blob: bc03a189cd5b454d32600d56cc4465ee75a2e0ad [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/diagnostics/gdb-jit.h"
#include <iterator>
#include <map>
#include <memory>
#include <vector>
#include "include/v8-callbacks.h"
#include "src/api/api-inl.h"
#include "src/base/address-region.h"
#include "src/base/bits.h"
#include "src/base/hashmap.h"
#include "src/base/memory.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/wrappers.h"
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/execution/frames-inl.h"
#include "src/execution/frames.h"
#include "src/handles/global-handles.h"
#include "src/init/bootstrapper.h"
#include "src/objects/objects.h"
#include "src/utils/ostreams.h"
#include "src/zone/zone-chunk-list.h"
namespace v8 {
namespace internal {
namespace GDBJITInterface {
#ifdef ENABLE_GDB_JIT_INTERFACE
#ifdef __APPLE__
#define __MACH_O
class MachO;
class MachOSection;
using DebugObject = MachO;
using DebugSection = MachOSection;
#else
#define __ELF
class ELF;
class ELFSection;
using DebugObject = ELF;
using DebugSection = ELFSection;
#endif
class Writer {
public:
explicit Writer(DebugObject* debug_object)
: debug_object_(debug_object),
position_(0),
capacity_(1024),
buffer_(reinterpret_cast<byte*>(base::Malloc(capacity_))) {}
~Writer() { base::Free(buffer_); }
uintptr_t position() const { return position_; }
template <typename T>
class Slot {
public:
Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) {}
T* operator->() { return w_->RawSlotAt<T>(offset_); }
void set(const T& value) {
base::WriteUnalignedValue(w_->AddressAt<T>(offset_), value);
}
Slot<T> at(int i) { return Slot<T>(w_, offset_ + sizeof(T) * i); }
private:
Writer* w_;
uintptr_t offset_;
};
template <typename T>
void Write(const T& val) {
Ensure(position_ + sizeof(T));
base::WriteUnalignedValue(AddressAt<T>(position_), val);
position_ += sizeof(T);
}
template <typename T>
Slot<T> SlotAt(uintptr_t offset) {
Ensure(offset + sizeof(T));
return Slot<T>(this, offset);
}
template <typename T>
Slot<T> CreateSlotHere() {
return CreateSlotsHere<T>(1);
}
template <typename T>
Slot<T> CreateSlotsHere(uint32_t count) {
uintptr_t slot_position = position_;
position_ += sizeof(T) * count;
Ensure(position_);
return SlotAt<T>(slot_position);
}
void Ensure(uintptr_t pos) {
if (capacity_ < pos) {
while (capacity_ < pos) capacity_ *= 2;
buffer_ = reinterpret_cast<byte*>(base::Realloc(buffer_, capacity_));
}
}
DebugObject* debug_object() { return debug_object_; }
byte* buffer() { return buffer_; }
void Align(uintptr_t align) {
uintptr_t delta = position_ % align;
if (delta == 0) return;
uintptr_t padding = align - delta;
Ensure(position_ += padding);
DCHECK_EQ(position_ % align, 0);
}
void WriteULEB128(uintptr_t value) {
do {
uint8_t byte = value & 0x7F;
value >>= 7;
if (value != 0) byte |= 0x80;
Write<uint8_t>(byte);
} while (value != 0);
}
void WriteSLEB128(intptr_t value) {
bool more = true;
while (more) {
int8_t byte = value & 0x7F;
bool byte_sign = byte & 0x40;
value >>= 7;
if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
more = false;
} else {
byte |= 0x80;
}
Write<int8_t>(byte);
}
}
void WriteString(const char* str) {
do {
Write<char>(*str);
} while (*str++);
}
private:
template <typename T>
friend class Slot;
template <typename T>
Address AddressAt(uintptr_t offset) {
DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
return reinterpret_cast<Address>(&buffer_[offset]);
}
template <typename T>
T* RawSlotAt(uintptr_t offset) {
DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
return reinterpret_cast<T*>(&buffer_[offset]);
}
DebugObject* debug_object_;
uintptr_t position_;
uintptr_t capacity_;
byte* buffer_;
};
class ELFStringTable;
template <typename THeader>
class DebugSectionBase : public ZoneObject {
public:
virtual ~DebugSectionBase() = default;
virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
uintptr_t start = writer->position();
if (WriteBodyInternal(writer)) {
uintptr_t end = writer->position();
header->offset = static_cast<uint32_t>(start);
#if defined(__MACH_O)
header->addr = 0;
#endif
header->size = end - start;
}
}
virtual bool WriteBodyInternal(Writer* writer) { return false; }
using Header = THeader;
};
struct MachOSectionHeader {
char sectname[16];
char segname[16];
#if V8_TARGET_ARCH_IA32
uint32_t addr;
uint32_t size;
#else
uint64_t addr;
uint64_t size;
#endif
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reserved1;
uint32_t reserved2;
};
class MachOSection : public DebugSectionBase<MachOSectionHeader> {
public:
enum Type {
S_REGULAR = 0x0u,
S_ATTR_COALESCED = 0xBu,
S_ATTR_SOME_INSTRUCTIONS = 0x400u,
S_ATTR_DEBUG = 0x02000000u,
S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
};
MachOSection(const char* name, const char* segment, uint32_t align,
uint32_t flags)
: name_(name), segment_(segment), align_(align), flags_(flags) {
if (align_ != 0) {
DCHECK(base::bits::IsPowerOfTwo(align));
align_ = base::bits::WhichPowerOfTwo(align_);
}
}
~MachOSection() override = default;
virtual void PopulateHeader(Writer::Slot<Header> header) {
header->addr = 0;
header->size = 0;
header->offset = 0;
header->align = align_;
header->reloff = 0;
header->nreloc = 0;
header->flags = flags_;
header->reserved1 = 0;
header->reserved2 = 0;
memset(header->sectname, 0, sizeof(header->sectname));
memset(header->segname, 0, sizeof(header->segname));
DCHECK(strlen(name_) < sizeof(header->sectname));
DCHECK(strlen(segment_) < sizeof(header->segname));
strncpy(header->sectname, name_, sizeof(header->sectname));
strncpy(header->segname, segment_, sizeof(header->segname));
}
private:
const char* name_;
const char* segment_;
uint32_t align_;
uint32_t flags_;
};
struct ELFSectionHeader {
uint32_t name;
uint32_t type;
uintptr_t flags;
uintptr_t address;
uintptr_t offset;
uintptr_t size;
uint32_t link;
uint32_t info;
uintptr_t alignment;
uintptr_t entry_size;
};
#if defined(__ELF)
class ELFSection : public DebugSectionBase<ELFSectionHeader> {
public:
enum Type {
TYPE_NULL = 0,
TYPE_PROGBITS = 1,
TYPE_SYMTAB = 2,
TYPE_STRTAB = 3,
TYPE_RELA = 4,
TYPE_HASH = 5,
TYPE_DYNAMIC = 6,
TYPE_NOTE = 7,
TYPE_NOBITS = 8,
TYPE_REL = 9,
TYPE_SHLIB = 10,
TYPE_DYNSYM = 11,
TYPE_LOPROC = 0x70000000,
TYPE_X86_64_UNWIND = 0x70000001,
TYPE_HIPROC = 0x7FFFFFFF,
TYPE_LOUSER = 0x80000000,
TYPE_HIUSER = 0xFFFFFFFF
};
enum Flags { FLAG_WRITE = 1, FLAG_ALLOC = 2, FLAG_EXEC = 4 };
enum SpecialIndexes { INDEX_ABSOLUTE = 0xFFF1 };
ELFSection(const char* name, Type type, uintptr_t align)
: name_(name), type_(type), align_(align) {}
~ELFSection() override = default;
void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
void WriteBody(Writer::Slot<Header> header, Writer* w) override {
uintptr_t start = w->position();
if (WriteBodyInternal(w)) {
uintptr_t end = w->position();
header->offset = start;
header->size = end - start;
}
}
bool WriteBodyInternal(Writer* w) override { return false; }
uint16_t index() const { return index_; }
void set_index(uint16_t index) { index_ = index; }
protected:
