections_) { |
| section->WriteBody(headers.at(index), w); |
| index++; |
| } |
| } |
| |
| ZoneChunkList<ELFSection*> sections_; |
| }; |
| |
| class ELFSymbol { |
| public: |
| enum Type { |
| TYPE_NOTYPE = 0, |
| TYPE_OBJECT = 1, |
| TYPE_FUNC = 2, |
| TYPE_SECTION = 3, |
| TYPE_FILE = 4, |
| TYPE_LOPROC = 13, |
| TYPE_HIPROC = 15 |
| }; |
| |
| enum Binding { |
| BIND_LOCAL = 0, |
| BIND_GLOBAL = 1, |
| BIND_WEAK = 2, |
| BIND_LOPROC = 13, |
| BIND_HIPROC = 15 |
| }; |
| |
| ELFSymbol(const char* name, uintptr_t value, uintptr_t size, Binding binding, |
| Type type, uint16_t section) |
| : name(name), |
| value(value), |
| size(size), |
| info((binding << 4) | type), |
| other(0), |
| section(section) {} |
| |
| Binding binding() const { return static_cast<Binding>(info >> 4); } |
| #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \ |
| (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT)) |
| struct SerializedLayout { |
| SerializedLayout(uint32_t name, uintptr_t value, uintptr_t size, |
| Binding binding, Type type, uint16_t section) |
| : name(name), |
| value(value), |
| size(size), |
| info((binding << 4) | type), |
| other(0), |
| section(section) {} |
| |
| uint32_t name; |
| uintptr_t value; |
| uintptr_t size; |
| uint8_t info; |
| uint8_t other; |
| uint16_t section; |
| }; |
| #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT || \ |
| V8_TARGET_ARCH_PPC64 && V8_OS_LINUX || V8_TARGET_ARCH_S390X |
| struct SerializedLayout { |
| SerializedLayout(uint32_t name, uintptr_t value, uintptr_t size, |
| Binding binding, Type type, uint16_t section) |
| : name(name), |
| info((binding << 4) | type), |
| other(0), |
| section(section), |
| value(value), |
| size(size) {} |
| |
| uint32_t name; |
| uint8_t info; |
| uint8_t other; |
| uint16_t section; |
| uintptr_t value; |
| uintptr_t size; |
| }; |
| #endif |
| |
| void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) const { |
| // Convert symbol names from strings to indexes in the string table. |
| s->name = static_cast<uint32_t>(t->Add(name)); |
| s->value = value; |
| s->size = size; |
| s->info = info; |
| s->other = other; |
| s->section = section; |
| } |
| |
| private: |
| const char* name; |
| uintptr_t value; |
| uintptr_t size; |
| uint8_t info; |
| uint8_t other; |
| uint16_t section; |
| }; |
| |
| class ELFSymbolTable : public ELFSection { |
| public: |
| ELFSymbolTable(const char* name, Zone* zone) |
| : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)), |
| locals_(zone), |
| globals_(zone) {} |
| |
| void WriteBody(Writer::Slot<Header> header, Writer* w) override { |
| w->Align(header->alignment); |
| size_t total_symbols = locals_.size() + globals_.size() + 1; |
| header->offset = w->position(); |
| |
| Writer::Slot<ELFSymbol::SerializedLayout> symbols = |
| w->CreateSlotsHere<ELFSymbol::SerializedLayout>( |
| static_cast<uint32_t>(total_symbols)); |
| |
| header->size = w->position() - header->offset; |
| |
| // String table for this symbol table should follow it in the section table. |
| ELFStringTable* strtab = |
| static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1)); |
| strtab->AttachWriter(w); |
| symbols.at(0).set(ELFSymbol::SerializedLayout( |
| 0, 0, 0, ELFSymbol::BIND_LOCAL, ELFSymbol::TYPE_NOTYPE, 0)); |
| WriteSymbolsList(&locals_, symbols.at(1), strtab); |
| WriteSymbolsList(&globals_, |
| symbols.at(static_cast<uint32_t>(locals_.size() + 1)), |
| strtab); |
| strtab->DetachWriter(); |
| } |
| |
| void Add(const ELFSymbol& symbol) { |
| if (symbol.binding() == ELFSymbol::BIND_LOCAL) { |
| locals_.push_back(symbol); |
| } else { |
| globals_.push_back(symbol); |
| } |
| } |
| |
| protected: |
| void PopulateHeader(Writer::Slot<Header> header) override { |
| ELFSection::PopulateHeader(header); |
| // We are assuming that string table will follow symbol table. |
| header->link = index() + 1; |
| header->info = static_cast<uint32_t>(locals_.size() + 1); |
| header->entry_size = sizeof(ELFSymbol::SerializedLayout); |
| } |
| |
| private: |
| void WriteSymbolsList(const ZoneChunkList<ELFSymbol>* src, |
| Writer::Slot<ELFSymbol::SerializedLayout> dst, |
| ELFStringTable* strtab) { |
| int i = 0; |
| for (const ELFSymbol& symbol : *src) { |
| symbol.Write(dst.at(i++), strtab); |
| } |
| } |
| |
| ZoneChunkList<ELFSymbol> locals_; |
| ZoneChunkList<ELFSymbol> globals_; |
| }; |
| #endif // defined(__ELF) |
| |
| class LineInfo : public Malloced { |
| public: |
| void SetPosition(intptr_t pc, int pos, bool is_statement) { |
| AddPCInfo(PCInfo(pc, pos, is_statement)); |
| } |
| |
| struct PCInfo { |
| PCInfo(intptr_t pc, int pos, bool is_statement) |
| : pc_(pc), pos_(pos), is_statement_(is_statement) {} |
| |
| intptr_t pc_; |
| int pos_; |
| bool is_statement_; |
| }; |
| |
| std::vector<PCInfo>* pc_info() { return &pc_info_; } |
| |
| private: |
| void AddPCInfo(const PCInfo& pc_info) { pc_info_.push_back(pc_info); } |
| |
| std::vector<PCInfo> pc_info_; |
| }; |
| |
| class CodeDescription { |
| public: |
| #if V8_TARGET_ARCH_X64 |
| enum StackState { |
| POST_RBP_PUSH, |
| POST_RBP_SET, |
| POST_RBP_POP, |
| STACK_STATE_MAX |
| }; |
| #endif |
| |
| CodeDescription(const char* name, base::AddressRegion region, |
| SharedFunctionInfo shared, LineInfo* lineinfo, |
| bool is_function) |
| : name_(name), |
| shared_info_(shared), |
| lineinfo_(lineinfo), |
| is_function_(is_function), |
| code_region_(region) {} |
| |
| const char* name() const { return name_; } |
| |
| LineInfo* lineinfo() const { return lineinfo_; } |
| |
| bool is_function() const { return is_function_; } |
| |
| bool has_scope_info() const { return !shared_info_.is_null(); } |
