blob: 3e4dc1b47763d1f179b1aa912f74b170050d877d [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/assembler-inl.h"
#include "src/common/globals.h"
#include "src/date/date.h"
#include "src/diagnostics/disasm.h"
#include "src/diagnostics/disassembler.h"
#include "src/heap/combined-heap.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/read-only-heap.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/init/bootstrapper.h"
#include "src/logging/runtime-call-stats-scope.h"
#include "src/objects/allocation-site-inl.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/bigint.h"
#include "src/objects/call-site-info-inl.h"
#include "src/objects/cell-inl.h"
#include "src/objects/data-handler-inl.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/elements.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/embedder-data-slot-inl.h"
#include "src/objects/feedback-cell-inl.h"
#include "src/objects/field-type.h"
#include "src/objects/foreign-inl.h"
#include "src/objects/free-space-inl.h"
#include "src/objects/function-kind.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/instance-type.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
#include "src/objects/turbofan-types-inl.h"
#include "src/roots/roots.h"
#ifdef V8_INTL_SUPPORT
#include "src/objects/js-break-iterator-inl.h"
#include "src/objects/js-collator-inl.h"
#endif // V8_INTL_SUPPORT
#include "src/objects/js-collection-inl.h"
#ifdef V8_INTL_SUPPORT
#include "src/objects/js-date-time-format-inl.h"
#include "src/objects/js-display-names-inl.h"
#endif // V8_INTL_SUPPORT
#include "src/objects/js-generator-inl.h"
#ifdef V8_INTL_SUPPORT
#include "src/objects/js-list-format-inl.h"
#include "src/objects/js-locale-inl.h"
#include "src/objects/js-number-format-inl.h"
#include "src/objects/js-plural-rules-inl.h"
#endif // V8_INTL_SUPPORT
#include "src/objects/js-regexp-inl.h"
#include "src/objects/js-regexp-string-iterator-inl.h"
#include "src/objects/js-shadow-realms-inl.h"
#ifdef V8_INTL_SUPPORT
#include "src/objects/js-relative-time-format-inl.h"
#include "src/objects/js-segment-iterator-inl.h"
#include "src/objects/js-segmenter-inl.h"
#include "src/objects/js-segments-inl.h"
#endif // V8_INTL_SUPPORT
#include "src/objects/js-struct-inl.h"
#include "src/objects/js-temporal-objects-inl.h"
#include "src/objects/js-weak-refs-inl.h"
#include "src/objects/literal-objects-inl.h"
#include "src/objects/maybe-object.h"
#include "src/objects/megadom-handler-inl.h"
#include "src/objects/microtask-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/oddball-inl.h"
#include "src/objects/promise-inl.h"
#include "src/objects/property-descriptor-object-inl.h"
#include "src/objects/struct-inl.h"
#include "src/objects/swiss-name-dictionary-inl.h"
#include "src/objects/synthetic-module-inl.h"
#include "src/objects/template-objects-inl.h"
#include "src/objects/torque-defined-classes-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/regexp/regexp.h"
#include "src/utils/ostreams.h"
#include "torque-generated/class-verifiers.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/base/strings.h"
#include "src/debug/debug-wasm-objects-inl.h"
#include "src/wasm/wasm-objects-inl.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
// Heap Verification Overview
// --------------------------
// - Each InstanceType has a separate XXXVerify method which checks an object's
// integrity in isolation.
// - --verify-heap will iterate over all gc spaces and call ObjectVerify() on
// every encountered tagged pointer.
// - Verification should be pushed down to the specific instance type if its
// integrity is independent of an outer object.
// - In cases where the InstanceType is too generic (e.g. FixedArray) the
// XXXVerify of the outer method has to do recursive verification.
// - If the corresponding objects have inheritence the parent's Verify method
// is called as well.
// - For any field containing pointes VerifyPointer(...) should be called.
//
// Caveats
// -------
// - Assume that any of the verify methods is incomplete!
// - Some integrity checks are only partially done due to objects being in
// partially initialized states when a gc happens, for instance when outer
// objects are allocted before inner ones.
//
#ifdef VERIFY_HEAP
#define USE_TORQUE_VERIFIER(Class) \
void Class::Class##Verify(Isolate* isolate) { \
TorqueGeneratedClassVerifiers::Class##Verify(*this, isolate); \
}
void Object::ObjectVerify(Isolate* isolate) {
RCS_SCOPE(isolate, RuntimeCallCounterId::kObjectVerify);
if (IsSmi()) {
Smi::cast(*this).SmiVerify(isolate);
} else {
HeapObject::cast(*this).HeapObjectVerify(isolate);
}
PtrComprCageBase cage_base(isolate);
CHECK(!IsConstructor(cage_base) || IsCallable(cage_base));
}
void Object::VerifyPointer(Isolate* isolate, Object p) {
if (p.IsHeapObject()) {
HeapObject::VerifyHeapPointer(isolate, p);
} else {
CHECK(p.IsSmi());
}
}
void Object::VerifyAnyTagged(Isolate* isolate, Object p) {
if (p.IsHeapObject()) {
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
CHECK(IsValidHeapObject(isolate->heap(), HeapObject::cast(p)));
} else {
HeapObject::VerifyHeapPointer(isolate, p);
}
} else {
CHECK(p.IsSmi());
}
}
void MaybeObject::VerifyMaybeObjectPointer(Isolate* isolate, MaybeObject p) {
HeapObject heap_object;
if (p->GetHeapObject(&heap_object)) {
HeapObject::VerifyHeapPointer(isolate, heap_object);
} else {
CHECK(p->IsSmi() || p->IsCleared() || MapWord::IsPacked(p->ptr()));
}
}
void Smi::SmiVerify(Isolate* isolate) {
CHECK(IsSmi());
CHECK(!IsCallable());
CHECK(!IsConstructor());
}
void TaggedIndex::TaggedIndexVerify(Isolate* isolate) {
CHECK(IsTaggedIndex());
}
void HeapObject::HeapObjectVerify(Isolate* isolate) {
CHECK(IsHeapObject());
PtrComprCageBase cage_base(isolate);
VerifyPointer(isolate, map(cage_base));
CHECK(map(cage_base).IsMap(cage_base));
switch (map(cage_base).instance_type()) {
#define STRING_TYPE_CASE(TYPE, size, name, CamelName) case TYPE:
STRING_TYPE_LIST(STRING_TYPE_CASE)
#undef STRING_TYPE_CASE
if (IsConsString(cage_base)) {
ConsString::cast(*this).ConsStringVerify(isolate);
} else if (IsSlicedString(cage_base)) {
SlicedString::cast(*this).SlicedStringVerify(isolate);
} else if (IsThinString(cage_base)) {
ThinString::cast(*this).ThinStringVerify(isolate);
} else if (IsSeqString(cage_base)) {
SeqString::cast(*this).SeqStringVerify(isolate);
} else if (IsExternalString(cage_base)) {
ExternalString::cast(*this).ExternalStringVerify(isolate);
} else {
String::cast(*this).StringVerify(isolate);
}
break;
case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
ObjectBoilerplateDescription::cast(*this)
.ObjectBoilerplateDescriptionVerify(isolate);
break;
// FixedArray types
case CLOSURE_FEEDBACK_CELL_ARRAY_TYPE:
case HASH_TABLE_TYPE:
case ORDERED_HASH_MAP_TYPE:
case ORDERED_HASH_SET_TYPE:
case ORDERED_NAME_DICTIONARY_TYPE:
case NAME_TO_INDEX_HASH_TABLE_TYPE:
case REGISTERED_SYMBOL_TABLE_TYPE:
case NAME_DICTIONARY_TYPE:
case GLOBAL_DICTIONARY_TYPE:
case NUMBER_DICTIONARY_TYPE:
case SIMPLE_NUMBER_DICTIONARY_TYPE:
case EPHEMERON_HASH_TABLE_TYPE:
case SCRIPT_CONTEXT_TABLE_TYPE:
FixedArray::cast(*this).FixedArrayVerify(isolate);
break;
case AWAIT_CONTEXT_TYPE:
case BLOCK_CONTEXT_TYPE:
case CATCH_CONTEXT_TYPE:
case DEBUG_EVALUATE_CONTEXT_TYPE:
case EVAL_CONTEXT_TYPE:
case FUNCTION_CONTEXT_TYPE:
case MODULE_CONTEXT_TYPE:
case SCRIPT_CONTEXT_TYPE:
case WITH_CONTEXT_TYPE:
Context::cast(*this).ContextVerify(isolate);
break;
case NATIVE_CONTEXT_TYPE:
NativeContext::cast(*this).NativeContextVerify(isolate);
break;
case FEEDBACK_METADATA_TYPE:
FeedbackMetadata::cast(*this).FeedbackMetadataVerify(isolate);
break;
case TRANSITION_ARRAY_TYPE:
TransitionArray::cast(*this).TransitionArrayVerify(isolate);
break;
case CODE_TYPE:
Code::cast(*this).CodeVerify(isolate);
break;
case JS_API_OBJECT_TYPE:
case JS_ARRAY_ITERATOR_PROTOTYPE_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_ERROR_TYPE:
case JS_ITERATOR_PROTOTYPE_TYPE:
case JS_MAP_ITERATOR_PROTOTYPE_TYPE:
case JS_OBJECT_PROTOTYPE_TYPE:
case JS_PROMISE_PROTOTYPE_TYPE:
case JS_REG_EXP_PROTOTYPE_TYPE:
case JS_SET_ITERATOR_PROTOTYPE_TYPE:
case JS_SET_PROTOTYPE_TYPE:
case JS_SPECIAL_API_OBJECT_TYPE:
case JS_STRING_ITERATOR_PROTOTYPE_TYPE:
case JS_TYPED_ARRAY_PROTOTYPE_TYPE:
JSObject::cast(*this).JSObjectVerify(isolate);
break;
#if V8_ENABLE_WEBASSEMBLY
case WASM_INSTANCE_OBJECT_TYPE:
WasmInstanceObject::cast(*this).WasmInstanceObjectVerify(isolate);
break;
case WASM_VALUE_OBJECT_TYPE:
WasmValueObject::cast(*this).WasmValueObjectVerify(isolate);
break;
#endif // V8_ENABLE_WEBASSEMBLY
case JS_SET_KEY_VALUE_ITERATOR_TYPE:
case JS_SET_VALUE_ITERATOR_TYPE:
JSSetIterator::cast(*this).JSSetIteratorVerify(isolate);
break;
case JS_MAP_KEY_ITERATOR_TYPE:
case JS_MAP_KEY_VALUE_ITERATOR_TYPE:
case JS_MAP_VALUE_ITERATOR_TYPE:
JSMapIterator::cast(*this).JSMapIteratorVerify(isolate);
break;
case FILLER_TYPE:
break;
case CODE_DATA_CONTAINER_TYPE:
CodeDataContainer::cast(*this).CodeDataContainerVerify(isolate);
break;
#define MAKE_TORQUE_CASE(Name, TYPE) \
case TYPE: \
Name::cast(*this).Name##Verify(isolate); \
break;
// Every class that has its fields defined in a .tq file and corresponds
// to exactly one InstanceType value is included in the following list.