virtual void PopulateHeader(Writer::Slot<Header> header) {
header->flags = 0;
header->address = 0;
header->offset = 0;
header->size = 0;
header->link = 0;
header->info = 0;
header->entry_size = 0;
}
private:
const char* name_;
Type type_;
uintptr_t align_;
uint16_t index_;
};
#endif // defined(__ELF)
#if defined(__MACH_O)
class MachOTextSection : public MachOSection {
public:
MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
: MachOSection("__text", "__TEXT", align,
MachOSection::S_REGULAR |
MachOSection::S_ATTR_SOME_INSTRUCTIONS |
MachOSection::S_ATTR_PURE_INSTRUCTIONS),
addr_(addr),
size_(size) {}
protected:
virtual void PopulateHeader(Writer::Slot<Header> header) {
MachOSection::PopulateHeader(header);
header->addr = addr_;
header->size = size_;
}
private:
uintptr_t addr_;
uintptr_t size_;
};
#endif // defined(__MACH_O)
#if defined(__ELF)
class FullHeaderELFSection : public ELFSection {
public:
FullHeaderELFSection(const char* name, Type type, uintptr_t align,
uintptr_t addr, uintptr_t offset, uintptr_t size,
uintptr_t flags)
: ELFSection(name, type, align),
addr_(addr),
offset_(offset),
size_(size),
flags_(flags) {}
protected:
void PopulateHeader(Writer::Slot<Header> header) override {
ELFSection::PopulateHeader(header);
header->address = addr_;
header->offset = offset_;
header->size = size_;
header->flags = flags_;
}
private:
uintptr_t addr_;
uintptr_t offset_;
uintptr_t size_;
uintptr_t flags_;
};
class ELFStringTable : public ELFSection {
public:
explicit ELFStringTable(const char* name)
: ELFSection(name, TYPE_STRTAB, 1),
writer_(nullptr),
offset_(0),
size_(0) {}
uintptr_t Add(const char* str) {
if (*str == '\0') return 0;
uintptr_t offset = size_;
WriteString(str);
return offset;
}
void AttachWriter(Writer* w) {
writer_ = w;
offset_ = writer_->position();
// First entry in the string table should be an empty string.
WriteString("");
}
void DetachWriter() { writer_ = nullptr; }
void WriteBody(Writer::Slot<Header> header, Writer* w) override {
DCHECK_NULL(writer_);
header->offset = offset_;
header->size = size_;
}
private:
void WriteString(const char* str) {
uintptr_t written = 0;
do {
writer_->Write(*str);
written++;
} while (*str++);
size_ += written;
}
Writer* writer_;
uintptr_t offset_;
uintptr_t size_;
};
void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
ELFStringTable* strtab) {
header->name = static_cast<uint32_t>(strtab->Add(name_));
header->type = type_;
header->alignment = align_;
PopulateHeader(header);
}
#endif // defined(__ELF)
#if defined(__MACH_O)
class MachO {
public:
explicit MachO(Zone* zone) : sections_(zone) {}
size_t AddSection(MachOSection* section) {
sections_.push_back(section);
return sections_.size() - 1;
}
void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
Writer::Slot<MachOHeader> header = WriteHeader(w);
uintptr_t load_command_start = w->position();
Writer::Slot<MachOSegmentCommand> cmd =
WriteSegmentCommand(w, code_start, code_size);
WriteSections(w, cmd, header, load_command_start);
}
private:
struct MachOHeader {
uint32_t magic;
uint32_t cputype;
uint32_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;
#if V8_TARGET_ARCH_X64
uint32_t reserved;
#endif
};
struct MachOSegmentCommand {
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
#if V8_TARGET_ARCH_IA32
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
#else
uint64_t vmaddr;
uint64_t vmsize;
uint64_t fileoff;
uint64_t filesize;
#endif
uint32_t maxprot;
uint32_t initprot;
uint32_t nsects;
uint32_t flags;
};
enum MachOLoadCommandCmd {
LC_SEGMENT_32 = 0x00000001u,
LC_SEGMENT_64 = 0x00000019u
};
Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
DCHECK_EQ(w->position(), 0);
Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
#if V8_TARGET_ARCH_IA32
header->magic = 0xFEEDFACEu;
header->cputype = 7; // i386
header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL
#elif V8_TARGET_ARCH_X64
header->magic = 0xFEEDFACFu;
header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI
header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL
header->reserved = 0;
#else
#error Unsupported target architecture.
#endif
header->filetype = 0x1; // MH_OBJECT
header->ncmds = 1;
header->sizeofcmds = 0;
header->flags = 0;
return header;
}
Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
uintptr_t code_start,
uintptr_t code_size) {
Writer::Slot<MachOSegmentCommand> cmd =
w->CreateSlotHere<MachOSegmentCommand>();
#if V8_TARGET_ARCH_IA32
cmd->cmd = LC_SEGMENT_32;
#else
cmd->cmd = LC_SEGMENT_64;
#endif
cmd->vmaddr = code_start;
cmd->vmsize = code_size;
cmd->fileoff = 0;
cmd->filesize = 0;
cmd->maxprot = 7;
cmd->initprot = 7;
cmd->flags = 0;
cmd->nsects = static_cast<uint32_t>(sections_.size());
memset(cmd->segname, 0, 16);
cmd->cmdsize = sizeof(MachOSegmentCommand) +
sizeof(MachOSection::Header) * cmd->nsects;
return cmd;
}
void WriteSections(Writer* w, Writer::Slot<MachOSegmentCommand> cmd,
Writer::Slot<MachOHeader> header,
uintptr_t load_command_start) {
Writer::Slot<MachOSection::Header> headers =
w->CreateSlotsHere<MachOSection::Header>(
static_cast<uint32_t>(sections_.size()));
cmd->fileoff = w->position();
header->sizeofcmds =
static_cast<uint32_t>(w->position() - load_command_start);
uint32_t index = 0;
for (MachOSection* section : sections_) {
section->PopulateHeader(headers.at(index));
section->WriteBody(headers.at(index), w);
index++;
}
cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
}
ZoneChunkList<MachOSection*> sections_;
};
#endif // defined(__MACH_O)
#if defined(__ELF)
class ELF {
public:
explicit ELF(Zone* zone) : sections_(zone) {
sections_.push_back(zone->New<ELFSection>("", ELFSection::TYPE_NULL, 0));
sections_.push_back(zone->New<ELFStringTable>(".shstrtab"));
}
void Write(Writer* w) {
WriteHeader(w);
WriteSectionTable(w);
WriteSections(w);
}
ELFSection* SectionAt(uint32_t index) { return *sections_.Find(index); }
size_t AddSection(ELFSection* section) {
sections_.push_back(section);
section->set_index(sections_.size() - 1);
return sections_.size() - 1;
}
private:
struct ELFHeader {
uint8_t ident[16];
uint16_t type;
uint16_t machine;
uint32_t version;
uintptr_t entry;
uintptr_t pht_offset;
uintptr_t sht_offset;
uint32_t flags;
uint16_t header_size;
uint16_t pht_entry_size;
uint16_t pht_entry_num;
uint16_t sht_entry_size;
uint16_t sht_entry_num;
uint16_t sht_strtab_index;
};
void WriteHeader(Writer* w) {
DCHECK_EQ(w->position(), 0);
Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM)
const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0};
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT || \
V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0};
#elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0};
#elif V8_TARGET_ARCH_S390X
const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 3,
0, 0, 0, 0, 0, 0, 0, 0};
#elif V8_TARGET_ARCH_S390
const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 2, 1, 3,
0, 0, 0, 0, 0, 0, 0, 0};
#else
#error Unsupported target architecture.