| |
| ScopeInfo scope_info() const { |
| DCHECK(has_scope_info()); |
| return shared_info_.scope_info(); |
| } |
| |
| uintptr_t CodeStart() const { return code_region_.begin(); } |
| |
| uintptr_t CodeEnd() const { return code_region_.end(); } |
| |
| uintptr_t CodeSize() const { return code_region_.size(); } |
| |
| bool has_script() { |
| return !shared_info_.is_null() && shared_info_.script().IsScript(); |
| } |
| |
| Script script() { return Script::cast(shared_info_.script()); } |
| |
| bool IsLineInfoAvailable() { return lineinfo_ != nullptr; } |
| |
| base::AddressRegion region() { return code_region_; } |
| |
| #if V8_TARGET_ARCH_X64 |
| uintptr_t GetStackStateStartAddress(StackState state) const { |
| DCHECK(state < STACK_STATE_MAX); |
| return stack_state_start_addresses_[state]; |
| } |
| |
| void SetStackStateStartAddress(StackState state, uintptr_t addr) { |
| DCHECK(state < STACK_STATE_MAX); |
| stack_state_start_addresses_[state] = addr; |
| } |
| #endif |
| |
| std::unique_ptr<char[]> GetFilename() { |
| if (!shared_info_.is_null() && script().name().IsString()) { |
| return String::cast(script().name()).ToCString(); |
| } else { |
| std::unique_ptr<char[]> result(new char[1]); |
| result[0] = 0; |
| return result; |
| } |
| } |
| |
| int GetScriptLineNumber(int pos) { |
| if (!shared_info_.is_null()) { |
| return script().GetLineNumber(pos) + 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| private: |
| const char* name_; |
| SharedFunctionInfo shared_info_; |
| LineInfo* lineinfo_; |
| bool is_function_; |
| base::AddressRegion code_region_; |
| #if V8_TARGET_ARCH_X64 |
| uintptr_t stack_state_start_addresses_[STACK_STATE_MAX]; |
| #endif |
| }; |
| |
| #if defined(__ELF) |
| static void CreateSymbolsTable(CodeDescription* desc, Zone* zone, ELF* elf, |
| size_t text_section_index) { |
| ELFSymbolTable* symtab = zone->New<ELFSymbolTable>(".symtab", zone); |
| ELFStringTable* strtab = zone->New<ELFStringTable>(".strtab"); |
| |
| // Symbol table should be followed by the linked string table. |
| elf->AddSection(symtab); |
| elf->AddSection(strtab); |
| |
| symtab->Add(ELFSymbol("V8 Code", 0, 0, ELFSymbol::BIND_LOCAL, |
| ELFSymbol::TYPE_FILE, ELFSection::INDEX_ABSOLUTE)); |
| |
| symtab->Add(ELFSymbol(desc->name(), 0, desc->CodeSize(), |
| ELFSymbol::BIND_GLOBAL, ELFSymbol::TYPE_FUNC, |
| text_section_index)); |
| } |
| #endif // defined(__ELF) |
| |
| class DebugInfoSection : public DebugSection { |
| public: |
| explicit DebugInfoSection(CodeDescription* desc) |
| #if defined(__ELF) |
| : ELFSection(".debug_info", TYPE_PROGBITS, 1), |
| #else |
| : MachOSection("__debug_info", "__DWARF", 1, |
| MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), |
| #endif |
| desc_(desc) { |
| } |
| |
| // DWARF2 standard |
| enum DWARF2LocationOp { |
| DW_OP_reg0 = 0x50, |
| DW_OP_reg1 = 0x51, |
| DW_OP_reg2 = 0x52, |
| DW_OP_reg3 = 0x53, |
| DW_OP_reg4 = 0x54, |
| DW_OP_reg5 = 0x55, |
| DW_OP_reg6 = 0x56, |
| DW_OP_reg7 = 0x57, |
| DW_OP_reg8 = 0x58, |
| DW_OP_reg9 = 0x59, |
| DW_OP_reg10 = 0x5A, |
| DW_OP_reg11 = 0x5B, |
| DW_OP_reg12 = 0x5C, |
| DW_OP_reg13 = 0x5D, |
| DW_OP_reg14 = 0x5E, |
| DW_OP_reg15 = 0x5F, |
| DW_OP_reg16 = 0x60, |
| DW_OP_reg17 = 0x61, |
| DW_OP_reg18 = 0x62, |
| DW_OP_reg19 = 0x63, |
| DW_OP_reg20 = 0x64, |
| DW_OP_reg21 = 0x65, |
| DW_OP_reg22 = 0x66, |
| DW_OP_reg23 = 0x67, |
| DW_OP_reg24 = 0x68, |
| DW_OP_reg25 = 0x69, |
| DW_OP_reg26 = 0x6A, |
| DW_OP_reg27 = 0x6B, |
| DW_OP_reg28 = 0x6C, |
| DW_OP_reg29 = 0x6D, |
| DW_OP_reg30 = 0x6E, |
| DW_OP_reg31 = 0x6F, |
| DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset |
| }; |
| |
| enum DWARF2Encoding { DW_ATE_ADDRESS = 0x1, DW_ATE_SIGNED = 0x5 }; |
| |
| bool WriteBodyInternal(Writer* w) override { |
| uintptr_t cu_start = w->position(); |
| Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>(); |
| uintptr_t start = w->position(); |
| w->Write<uint16_t>(2); // DWARF version. |
| w->Write<uint32_t>(0); // Abbreviation table offset. |
| w->Write<uint8_t>(sizeof(intptr_t)); |
| |
| w->WriteULEB128(1); // Abbreviation code. |
| w->WriteString(desc_->GetFilename().get()); |
| w->Write<intptr_t>(desc_->CodeStart()); |
| w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); |
| w->Write<uint32_t>(0); |
| |
| uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start); |
| w->WriteULEB128(3); |
| w->Write<uint8_t>(kSystemPointerSize); |
| w->WriteString("v8value"); |
| |
| if (desc_->has_scope_info()) { |
| ScopeInfo scope = desc_->scope_info(); |
| w->WriteULEB128(2); |
| w->WriteString(desc_->name()); |
| w->Write<intptr_t>(desc_->CodeStart()); |
| w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); |
| Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>(); |
| uintptr_t fb_block_start = w->position(); |
| #if V8_TARGET_ARCH_IA32 |
| w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32 |
| #elif V8_TARGET_ARCH_X64 |
| w->Write<uint8_t>(DW_OP_reg6); // and here on x64. |
| #elif V8_TARGET_ARCH_ARM |
| UNIMPLEMENTED(); |
| #elif V8_TARGET_ARCH_MIPS |
| UNIMPLEMENTED(); |
| #elif V8_TARGET_ARCH_MIPS64 |
| UNIMPLEMENTED(); |
| #elif V8_TARGET_ARCH_LOONG64 |
| UNIMPLEMENTED(); |
| #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX |
| w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64. |
| #elif V8_TARGET_ARCH_S390 |
| w->Write<uint8_t>(DW_OP_reg11); // The frame pointer's here on S390. |
| #else |
| #error Unsupported target architecture. |
| #endif |
| fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start)); |
| |
| int params = scope.ParameterCount(); |
| int context_slots = scope.ContextLocalCount(); |