TORQUE_INSTANCE_CHECKERS_SINGLE_FULLY_DEFINED(MAKE_TORQUE_CASE)
TORQUE_INSTANCE_CHECKERS_MULTIPLE_FULLY_DEFINED(MAKE_TORQUE_CASE)
#undef MAKE_TORQUE_CASE
case ALLOCATION_SITE_TYPE:
AllocationSite::cast(*this).AllocationSiteVerify(isolate);
break;
case LOAD_HANDLER_TYPE:
LoadHandler::cast(*this).LoadHandlerVerify(isolate);
break;
case STORE_HANDLER_TYPE:
StoreHandler::cast(*this).StoreHandlerVerify(isolate);
break;
case BIG_INT_BASE_TYPE:
BigIntBase::cast(*this).BigIntBaseVerify(isolate);
break;
case JS_CLASS_CONSTRUCTOR_TYPE:
case JS_PROMISE_CONSTRUCTOR_TYPE:
case JS_REG_EXP_CONSTRUCTOR_TYPE:
case JS_ARRAY_CONSTRUCTOR_TYPE:
#define TYPED_ARRAY_CONSTRUCTORS_SWITCH(Type, type, TYPE, Ctype) \
case TYPE##_TYPED_ARRAY_CONSTRUCTOR_TYPE:
TYPED_ARRAYS(TYPED_ARRAY_CONSTRUCTORS_SWITCH)
#undef TYPED_ARRAY_CONSTRUCTORS_SWITCH
JSFunction::cast(*this).JSFunctionVerify(isolate);
break;
case JS_LAST_DUMMY_API_OBJECT_TYPE:
UNREACHABLE();
}
}
// static
void HeapObject::VerifyHeapPointer(Isolate* isolate, Object p) {
CHECK(p.IsHeapObject());
CHECK(IsValidHeapObject(isolate->heap(), HeapObject::cast(p)));
CHECK_IMPLIES(V8_EXTERNAL_CODE_SPACE_BOOL, !p.IsCode());
}
// static
void HeapObject::VerifyCodePointer(Isolate* isolate, Object p) {
CHECK(p.IsHeapObject());
CHECK(IsValidCodeObject(isolate->heap(), HeapObject::cast(p)));
PtrComprCageBase cage_base(isolate);
CHECK(HeapObject::cast(p).IsCode(cage_base));
}
void Symbol::SymbolVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::SymbolVerify(*this, isolate);
CHECK(HasHashCode());
CHECK_GT(hash(), 0);
CHECK(description().IsUndefined(isolate) || description().IsString());
CHECK_IMPLIES(IsPrivateName(), IsPrivate());
CHECK_IMPLIES(IsPrivateBrand(), IsPrivateName());
}
void BytecodeArray::BytecodeArrayVerify(Isolate* isolate) {
// TODO(oth): Walk bytecodes and immediate values to validate sanity.
// - All bytecodes are known and well formed.
// - Jumps must go to new instructions starts.
// - No Illegal bytecodes.
// - No consecutive sequences of prefix Wide / ExtraWide.
TorqueGeneratedClassVerifiers::BytecodeArrayVerify(*this, isolate);
for (int i = 0; i < constant_pool(isolate).length(); ++i) {
// No ThinStrings in the constant pool.
CHECK(!constant_pool(isolate).get(isolate, i).IsThinString(isolate));
}
}
bool JSObject::ElementsAreSafeToExamine(PtrComprCageBase cage_base) const {
// If a GC was caused while constructing this object, the elements
// pointer may point to a one pointer filler map.
return elements(cage_base) !=
GetReadOnlyRoots(cage_base).one_pointer_filler_map();
}
namespace {
void VerifyJSObjectElements(Isolate* isolate, JSObject object) {
// Only TypedArrays can have these specialized elements.
if (object.IsJSTypedArray()) {
// TODO(bmeurer,v8:4153): Fix CreateTypedArray to either not instantiate
// the object or propertly initialize it on errors during construction.
/* CHECK(object->HasTypedArrayElements()); */
return;
}
CHECK(!object.elements().IsByteArray());
if (object.HasDoubleElements()) {
if (object.elements().length() > 0) {
CHECK(object.elements().IsFixedDoubleArray());
}
return;
}
if (object.HasSloppyArgumentsElements()) {
CHECK(object.elements().IsSloppyArgumentsElements());
return;
}
FixedArray elements = FixedArray::cast(object.elements());
if (object.HasSmiElements()) {
// We might have a partially initialized backing store, in which case we
// allow the hole + smi values.
for (int i = 0; i < elements.length(); i++) {
Object value = elements.get(i);
CHECK(value.IsSmi() || value.IsTheHole(isolate));
}
} else if (object.HasObjectElements()) {
for (int i = 0; i < elements.length(); i++) {
Object element = elements.get(i);
CHECK(!HasWeakHeapObjectTag(element));
}
}
}
} // namespace
void JSObject::JSObjectVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSObjectVerify(*this, isolate);
VerifyHeapPointer(isolate, elements());
CHECK_IMPLIES(HasSloppyArgumentsElements(), IsJSArgumentsObject());
if (HasFastProperties()) {
int actual_unused_property_fields = map().GetInObjectProperties() +
property_array().length() -
map().NextFreePropertyIndex();
if (map().UnusedPropertyFields() != actual_unused_property_fields) {
// There are two reasons why this can happen:
// - in the middle of StoreTransitionStub when the new extended backing
// store is already set into the object and the allocation of the
// HeapNumber triggers GC while the map isn't updated yet.
// - deletion of the last property can leave additional backing store
// capacity behind.
CHECK_GT(actual_unused_property_fields, map().UnusedPropertyFields());
int delta = actual_unused_property_fields - map().UnusedPropertyFields();
CHECK_EQ(0, delta % JSObject::kFieldsAdded);
}
DescriptorArray descriptors = map().instance_descriptors(isolate);
bool is_transitionable_fast_elements_kind =
IsTransitionableFastElementsKind(map().elements_kind());
for (InternalIndex i : map().IterateOwnDescriptors()) {
PropertyDetails details = descriptors.GetDetails(i);
if (details.location() == PropertyLocation::kField) {
DCHECK_EQ(PropertyKind::kData, details.kind());
Representation r = details.representation();
FieldIndex index = FieldIndex::ForDescriptor(map(), i);
if (COMPRESS_POINTERS_BOOL && index.is_inobject()) {
VerifyObjectField(isolate, index.offset());
}
Object value = RawFastPropertyAt(index);
if (r.IsDouble()) DCHECK(value.IsHeapNumber());
if (value.IsUninitialized(isolate)) continue;
if (r.IsSmi()) DCHECK(value.IsSmi());
if (r.IsHeapObject()) DCHECK(value.IsHeapObject());
FieldType field_type = descriptors.GetFieldType(i);
bool type_is_none = field_type.IsNone();
bool type_is_any = field_type.IsAny();
if (r.IsNone()) {
CHECK(type_is_none);
} else if (!type_is_any && !(type_is_none && r.IsHeapObject())) {
CHECK(!field_type.NowStable() || field_type.NowContains(value));
}
CHECK_IMPLIES(is_transitionable_fast_elements_kind,
Map::IsMostGeneralFieldType(r, field_type));
}
}
if (map().EnumLength() != kInvalidEnumCacheSentinel) {
EnumCache enum_cache = descriptors.enum_cache();
FixedArray keys = enum_cache.keys();
FixedArray indices = enum_cache.indices();
CHECK_LE(map().EnumLength(), keys.length());
CHECK_IMPLIES(indices != ReadOnlyRoots(isolate).empty_fixed_array(),
keys.length() == indices.length());
}
}
// If a GC was caused while constructing this object, the elements
// pointer may point to a one pointer filler map.
if (ElementsAreSafeToExamine(isolate)) {
CHECK_EQ((map().has_fast_smi_or_object_elements() ||
map().has_any_nonextensible_elements() ||
(elements() == GetReadOnlyRoots().empty_fixed_array()) ||
HasFastStringWrapperElements()),
(elements().map() == GetReadOnlyRoots().fixed_array_map() ||
elements().map() == GetReadOnlyRoots().fixed_cow_array_map()));
CHECK_EQ(map().has_fast_object_elements(), HasObjectElements());
VerifyJSObjectElements(isolate, *this);
}
}
void Map::MapVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::MapVerify(*this, isolate);
Heap* heap = isolate->heap();
CHECK(!ObjectInYoungGeneration(*this));
CHECK(FIRST_TYPE <= instance_type() && instance_type() <= LAST_TYPE);
CHECK(instance_size() == kVariableSizeSentinel ||
(kTaggedSize <= instance_size() &&
static_cast<size_t>(instance_size()) < heap->Capacity()));
if (IsContextMap()) {
// The map for the NativeContext is allocated before the NativeContext
// itself, so it may happen that during a GC the native_context() is still
// null.