#endif
memcpy(header->ident, ident, 16);
header->type = 1;
#if V8_TARGET_ARCH_IA32
header->machine = 3;
#elif V8_TARGET_ARCH_X64
// Processor identification value for x64 is 62 as defined in
// System V ABI, AMD64 Supplement
// http://www.x86-64.org/documentation/abi.pdf
header->machine = 62;
#elif V8_TARGET_ARCH_ARM
// Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
// infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
header->machine = 40;
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
// Set to EM_PPC64, defined as 21, in Power ABI,
// Join the next 4 lines, omitting the spaces and double-slashes.
// https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
// ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
// id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
// c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
header->machine = 21;
#elif V8_TARGET_ARCH_S390
// Processor identification value is 22 (EM_S390) as defined in the ABI:
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
header->machine = 22;
#else
#error Unsupported target architecture.
#endif
header->version = 1;
header->entry = 0;
header->pht_offset = 0;
header->sht_offset = sizeof(ELFHeader); // Section table follows header.
header->flags = 0;
header->header_size = sizeof(ELFHeader);
header->pht_entry_size = 0;
header->pht_entry_num = 0;
header->sht_entry_size = sizeof(ELFSection::Header);
header->sht_entry_num = sections_.size();
header->sht_strtab_index = 1;
}
void WriteSectionTable(Writer* w) {
// Section headers table immediately follows file header.
DCHECK(w->position() == sizeof(ELFHeader));
Writer::Slot<ELFSection::Header> headers =
w->CreateSlotsHere<ELFSection::Header>(
static_cast<uint32_t>(sections_.size()));
// String table for section table is the first section.
ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
strtab->AttachWriter(w);
uint32_t index = 0;
for (ELFSection* section : sections_) {
section->PopulateHeader(headers.at(index), strtab);
index++;
}
strtab->DetachWriter();
}
int SectionHeaderPosition(uint32_t section_index) {
return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
}
void WriteSections(Writer* w) {
Writer::Slot<ELFSection::Header> headers =
w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
uint32_t index = 0;
for (ELFSection* section : sections_) {
section->WriteBody(headers.at(index), w);
index++;
}
}
ZoneChunkList<ELFSection*> sections_;
};
class ELFSymbol {
public:
enum Type {
TYPE_NOTYPE = 0,
TYPE_OBJECT = 1,
TYPE_FUNC = 2,
TYPE_SECTION = 3,
TYPE_FILE = 4,
TYPE_LOPROC = 13,
TYPE_HIPROC = 15
};
enum Binding {
BIND_LOCAL = 0,
BIND_GLOBAL = 1,
BIND_WEAK = 2,
BIND_LOPROC = 13,
BIND_HIPROC = 15
};
ELFSymbol(const char* name, uintptr_t value, uintptr_t size, Binding binding,
Type type, uint16_t section)
: name(name),
value(value),
size(size),
info((binding << 4) | type),
other(0),
section(section) {}
Binding binding() const { return static_cast<Binding>(info >> 4); }
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \
(V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
struct SerializedLayout {
SerializedLayout(uint32_t name, uintptr_t value, uintptr_t size,
Binding binding, Type type, uint16_t section)
: name(name),
value(value),
size(size),
info((binding << 4) | type),
other(0),
section(section) {}
uint32_t name;
uintptr_t value;
uintptr_t size;
uint8_t info;
uint8_t other;
uint16_t section;
};
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT || \
V8_TARGET_ARCH_PPC64 && V8_OS_LINUX || V8_TARGET_ARCH_S390X
struct SerializedLayout {
SerializedLayout(uint32_t name, uintptr_t value, uintptr_t size,
Binding binding, Type type, uint16_t section)
: name(name),
info((binding << 4) | type),
other(0),
section(section),
value(value),
size(size) {}
uint32_t name;
uint8_t info;
uint8_t other;
uint16_t section;
uintptr_t value;
uintptr_t size;
};
#endif
void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) const {
// Convert symbol names from strings to indexes in the string table.
s->name = static_cast<uint32_t>(t->Add(name));
s->value = value;
s->size = size;
s->info = info;
s->other = other;
s->section = section;
}
private:
const char* name;
uintptr_t value;
uintptr_t size;
uint8_t info;
uint8_t other;
uint16_t section;
};
class ELFSymbolTable : public ELFSection {
public:
ELFSymbolTable(const char* name, Zone* zone)
: ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
locals_(zone),
globals_(zone) {}
void WriteBody(Writer::Slot<Header> header, Writer* w) override {
w->Align(header->alignment);
size_t total_symbols = locals_.size() + globals_.size() + 1;
header->offset = w->position();
Writer::Slot<ELFSymbol::SerializedLayout> symbols =
w->CreateSlotsHere<ELFSymbol::SerializedLayout>(
static_cast<uint32_t>(total_symbols));
header->size = w->position() - header->offset;
// String table for this symbol table should follow it in the section table.
ELFStringTable* strtab =
static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
strtab->AttachWriter(w);
symbols.at(0).set(ELFSymbol::SerializedLayout(
0, 0, 0, ELFSymbol::BIND_LOCAL, ELFSymbol::TYPE_NOTYPE, 0));
WriteSymbolsList(&locals_, symbols.at(1), strtab);
WriteSymbolsList(&globals_,
symbols.at(static_cast<uint32_t>(locals_.size() + 1)),
strtab);
strtab->DetachWriter();
}
void Add(const ELFSymbol& symbol) {
if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
locals_.push_back(symbol);
} else {
globals_.push_back(symbol);
}
}
protected:
void PopulateHeader(Writer::Slot<Header> header) override {
ELFSection::PopulateHeader(header);
// We are assuming that string table will follow symbol table.