| // The real slot ID is internal_slots + context_slot_id. |
| int internal_slots = scope.ContextHeaderLength(); |
| int current_abbreviation = 4; |
| |
| for (int param = 0; param < params; ++param) { |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString("param"); |
| w->Write(std::to_string(param).c_str()); |
| w->Write<uint32_t>(ty_offset); |
| Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); |
| uintptr_t block_start = w->position(); |
| w->Write<uint8_t>(DW_OP_fbreg); |
| w->WriteSLEB128(StandardFrameConstants::kFixedFrameSizeAboveFp + |
| kSystemPointerSize * (params - param - 1)); |
| block_size.set(static_cast<uint32_t>(w->position() - block_start)); |
| } |
| |
| // See contexts.h for more information. |
| DCHECK(internal_slots == 2 || internal_slots == 3); |
| DCHECK_EQ(Context::SCOPE_INFO_INDEX, 0); |
| DCHECK_EQ(Context::PREVIOUS_INDEX, 1); |
| DCHECK_EQ(Context::EXTENSION_INDEX, 2); |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString(".scope_info"); |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString(".previous"); |
| if (internal_slots == 3) { |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString(".extension"); |
| } |
| |
| for (int context_slot = 0; context_slot < context_slots; ++context_slot) { |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString("context_slot"); |
| w->Write(std::to_string(context_slot + internal_slots).c_str()); |
| } |
| |
| { |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString("__function"); |
| w->Write<uint32_t>(ty_offset); |
| Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); |
| uintptr_t block_start = w->position(); |
| w->Write<uint8_t>(DW_OP_fbreg); |
| w->WriteSLEB128(StandardFrameConstants::kFunctionOffset); |
| block_size.set(static_cast<uint32_t>(w->position() - block_start)); |
| } |
| |
| { |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteString("__context"); |
| w->Write<uint32_t>(ty_offset); |
| Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); |
| uintptr_t block_start = w->position(); |
| w->Write<uint8_t>(DW_OP_fbreg); |
| w->WriteSLEB128(StandardFrameConstants::kContextOffset); |
| block_size.set(static_cast<uint32_t>(w->position() - block_start)); |
| } |
| |
| w->WriteULEB128(0); // Terminate the sub program. |
| } |
| |
| w->WriteULEB128(0); // Terminate the compile unit. |
| size.set(static_cast<uint32_t>(w->position() - start)); |
| return true; |
| } |
| |
| private: |
| CodeDescription* desc_; |
| }; |
| |
| class DebugAbbrevSection : public DebugSection { |
| public: |
| explicit DebugAbbrevSection(CodeDescription* desc) |
| #ifdef __ELF |
| : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1), |
| #else |
| : MachOSection("__debug_abbrev", "__DWARF", 1, |
| MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), |
| #endif |
| desc_(desc) { |
| } |
| |
| // DWARF2 standard, figure 14. |
| enum DWARF2Tags { |
| DW_TAG_FORMAL_PARAMETER = 0x05, |
| DW_TAG_POINTER_TYPE = 0xF, |
| DW_TAG_COMPILE_UNIT = 0x11, |
| DW_TAG_STRUCTURE_TYPE = 0x13, |
| DW_TAG_BASE_TYPE = 0x24, |
| DW_TAG_SUBPROGRAM = 0x2E, |
| DW_TAG_VARIABLE = 0x34 |
| }; |
| |
| // DWARF2 standard, figure 16. |
| enum DWARF2ChildrenDetermination { DW_CHILDREN_NO = 0, DW_CHILDREN_YES = 1 }; |
| |
| // DWARF standard, figure 17. |
| enum DWARF2Attribute { |
| DW_AT_LOCATION = 0x2, |
| DW_AT_NAME = 0x3, |
| DW_AT_BYTE_SIZE = 0xB, |
| DW_AT_STMT_LIST = 0x10, |
| DW_AT_LOW_PC = 0x11, |
| DW_AT_HIGH_PC = 0x12, |
| DW_AT_ENCODING = 0x3E, |
| DW_AT_FRAME_BASE = 0x40, |
| DW_AT_TYPE = 0x49 |
| }; |
| |
| // DWARF2 standard, figure 19. |
| enum DWARF2AttributeForm { |
| DW_FORM_ADDR = 0x1, |
| DW_FORM_BLOCK4 = 0x4, |
| DW_FORM_STRING = 0x8, |
| DW_FORM_DATA4 = 0x6, |
| DW_FORM_BLOCK = 0x9, |
| DW_FORM_DATA1 = 0xB, |
| DW_FORM_FLAG = 0xC, |
| DW_FORM_REF4 = 0x13 |
| }; |
| |
| void WriteVariableAbbreviation(Writer* w, int abbreviation_code, |
| bool has_value, bool is_parameter) { |
| w->WriteULEB128(abbreviation_code); |
| w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE); |
| w->Write<uint8_t>(DW_CHILDREN_NO); |
| w->WriteULEB128(DW_AT_NAME); |
| w->WriteULEB128(DW_FORM_STRING); |
| if (has_value) { |
| w->WriteULEB128(DW_AT_TYPE); |
| w->WriteULEB128(DW_FORM_REF4); |
| w->WriteULEB128(DW_AT_LOCATION); |
| w->WriteULEB128(DW_FORM_BLOCK4); |
| } |
| w->WriteULEB128(0); |
| w->WriteULEB128(0); |
| } |
| |
| bool WriteBodyInternal(Writer* w) override { |
| int current_abbreviation = 1; |
| bool extra_info = desc_->has_scope_info(); |
| DCHECK(desc_->IsLineInfoAvailable()); |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteULEB128(DW_TAG_COMPILE_UNIT); |
| w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO); |
| w->WriteULEB128(DW_AT_NAME); |
| w->WriteULEB128(DW_FORM_STRING); |
| w->WriteULEB128(DW_AT_LOW_PC); |
| w->WriteULEB128(DW_FORM_ADDR); |
| w->WriteULEB128(DW_AT_HIGH_PC); |
| w->WriteULEB128(DW_FORM_ADDR); |
| w->WriteULEB128(DW_AT_STMT_LIST); |
| w->WriteULEB128(DW_FORM_DATA4); |
| w->WriteULEB128(0); |
| w->WriteULEB128(0); |
| |
| if (extra_info) { |
| ScopeInfo scope = desc_->scope_info(); |
| int params = scope.ParameterCount(); |
| int context_slots = scope.ContextLocalCount(); |
| // The real slot ID is internal_slots + context_slot_id. |
| int internal_slots = Context::MIN_CONTEXT_SLOTS; |
| // Total children is params + context_slots + internal_slots + 2 |
| // (__function and __context). |
| |
| // The extra duplication below seems to be necessary to keep |
| // gdb from getting upset on OSX. |
| w->WriteULEB128(current_abbreviation++); // Abbreviation code. |
| w->WriteULEB128(DW_TAG_SUBPROGRAM); |
| w->Write<uint8_t>(DW_CHILDREN_YES); |