CHECK(native_context_or_null().IsNull() ||
native_context().IsNativeContext());
} else {
if (GetBackPointer().IsUndefined(isolate)) {
// Root maps must not have descriptors in the descriptor array that do not
// belong to the map.
CHECK_EQ(NumberOfOwnDescriptors(),
instance_descriptors(isolate).number_of_descriptors());
} else {
// If there is a parent map it must be non-stable.
Map parent = Map::cast(GetBackPointer());
CHECK(!parent.is_stable());
DescriptorArray descriptors = instance_descriptors(isolate);
if (descriptors == parent.instance_descriptors(isolate)) {
if (NumberOfOwnDescriptors() == parent.NumberOfOwnDescriptors() + 1) {
// Descriptors sharing through property transitions takes over
// ownership from the parent map.
CHECK(!parent.owns_descriptors());
} else {
CHECK_EQ(NumberOfOwnDescriptors(), parent.NumberOfOwnDescriptors());
// Descriptors sharing through special transitions properly takes over
// ownership from the parent map unless it uses the canonical empty
// descriptor array.
if (descriptors != ReadOnlyRoots(isolate).empty_descriptor_array()) {
CHECK_IMPLIES(owns_descriptors(), !parent.owns_descriptors());
CHECK_IMPLIES(parent.owns_descriptors(), !owns_descriptors());
}
}
}
}
}
SLOW_DCHECK(instance_descriptors(isolate).IsSortedNoDuplicates());
SLOW_DCHECK(TransitionsAccessor(isolate, *this).IsSortedNoDuplicates());
SLOW_DCHECK(
TransitionsAccessor(isolate, *this).IsConsistentWithBackPointers());
// Only JSFunction maps have has_prototype_slot() bit set and constructible
// JSFunction objects must have prototype slot.
CHECK_IMPLIES(has_prototype_slot(), IsJSFunctionMap());
if (IsJSObjectMap()) {
int header_end_offset = JSObject::GetHeaderSize(*this);
int inobject_fields_start_offset = GetInObjectPropertyOffset(0);
// Ensure that embedder fields are located exactly between header and
// inobject properties.
CHECK_EQ(header_end_offset, JSObject::GetEmbedderFieldsStartOffset(*this));
CHECK_EQ(header_end_offset +
JSObject::GetEmbedderFieldCount(*this) * kEmbedderDataSlotSize,
inobject_fields_start_offset);
}
if (!may_have_interesting_symbols()) {
CHECK(!has_named_interceptor());
CHECK(!is_dictionary_map());
CHECK(!is_access_check_needed());
DescriptorArray const descriptors = instance_descriptors(isolate);
for (InternalIndex i : IterateOwnDescriptors()) {
CHECK(!descriptors.GetKey(i).IsInterestingSymbol());
}
}
CHECK_IMPLIES(has_named_interceptor(), may_have_interesting_symbols());
CHECK_IMPLIES(is_dictionary_map(), may_have_interesting_symbols());
CHECK_IMPLIES(is_access_check_needed(), may_have_interesting_symbols());
CHECK_IMPLIES(IsJSObjectMap() && !CanHaveFastTransitionableElementsKind(),
IsDictionaryElementsKind(elements_kind()) ||
IsTerminalElementsKind(elements_kind()) ||
IsAnyHoleyNonextensibleElementsKind(elements_kind()));
CHECK_IMPLIES(is_deprecated(), !is_stable());
if (is_prototype_map()) {
DCHECK(prototype_info() == Smi::zero() ||
prototype_info().IsPrototypeInfo());
}
}
void Map::DictionaryMapVerify(Isolate* isolate) {
MapVerify(isolate);
CHECK(is_dictionary_map());
CHECK_EQ(kInvalidEnumCacheSentinel, EnumLength());
CHECK_EQ(ReadOnlyRoots(isolate).empty_descriptor_array(),
instance_descriptors(isolate));
CHECK_EQ(0, UnusedPropertyFields());
CHECK_EQ(Map::GetVisitorId(*this), visitor_id());
}
void EmbedderDataArray::EmbedderDataArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::EmbedderDataArrayVerify(*this, isolate);
EmbedderDataSlot start(*this, 0);
EmbedderDataSlot end(*this, length());
for (EmbedderDataSlot slot = start; slot < end; ++slot) {
Object e = slot.load_tagged();
Object::VerifyPointer(isolate, e);
}
}
void FixedArray::FixedArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::FixedArrayVerify(*this, isolate);
if (*this == ReadOnlyRoots(isolate).empty_fixed_array()) {
CHECK_EQ(length(), 0);
CHECK_EQ(map(), ReadOnlyRoots(isolate).fixed_array_map());
} else if (IsArrayList()) {
ArrayList::cast(*this).ArrayListVerify(isolate);
}
}
void WeakFixedArray::WeakFixedArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::WeakFixedArrayVerify(*this, isolate);
for (int i = 0; i < length(); i++) {
MaybeObject::VerifyMaybeObjectPointer(isolate, Get(i));
}
}
void ArrayList::ArrayListVerify(Isolate* isolate) {
// Avoid calling the torque-generated ArrayListVerify to prevent an endlessly
// recursion verification.
CHECK(IsArrayList());
CHECK_LE(ArrayList::kLengthIndex, length());
CHECK_LE(0, Length());
if (Length() == 0 && length() == ArrayList::kLengthIndex) {
CHECK_EQ(*this, ReadOnlyRoots(isolate).empty_array_list());
}
}
void PropertyArray::PropertyArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::PropertyArrayVerify(*this, isolate);
if (length() == 0) {
CHECK_EQ(*this, ReadOnlyRoots(isolate).empty_property_array());
return;
}
// There are no empty PropertyArrays.
CHECK_LT(0, length());
for (int i = 0; i < length(); i++) {
Object e = get(i);
Object::VerifyPointer(isolate, e);
}
}
void FixedDoubleArray::FixedDoubleArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::FixedDoubleArrayVerify(*this, isolate);
for (int i = 0; i < length(); i++) {
if (!is_the_hole(i)) {
uint64_t value = get_representation(i);
uint64_t unexpected =
bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()) &
uint64_t{0x7FF8000000000000};
// Create implementation specific sNaN by inverting relevant bit.
unexpected ^= uint64_t{0x0008000000000000};
CHECK((value & uint64_t{0x7FF8000000000000}) != unexpected ||
(value & uint64_t{0x0007FFFFFFFFFFFF}) == uint64_t{0});
}
}
}
void Context::ContextVerify(Isolate* isolate) {
if (has_extension()) VerifyExtensionSlot(extension());
TorqueGeneratedClassVerifiers::ContextVerify(*this, isolate);
for (int i = 0; i < length(); i++) {
VerifyObjectField(isolate, OffsetOfElementAt(i));
}
}
void NativeContext::NativeContextVerify(Isolate* isolate) {
ContextVerify(isolate);
CHECK(retained_maps() == Smi::zero() || retained_maps().IsWeakArrayList());
CHECK_EQ(length(), NativeContext::NATIVE_CONTEXT_SLOTS);
CHECK_EQ(kVariableSizeSentinel, map().instance_size());
}
void FeedbackMetadata::FeedbackMetadataVerify(Isolate* isolate) {
if (slot_count() == 0 && create_closure_slot_count() == 0) {
CHECK_EQ(ReadOnlyRoots(isolate).empty_feedback_metadata(), *this);
} else {
FeedbackMetadataIterator iter(*this);
while (iter.HasNext()) {
iter.Next();
FeedbackSlotKind kind = iter.kind();
CHECK_NE(FeedbackSlotKind::kInvalid, kind);
CHECK_GT(FeedbackSlotKind::kKindsNumber, kind);
}
}
}
void DescriptorArray::DescriptorArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::DescriptorArrayVerify(*this, isolate);
if (number_of_all_descriptors() == 0) {
CHECK_EQ(ReadOnlyRoots(isolate).empty_descriptor_array(), *this);
CHECK_EQ(0, number_of_all_descriptors());
CHECK_EQ(0, number_of_descriptors());
CHECK_EQ(ReadOnlyRoots(isolate).empty_enum_cache(), enum_cache());
} else {
CHECK_LT(0, number_of_all_descriptors());
CHECK_LE(number_of_descriptors(), number_of_all_descriptors());
// Check that properties with private symbols names are non-enumerable, and
// that fields are in order.
int expected_field_index = 0;
for (InternalIndex descriptor :
InternalIndex::Range(number_of_descriptors())) {
Object key = *(GetDescriptorSlot(descriptor.as_int()) + kEntryKeyIndex);
// number_of_descriptors() may be out of sync with the actual descriptors
// written during descriptor array construction.
if (key.IsUndefined(isolate)) continue;
PropertyDetails details = GetDetails(descriptor);
if (Name::cast(key).IsPrivate()) {
CHECK_NE(details.attributes() & DONT_ENUM, 0);
}
MaybeObject value = GetValue(descriptor);
HeapObject heap_object;
if (details.location() == PropertyLocation::kField) {
CHECK_EQ(details.field_index(), expected_field_index);
CHECK(
value == MaybeObject::FromObject(FieldType::None()) ||
value == MaybeObject::FromObject(FieldType::Any()) ||
value->IsCleared() ||
(value->GetHeapObjectIfWeak(&heap_object) && heap_object.IsMap()));
expected_field_index += details.field_width_in_words();
} else {
CHECK(!value->IsWeakOrCleared());
CHECK(!value->cast<Object>().IsMap());
}
}
}
}
void TransitionArray::TransitionArrayVerify(Isolate* isolate) {
WeakFixedArrayVerify(isolate);
CHECK_LE(LengthFor(number_of_transitions()), length());
}
namespace {
void SloppyArgumentsElementsVerify(Isolate* isolate,
SloppyArgumentsElements elements,
JSObject holder) {
elements.SloppyArgumentsElementsVerify(isolate);
ElementsKind kind = holder.GetElementsKind();
bool is_fast = kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS;
Context context_object = elements.context();
FixedArray arg_elements = elements.arguments();
if (arg_elements.length() == 0) {
CHECK(arg_elements == ReadOnlyRoots(isolate).empty_fixed_array());
return;
}
ElementsAccessor* accessor;
if (is_fast) {
accessor = ElementsAccessor::ForKind(HOLEY_ELEMENTS);
} else {
accessor = ElementsAccessor::ForKind(DICTIONARY_ELEMENTS);
}
int nofMappedParameters = 0;
int maxMappedIndex = 0;
for (int i = 0; i < nofMappedParameters; i++) {
// Verify that each context-mapped argument is either the hole or a valid
// Smi within context length range.