header->link = index() + 1;
header->info = static_cast<uint32_t>(locals_.size() + 1);
header->entry_size = sizeof(ELFSymbol::SerializedLayout);
}
private:
void WriteSymbolsList(const ZoneChunkList<ELFSymbol>* src,
Writer::Slot<ELFSymbol::SerializedLayout> dst,
ELFStringTable* strtab) {
int i = 0;
for (const ELFSymbol& symbol : *src) {
symbol.Write(dst.at(i++), strtab);
}
}
ZoneChunkList<ELFSymbol> locals_;
ZoneChunkList<ELFSymbol> globals_;
};
#endif // defined(__ELF)
class LineInfo : public Malloced {
public:
void SetPosition(intptr_t pc, int pos, bool is_statement) {
AddPCInfo(PCInfo(pc, pos, is_statement));
}
struct PCInfo {
PCInfo(intptr_t pc, int pos, bool is_statement)
: pc_(pc), pos_(pos), is_statement_(is_statement) {}
intptr_t pc_;
int pos_;
bool is_statement_;
};
std::vector<PCInfo>* pc_info() { return &pc_info_; }
private:
void AddPCInfo(const PCInfo& pc_info) { pc_info_.push_back(pc_info); }
std::vector<PCInfo> pc_info_;
};
class CodeDescription {
public:
#if V8_TARGET_ARCH_X64
enum StackState {
POST_RBP_PUSH,
POST_RBP_SET,
POST_RBP_POP,
STACK_STATE_MAX
};
#endif
CodeDescription(const char* name, base::AddressRegion region,
SharedFunctionInfo shared, LineInfo* lineinfo,
bool is_function)
: name_(name),
shared_info_(shared),
lineinfo_(lineinfo),
is_function_(is_function),
code_region_(region) {}
const char* name() const { return name_; }
LineInfo* lineinfo() const { return lineinfo_; }
bool is_function() const { return is_function_; }
bool has_scope_info() const { return !shared_info_.is_null(); }
ScopeInfo scope_info() const {
DCHECK(has_scope_info());
return shared_info_.scope_info();
}
uintptr_t CodeStart() const { return code_region_.begin(); }
uintptr_t CodeEnd() const { return code_region_.end(); }
uintptr_t CodeSize() const { return code_region_.size(); }
bool has_script() {
return !shared_info_.is_null() && shared_info_.script().IsScript();
}
Script script() { return Script::cast(shared_info_.script()); }
bool IsLineInfoAvailable() { return lineinfo_ != nullptr; }
base::AddressRegion region() { return code_region_; }
#if V8_TARGET_ARCH_X64
uintptr_t GetStackStateStartAddress(StackState state) const {
DCHECK(state < STACK_STATE_MAX);
return stack_state_start_addresses_[state];
}
void SetStackStateStartAddress(StackState state, uintptr_t addr) {
DCHECK(state < STACK_STATE_MAX);
stack_state_start_addresses_[state] = addr;
}
#endif
std::unique_ptr<char[]> GetFilename() {
if (!shared_info_.is_null() && script().name().IsString()) {
return String::cast(script().name()).ToCString();
} else {
std::unique_ptr<char[]> result(new char[1]);
result[0] = 0;
return result;
}
}
int GetScriptLineNumber(int pos) {
if (!shared_info_.is_null()) {
return script().GetLineNumber(pos) + 1;
} else {
return 0;
}
}
private:
const char* name_;
SharedFunctionInfo shared_info_;
LineInfo* lineinfo_;
bool is_function_;
base::AddressRegion code_region_;
#if V8_TARGET_ARCH_X64
uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
#endif
};
#if defined(__ELF)
static void CreateSymbolsTable(CodeDescription* desc, Zone* zone, ELF* elf,
size_t text_section_index) {
ELFSymbolTable* symtab = zone->New<ELFSymbolTable>(".symtab", zone);
ELFStringTable* strtab = zone->New<ELFStringTable>(".strtab");
// Symbol table should be followed by the linked string table.
elf->AddSection(symtab);
elf->AddSection(strtab);
symtab->Add(ELFSymbol("V8 Code", 0, 0, ELFSymbol::BIND_LOCAL,
ELFSymbol::TYPE_FILE, ELFSection::INDEX_ABSOLUTE));
symtab->Add(ELFSymbol(desc->name(), 0, desc->CodeSize(),
ELFSymbol::BIND_GLOBAL, ELFSymbol::TYPE_FUNC,
text_section_index));
}
#endif // defined(__ELF)
class DebugInfoSection : public DebugSection {
public:
explicit DebugInfoSection(CodeDescription* desc)
#if defined(__ELF)
: ELFSection(".debug_info", TYPE_PROGBITS, 1),
#else
: MachOSection("__debug_info", "__DWARF", 1,
MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
desc_(desc) {
}
// DWARF2 standard
enum DWARF2LocationOp {
DW_OP_reg0 = 0x50,
DW_OP_reg1 = 0x51,
DW_OP_reg2 = 0x52,
DW_OP_reg3 = 0x53,
DW_OP_reg4 = 0x54,
DW_OP_reg5 = 0x55,
DW_OP_reg6 = 0x56,
DW_OP_reg7 = 0x57,
DW_OP_reg8 = 0x58,
DW_OP_reg9 = 0x59,
DW_OP_reg10 = 0x5A,
DW_OP_reg11 = 0x5B,
DW_OP_reg12 = 0x5C,
DW_OP_reg13 = 0x5D,
DW_OP_reg14 = 0x5E,
DW_OP_reg15 = 0x5F,
DW_OP_reg16 = 0x60,
DW_OP_reg17 = 0x61,
DW_OP_reg18 = 0x62,
DW_OP_reg19 = 0x63,
DW_OP_reg20 = 0x64,
DW_OP_reg21 = 0x65,
DW_OP_reg22 = 0x66,
DW_OP_reg23 = 0x67,
DW_OP_reg24 = 0x68,
DW_OP_reg25 = 0x69,
DW_OP_reg26 = 0x6A,
DW_OP_reg27 = 0x6B,
DW_OP_reg28 = 0x6C,
DW_OP_reg29 = 0x6D,
DW_OP_reg30 = 0x6E,
DW_OP_reg31 = 0x6F,
DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset
};
enum DWARF2Encoding { DW_ATE_ADDRESS = 0x1, DW_ATE_SIGNED = 0x5 };
bool WriteBodyInternal(Writer* w) override {
uintptr_t cu_start = w->position();
Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
uintptr_t start = w->position();
w->Write<uint16_t>(2); // DWARF version.
w->Write<uint32_t>(0); // Abbreviation table offset.
w->Write<uint8_t>(sizeof(intptr_t));
w->WriteULEB128(1); // Abbreviation code.
w->WriteString(desc_->GetFilename().get());
w->Write<intptr_t>(desc_->CodeStart());
w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
w->Write<uint32_t>(0);
uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
w->WriteULEB128(3);
w->Write<uint8_t>(kSystemPointerSize);
w->WriteString("v8value");
if (desc_->has_scope_info()) {
ScopeInfo scope = desc_->scope_info();
w->WriteULEB128(2);
w->WriteString(desc_->name());
w->Write<intptr_t>(desc_->CodeStart());
w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
uintptr_t fb_block_start = w->position();
#if V8_TARGET_ARCH_IA32
w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32
#elif V8_TARGET_ARCH_X64
w->Write<uint8_t>(DW_OP_reg6); // and here on x64.
#elif V8_TARGET_ARCH_ARM
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_MIPS
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_MIPS64
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_LOONG64
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64.
#elif V8_TARGET_ARCH_S390
w->Write<uint8_t>(DW_OP_reg11); // The frame pointer's here on S390.
#else
#error Unsupported target architecture.
#endif
fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
int params = scope.ParameterCount();
int context_slots = scope.ContextLocalCount();
// The real slot ID is internal_slots + context_slot_id.
int internal_slots = scope.ContextHeaderLength();
int current_abbreviation = 4;
for (int param = 0; param < params; ++param) {
w->WriteULEB128(current_abbreviation++);
w->WriteString("param");
w->Write(std::to_string(param).c_str());
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(StandardFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize * (params - param - 1));
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
// See contexts.h for more information.