| w->WriteULEB128(DW_AT_NAME); |
| w->WriteULEB128(DW_FORM_STRING); |
| w->WriteULEB128(DW_AT_LOW_PC); |
| w->WriteULEB128(DW_FORM_ADDR); |
| w->WriteULEB128(DW_AT_HIGH_PC); |
| w->WriteULEB128(DW_FORM_ADDR); |
| w->WriteULEB128(DW_AT_FRAME_BASE); |
| w->WriteULEB128(DW_FORM_BLOCK4); |
| w->WriteULEB128(0); |
| w->WriteULEB128(0); |
| |
| w->WriteULEB128(current_abbreviation++); |
| w->WriteULEB128(DW_TAG_STRUCTURE_TYPE); |
| w->Write<uint8_t>(DW_CHILDREN_NO); |
| w->WriteULEB128(DW_AT_BYTE_SIZE); |
| w->WriteULEB128(DW_FORM_DATA1); |
| w->WriteULEB128(DW_AT_NAME); |
| w->WriteULEB128(DW_FORM_STRING); |
| w->WriteULEB128(0); |
| w->WriteULEB128(0); |
| |
| for (int param = 0; param < params; ++param) { |
| WriteVariableAbbreviation(w, current_abbreviation++, true, true); |
| } |
| |
| for (int internal_slot = 0; internal_slot < internal_slots; |
| ++internal_slot) { |
| WriteVariableAbbreviation(w, current_abbreviation++, false, false); |
| } |
| |
| for (int context_slot = 0; context_slot < context_slots; ++context_slot) { |
| WriteVariableAbbreviation(w, current_abbreviation++, false, false); |
| } |
| |
| // The function. |
| WriteVariableAbbreviation(w, current_abbreviation++, true, false); |
| |
| // The context. |
| WriteVariableAbbreviation(w, current_abbreviation++, true, false); |
| |
| w->WriteULEB128(0); // Terminate the sibling list. |
| } |
| |
| w->WriteULEB128(0); // Terminate the table. |
| return true; |
| } |
| |
| private: |
| CodeDescription* desc_; |
| }; |
| |
| class DebugLineSection : public DebugSection { |
| public: |
| explicit DebugLineSection(CodeDescription* desc) |
| #ifdef __ELF |
| : ELFSection(".debug_line", TYPE_PROGBITS, 1), |
| #else |
| : MachOSection("__debug_line", "__DWARF", 1, |
| MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), |
| #endif |
| desc_(desc) { |
| } |
| |
| // DWARF2 standard, figure 34. |
| enum DWARF2Opcodes { |
| DW_LNS_COPY = 1, |
| DW_LNS_ADVANCE_PC = 2, |
| DW_LNS_ADVANCE_LINE = 3, |
| DW_LNS_SET_FILE = 4, |
| DW_LNS_SET_COLUMN = 5, |
| DW_LNS_NEGATE_STMT = 6 |
| }; |
| |
| // DWARF2 standard, figure 35. |
| enum DWARF2ExtendedOpcode { |
| DW_LNE_END_SEQUENCE = 1, |
| DW_LNE_SET_ADDRESS = 2, |
| DW_LNE_DEFINE_FILE = 3 |
| }; |
| |
| bool WriteBodyInternal(Writer* w) override { |
| // Write prologue. |
| Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>(); |
| uintptr_t start = w->position(); |
| |
| // Used for special opcodes |
| const int8_t line_base = 1; |
| const uint8_t line_range = 7; |
| const int8_t max_line_incr = (line_base + line_range - 1); |
| const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1; |
| |
| w->Write<uint16_t>(2); // Field version. |
| Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>(); |
| uintptr_t prologue_start = w->position(); |
| w->Write<uint8_t>(1); // Field minimum_instruction_length. |
| w->Write<uint8_t>(1); // Field default_is_stmt. |
| w->Write<int8_t>(line_base); // Field line_base. |
| w->Write<uint8_t>(line_range); // Field line_range. |
| w->Write<uint8_t>(opcode_base); // Field opcode_base. |
| w->Write<uint8_t>(0); // DW_LNS_COPY operands count. |
| w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count. |
| w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count. |
| w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count. |
| w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count. |
| w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count. |
| w->Write<uint8_t>(0); // Empty include_directories sequence. |
| w->WriteString(desc_->GetFilename().get()); // File name. |
| w->WriteULEB128(0); // Current directory. |
| w->WriteULEB128(0); // Unknown modification time. |
| w->WriteULEB128(0); // Unknown file size. |
| w->Write<uint8_t>(0); |
| prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start)); |
| |
| WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t)); |
| w->Write<intptr_t>(desc_->CodeStart()); |
| w->Write<uint8_t>(DW_LNS_COPY); |
| |
| intptr_t pc = 0; |
| intptr_t line = 1; |
| bool is_statement = true; |
| |
| std::vector<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info(); |
| std::sort(pc_info->begin(), pc_info->end(), &ComparePCInfo); |
| |
| for (size_t i = 0; i < pc_info->size(); i++) { |
| LineInfo::PCInfo* info = &pc_info->at(i); |
| DCHECK(info->pc_ >= pc); |
| |
| // Reduce bloating in the debug line table by removing duplicate line |
| // entries (per DWARF2 standard). |
| intptr_t new_line = desc_->GetScriptLineNumber(info->pos_); |
| if (new_line == line) { |
| continue; |
| } |
| |
| // Mark statement boundaries. For a better debugging experience, mark |
| // the last pc address in the function as a statement (e.g. "}"), so that |
| // a user can see the result of the last line executed in the function, |
| // should control reach the end. |
| if ((i + 1) == pc_info->size()) { |
| if (!is_statement) { |
| w->Write<uint8_t>(DW_LNS_NEGATE_STMT); |
| } |
| } else if (is_statement != info->is_statement_) { |
| w->Write<uint8_t>(DW_LNS_NEGATE_STMT); |
| is_statement = !is_statement; |
| } |
| |
| // Generate special opcodes, if possible. This results in more compact |
| // debug line tables. See the DWARF 2.0 standard to learn more about |
| // special opcodes. |
| uintptr_t pc_diff = info->pc_ - pc; |
| intptr_t line_diff = new_line - line; |
| |
| // Compute special opcode (see DWARF 2.0 standard) |
| intptr_t special_opcode = |
| (line_diff - line_base) + (line_range * pc_diff) + opcode_base; |
| |
| // If special_opcode is less than or equal to 255, it can be used as a |
| // special opcode. If line_diff is larger than the max line increment |