Object mapped = elements.mapped_entries(i, kRelaxedLoad);
if (mapped.IsTheHole(isolate)) {
// Slow sloppy arguments can be holey.
if (!is_fast) continue;
// Fast sloppy arguments elements are never holey. Either the element is
// context-mapped or present in the arguments elements.
CHECK(accessor->HasElement(holder, i, arg_elements));
continue;
}
int mappedIndex = Smi::ToInt(mapped);
nofMappedParameters++;
CHECK_LE(maxMappedIndex, mappedIndex);
maxMappedIndex = mappedIndex;
Object value = context_object.get(mappedIndex);
CHECK(value.IsObject());
// None of the context-mapped entries should exist in the arguments
// elements.
CHECK(!accessor->HasElement(holder, i, arg_elements));
}
CHECK_LE(nofMappedParameters, context_object.length());
CHECK_LE(nofMappedParameters, arg_elements.length());
CHECK_LE(maxMappedIndex, context_object.length());
CHECK_LE(maxMappedIndex, arg_elements.length());
}
} // namespace
void JSArgumentsObject::JSArgumentsObjectVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSArgumentsObjectVerify(*this, isolate);
if (IsSloppyArgumentsElementsKind(GetElementsKind())) {
SloppyArgumentsElementsVerify(
isolate, SloppyArgumentsElements::cast(elements()), *this);
}
if (isolate->IsInAnyContext(map(), Context::SLOPPY_ARGUMENTS_MAP_INDEX) ||
isolate->IsInAnyContext(map(),
Context::SLOW_ALIASED_ARGUMENTS_MAP_INDEX) ||
isolate->IsInAnyContext(map(),
Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)) {
VerifyObjectField(isolate, JSSloppyArgumentsObject::kLengthOffset);
VerifyObjectField(isolate, JSSloppyArgumentsObject::kCalleeOffset);
} else if (isolate->IsInAnyContext(map(),
Context::STRICT_ARGUMENTS_MAP_INDEX)) {
VerifyObjectField(isolate, JSStrictArgumentsObject::kLengthOffset);
}
}
void JSAsyncFunctionObject::JSAsyncFunctionObjectVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSAsyncFunctionObjectVerify(*this, isolate);
}
void JSAsyncGeneratorObject::JSAsyncGeneratorObjectVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSAsyncGeneratorObjectVerify(*this, isolate);
}
void JSDate::JSDateVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSDateVerify(*this, isolate);
if (month().IsSmi()) {
int month = Smi::ToInt(this->month());
CHECK(0 <= month && month <= 11);
}
if (day().IsSmi()) {
int day = Smi::ToInt(this->day());
CHECK(1 <= day && day <= 31);
}
if (hour().IsSmi()) {
int hour = Smi::ToInt(this->hour());
CHECK(0 <= hour && hour <= 23);
}
if (min().IsSmi()) {
int min = Smi::ToInt(this->min());
CHECK(0 <= min && min <= 59);
}
if (sec().IsSmi()) {
int sec = Smi::ToInt(this->sec());
CHECK(0 <= sec && sec <= 59);
}
if (weekday().IsSmi()) {
int weekday = Smi::ToInt(this->weekday());
CHECK(0 <= weekday && weekday <= 6);
}
if (cache_stamp().IsSmi()) {
CHECK(Smi::ToInt(cache_stamp()) <=
Smi::ToInt(isolate->date_cache()->stamp()));
}
}
void String::StringVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::StringVerify(*this, isolate);
CHECK(length() >= 0 && length() <= Smi::kMaxValue);
CHECK_IMPLIES(length() == 0, *this == ReadOnlyRoots(isolate).empty_string());
if (IsInternalizedString()) {
CHECK(!ObjectInYoungGeneration(*this));
}
}
void ConsString::ConsStringVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::ConsStringVerify(*this, isolate);
CHECK_GE(length(), ConsString::kMinLength);
CHECK(length() == first().length() + second().length());
if (IsFlat(isolate)) {
// A flat cons can only be created by String::SlowFlatten.
// Afterwards, the first part may be externalized or internalized.
CHECK(first().IsSeqString() || first().IsExternalString() ||
first().IsThinString());
}
}
void ThinString::ThinStringVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::ThinStringVerify(*this, isolate);
CHECK(actual().IsInternalizedString());
CHECK(actual().IsSeqString() || actual().IsExternalString());
}
void SlicedString::SlicedStringVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::SlicedStringVerify(*this, isolate);
CHECK(!parent().IsConsString());
CHECK(!parent().IsSlicedString());
CHECK_GE(length(), SlicedString::kMinLength);
}
USE_TORQUE_VERIFIER(ExternalString)
void JSBoundFunction::JSBoundFunctionVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSBoundFunctionVerify(*this, isolate);
CHECK(IsCallable());
CHECK_EQ(IsConstructor(), bound_target_function().IsConstructor());
}
void JSFunction::JSFunctionVerify(Isolate* isolate) {
// Don't call TorqueGeneratedClassVerifiers::JSFunctionVerify here because the
// Torque class definition contains the field `prototype_or_initial_map` which
// may not be allocated.
// This assertion exists to encourage updating this verification function if
// new fields are added in the Torque class layout definition.
STATIC_ASSERT(JSFunction::TorqueGeneratedClass::kHeaderSize ==
8 * kTaggedSize);
JSFunctionOrBoundFunctionOrWrappedFunctionVerify(isolate);
CHECK(IsJSFunction());
VerifyPointer(isolate, shared(isolate));
CHECK(shared(isolate).IsSharedFunctionInfo());
VerifyPointer(isolate, context(isolate, kRelaxedLoad));
CHECK(context(isolate, kRelaxedLoad).IsContext());
VerifyPointer(isolate, raw_feedback_cell(isolate));
CHECK(raw_feedback_cell(isolate).IsFeedbackCell());
VerifyPointer(isolate, code(isolate));
CHECK(code(isolate).IsCodeT());
CHECK(map(isolate).is_callable());
Handle<JSFunction> function(*this, isolate);
LookupIterator it(isolate, function, isolate->factory()->prototype_string(),
LookupIterator::OWN_SKIP_INTERCEPTOR);
if (has_prototype_slot()) {
VerifyObjectField(isolate, kPrototypeOrInitialMapOffset);
}
if (has_prototype_property()) {
CHECK(it.IsFound());
CHECK_EQ(LookupIterator::ACCESSOR, it.state());
CHECK(it.GetAccessors()->IsAccessorInfo());
} else {
CHECK(!it.IsFound() || it.state() != LookupIterator::ACCESSOR ||
!it.GetAccessors()->IsAccessorInfo());
}
}
void SharedFunctionInfo::SharedFunctionInfoVerify(Isolate* isolate) {
// TODO(leszeks): Add a TorqueGeneratedClassVerifier for LocalIsolate.
this->SharedFunctionInfoVerify(ReadOnlyRoots(isolate));
}
void SharedFunctionInfo::SharedFunctionInfoVerify(LocalIsolate* isolate) {
this->SharedFunctionInfoVerify(ReadOnlyRoots(isolate));
}
void SharedFunctionInfo::SharedFunctionInfoVerify(ReadOnlyRoots roots) {
Object value = name_or_scope_info(kAcquireLoad);
if (value.IsScopeInfo()) {
CHECK(!ScopeInfo::cast(value).IsEmpty());
CHECK_NE(value, roots.empty_scope_info());
}
#if V8_ENABLE_WEBASSEMBLY
bool is_wasm = HasWasmExportedFunctionData() || HasAsmWasmData() ||
HasWasmJSFunctionData() || HasWasmCapiFunctionData() ||
HasWasmOnFulfilledData();
#else
bool is_wasm = false;
#endif // V8_ENABLE_WEBASSEMBLY
CHECK(is_wasm || IsApiFunction() || HasBytecodeArray() || HasBuiltinId() ||
HasUncompiledDataWithPreparseData() ||
HasUncompiledDataWithoutPreparseData());
{
auto script = script_or_debug_info(kAcquireLoad);
CHECK(script.IsUndefined(roots) || script.IsScript() ||
script.IsDebugInfo());
}
if (!is_compiled()) {
CHECK(!HasFeedbackMetadata());
CHECK(outer_scope_info().IsScopeInfo() ||
outer_scope_info().IsTheHole(roots));
} else if (HasBytecodeArray() && HasFeedbackMetadata()) {
CHECK(feedback_metadata().IsFeedbackMetadata());
}
int expected_map_index =
Context::FunctionMapIndex(language_mode(), kind(), HasSharedName());
CHECK_EQ(expected_map_index, function_map_index());
if (!scope_info().IsEmpty()) {
ScopeInfo info = scope_info();
CHECK(kind() == info.function_kind());
CHECK_EQ(internal::IsModule(kind()), info.scope_type() == MODULE_SCOPE);
}
if (IsApiFunction()) {
CHECK(construct_as_builtin());
} else if (!HasBuiltinId()) {
CHECK(!construct_as_builtin());
} else {
if (builtin_id() != Builtin::kCompileLazy &&
builtin_id() != Builtin::kEmptyFunction) {
CHECK(construct_as_builtin());
} else {
CHECK(!construct_as_builtin());
}
}
}
void JSGlobalProxy::JSGlobalProxyVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSGlobalProxyVerify(*this, isolate);
CHECK(map().is_access_check_needed());
// Make sure that this object has no properties, elements.