DCHECK(internal_slots == 2 || internal_slots == 3);
DCHECK_EQ(Context::SCOPE_INFO_INDEX, 0);
DCHECK_EQ(Context::PREVIOUS_INDEX, 1);
DCHECK_EQ(Context::EXTENSION_INDEX, 2);
w->WriteULEB128(current_abbreviation++);
w->WriteString(".scope_info");
w->WriteULEB128(current_abbreviation++);
w->WriteString(".previous");
if (internal_slots == 3) {
w->WriteULEB128(current_abbreviation++);
w->WriteString(".extension");
}
for (int context_slot = 0; context_slot < context_slots; ++context_slot) {
w->WriteULEB128(current_abbreviation++);
w->WriteString("context_slot");
w->Write(std::to_string(context_slot + internal_slots).c_str());
}
{
w->WriteULEB128(current_abbreviation++);
w->WriteString("__function");
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(StandardFrameConstants::kFunctionOffset);
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
{
w->WriteULEB128(current_abbreviation++);
w->WriteString("__context");
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(StandardFrameConstants::kContextOffset);
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
w->WriteULEB128(0); // Terminate the sub program.
}
w->WriteULEB128(0); // Terminate the compile unit.
size.set(static_cast<uint32_t>(w->position() - start));
return true;
}
private:
CodeDescription* desc_;
};
class DebugAbbrevSection : public DebugSection {
public:
explicit DebugAbbrevSection(CodeDescription* desc)
#ifdef __ELF
: ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
#else
: MachOSection("__debug_abbrev", "__DWARF", 1,
MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
desc_(desc) {
}
// DWARF2 standard, figure 14.
enum DWARF2Tags {
DW_TAG_FORMAL_PARAMETER = 0x05,
DW_TAG_POINTER_TYPE = 0xF,
DW_TAG_COMPILE_UNIT = 0x11,
DW_TAG_STRUCTURE_TYPE = 0x13,
DW_TAG_BASE_TYPE = 0x24,
DW_TAG_SUBPROGRAM = 0x2E,
DW_TAG_VARIABLE = 0x34
};
// DWARF2 standard, figure 16.
enum DWARF2ChildrenDetermination { DW_CHILDREN_NO = 0, DW_CHILDREN_YES = 1 };
// DWARF standard, figure 17.
enum DWARF2Attribute {
DW_AT_LOCATION = 0x2,
DW_AT_NAME = 0x3,
DW_AT_BYTE_SIZE = 0xB,
DW_AT_STMT_LIST = 0x10,
DW_AT_LOW_PC = 0x11,
DW_AT_HIGH_PC = 0x12,
DW_AT_ENCODING = 0x3E,
DW_AT_FRAME_BASE = 0x40,
DW_AT_TYPE = 0x49
};
// DWARF2 standard, figure 19.
enum DWARF2AttributeForm {
DW_FORM_ADDR = 0x1,
DW_FORM_BLOCK4 = 0x4,
DW_FORM_STRING = 0x8,
DW_FORM_DATA4 = 0x6,
DW_FORM_BLOCK = 0x9,
DW_FORM_DATA1 = 0xB,
DW_FORM_FLAG = 0xC,
DW_FORM_REF4 = 0x13
};
void WriteVariableAbbreviation(Writer* w, int abbreviation_code,
bool has_value, bool is_parameter) {
w->WriteULEB128(abbreviation_code);
w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
w->Write<uint8_t>(DW_CHILDREN_NO);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
if (has_value) {
w->WriteULEB128(DW_AT_TYPE);
w->WriteULEB128(DW_FORM_REF4);
w->WriteULEB128(DW_AT_LOCATION);
w->WriteULEB128(DW_FORM_BLOCK4);
}
w->WriteULEB128(0);
w->WriteULEB128(0);
}
bool WriteBodyInternal(Writer* w) override {
int current_abbreviation = 1;
bool extra_info = desc_->has_scope_info();
DCHECK(desc_->IsLineInfoAvailable());
w->WriteULEB128(current_abbreviation++);
w->WriteULEB128(DW_TAG_COMPILE_UNIT);
w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
w->WriteULEB128(DW_AT_LOW_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_HIGH_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_STMT_LIST);
w->WriteULEB128(DW_FORM_DATA4);
w->WriteULEB128(0);
w->WriteULEB128(0);
if (extra_info) {
ScopeInfo scope = desc_->scope_info();
int params = scope.ParameterCount();
int context_slots = scope.ContextLocalCount();
// The real slot ID is internal_slots + context_slot_id.
int internal_slots = Context::MIN_CONTEXT_SLOTS;
// Total children is params + context_slots + internal_slots + 2
// (__function and __context).
// The extra duplication below seems to be necessary to keep
// gdb from getting upset on OSX.
w->WriteULEB128(current_abbreviation++); // Abbreviation code.
w->WriteULEB128(DW_TAG_SUBPROGRAM);
w->Write<uint8_t>(DW_CHILDREN_YES);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
w->WriteULEB128(DW_AT_LOW_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_HIGH_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_FRAME_BASE);
w->WriteULEB128(DW_FORM_BLOCK4);
w->WriteULEB128(0);
w->WriteULEB128(0);
w->WriteULEB128(current_abbreviation++);
w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
w->Write<uint8_t>(DW_CHILDREN_NO);
w->WriteULEB128(DW_AT_BYTE_SIZE);
w->WriteULEB128(DW_FORM_DATA1);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
w->WriteULEB128(0);
w->WriteULEB128(0);
for (int param = 0; param < params; ++param) {
WriteVariableAbbreviation(w, current_abbreviation++, true, true);
}
for (int internal_slot = 0; internal_slot < internal_slots;
++internal_slot) {
WriteVariableAbbreviation(w, current_abbreviation++, false, false);
}
for (int context_slot = 0; context_slot < context_slots; ++context_slot) {
WriteVariableAbbreviation(w, current_abbreviation++, false, false);
}
// The function.
WriteVariableAbbreviation(w, current_abbreviation++, true, false);
// The context.
WriteVariableAbbreviation(w, current_abbreviation++, true, false);
w->WriteULEB128(0); // Terminate the sibling list.
}
w->WriteULEB128(0); // Terminate the table.
return true;
}
private:
CodeDescription* desc_;
};
class DebugLineSection : public DebugSection {
public:
explicit DebugLineSection(CodeDescription* desc)
#ifdef __ELF
: ELFSection(".debug_line", TYPE_PROGBITS, 1),
#else
: MachOSection("__debug_line", "__DWARF", 1,
MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
desc_(desc) {
}
// DWARF2 standard, figure 34.
enum DWARF2Opcodes {
DW_LNS_COPY = 1,
DW_LNS_ADVANCE_PC = 2,
DW_LNS_ADVANCE_LINE = 3,
DW_LNS_SET_FILE = 4,
DW_LNS_SET_COLUMN = 5,
DW_LNS_NEGATE_STMT = 6
};
// DWARF2 standard, figure 35.
enum DWARF2ExtendedOpcode {
DW_LNE_END_SEQUENCE = 1,
DW_LNE_SET_ADDRESS = 2,
DW_LNE_DEFINE_FILE = 3
};
bool WriteBodyInternal(Writer* w) override {
// Write prologue.
Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
uintptr_t start = w->position();
// Used for special opcodes
const int8_t line_base = 1;
const uint8_t line_range = 7;
const int8_t max_line_incr = (line_base + line_range - 1);
const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
w->Write<uint16_t>(2); // Field version.
Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
uintptr_t prologue_start = w->position();
w->Write<uint8_t>(1); // Field minimum_instruction_length.
w->Write<uint8_t>(1); // Field default_is_stmt.
w->Write<int8_t>(line_base); // Field line_base.
w->Write<uint8_t>(line_range); // Field line_range.
w->Write<uint8_t>(opcode_base); // Field opcode_base.
w->Write<uint8_t>(0); // DW_LNS_COPY operands count.
w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count.
w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count.
w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count.
w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count.
w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count.
w->Write<uint8_t>(0); // Empty include_directories sequence.
w->WriteString(desc_->GetFilename().get()); // File name.
w->WriteULEB128(0); // Current directory.
w->WriteULEB128(0); // Unknown modification time.
w->WriteULEB128(0); // Unknown file size.
w->Write<uint8_t>(0);
prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
w->Write<intptr_t>(desc_->CodeStart());
w->Write<uint8_t>(DW_LNS_COPY);
intptr_t pc = 0;
intptr_t line = 1;
bool is_statement = true;
std::vector<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
std::sort(pc_info->begin(), pc_info->end(), &ComparePCInfo);
for (size_t i = 0; i < pc_info->size(); i++) {
LineInfo::PCInfo* info = &pc_info->at(i);
DCHECK(info->pc_ >= pc);
// Reduce bloating in the debug line table by removing duplicate line
// entries (per DWARF2 standard).
intptr_t new_line = desc_->GetScriptLineNumber(info->pos_);
if (new_line == line) {
continue;
}
// Mark statement boundaries. For a better debugging experience, mark
// the last pc address in the function as a statement (e.g. "}"), so that
// a user can see the result of the last line executed in the function,
// should control reach the end.
if ((i + 1) == pc_info->size()) {
if (!is_statement) {
w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
}
} else if (is_statement != info->is_statement_) {
w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
is_statement = !is_statement;
}
// Generate special opcodes, if possible. This results in more compact
// debug line tables. See the DWARF 2.0 standard to learn more about
// special opcodes.
uintptr_t pc_diff = info->pc_ - pc;
intptr_t line_diff = new_line - line;
// Compute special opcode (see DWARF 2.0 standard)
intptr_t special_opcode =
(line_diff - line_base) + (line_range * pc_diff) + opcode_base;
// If special_opcode is less than or equal to 255, it can be used as a
// special opcode. If line_diff is larger than the max line increment
// allowed for a special opcode, or if line_diff is less than the minimum
// line that can be added to the line register (i.e. line_base), then
// special_opcode can't be used.
if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
(line_diff <= max_line_incr) && (line_diff >= line_base)) {
w->Write<uint8_t>(special_opcode);
} else {
w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
w->WriteSLEB128(pc_diff);
w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
w->WriteSLEB128(line_diff);
w->Write<uint8_t>(DW_LNS_COPY);
}
// Increment the pc and line operands.
pc += pc_diff;
line += line_diff;
}
// Advance the pc to the end of the routine, since the end sequence opcode
// requires this.
w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
w->WriteSLEB128(desc_->CodeSize() - pc);
WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
total_length.set(static_cast<uint32_t>(w->position() - start));
return true;
}
private:
void WriteExtendedOpcode(Writer* w, DWARF2ExtendedOpcode op,
size_t operands_size) {
w->Write<uint8_t>(0);
w->WriteULEB128(operands_size + 1);
w->Write<uint8_t>(op);
}
static bool ComparePCInfo(const LineInfo::PCInfo& a,
const LineInfo::PCInfo& b) {
if (a.pc_ == b.pc_) {
if (a.is_statement_ != b.is_statement_) {
return !b.is_statement_;
}
return false;
}
return a.pc_ < b.pc_;
}
CodeDescription* desc_;
};
#if V8_TARGET_ARCH_X64
class UnwindInfoSection : public DebugSection {
public:
explicit UnwindInfoSection(CodeDescription* desc);
bool WriteBodyInternal(Writer* w) override;
int WriteCIE(Writer* w);
void WriteFDE(Writer* w, int);
void WriteFDEStateOnEntry(Writer* w);
void WriteFDEStateAfterRBPPush(Writer* w);
void WriteFDEStateAfterRBPSet(Writer* w);
void WriteFDEStateAfterRBPPop(Writer* w);
void WriteLength(Writer* w, Writer::Slot<uint32_t>* length_slot,
int initial_position);
private:
CodeDescription* desc_;
// DWARF3 Specification, Table 7.23
enum CFIInstructions {
DW_CFA_ADVANCE_LOC = 0x40,
DW_CFA_OFFSET = 0x80,
DW_CFA_RESTORE = 0xC0,
DW_CFA_NOP = 0x00,
DW_CFA_SET_LOC = 0x01,
DW_CFA_ADVANCE_LOC1 = 0x02,
DW_CFA_ADVANCE_LOC2 = 0x03,
DW_CFA_ADVANCE_LOC4 = 0x04,
DW_CFA_OFFSET_EXTENDED = 0x05,
DW_CFA_RESTORE_EXTENDED = 0x06,
DW_CFA_UNDEFINED = 0x07,
DW_CFA_SAME_VALUE = 0x08,
DW_CFA_REGISTER = 0x09,
DW_CFA_REMEMBER_STATE = 0x0A,
DW_CFA_RESTORE_STATE = 0x0B,
DW_CFA_DEF_CFA = 0x0C,
DW_CFA_DEF_CFA_REGISTER = 0x0D,
DW_CFA_DEF_CFA_OFFSET = 0x0E,
DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
DW_CFA_EXPRESSION = 0x10,
DW_CFA_OFFSET_EXTENDED_SF = 0x11,
DW_CFA_DEF_CFA_SF = 0x12,
DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
DW_CFA_VAL_OFFSET = 0x14,
DW_CFA_VAL_OFFSET_SF = 0x15,
DW_CFA_VAL_EXPRESSION = 0x16
};
// System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
enum RegisterMapping {
// Only the relevant ones have been added to reduce clutter.
AMD64_RBP = 6,
AMD64_RSP = 7,
AMD64_RA = 16
};
enum CFIConstants {
CIE_ID = 0,
CIE_VERSION = 1,
CODE_ALIGN_FACTOR = 1,
DATA_ALIGN_FACTOR = 1,
RETURN_ADDRESS_REGISTER = AMD64_RA
};
};
void UnwindInfoSection::WriteLength(Writer* w,
Writer::Slot<uint32_t>* length_slot,
int initial_position) {
uint32_t align = (w->position() - initial_position) % kSystemPointerSize;
if (align != 0) {
for (uint32_t i = 0; i < (kSystemPointerSize - align); i++) {
w->Write<uint8_t>(DW_CFA_NOP);
}
}
DCHECK_EQ((w->position() - initial_position) % kSystemPointerSize, 0);
length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
}
UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
#ifdef __ELF
: ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
#else
: MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
MachOSection::S_REGULAR),
#endif
desc_(desc) {
}
int UnwindInfoSection::WriteCIE(Writer* w) {
Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
uint32_t cie_position = static_cast<uint32_t>(w->position());
// Write out the CIE header. Currently no 'common instructions' are
// emitted onto the CIE; every FDE has its own set of instructions.
w->Write<uint32_t>(CIE_ID);
w->Write<uint8_t>(CIE_VERSION);
w->Write<uint8_t>(0); // Null augmentation string.
w->WriteSLEB128(CODE_ALIGN_FACTOR);
w->WriteSLEB128(DATA_ALIGN_FACTOR);
w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
WriteLength(w, &cie_length_slot, cie_position);
return cie_position;
}
void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
// The only FDE for this function. The CFA is the current RBP.
Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
int fde_position = static_cast<uint32_t>(w->position());
w->Write<int32_t>(fde_position - cie_position + 4);
w->Write<uintptr_t>(desc_->CodeStart());
w->Write<uintptr_t>(desc_->CodeSize());
WriteFDEStateOnEntry(w);
WriteFDEStateAfterRBPPush(w);
WriteFDEStateAfterRBPSet(w);
WriteFDEStateAfterRBPPop(w);
WriteLength(w, &fde_length_slot, fde_position);
}
void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
// The first state, just after the control has been transferred to the the
// function.
// RBP for this function will be the value of RSP after pushing the RBP
// for the previous function. The previous RBP has not been pushed yet.
w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
w->WriteULEB128(AMD64_RSP);
w->WriteSLEB128(-kSystemPointerSize);
// The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
// and hence omitted from the next states.
w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
w->WriteULEB128(AMD64_RA);
w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
// The RBP of the previous function is still in RBP.
w->Write<uint8_t>(DW_CFA_SAME_VALUE);
w->WriteULEB128(AMD64_RBP);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(
desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
}
void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
// The second state, just after RBP has been pushed.
// RBP / CFA for this function is now the current RSP, so just set the
// offset from the previous rule (from -8) to 0.
w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
w->WriteULEB128(0);
// The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
// in this and the next state, and hence omitted in the next state.
w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
w->WriteULEB128(AMD64_RBP);
w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(
desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
}
void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
// The third state, after the RBP has been set.
// The CFA can now directly be set to RBP.
w->Write<uint8_t>(DW_CFA_DEF_CFA);
w->WriteULEB128(AMD64_RBP);
w->WriteULEB128(0);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(
desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
}
void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
// The fourth (final) state. The RBP has been popped (just before issuing a
// return).
// The CFA can is now calculated in the same way as in the first state.
w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
w->WriteULEB128(AMD64_RSP);
w->WriteSLEB128(-kSystemPointerSize);
// The RBP
w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
w->WriteULEB128(AMD64_RBP);
w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(desc_->CodeEnd());
}
bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
uint32_t cie_position = WriteCIE(w);
WriteFDE(w, cie_position);
return true;
}
#endif // V8_TARGET_ARCH_X64
static void CreateDWARFSections(CodeDescription* desc, Zone* zone,
DebugObject* obj) {
if (desc->IsLineInfoAvailable()) {
obj->AddSection(zone->New<DebugInfoSection>(desc));
obj->AddSection(zone->New<DebugAbbrevSection>(desc));
obj->AddSection(zone->New<DebugLineSection>(desc));
}
#if V8_TARGET_ARCH_X64
obj->AddSection(zone->New<UnwindInfoSection>(desc));
#endif
}
// -------------------------------------------------------------------
// Binary GDB JIT Interface as described in
// http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
extern "C" {
enum JITAction { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN };
struct JITCodeEntry {
JITCodeEntry* next_;
JITCodeEntry* prev_;
Address symfile_addr_;
uint64_t symfile_size_;
};
struct JITDescriptor {
uint32_t version_;
uint32_t action_flag_;
JITCodeEntry* relevant_entry_;
JITCodeEntry* first_entry_;
};
// GDB will place breakpoint into this function.
// To prevent GCC from inlining or removing it we place noinline attribute
// and inline assembler statement inside.
void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); }
// GDB will inspect contents of this descriptor.
// Static initialization is necessary to prevent GDB from seeing
// uninitialized descriptor.
JITDescriptor __jit_debug_descriptor = {1, 0, nullptr, nullptr};
#ifdef OBJECT_PRINT
void __gdb_print_v8_object(Object object) {
StdoutStream os;
object.Print(os);
os << std::flush;
}
#endif
}
static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
uintptr_t symfile_size) {
JITCodeEntry* entry = static_cast<JITCodeEntry*>(
base::Malloc(sizeof(JITCodeEntry) + symfile_size));
entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
entry->symfile_size_ = symfile_size;
MemCopy(reinterpret_cast<void*>(entry->symfile_addr_),
reinterpret_cast<void*>(symfile_addr), symfile_size);
entry->prev_ = entry->next_ = nullptr;
return entry;
}
static void DestroyCodeEntry(JITCodeEntry* entry) { base::Free(entry); }
static void RegisterCodeEntry(JITCodeEntry* entry) {
entry->next_ = __jit_debug_descriptor.first_entry_;
if (entry->next_ != nullptr) entry->next_->prev_ = entry;
__jit_debug_descriptor.first_entry_ = __jit_debug_descriptor.relevant_entry_ =
entry;
__jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
__jit_debug_register_code();
}
static void UnregisterCodeEntry(JITCodeEntry* entry) {
if (entry->prev_ != nullptr) {
entry->prev_->next_ = entry->next_;
} else {
__jit_debug_descriptor.first_entry_ = entry->next_;
}
if (entry->next_ != nullptr) {
entry->next_->prev_ = entry->prev_;
}
__jit_debug_descriptor.relevant_entry_ = entry;
__jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
__jit_debug_register_code();
}
static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
#ifdef __MACH_O
Zone zone(isolate->allocator(), ZONE_NAME);
MachO mach_o(&zone);
Writer w(&mach_o);
const uint32_t code_alignment = static_cast<uint32_t>(kCodeAlignment);
static_assert(code_alignment == kCodeAlignment,
"Unsupported code alignment value");
mach_o.AddSection(zone.New<MachOTextSection>(
code_alignment, desc->CodeStart(), desc->CodeSize()));
CreateDWARFSections(desc, &zone, &mach_o);
mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
#else
Zone zone(isolate->allocator(), ZONE_NAME);
ELF elf(&zone);
Writer w(&elf);
size_t text_section_index = elf.AddSection(zone.New<FullHeaderELFSection>(
".text", ELFSection::TYPE_NOBITS, kCodeAlignment, desc->CodeStart(), 0,
desc->CodeSize(), ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
CreateSymbolsTable(desc, &zone, &elf, text_section_index);
CreateDWARFSections(desc, &zone, &elf);
elf.Write(&w);
#endif
return CreateCodeEntry(reinterpret_cast<Address>(w.buffer()), w.position());
}
// Like base::AddressRegion::StartAddressLess but also compares |end| when
// |begin| is equal.
struct AddressRegionLess {
bool operator()(const base::AddressRegion& a,
const base::AddressRegion& b) const {
if (a.begin() == b.begin()) return a.end() < b.end();
return a.begin() < b.begin();
}
};
using CodeMap = std::map<base::AddressRegion, JITCodeEntry*, AddressRegionLess>;
static CodeMap* GetCodeMap() {
// TODO(jgruber): Don't leak.
static CodeMap* code_map = nullptr;
if (code_map == nullptr) code_map = new CodeMap();
return code_map;
}
static uint32_t HashCodeAddress(Address addr) {
static const uintptr_t kGoldenRatio = 2654435761u;
return static_cast<uint32_t>((addr >> kCodeAlignmentBits) * kGoldenRatio);
}
static base::HashMap* GetLineMap() {
static base::HashMap* line_map = nullptr;
if (line_map == nullptr) {
line_map = new base::HashMap();
}
return line_map;
}
static void PutLineInfo(Address addr, LineInfo* info) {
base::HashMap* line_map = GetLineMap();
base::HashMap::Entry* e = line_map->LookupOrInsert(
reinterpret_cast<void*>(addr), HashCodeAddress(addr));
if (e->value != nullptr) delete static_cast<LineInfo*>(e->value);
e->value = info;
}
static LineInfo* GetLineInfo(Address addr) {
void* value = GetLineMap()->Remove(reinterpret_cast<void*>(addr),
HashCodeAddress(addr));
return static_cast<LineInfo*>(value);
}
static void AddUnwindInfo(CodeDescription* desc) {
#if V8_TARGET_ARCH_X64
if (desc->is_function()) {
// To avoid propagating unwinding information through
// compilation pipeline we use an approximation.