| // allowed for a special opcode, or if line_diff is less than the minimum |
| // line that can be added to the line register (i.e. line_base), then |
| // special_opcode can't be used. |
| if ((special_opcode >= opcode_base) && (special_opcode <= 255) && |
| (line_diff <= max_line_incr) && (line_diff >= line_base)) { |
| w->Write<uint8_t>(special_opcode); |
| } else { |
| w->Write<uint8_t>(DW_LNS_ADVANCE_PC); |
| w->WriteSLEB128(pc_diff); |
| w->Write<uint8_t>(DW_LNS_ADVANCE_LINE); |
| w->WriteSLEB128(line_diff); |
| w->Write<uint8_t>(DW_LNS_COPY); |
| } |
| |
| // Increment the pc and line operands. |
| pc += pc_diff; |
| line += line_diff; |
| } |
| // Advance the pc to the end of the routine, since the end sequence opcode |
| // requires this. |
| w->Write<uint8_t>(DW_LNS_ADVANCE_PC); |
| w->WriteSLEB128(desc_->CodeSize() - pc); |
| WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0); |
| total_length.set(static_cast<uint32_t>(w->position() - start)); |
| return true; |
| } |
| |
| private: |
| void WriteExtendedOpcode(Writer* w, DWARF2ExtendedOpcode op, |
| size_t operands_size) { |
| w->Write<uint8_t>(0); |
| w->WriteULEB128(operands_size + 1); |
| w->Write<uint8_t>(op); |
| } |
| |
| static bool ComparePCInfo(const LineInfo::PCInfo& a, |
| const LineInfo::PCInfo& b) { |
| if (a.pc_ == b.pc_) { |
| if (a.is_statement_ != b.is_statement_) { |
| return !b.is_statement_; |
| } |
| return false; |
| } |
| return a.pc_ < b.pc_; |
| } |
| |
| CodeDescription* desc_; |
| }; |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| class UnwindInfoSection : public DebugSection { |
| public: |
| explicit UnwindInfoSection(CodeDescription* desc); |
| bool WriteBodyInternal(Writer* w) override; |
| |
| int WriteCIE(Writer* w); |
| void WriteFDE(Writer* w, int); |
| |
| void WriteFDEStateOnEntry(Writer* w); |
| void WriteFDEStateAfterRBPPush(Writer* w); |
| void WriteFDEStateAfterRBPSet(Writer* w); |
| void WriteFDEStateAfterRBPPop(Writer* w); |
| |
| void WriteLength(Writer* w, Writer::Slot<uint32_t>* length_slot, |
| int initial_position); |
| |
| private: |
| CodeDescription* desc_; |
| |
| // DWARF3 Specification, Table 7.23 |
| enum CFIInstructions { |
| DW_CFA_ADVANCE_LOC = 0x40, |
| DW_CFA_OFFSET = 0x80, |
| DW_CFA_RESTORE = 0xC0, |
| DW_CFA_NOP = 0x00, |
| DW_CFA_SET_LOC = 0x01, |
| DW_CFA_ADVANCE_LOC1 = 0x02, |
| DW_CFA_ADVANCE_LOC2 = 0x03, |
| DW_CFA_ADVANCE_LOC4 = 0x04, |
| DW_CFA_OFFSET_EXTENDED = 0x05, |
| DW_CFA_RESTORE_EXTENDED = 0x06, |
| DW_CFA_UNDEFINED = 0x07, |
| DW_CFA_SAME_VALUE = 0x08, |
| DW_CFA_REGISTER = 0x09, |
| DW_CFA_REMEMBER_STATE = 0x0A, |
| DW_CFA_RESTORE_STATE = 0x0B, |
| DW_CFA_DEF_CFA = 0x0C, |
| DW_CFA_DEF_CFA_REGISTER = 0x0D, |
| DW_CFA_DEF_CFA_OFFSET = 0x0E, |
| |
| DW_CFA_DEF_CFA_EXPRESSION = 0x0F, |
| DW_CFA_EXPRESSION = 0x10, |
| DW_CFA_OFFSET_EXTENDED_SF = 0x11, |
| DW_CFA_DEF_CFA_SF = 0x12, |
| DW_CFA_DEF_CFA_OFFSET_SF = 0x13, |
| DW_CFA_VAL_OFFSET = 0x14, |
| DW_CFA_VAL_OFFSET_SF = 0x15, |
| DW_CFA_VAL_EXPRESSION = 0x16 |
| }; |
| |
| // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36 |
| enum RegisterMapping { |
| // Only the relevant ones have been added to reduce clutter. |
| AMD64_RBP = 6, |
| AMD64_RSP = 7, |
| AMD64_RA = 16 |
| }; |
| |
| enum CFIConstants { |
| CIE_ID = 0, |
| CIE_VERSION = 1, |
| CODE_ALIGN_FACTOR = 1, |
| DATA_ALIGN_FACTOR = 1, |
| RETURN_ADDRESS_REGISTER = AMD64_RA |
| }; |
| }; |
| |
| void UnwindInfoSection::WriteLength(Writer* w, |
| Writer::Slot<uint32_t>* length_slot, |
| int initial_position) { |
| uint32_t align = (w->position() - initial_position) % kSystemPointerSize; |
| |
| if (align != 0) { |
| for (uint32_t i = 0; i < (kSystemPointerSize - align); i++) { |
| w->Write<uint8_t>(DW_CFA_NOP); |
| } |
| } |
| |
| DCHECK_EQ((w->position() - initial_position) % kSystemPointerSize, 0); |
| length_slot->set(static_cast<uint32_t>(w->position() - initial_position)); |
| } |
| |
| UnwindInfoSection::UnwindInfoSection(CodeDescription* desc) |
| #ifdef __ELF |
| : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), |
| #else |
| : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t), |
| MachOSection::S_REGULAR), |
| #endif |
| desc_(desc) { |
| } |
| |
| int UnwindInfoSection::WriteCIE(Writer* w) { |
| Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>(); |
| uint32_t cie_position = static_cast<uint32_t>(w->position()); |
| |
| // Write out the CIE header. Currently no 'common instructions' are |
| // emitted onto the CIE; every FDE has its own set of instructions. |
| |
| w->Write<uint32_t>(CIE_ID); |
| w->Write<uint8_t>(CIE_VERSION); |
| w->Write<uint8_t>(0); // Null augmentation string. |
| w->WriteSLEB128(CODE_ALIGN_FACTOR); |
| w->WriteSLEB128(DATA_ALIGN_FACTOR); |
| w->Write<uint8_t>(RETURN_ADDRESS_REGISTER); |
| |
| WriteLength(w, &cie_length_slot, cie_position); |
| |
| return cie_position; |
| } |
| |
| void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) { |
| // The only FDE for this function. The CFA is the current RBP. |
| Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>(); |
| int fde_position = static_cast<uint32_t>(w->position()); |
| w->Write<int32_t>(fde_position - cie_position + 4); |
| |
| w->Write<uintptr_t>(desc_->CodeStart()); |
| w->Write<uintptr_t>(desc_->CodeSize()); |
| |
| WriteFDEStateOnEntry(w); |
| WriteFDEStateAfterRBPPush(w); |
| WriteFDEStateAfterRBPSet(w); |
| WriteFDEStateAfterRBPPop(w); |
| |
| WriteLength(w, &fde_length_slot, fde_position); |
| } |
| |
| void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) { |
| // The first state, just after the control has been transferred to the the |
| // function. |
| |