CHECK_EQ(0, FixedArray::cast(elements()).length());
}
void JSGlobalObject::JSGlobalObjectVerify(Isolate* isolate) {
CHECK(IsJSGlobalObject());
// Do not check the dummy global object for the builtins.
if (global_dictionary(kAcquireLoad).NumberOfElements() == 0 &&
elements().length() == 0) {
return;
}
JSObjectVerify(isolate);
}
void Oddball::OddballVerify(Isolate* isolate) {
TorqueGeneratedOddball::OddballVerify(isolate);
Heap* heap = isolate->heap();
Object number = to_number();
if (number.IsHeapObject()) {
CHECK(number == ReadOnlyRoots(heap).nan_value() ||
number == ReadOnlyRoots(heap).hole_nan_value());
} else {
CHECK(number.IsSmi());
int value = Smi::ToInt(number);
// Hidden oddballs have negative smis.
const int kLeastHiddenOddballNumber = -7;
CHECK_LE(value, 1);
CHECK_GE(value, kLeastHiddenOddballNumber);
}
ReadOnlyRoots roots(heap);
if (map() == roots.undefined_map()) {
CHECK(*this == roots.undefined_value());
} else if (map() == roots.the_hole_map()) {
CHECK(*this == roots.the_hole_value());
} else if (map() == roots.null_map()) {
CHECK(*this == roots.null_value());
} else if (map() == roots.boolean_map()) {
CHECK(*this == roots.true_value() || *this == roots.false_value());
} else if (map() == roots.uninitialized_map()) {
CHECK(*this == roots.uninitialized_value());
} else if (map() == roots.arguments_marker_map()) {
CHECK(*this == roots.arguments_marker());
} else if (map() == roots.termination_exception_map()) {
CHECK(*this == roots.termination_exception());
} else if (map() == roots.exception_map()) {
CHECK(*this == roots.exception());
} else if (map() == roots.optimized_out_map()) {
CHECK(*this == roots.optimized_out());
} else if (map() == roots.stale_register_map()) {
CHECK(*this == roots.stale_register());
} else if (map() == roots.self_reference_marker_map()) {
// Multiple instances of this oddball may exist at once.
CHECK_EQ(kind(), Oddball::kSelfReferenceMarker);
} else if (map() == roots.basic_block_counters_marker_map()) {
CHECK(*this == roots.basic_block_counters_marker());
} else {
UNREACHABLE();
}
}
void PropertyCell::PropertyCellVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::PropertyCellVerify(*this, isolate);
CHECK(name().IsUniqueName());
CheckDataIsCompatible(property_details(), value());
}
void CodeDataContainer::CodeDataContainerVerify(Isolate* isolate) {
CHECK(IsCodeDataContainer());
VerifyObjectField(isolate, kNextCodeLinkOffset);
CHECK(next_code_link().IsCodeT() || next_code_link().IsUndefined(isolate));
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
if (raw_code() != Smi::zero()) {
#ifdef V8_EXTERNAL_CODE_SPACE
// kind and builtin_id() getters are not available on CodeDataContainer
// when external code space is not enabled.
CHECK_EQ(code().kind(), kind());
CHECK_EQ(code().builtin_id(), builtin_id());
#endif // V8_EXTERNAL_CODE_SPACE
CHECK_EQ(code().code_data_container(kAcquireLoad), *this);
// Ensure the cached code entry point corresponds to the Code object
// associated with this CodeDataContainer.
#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
if (V8_SHORT_BUILTIN_CALLS_BOOL) {
if (code().InstructionStart() == code_entry_point()) {
// Most common case, all good.
} else {
// When shared pointer compression cage is enabled and it has the
// embedded code blob copy then the Code::InstructionStart() might
// return address of the remapped builtin regardless of whether the
// builtins copy exsisted when the code_entry_point value was cached
// in the CodeDataContainer (see Code::OffHeapInstructionStart()).
// So, do a reverse Code object lookup via code_entry_point value to
// ensure it corresponds to the same Code object associated with this
// CodeDataContainer.
Code the_code = isolate->heap()->GcSafeFindCodeForInnerPointer(
code_entry_point());
CHECK_EQ(the_code, code());
}
} else {
CHECK_EQ(code().InstructionStart(), code_entry_point());
}
#else
CHECK_EQ(code().InstructionStart(), code_entry_point());
#endif // V8_COMPRESS_POINTERS_IN_SHARED_CAGE
}
}
}
void Code::CodeVerify(Isolate* isolate) {
CHECK(IsAligned(InstructionSize(),
static_cast<unsigned>(Code::kMetadataAlignment)));
CHECK_EQ(safepoint_table_offset(), 0);
CHECK_LE(safepoint_table_offset(), handler_table_offset());
CHECK_LE(handler_table_offset(), constant_pool_offset());
CHECK_LE(constant_pool_offset(), code_comments_offset());
CHECK_LE(code_comments_offset(), unwinding_info_offset());
CHECK_LE(unwinding_info_offset(), MetadataSize());
#if !defined(_MSC_VER) || defined(__clang__)
// See also: PlatformEmbeddedFileWriterWin::AlignToCodeAlignment.
CHECK_IMPLIES(!ReadOnlyHeap::Contains(*this),
IsAligned(InstructionStart(), kCodeAlignment));
#endif // !defined(_MSC_VER) || defined(__clang__)
CHECK_IMPLIES(!ReadOnlyHeap::Contains(*this),
IsAligned(raw_instruction_start(), kCodeAlignment));
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
CHECK_EQ(*this, code_data_container(kAcquireLoad).code());
}
// TODO(delphick): Refactor Factory::CodeBuilder::BuildInternal, so that the
// following CHECK works builtin trampolines. It currently fails because
// CodeVerify is called halfway through constructing the trampoline and so not
// everything is set up.
// CHECK_EQ(ReadOnlyHeap::Contains(*this), !IsExecutable());
relocation_info().ObjectVerify(isolate);
CHECK(V8_ENABLE_THIRD_PARTY_HEAP_BOOL ||
CodeSize() <= MemoryChunkLayout::MaxRegularCodeObjectSize() ||
isolate->heap()->InSpace(*this, CODE_LO_SPACE));
Address last_gc_pc = kNullAddress;
for (RelocIterator it(*this); !it.done(); it.next()) {
it.rinfo()->Verify(isolate);
// Ensure that GC will not iterate twice over the same pointer.
if (RelocInfo::IsGCRelocMode(it.rinfo()->rmode())) {
CHECK(it.rinfo()->pc() != last_gc_pc);
last_gc_pc = it.rinfo()->pc();
}
}
}
void JSArray::JSArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSArrayVerify(*this, isolate);
// If a GC was caused while constructing this array, the elements
// pointer may point to a one pointer filler map.
if (!ElementsAreSafeToExamine(isolate)) return;
if (elements().IsUndefined(isolate)) return;
CHECK(elements().IsFixedArray() || elements().IsFixedDoubleArray());
if (elements().length() == 0) {
CHECK_EQ(elements(), ReadOnlyRoots(isolate).empty_fixed_array());
}
// Verify that the length and the elements backing store are in sync.
if (length().IsSmi() &&
(HasFastElements() || HasAnyNonextensibleElements())) {
if (elements().length() > 0) {
CHECK_IMPLIES(HasDoubleElements(), elements().IsFixedDoubleArray());
CHECK_IMPLIES(HasSmiOrObjectElements() || HasAnyNonextensibleElements(),
elements().IsFixedArray());
}
int size = Smi::ToInt(length());
// Holey / Packed backing stores might have slack or might have not been
// properly initialized yet.
CHECK(size <= elements().length() ||
elements() == ReadOnlyRoots(isolate).empty_fixed_array());
} else {
CHECK(HasDictionaryElements());
uint32_t array_length;
CHECK(length().ToArrayLength(&array_length));
if (array_length == 0xFFFFFFFF) {
CHECK(length().ToArrayLength(&array_length));
}
if (array_length != 0) {
NumberDictionary dict = NumberDictionary::cast(elements());
// The dictionary can never have more elements than the array length + 1.
// If the backing store grows the verification might be triggered with
// the old length in place.
uint32_t nof_elements = static_cast<uint32_t>(dict.NumberOfElements());
if (nof_elements != 0) nof_elements--;
CHECK_LE(nof_elements, array_length);
}
}
}
void JSSet::JSSetVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSSetVerify(*this, isolate);
CHECK(table().IsOrderedHashSet() || table().IsUndefined(isolate));
// TODO(arv): Verify OrderedHashTable too.
}
void JSMap::JSMapVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSMapVerify(*this, isolate);
CHECK(table().IsOrderedHashMap() || table().IsUndefined(isolate));
// TODO(arv): Verify OrderedHashTable too.
}
void JSSetIterator::JSSetIteratorVerify(Isolate* isolate) {
CHECK(IsJSSetIterator());
JSCollectionIteratorVerify(isolate);
CHECK(table().IsOrderedHashSet());
CHECK(index().IsSmi());
}
void JSMapIterator::JSMapIteratorVerify(Isolate* isolate) {
CHECK(IsJSMapIterator());
JSCollectionIteratorVerify(isolate);
CHECK(table().IsOrderedHashMap());
CHECK(index().IsSmi());
}
USE_TORQUE_VERIFIER(JSShadowRealm)
USE_TORQUE_VERIFIER(JSWrappedFunction)
void JSSharedStruct::JSSharedStructVerify(Isolate* isolate) {
CHECK(IsJSSharedStruct());
JSObjectVerify(isolate);
CHECK(HasFastProperties());
// Shared structs can only point to primitives or other shared HeapObjects,
// even internally.