// For most use cases this should not affect usability.
static const int kFramePointerPushOffset = 1;
static const int kFramePointerSetOffset = 4;
static const int kFramePointerPopOffset = -3;
uintptr_t frame_pointer_push_address =
desc->CodeStart() + kFramePointerPushOffset;
uintptr_t frame_pointer_set_address =
desc->CodeStart() + kFramePointerSetOffset;
uintptr_t frame_pointer_pop_address =
desc->CodeEnd() + kFramePointerPopOffset;
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
frame_pointer_push_address);
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
frame_pointer_set_address);
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
frame_pointer_pop_address);
} else {
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
desc->CodeStart());
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
desc->CodeStart());
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
desc->CodeEnd());
}
#endif // V8_TARGET_ARCH_X64
}
static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
static base::Optional<std::pair<CodeMap::iterator, CodeMap::iterator>>
GetOverlappingRegions(CodeMap* map, const base::AddressRegion region) {
DCHECK_LT(region.begin(), region.end());
if (map->empty()) return {};
// Find the first overlapping entry.
// If successful, points to the first element not less than `region`. The
// returned iterator has the key in `first` and the value in `second`.
auto it = map->lower_bound(region);
auto start_it = it;
if (it == map->end()) {
start_it = map->begin();
// Find the first overlapping entry.
for (; start_it != map->end(); ++start_it) {
if (start_it->first.end() > region.begin()) {
break;
}
}
} else if (it != map->begin()) {
for (--it; it != map->begin(); --it) {
if ((*it).first.end() <= region.begin()) break;
start_it = it;
}
if (it == map->begin() && it->first.end() > region.begin()) {
start_it = it;
}
}
if (start_it == map->end()) {
return {};
}
// Find the first non-overlapping entry after `region`.
const auto end_it = map->lower_bound({region.end(), 0});
// Return a range containing intersecting regions.
if (std::distance(start_it, end_it) < 1)
return {}; // No overlapping entries.
return {{start_it, end_it}};
}
// Remove entries from the map that intersect the given address region,
// and deregister them from GDB.
static void RemoveJITCodeEntries(CodeMap* map,
const base::AddressRegion region) {
if (auto overlap = GetOverlappingRegions(map, region)) {
auto start_it = overlap->first;
auto end_it = overlap->second;
for (auto it = start_it; it != end_it; it++) {
JITCodeEntry* old_entry = (*it).second;
UnregisterCodeEntry(old_entry);
DestroyCodeEntry(old_entry);
}
map->erase(start_it, end_it);
}
}
// Insert the entry into the map and register it with GDB.
static void AddJITCodeEntry(CodeMap* map, const base::AddressRegion region,
JITCodeEntry* entry, bool dump_if_enabled,
const char* name_hint) {
#if defined(DEBUG) && !V8_OS_WIN
static int file_num = 0;
if (FLAG_gdbjit_dump && dump_if_enabled) {
static const int kMaxFileNameSize = 64;
char file_name[64];
SNPrintF(base::Vector<char>(file_name, kMaxFileNameSize),
"/tmp/elfdump%s%d.o", (name_hint != nullptr) ? name_hint : "",
file_num++);
WriteBytes(file_name, reinterpret_cast<byte*>(entry->symfile_addr_),
static_cast<int>(entry->symfile_size_));
}
#endif
auto result = map->emplace(region, entry);
DCHECK(result.second); // Insertion happened.
USE(result);
RegisterCodeEntry(entry);
}
static void AddCode(const char* name, base::AddressRegion region,
SharedFunctionInfo shared, LineInfo* lineinfo,
Isolate* isolate, bool is_function) {
DisallowGarbageCollection no_gc;
CodeDescription code_desc(name, region, shared, lineinfo, is_function);
CodeMap* code_map = GetCodeMap();
RemoveJITCodeEntries(code_map, region);
if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
delete lineinfo;
return;
}
AddUnwindInfo(&code_desc);
JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
delete lineinfo;
const char* name_hint = nullptr;
bool should_dump = false;
if (FLAG_gdbjit_dump) {
if (strlen(FLAG_gdbjit_dump_filter) == 0) {
name_hint = name;
should_dump = true;
} else if (name != nullptr) {
name_hint = strstr(name, FLAG_gdbjit_dump_filter);
should_dump = (name_hint != nullptr);
}
}
AddJITCodeEntry(code_map, region, entry, should_dump, name_hint);
}
void EventHandler(const v8::JitCodeEvent* event) {
if (!FLAG_gdbjit) return;
if ((event->code_type != v8::JitCodeEvent::JIT_CODE) &&
(event->code_type != v8::JitCodeEvent::WASM_CODE)) {
return;
}
base::MutexGuard lock_guard(mutex.Pointer());
switch (event->type) {
case v8::JitCodeEvent::CODE_ADDED: {
Address addr = reinterpret_cast<Address>(event->code_start);
LineInfo* lineinfo = GetLineInfo(addr);
std::string event_name(event->name.str, event->name.len);
// It's called UnboundScript in the API but it's a SharedFunctionInfo.
SharedFunctionInfo shared = event->script.IsEmpty()
? SharedFunctionInfo()
: *Utils::OpenHandle(*event->script);
Isolate* isolate = reinterpret_cast<Isolate*>(event->isolate);
bool is_function = false;
// TODO(zhin): See if we can use event->code_type to determine
// is_function, the difference currently is that JIT_CODE is SparkPlug,
// TurboProp, TurboFan, whereas CodeKindIsOptimizedJSFunction is only
// TurboProp and TurboFan. is_function is used for AddUnwindInfo, and the
// prologue that SP generates probably matches that of TP/TF, so we can
// use event->code_type here instead of finding the Code.
// TODO(zhin): Rename is_function to be more accurate.
if (event->code_type == v8::JitCodeEvent::JIT_CODE) {
Code code = isolate->heap()->GcSafeFindCodeForInnerPointer(addr);
is_function = CodeKindIsOptimizedJSFunction(code.kind());
}
AddCode(event_name.c_str(), {addr, event->code_len}, shared, lineinfo,
isolate, is_function);
break;
}
case v8::JitCodeEvent::CODE_MOVED:
// Enabling the GDB JIT interface should disable code compaction.
UNREACHABLE();
case v8::JitCodeEvent::CODE_REMOVED:
// Do nothing. Instead, adding code causes eviction of any entry whose
// address range intersects the address range of the added code.
break;
case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
static_cast<int>(event->line_info.pos),
event->line_info.position_type ==
v8::JitCodeEvent::STATEMENT_POSITION);
break;
}
case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
mutable_event->user_data = new LineInfo();
break;
}
case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
break;
}
}
}
void AddRegionForTesting(const base::AddressRegion region) {
// For testing purposes we don't care about JITCodeEntry, pass nullptr.
auto result = GetCodeMap()->emplace(region, nullptr);
DCHECK(result.second); // Insertion happened.
USE(result);
}
void ClearCodeMapForTesting() { GetCodeMap()->clear(); }
size_t NumOverlapEntriesForTesting(const base::AddressRegion region) {
if (auto overlaps = GetOverlappingRegions(GetCodeMap(), region)) {
return std::distance(overlaps->first, overlaps->second);
}
return 0;
}
#endif
} // namespace GDBJITInterface
} // namespace internal
} // namespace v8
#undef __MACH_O
#undef __ELF