| // RBP for this function will be the value of RSP after pushing the RBP |
| // for the previous function. The previous RBP has not been pushed yet. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); |
| w->WriteULEB128(AMD64_RSP); |
| w->WriteSLEB128(-kSystemPointerSize); |
| |
| // The RA is stored at location CFA + kCallerPCOffset. This is an invariant, |
| // and hence omitted from the next states. |
| w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); |
| w->WriteULEB128(AMD64_RA); |
| w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset); |
| |
| // The RBP of the previous function is still in RBP. |
| w->Write<uint8_t>(DW_CFA_SAME_VALUE); |
| w->WriteULEB128(AMD64_RBP); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>( |
| desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH)); |
| } |
| |
| void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) { |
| // The second state, just after RBP has been pushed. |
| |
| // RBP / CFA for this function is now the current RSP, so just set the |
| // offset from the previous rule (from -8) to 0. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET); |
| w->WriteULEB128(0); |
| |
| // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant |
| // in this and the next state, and hence omitted in the next state. |
| w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); |
| w->WriteULEB128(AMD64_RBP); |
| w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>( |
| desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET)); |
| } |
| |
| void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) { |
| // The third state, after the RBP has been set. |
| |
| // The CFA can now directly be set to RBP. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA); |
| w->WriteULEB128(AMD64_RBP); |
| w->WriteULEB128(0); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>( |
| desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP)); |
| } |
| |
| void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) { |
| // The fourth (final) state. The RBP has been popped (just before issuing a |
| // return). |
| |
| // The CFA can is now calculated in the same way as in the first state. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); |
| w->WriteULEB128(AMD64_RSP); |
| w->WriteSLEB128(-kSystemPointerSize); |
| |
| // The RBP |
| w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); |
| w->WriteULEB128(AMD64_RBP); |
| w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>(desc_->CodeEnd()); |
| } |
| |
| bool UnwindInfoSection::WriteBodyInternal(Writer* w) { |
| uint32_t cie_position = WriteCIE(w); |
| WriteFDE(w, cie_position); |
| return true; |
| } |
| |
| #endif // V8_TARGET_ARCH_X64 |
| |
| static void CreateDWARFSections(CodeDescription* desc, Zone* zone, |
| DebugObject* obj) { |
| if (desc->IsLineInfoAvailable()) { |
| obj->AddSection(zone->New<DebugInfoSection>(desc)); |
| obj->AddSection(zone->New<DebugAbbrevSection>(desc)); |
| obj->AddSection(zone->New<DebugLineSection>(desc)); |
| } |
| #if V8_TARGET_ARCH_X64 |
| obj->AddSection(zone->New<UnwindInfoSection>(desc)); |
| #endif |
| } |
| |
| // ------------------------------------------------------------------- |
| // Binary GDB JIT Interface as described in |
| // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html |
| extern "C" { |
| enum JITAction { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN }; |
| |
| struct JITCodeEntry { |
| JITCodeEntry* next_; |
| JITCodeEntry* prev_; |
| Address symfile_addr_; |
| uint64_t symfile_size_; |
| }; |
| |
| struct JITDescriptor { |
| uint32_t version_; |
| uint32_t action_flag_; |
| JITCodeEntry* relevant_entry_; |
| JITCodeEntry* first_entry_; |
| }; |
| |
| // GDB will place breakpoint into this function. |
| // To prevent GCC from inlining or removing it we place noinline attribute |
| // and inline assembler statement inside. |
| void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } |
| |
| // GDB will inspect contents of this descriptor. |
| // Static initialization is necessary to prevent GDB from seeing |
| // uninitialized descriptor. |
| JITDescriptor __jit_debug_descriptor = {1, 0, nullptr, nullptr}; |
| |
| #ifdef OBJECT_PRINT |
| void __gdb_print_v8_object(Object object) { |
| StdoutStream os; |
| object.Print(os); |
| os << std::flush; |
| } |
| #endif |
| } |
| |
| static JITCodeEntry* CreateCodeEntry(Address symfile_addr, |
| uintptr_t symfile_size) { |
| JITCodeEntry* entry = static_cast<JITCodeEntry*>( |
| base::Malloc(sizeof(JITCodeEntry) + symfile_size)); |
| |
| entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1); |
| entry->symfile_size_ = symfile_size; |
| MemCopy(reinterpret_cast<void*>(entry->symfile_addr_), |
| reinterpret_cast<void*>(symfile_addr), symfile_size); |
| |
| entry->prev_ = entry->next_ = nullptr; |
| |
| return entry; |
| } |
| |
| static void DestroyCodeEntry(JITCodeEntry* entry) { base::Free(entry); } |
| |
| static void RegisterCodeEntry(JITCodeEntry* entry) { |
| entry->next_ = __jit_debug_descriptor.first_entry_; |
| if (entry->next_ != nullptr) entry->next_->prev_ = entry; |
| __jit_debug_descriptor.first_entry_ = __jit_debug_descriptor.relevant_entry_ = |
| entry; |
| |
| __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; |
| __jit_debug_register_code(); |
| } |
| |
| static void UnregisterCodeEntry(JITCodeEntry* entry) { |
| if (entry->prev_ != nullptr) { |
| entry->prev_->next_ = entry->next_; |
| } else { |
| __jit_debug_descriptor.first_entry_ = entry->next_; |
| } |
| |
| if (entry->next_ != nullptr) { |
| entry->next_->prev_ = entry->prev_; |
| } |
| |
| __jit_debug_descriptor.relevant_entry_ = entry; |