// TODO(v8:12547): Generalize shared -> shared pointer verification.
Map struct_map = map();
CHECK(struct_map.InSharedHeap());
CHECK(struct_map.GetBackPointer().IsUndefined(isolate));
Object maybe_cell = struct_map.prototype_validity_cell();
if (maybe_cell.IsCell()) CHECK(maybe_cell.InSharedHeap());
CHECK(!struct_map.is_extensible());
CHECK(!struct_map.is_prototype_map());
CHECK(property_array().InSharedHeap());
DescriptorArray descriptors = struct_map.instance_descriptors(isolate);
CHECK(descriptors.InSharedHeap());
for (InternalIndex i : struct_map.IterateOwnDescriptors()) {
PropertyDetails details = descriptors.GetDetails(i);
CHECK_EQ(PropertyKind::kData, details.kind());
CHECK_EQ(PropertyLocation::kField, details.location());
CHECK(details.representation().IsTagged());
CHECK(
RawFastPropertyAt(FieldIndex::ForDescriptor(struct_map, i)).IsShared());
}
}
void WeakCell::WeakCellVerify(Isolate* isolate) {
CHECK(IsWeakCell());
CHECK(target().IsJSReceiver() || target().IsUndefined(isolate));
CHECK(prev().IsWeakCell() || prev().IsUndefined(isolate));
if (prev().IsWeakCell()) {
CHECK_EQ(WeakCell::cast(prev()).next(), *this);
}
CHECK(next().IsWeakCell() || next().IsUndefined(isolate));
if (next().IsWeakCell()) {
CHECK_EQ(WeakCell::cast(next()).prev(), *this);
}
CHECK_IMPLIES(unregister_token().IsUndefined(isolate),
key_list_prev().IsUndefined(isolate));
CHECK_IMPLIES(unregister_token().IsUndefined(isolate),
key_list_next().IsUndefined(isolate));
CHECK(key_list_prev().IsWeakCell() || key_list_prev().IsUndefined(isolate));
CHECK(key_list_next().IsWeakCell() || key_list_next().IsUndefined(isolate));
CHECK(finalization_registry().IsUndefined(isolate) ||
finalization_registry().IsJSFinalizationRegistry());
}
void JSWeakRef::JSWeakRefVerify(Isolate* isolate) {
CHECK(IsJSWeakRef());
JSObjectVerify(isolate);
CHECK(target().IsUndefined(isolate) || target().IsJSReceiver());
}
void JSFinalizationRegistry::JSFinalizationRegistryVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSFinalizationRegistryVerify(*this, isolate);
if (active_cells().IsWeakCell()) {
CHECK(WeakCell::cast(active_cells()).prev().IsUndefined(isolate));
}
if (cleared_cells().IsWeakCell()) {
CHECK(WeakCell::cast(cleared_cells()).prev().IsUndefined(isolate));
}
}
void JSWeakMap::JSWeakMapVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSWeakMapVerify(*this, isolate);
CHECK(table().IsEphemeronHashTable() || table().IsUndefined(isolate));
}
void JSArrayIterator::JSArrayIteratorVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSArrayIteratorVerify(*this, isolate);
CHECK_GE(next_index().Number(), 0);
CHECK_LE(next_index().Number(), kMaxSafeInteger);
if (iterated_object().IsJSTypedArray()) {
// JSTypedArray::length is limited to Smi range.
CHECK(next_index().IsSmi());
CHECK_LE(next_index().Number(), Smi::kMaxValue);
} else if (iterated_object().IsJSArray()) {
// JSArray::length is limited to Uint32 range.
CHECK_LE(next_index().Number(), kMaxUInt32);
}
}
void JSStringIterator::JSStringIteratorVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSStringIteratorVerify(*this, isolate);
CHECK_GE(index(), 0);
CHECK_LE(index(), String::kMaxLength);
}
void JSWeakSet::JSWeakSetVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSWeakSetVerify(*this, isolate);
CHECK(table().IsEphemeronHashTable() || table().IsUndefined(isolate));
}
void CallableTask::CallableTaskVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::CallableTaskVerify(*this, isolate);
CHECK(callable().IsCallable());
}
void JSPromise::JSPromiseVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSPromiseVerify(*this, isolate);
if (status() == Promise::kPending) {
CHECK(reactions().IsSmi() || reactions().IsPromiseReaction());
}
}
template <typename Derived>
void SmallOrderedHashTable<Derived>::SmallOrderedHashTableVerify(
Isolate* isolate) {
CHECK(IsSmallOrderedHashTable());
int capacity = Capacity();
CHECK_GE(capacity, kMinCapacity);
CHECK_LE(capacity, kMaxCapacity);
for (int entry = 0; entry < NumberOfBuckets(); entry++) {
int bucket = GetFirstEntry(entry);
if (bucket == kNotFound) continue;
CHECK_GE(bucket, 0);
CHECK_LE(bucket, capacity);
}
for (int entry = 0; entry < NumberOfElements(); entry++) {
int chain = GetNextEntry(entry);
if (chain == kNotFound) continue;
CHECK_GE(chain, 0);
CHECK_LE(chain, capacity);
}
for (int entry = 0; entry < NumberOfElements(); entry++) {
for (int offset = 0; offset < Derived::kEntrySize; offset++) {
Object val = GetDataEntry(entry, offset);
VerifyPointer(isolate, val);
}
}
for (int entry = NumberOfElements() + NumberOfDeletedElements();
entry < Capacity(); entry++) {
for (int offset = 0; offset < Derived::kEntrySize; offset++) {
Object val = GetDataEntry(entry, offset);
CHECK(val.IsTheHole(isolate));
}
}
}
void SmallOrderedHashMap::SmallOrderedHashMapVerify(Isolate* isolate) {
CHECK(IsSmallOrderedHashMap());
SmallOrderedHashTable<SmallOrderedHashMap>::SmallOrderedHashTableVerify(
isolate);
for (int entry = NumberOfElements(); entry < NumberOfDeletedElements();
entry++) {
for (int offset = 0; offset < kEntrySize; offset++) {
Object val = GetDataEntry(entry, offset);
CHECK(val.IsTheHole(isolate));
}
}
}
void SmallOrderedHashSet::SmallOrderedHashSetVerify(Isolate* isolate) {
CHECK(IsSmallOrderedHashSet());
SmallOrderedHashTable<SmallOrderedHashSet>::SmallOrderedHashTableVerify(
isolate);
for (int entry = NumberOfElements(); entry < NumberOfDeletedElements();
entry++) {
for (int offset = 0; offset < kEntrySize; offset++) {
Object val = GetDataEntry(entry, offset);
CHECK(val.IsTheHole(isolate));
}
}
}
void SmallOrderedNameDictionary::SmallOrderedNameDictionaryVerify(
Isolate* isolate) {
CHECK(IsSmallOrderedNameDictionary());
SmallOrderedHashTable<
SmallOrderedNameDictionary>::SmallOrderedHashTableVerify(isolate);
for (int entry = NumberOfElements(); entry < NumberOfDeletedElements();
entry++) {
for (int offset = 0; offset < kEntrySize; offset++) {
Object val = GetDataEntry(entry, offset);
CHECK(val.IsTheHole(isolate) ||
(PropertyDetails::Empty().AsSmi() == Smi::cast(val)));
}
}
}
void SwissNameDictionary::SwissNameDictionaryVerify(Isolate* isolate) {
this->SwissNameDictionaryVerify(isolate, false);
}
void SwissNameDictionary::SwissNameDictionaryVerify(Isolate* isolate,
bool slow_checks) {
DisallowHeapAllocation no_gc;
CHECK(IsValidCapacity(Capacity()));
meta_table().ByteArrayVerify(isolate);
int seen_deleted = 0;
int seen_present = 0;
for (int i = 0; i < Capacity(); i++) {
ctrl_t ctrl = GetCtrl(i);
if (IsFull(ctrl) || slow_checks) {
Object key = KeyAt(i);
Object value = ValueAtRaw(i);
if (IsFull(ctrl)) {
++seen_present;
Name name = Name::cast(key);
if (slow_checks) {
CHECK_EQ(swiss_table::H2(name.hash()), ctrl);
}
CHECK(!key.IsTheHole());
CHECK(!value.IsTheHole());
name.NameVerify(isolate);
value.ObjectVerify(isolate);
} else if (IsDeleted(ctrl)) {
++seen_deleted;
CHECK(key.IsTheHole());
CHECK(value.IsTheHole());
} else if (IsEmpty(ctrl)) {
CHECK(key.IsTheHole());
CHECK(value.IsTheHole());
} else {
// Something unexpected. Note that we don't use kSentinel at the moment.
UNREACHABLE();
}
}
}
CHECK_EQ(seen_present, NumberOfElements());
if (slow_checks) {
CHECK_EQ(seen_deleted, NumberOfDeletedElements());
// Verify copy of first group at end (= after Capacity() slots) of control
// table.
for (int i = 0; i < std::min(static_cast<int>(Group::kWidth), Capacity());
++i) {
CHECK_EQ(CtrlTable()[i], CtrlTable()[Capacity() + i]);
}
// If 2 * capacity is smaller than the capacity plus group width, the slots
// after that must be empty.
for (int i = 2 * Capacity(); i < Capacity() + kGroupWidth; ++i) {
CHECK_EQ(Ctrl::kEmpty, CtrlTable()[i]);
}
for (int enum_index = 0; enum_index < UsedCapacity(); ++enum_index) {
int entry = EntryForEnumerationIndex(enum_index);
CHECK_LT(entry, Capacity());
ctrl_t ctrl = GetCtrl(entry);
// Enum table must not point to empty slots.
CHECK(IsFull(ctrl) || IsDeleted(ctrl));
}
}
}
void JSRegExp::JSRegExpVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSRegExpVerify(*this, isolate);
switch (type_tag()) {
case JSRegExp::ATOM: {
FixedArray arr = FixedArray::cast(data());
CHECK(arr.get(JSRegExp::kAtomPatternIndex).IsString());
break;
}
case JSRegExp::EXPERIMENTAL: {
FixedArray arr = FixedArray::cast(data());
Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
Object latin1_code = arr.get(JSRegExp::kIrregexpLatin1CodeIndex);
Object uc16_code = arr.get(JSRegExp::kIrregexpUC16CodeIndex);
Object latin1_bytecode = arr.get(JSRegExp::kIrregexpLatin1BytecodeIndex);
Object uc16_bytecode = arr.get(JSRegExp::kIrregexpUC16BytecodeIndex);
bool is_compiled = latin1_code.IsCodeT();
if (is_compiled) {
CHECK_EQ(FromCodeT(CodeT::cast(latin1_code)).builtin_id(),
Builtin::kRegExpExperimentalTrampoline);
CHECK_EQ(uc16_code, latin1_code);
CHECK(latin1_bytecode.IsByteArray());
CHECK_EQ(uc16_bytecode, latin1_bytecode);
} else {
CHECK_EQ(latin1_code, uninitialized);
CHECK_EQ(uc16_code, uninitialized);
CHECK_EQ(latin1_bytecode, uninitialized);
CHECK_EQ(uc16_bytecode, uninitialized);
}
CHECK_EQ(arr.get(JSRegExp::kIrregexpMaxRegisterCountIndex),
uninitialized);
CHECK(arr.get(JSRegExp::kIrregexpCaptureCountIndex).IsSmi());
CHECK_GE(Smi::ToInt(arr.get(JSRegExp::kIrregexpCaptureCountIndex)), 0);
CHECK_EQ(arr.get(JSRegExp::kIrregexpTicksUntilTierUpIndex),
uninitialized);
CHECK_EQ(arr.get(JSRegExp::kIrregexpBacktrackLimit), uninitialized);
break;
}
case JSRegExp::IRREGEXP: {
bool can_be_interpreted = RegExp::CanGenerateBytecode();
FixedArray arr = FixedArray::cast(data());
Object one_byte_data = arr.get(JSRegExp::kIrregexpLatin1CodeIndex);
// Smi : Not compiled yet (-1).
// Code: Compiled irregexp code or trampoline to the interpreter.
CHECK((one_byte_data.IsSmi() &&
Smi::ToInt(one_byte_data) == JSRegExp::kUninitializedValue) ||
one_byte_data.IsCodeT());
Object uc16_data = arr.get(JSRegExp::kIrregexpUC16CodeIndex);
CHECK((uc16_data.IsSmi() &&
Smi::ToInt(uc16_data) == JSRegExp::kUninitializedValue) ||
uc16_data.IsCodeT());
Object one_byte_bytecode =
arr.get(JSRegExp::kIrregexpLatin1BytecodeIndex);
// Smi : Not compiled yet (-1).
// ByteArray: Bytecode to interpret regexp.
CHECK((one_byte_bytecode.IsSmi() &&
Smi::ToInt(one_byte_bytecode) == JSRegExp::kUninitializedValue) ||
(can_be_interpreted && one_byte_bytecode.IsByteArray()));
Object uc16_bytecode = arr.get(JSRegExp::kIrregexpUC16BytecodeIndex);
CHECK((uc16_bytecode.IsSmi() &&
Smi::ToInt(uc16_bytecode) == JSRegExp::kUninitializedValue) ||
(can_be_interpreted && uc16_bytecode.IsByteArray()));
CHECK_IMPLIES(one_byte_data.IsSmi(), one_byte_bytecode.IsSmi());
CHECK_IMPLIES(uc16_data.IsSmi(), uc16_bytecode.IsSmi());
CHECK(arr.get(JSRegExp::kIrregexpCaptureCountIndex).IsSmi());
CHECK_GE(Smi::ToInt(arr.get(JSRegExp::kIrregexpCaptureCountIndex)), 0);
CHECK(arr.get(JSRegExp::kIrregexpMaxRegisterCountIndex).IsSmi());
CHECK(arr.get(JSRegExp::kIrregexpTicksUntilTierUpIndex).IsSmi());
CHECK(arr.get(JSRegExp::kIrregexpBacktrackLimit).IsSmi());
break;
}
default:
CHECK_EQ(JSRegExp::NOT_COMPILED, type_tag());
CHECK(data().IsUndefined(isolate));
break;
}
}
void JSProxy::JSProxyVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSProxyVerify(*this, isolate);
CHECK(map().GetConstructor().IsJSFunction());
if (!IsRevoked()) {
CHECK_EQ(target().IsCallable(), map().is_callable());
CHECK_EQ(target().IsConstructor(), map().is_constructor());
}
CHECK(map().prototype().IsNull(isolate));
// There should be no properties on a Proxy.
CHECK_EQ(0, map().NumberOfOwnDescriptors());
}
void JSArrayBuffer::JSArrayBufferVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSArrayBufferVerify(*this, isolate);
if (FIELD_SIZE(kOptionalPaddingOffset) != 0) {
CHECK_EQ(4, FIELD_SIZE(kOptionalPaddingOffset));
CHECK_EQ(0,
*reinterpret_cast<uint32_t*>(address() + kOptionalPaddingOffset));
}
}
void JSArrayBufferView::JSArrayBufferViewVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSArrayBufferViewVerify(*this, isolate);
CHECK_LE(byte_length(), JSArrayBuffer::kMaxByteLength);
CHECK_LE(byte_offset(), JSArrayBuffer::kMaxByteLength);
}
void JSTypedArray::JSTypedArrayVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSTypedArrayVerify(*this, isolate);
CHECK_LE(GetLength(), JSTypedArray::kMaxLength);
}
void JSDataView::JSDataViewVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::JSDataViewVerify(*this, isolate);
if (!WasDetached()) {
CHECK_EQ(reinterpret_cast<uint8_t*>(
JSArrayBuffer::cast(buffer()).backing_store()) +
byte_offset(),
data_pointer());
}
}
void AsyncGeneratorRequest::AsyncGeneratorRequestVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::AsyncGeneratorRequestVerify(*this, isolate);
CHECK_GE(resume_mode(), JSGeneratorObject::kNext);
CHECK_LE(resume_mode(), JSGeneratorObject::kThrow);
}
void BigIntBase::BigIntBaseVerify(Isolate* isolate) {
CHECK_GE(length(), 0);
CHECK_IMPLIES(is_zero(), !sign()); // There is no -0n.
}
void SourceTextModuleInfoEntry::SourceTextModuleInfoEntryVerify(
Isolate* isolate) {
TorqueGeneratedClassVerifiers::SourceTextModuleInfoEntryVerify(*this,
isolate);
CHECK_IMPLIES(import_name().IsString(), module_request() >= 0);
CHECK_IMPLIES(export_name().IsString() && import_name().IsString(),
local_name().IsUndefined(isolate));
}
void Module::ModuleVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::ModuleVerify(*this, isolate);
CHECK_EQ(status() == Module::kErrored, !exception().IsTheHole(isolate));
CHECK(module_namespace().IsUndefined(isolate) ||
module_namespace().IsJSModuleNamespace());
if (module_namespace().IsJSModuleNamespace()) {
CHECK_LE(Module::kLinking, status());
CHECK_EQ(JSModuleNamespace::cast(module_namespace()).module(), *this);
}
if (!(status() == kErrored || status() == kEvaluating ||
status() == kEvaluated)) {
CHECK(top_level_capability().IsUndefined());
}
CHECK_NE(hash(), 0);
}
void ModuleRequest::ModuleRequestVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::ModuleRequestVerify(*this, isolate);
CHECK_EQ(0,
import_assertions().length() % ModuleRequest::kAssertionEntrySize);
for (int i = 0; i < import_assertions().length();
i += ModuleRequest::kAssertionEntrySize) {
CHECK(import_assertions().get(i).IsString()); // Assertion key
CHECK(import_assertions().get(i + 1).IsString()); // Assertion value
CHECK(import_assertions().get(i + 2).IsSmi()); // Assertion location
}
}
void SourceTextModule::SourceTextModuleVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::SourceTextModuleVerify(*this, isolate);
if (status() == kErrored) {
CHECK(code().IsSharedFunctionInfo());
} else if (status() == kEvaluating || status() == kEvaluated) {
CHECK(code().IsJSGeneratorObject());
} else {
if (status() == kLinked) {
CHECK(code().IsJSGeneratorObject());
} else if (status() == kLinking) {
CHECK(code().IsJSFunction());
} else if (status() == kPreLinking) {
CHECK(code().IsSharedFunctionInfo());
} else if (status() == kUnlinked) {
CHECK(code().IsSharedFunctionInfo());
}
CHECK(!AsyncParentModuleCount());
CHECK(!pending_async_dependencies());
CHECK(!IsAsyncEvaluating());
}
CHECK_EQ(requested_modules().length(), info().module_requests().length());
}
void SyntheticModule::SyntheticModuleVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::SyntheticModuleVerify(*this, isolate);
for (int i = 0; i < export_names().length(); i++) {
CHECK(export_names().get(i).IsString());
}
}
void PrototypeInfo::PrototypeInfoVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::PrototypeInfoVerify(*this, isolate);
if (prototype_users().IsWeakArrayList()) {
PrototypeUsers::Verify(WeakArrayList::cast(prototype_users()));
} else {
CHECK(prototype_users().IsSmi());
}
}
void PrototypeUsers::Verify(WeakArrayList array) {
if (array.length() == 0) {
// Allow empty & uninitialized lists.
return;
}
// Verify empty slot chain.