| __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; |
| __jit_debug_register_code(); |
| } |
| |
| static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) { |
| #ifdef __MACH_O |
| Zone zone(isolate->allocator(), ZONE_NAME); |
| MachO mach_o(&zone); |
| Writer w(&mach_o); |
| |
| const uint32_t code_alignment = static_cast<uint32_t>(kCodeAlignment); |
| static_assert(code_alignment == kCodeAlignment, |
| "Unsupported code alignment value"); |
| mach_o.AddSection(zone.New<MachOTextSection>( |
| code_alignment, desc->CodeStart(), desc->CodeSize())); |
| |
| CreateDWARFSections(desc, &zone, &mach_o); |
| |
| mach_o.Write(&w, desc->CodeStart(), desc->CodeSize()); |
| #else |
| Zone zone(isolate->allocator(), ZONE_NAME); |
| ELF elf(&zone); |
| Writer w(&elf); |
| |
| size_t text_section_index = elf.AddSection(zone.New<FullHeaderELFSection>( |
| ".text", ELFSection::TYPE_NOBITS, kCodeAlignment, desc->CodeStart(), 0, |
| desc->CodeSize(), ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC)); |
| |
| CreateSymbolsTable(desc, &zone, &elf, text_section_index); |
| |
| CreateDWARFSections(desc, &zone, &elf); |
| |
| elf.Write(&w); |
| #endif |
| |
| return CreateCodeEntry(reinterpret_cast<Address>(w.buffer()), w.position()); |
| } |
| |
| // Like base::AddressRegion::StartAddressLess but also compares |end| when |
| // |begin| is equal. |
| struct AddressRegionLess { |
| bool operator()(const base::AddressRegion& a, |
| const base::AddressRegion& b) const { |
| if (a.begin() == b.begin()) return a.end() < b.end(); |
| return a.begin() < b.begin(); |
| } |
| }; |
| |
| using CodeMap = std::map<base::AddressRegion, JITCodeEntry*, AddressRegionLess>; |
| |
| static CodeMap* GetCodeMap() { |
| // TODO(jgruber): Don't leak. |
| static CodeMap* code_map = nullptr; |
| if (code_map == nullptr) code_map = new CodeMap(); |
| return code_map; |
| } |
| |
| static uint32_t HashCodeAddress(Address addr) { |
| static const uintptr_t kGoldenRatio = 2654435761u; |
| return static_cast<uint32_t>((addr >> kCodeAlignmentBits) * kGoldenRatio); |
| } |
| |
| static base::HashMap* GetLineMap() { |
| static base::HashMap* line_map = nullptr; |
| if (line_map == nullptr) { |
| line_map = new base::HashMap(); |
| } |
| return line_map; |
| } |
| |
| static void PutLineInfo(Address addr, LineInfo* info) { |
| base::HashMap* line_map = GetLineMap(); |
| base::HashMap::Entry* e = line_map->LookupOrInsert( |
| reinterpret_cast<void*>(addr), HashCodeAddress(addr)); |
| if (e->value != nullptr) delete static_cast<LineInfo*>(e->value); |
| e->value = info; |
| } |
| |
| static LineInfo* GetLineInfo(Address addr) { |
| void* value = GetLineMap()->Remove(reinterpret_cast<void*>(addr), |
| HashCodeAddress(addr)); |
| return static_cast<LineInfo*>(value); |
| } |
| |
| static void AddUnwindInfo(CodeDescription* desc) { |
| #if V8_TARGET_ARCH_X64 |
| if (desc->is_function()) { |
| // To avoid propagating unwinding information through |
| // compilation pipeline we use an approximation. |
| // For most use cases this should not affect usability. |
| static const int kFramePointerPushOffset = 1; |
| static const int kFramePointerSetOffset = 4; |
| static const int kFramePointerPopOffset = -3; |
| |
| uintptr_t frame_pointer_push_address = |
| desc->CodeStart() + kFramePointerPushOffset; |
| |
| uintptr_t frame_pointer_set_address = |
| desc->CodeStart() + kFramePointerSetOffset; |
| |
| uintptr_t frame_pointer_pop_address = |
| desc->CodeEnd() + kFramePointerPopOffset; |
| |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, |
| frame_pointer_push_address); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, |
| frame_pointer_set_address); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, |
| frame_pointer_pop_address); |
| } else { |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, |
| desc->CodeStart()); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, |
| desc->CodeStart()); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, |
| desc->CodeEnd()); |
| } |
| #endif // V8_TARGET_ARCH_X64 |
| } |
| |
| static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER; |
| |
| static base::Optional<std::pair<CodeMap::iterator, CodeMap::iterator>> |
| GetOverlappingRegions(CodeMap* map, const base::AddressRegion region) { |
| DCHECK_LT(region.begin(), region.end()); |
| |
| if (map->empty()) return {}; |
| |
| // Find the first overlapping entry. |
| |
| // If successful, points to the first element not less than `region`. The |
| // returned iterator has the key in `first` and the value in `second`. |
| auto it = map->lower_bound(region); |
| auto start_it = it; |
| |
| if (it == map->end()) { |
| start_it = map->begin(); |
| // Find the first overlapping entry. |
| for (; start_it != map->end(); ++start_it) { |
| if (start_it->first.end() > region.begin()) { |
| break; |
| } |
| } |
| } else if (it != map->begin()) { |
| for (--it; it != map->begin(); --it) { |
| if ((*it).first.end() <= region.begin()) break; |
| start_it = it; |
| } |
| if (it == map->begin() && it->first.end() > region.begin()) { |
| start_it = it; |
| } |
| } |
| |
| if (start_it == map->end()) { |
| return {}; |
| } |
| |
| // Find the first non-overlapping entry after `region`. |
| |
| const auto end_it = map->lower_bound({region.end(), 0}); |
| |
| // Return a range containing intersecting regions. |
| |
| if (std::distance(start_it, end_it) < 1) |
| return {}; // No overlapping entries. |
| |
| return {{start_it, end_it}}; |
| } |
| |
| // Remove entries from the map that intersect the given address region, |
| // and deregister them from GDB. |
| static void RemoveJITCodeEntries(CodeMap* map, |
| const base::AddressRegion region) { |
| if (auto overlap = GetOverlappingRegions(map, region)) { |
| auto start_it = overlap->first; |
| auto end_it = overlap->second; |
| for (auto it = start_it; it != end_it; it++) { |
| JITCodeEntry* old_entry = (*it).second; |
| UnregisterCodeEntry(old_entry); |
| DestroyCodeEntry(old_entry); |
| } |
| |
| map->erase(start_it, end_it); |
| } |
| } |
| |
| // Insert the entry into the map and register it with GDB. |
| static void AddJITCodeEntry(CodeMap* map, const base::AddressRegion region, |
| JITCodeEntry* entry, bool dump_if_enabled, |
| const char* name_hint) { |
| #if defined(DEBUG) && !V8_OS_WIN |
| static int file_num = 0; |
| if (FLAG_gdbjit_dump && dump_if_enabled) { |
| static const int kMaxFileNameSize = 64; |
| char file_name[64]; |
| |
| SNPrintF(base::Vector<char>(file_name, kMaxFileNameSize), |
| "/tmp/elfdump%s%d.o", (name_hint != nullptr) ? name_hint : "", |
| file_num++); |
| WriteBytes(file_name, reinterpret_cast<byte*>(entry->symfile_addr_), |
| static_cast<int>(entry->symfile_size_)); |
| } |
| #endif |
| |
| auto result = map->emplace(region, entry); |
| DCHECK(result.second); // Insertion happened. |
| USE(result); |
| |
| RegisterCodeEntry(entry); |
| } |
| |
| static void AddCode(const char* name, base::AddressRegion region, |
| SharedFunctionInfo shared, LineInfo* lineinfo, |
| Isolate* isolate, bool is_function) { |
| DisallowGarbageCollection no_gc; |
| CodeDescription code_desc(name, region, shared, lineinfo, is_function); |
| |
| CodeMap* code_map = GetCodeMap(); |
| RemoveJITCodeEntries(code_map, region); |
| |
| if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) { |
| delete lineinfo; |
| return; |
| } |
| |
| AddUnwindInfo(&code_desc); |
| JITCodeEntry* entry = CreateELFObject(&code_desc, isolate); |
| |
| delete lineinfo; |
| |
| const char* name_hint = nullptr; |
| bool should_dump = false; |
| if (FLAG_gdbjit_dump) { |
| if (strlen(FLAG_gdbjit_dump_filter) == 0) { |
| name_hint = name; |
| should_dump = true; |
| } else if (name != nullptr) { |
| name_hint = strstr(name, FLAG_gdbjit_dump_filter); |
| should_dump = (name_hint != nullptr); |
| } |
| } |
| AddJITCodeEntry(code_map, region, entry, should_dump, name_hint); |
| } |
| |
| void EventHandler(const v8::JitCodeEvent* event) { |
| if (!FLAG_gdbjit) return; |
| if ((event->code_type != v8::JitCodeEvent::JIT_CODE) && |
| (event->code_type != v8::JitCodeEvent::WASM_CODE)) { |
| return; |
| } |
| base::MutexGuard lock_guard(mutex.Pointer()); |
| switch (event->type) { |
| case v8::JitCodeEvent::CODE_ADDED: { |
| Address addr = reinterpret_cast<Address>(event->code_start); |
| LineInfo* lineinfo = GetLineInfo(addr); |
| std::string event_name(event->name.str, event->name.len); |
| // It's called UnboundScript in the API but it's a SharedFunctionInfo. |
| SharedFunctionInfo shared = event->script.IsEmpty() |
| ? SharedFunctionInfo() |
| : *Utils::OpenHandle(*event->script); |
| Isolate* isolate = reinterpret_cast<Isolate*>(event->isolate); |
| bool is_function = false; |
| // TODO(zhin): See if we can use event->code_type to determine |
| // is_function, the difference currently is that JIT_CODE is SparkPlug, |
| // TurboProp, TurboFan, whereas CodeKindIsOptimizedJSFunction is only |
| // TurboProp and TurboFan. is_function is used for AddUnwindInfo, and the |
| // prologue that SP generates probably matches that of TP/TF, so we can |
| // use event->code_type here instead of finding the Code. |
| // TODO(zhin): Rename is_function to be more accurate. |
| if (event->code_type == v8::JitCodeEvent::JIT_CODE) { |
| Code code = isolate->heap()->GcSafeFindCodeForInnerPointer(addr); |
| is_function = CodeKindIsOptimizedJSFunction(code.kind()); |
| } |
| AddCode(event_name.c_str(), {addr, event->code_len}, shared, lineinfo, |
| isolate, is_function); |
| break; |
| } |
| case v8::JitCodeEvent::CODE_MOVED: |
| // Enabling the GDB JIT interface should disable code compaction. |
| UNREACHABLE(); |
| case v8::JitCodeEvent::CODE_REMOVED: |
| // Do nothing. Instead, adding code causes eviction of any entry whose |
| // address range intersects the address range of the added code. |
| break; |
| case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: { |
| LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); |
| line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset), |
| static_cast<int>(event->line_info.pos), |
| event->line_info.position_type == |
| v8::JitCodeEvent::STATEMENT_POSITION); |
| break; |
| } |
| case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: { |
| v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event); |
| mutable_event->user_data = new LineInfo(); |
| break; |
| } |
| case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: { |
| LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); |
| PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info); |
| break; |
| } |
| } |
| } |
| |
| void AddRegionForTesting(const base::AddressRegion region) { |
| // For testing purposes we don't care about JITCodeEntry, pass nullptr. |
| auto result = GetCodeMap()->emplace(region, nullptr); |
| DCHECK(result.second); // Insertion happened. |
| USE(result); |
| } |
| |
| void ClearCodeMapForTesting() { GetCodeMap()->clear(); } |
| |
| size_t NumOverlapEntriesForTesting(const base::AddressRegion region) { |
| if (auto overlaps = GetOverlappingRegions(GetCodeMap(), region)) { |
| return std::distance(overlaps->first, overlaps->second); |
| } |
| return 0; |
| } |
| |
| #endif |
| } // namespace GDBJITInterface |
| } // namespace internal |
| } // namespace v8 |
| |
| #undef __MACH_O |
| #undef __ELF |