int empty_slot = Smi::ToInt(empty_slot_index(array));
int empty_slots_count = 0;
while (empty_slot != kNoEmptySlotsMarker) {
CHECK_GT(empty_slot, 0);
CHECK_LT(empty_slot, array.length());
empty_slot = array.Get(empty_slot).ToSmi().value();
++empty_slots_count;
}
// Verify that all elements are either weak pointers or SMIs marking empty
// slots.
int weak_maps_count = 0;
for (int i = kFirstIndex; i < array.length(); ++i) {
HeapObject heap_object;
MaybeObject object = array.Get(i);
if ((object->GetHeapObjectIfWeak(&heap_object) && heap_object.IsMap()) ||
object->IsCleared()) {
++weak_maps_count;
} else {
CHECK(object->IsSmi());
}
}
CHECK_EQ(weak_maps_count + empty_slots_count + 1, array.length());
}
void EnumCache::EnumCacheVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::EnumCacheVerify(*this, isolate);
Heap* heap = isolate->heap();
if (*this == ReadOnlyRoots(heap).empty_enum_cache()) {
CHECK_EQ(ReadOnlyRoots(heap).empty_fixed_array(), keys());
CHECK_EQ(ReadOnlyRoots(heap).empty_fixed_array(), indices());
}
}
void ObjectBoilerplateDescription::ObjectBoilerplateDescriptionVerify(
Isolate* isolate) {
CHECK(IsObjectBoilerplateDescription());
CHECK_GE(this->length(),
ObjectBoilerplateDescription::kDescriptionStartIndex);
this->FixedArrayVerify(isolate);
for (int i = 0; i < length(); ++i) {
// No ThinStrings in the boilerplate.
CHECK(!get(isolate, i).IsThinString(isolate));
}
}
#if V8_ENABLE_WEBASSEMBLY
void WasmInstanceObject::WasmInstanceObjectVerify(Isolate* isolate) {
JSObjectVerify(isolate);
CHECK(IsWasmInstanceObject());
// Just generically check all tagged fields. Don't check the untagged fields,
// as some of them might still contain the "undefined" value if the
// WasmInstanceObject is not fully set up yet.
for (int offset = kHeaderSize; offset < kEndOfStrongFieldsOffset;
offset += kTaggedSize) {
VerifyObjectField(isolate, offset);
}
}
void WasmValueObject::WasmValueObjectVerify(Isolate* isolate) {
JSObjectVerify(isolate);
CHECK(IsWasmValueObject());
}
void WasmExportedFunctionData::WasmExportedFunctionDataVerify(
Isolate* isolate) {
TorqueGeneratedClassVerifiers::WasmExportedFunctionDataVerify(*this, isolate);
CHECK(
wrapper_code().kind() == CodeKind::JS_TO_WASM_FUNCTION ||
wrapper_code().kind() == CodeKind::C_WASM_ENTRY ||
(wrapper_code().is_builtin() &&
(wrapper_code().builtin_id() == Builtin::kGenericJSToWasmWrapper ||
wrapper_code().builtin_id() == Builtin::kWasmReturnPromiseOnSuspend)));
}
#endif // V8_ENABLE_WEBASSEMBLY
void DataHandler::DataHandlerVerify(Isolate* isolate) {
// Don't call TorqueGeneratedClassVerifiers::DataHandlerVerify because the
// Torque definition of this class includes all of the optional fields.
// This assertion exists to encourage updating this verification function if
// new fields are added in the Torque class layout definition.
STATIC_ASSERT(DataHandler::kHeaderSize == 6 * kTaggedSize);
StructVerify(isolate);
CHECK(IsDataHandler());
VerifyPointer(isolate, smi_handler(isolate));
CHECK_IMPLIES(!smi_handler().IsSmi(),
IsStoreHandler() && smi_handler().IsCodeT());
VerifyPointer(isolate, validity_cell(isolate));
CHECK(validity_cell().IsSmi() || validity_cell().IsCell());
int data_count = data_field_count();
if (data_count >= 1) {
VerifyMaybeObjectField(isolate, kData1Offset);
}
if (data_count >= 2) {
VerifyMaybeObjectField(isolate, kData2Offset);
}
if (data_count >= 3) {
VerifyMaybeObjectField(isolate, kData3Offset);
}
}
void LoadHandler::LoadHandlerVerify(Isolate* isolate) {
DataHandler::DataHandlerVerify(isolate);
// TODO(ishell): check handler integrity
}
void StoreHandler::StoreHandlerVerify(Isolate* isolate) {
DataHandler::DataHandlerVerify(isolate);
// TODO(ishell): check handler integrity
}
void CallHandlerInfo::CallHandlerInfoVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::CallHandlerInfoVerify(*this, isolate);
CHECK(map() == ReadOnlyRoots(isolate).side_effect_call_handler_info_map() ||
map() ==
ReadOnlyRoots(isolate).side_effect_free_call_handler_info_map() ||
map() == ReadOnlyRoots(isolate)
.next_call_side_effect_free_call_handler_info_map());
}
void AllocationSite::AllocationSiteVerify(Isolate* isolate) {
CHECK(IsAllocationSite());
CHECK(dependent_code().IsDependentCode());
CHECK(transition_info_or_boilerplate().IsSmi() ||
transition_info_or_boilerplate().IsJSObject());
CHECK(nested_site().IsAllocationSite() || nested_site() == Smi::zero());
}
void Script::ScriptVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::ScriptVerify(*this, isolate);
if V8_UNLIKELY (type() == Script::TYPE_WEB_SNAPSHOT) {
CHECK_LE(shared_function_info_count(), shared_function_infos().length());
} else {
// No overallocating shared_function_infos.
CHECK_EQ(shared_function_info_count(), shared_function_infos().length());
}
for (int i = 0; i < shared_function_info_count(); ++i) {
MaybeObject maybe_object = shared_function_infos().Get(i);
HeapObject heap_object;
CHECK(maybe_object->IsWeak() || maybe_object->IsCleared() ||
(maybe_object->GetHeapObjectIfStrong(&heap_object) &&
heap_object.IsUndefined(isolate)));
}
}
void NormalizedMapCache::NormalizedMapCacheVerify(Isolate* isolate) {
WeakFixedArray::cast(*this).WeakFixedArrayVerify(isolate);
if (FLAG_enable_slow_asserts) {
for (int i = 0; i < length(); i++) {
MaybeObject e = WeakFixedArray::Get(i);
HeapObject heap_object;
if (e->GetHeapObjectIfWeak(&heap_object)) {
Map::cast(heap_object).DictionaryMapVerify(isolate);
} else {
CHECK(e->IsCleared() || (e->GetHeapObjectIfStrong(&heap_object) &&
heap_object.IsUndefined(isolate)));
}
}
}
}
void PreparseData::PreparseDataVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::PreparseDataVerify(*this, isolate);
CHECK_LE(0, data_length());
CHECK_LE(0, children_length());
for (int i = 0; i < children_length(); ++i) {
Object child = get_child_raw(i);
CHECK(child.IsNull() || child.IsPreparseData());
VerifyPointer(isolate, child);
}
}
void CallSiteInfo::CallSiteInfoVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::CallSiteInfoVerify(*this, isolate);
#if V8_ENABLE_WEBASSEMBLY
CHECK_IMPLIES(IsAsmJsWasm(), IsWasm());
CHECK_IMPLIES(IsWasm(), receiver_or_instance().IsWasmInstanceObject());
CHECK_IMPLIES(IsWasm(), function().IsSmi());
CHECK_IMPLIES(!IsWasm(), function().IsJSFunction());
CHECK_IMPLIES(IsAsync(), !IsWasm());
CHECK_IMPLIES(IsConstructor(), !IsWasm());
#endif // V8_ENABLE_WEBASSEMBLY
}
void FunctionTemplateRareData::FunctionTemplateRareDataVerify(
Isolate* isolate) {
CHECK(c_function_overloads().IsFixedArray() ||
c_function_overloads().IsUndefined(isolate));
}
void StackFrameInfo::StackFrameInfoVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::StackFrameInfoVerify(*this, isolate);
}
void ErrorStackData::ErrorStackDataVerify(Isolate* isolate) {
TorqueGeneratedClassVerifiers::ErrorStackDataVerify(*this, isolate);
CHECK_IMPLIES(!call_site_infos_or_formatted_stack().IsFixedArray(),
limit_or_stack_frame_infos().IsFixedArray());
}
// Helper class for verifying the string table.
class StringTableVerifier : public RootVisitor {
public:
explicit StringTableVerifier(Isolate* isolate) : isolate_(isolate) {}
void VisitRootPointers(Root root, const char* description,
FullObjectSlot start, FullObjectSlot end) override {
UNREACHABLE();
}
void VisitRootPointers(Root root, const char* description,
OffHeapObjectSlot start,
OffHeapObjectSlot end) override {
// Visit all HeapObject pointers in [start, end).
for (OffHeapObjectSlot p = start; p < end; ++p) {
Object o = p.load(isolate_);
DCHECK(!HasWeakHeapObjectTag(o));
if (o.IsHeapObject()) {
HeapObject object = HeapObject::cast(o);
// Check that the string is actually internalized.
CHECK(object.IsInternalizedString());
}
}
}
private:
Isolate* isolate_;
};
void StringTable::VerifyIfOwnedBy(Isolate* isolate) {
DCHECK_EQ(isolate->string_table(), this);
if (!isolate->OwnsStringTable()) return;
StringTableVerifier verifier(isolate);
IterateElements(&verifier);
}
#endif // VERIFY_HEAP
#ifdef DEBUG
void JSObject::IncrementSpillStatistics(Isolate* isolate,
SpillInformation* info) {
info->number_of_objects_++;
// Named properties
if (HasFastProperties()) {
info->number_of_objects_with_fast_properties_++;
info->number_of_fast_used_fields_ += map().NextFreePropertyIndex();
info->number_of_fast_unused_fields_ += map().UnusedPropertyFields();
} else if (IsJSGlobalObject()) {
GlobalDictionary dict =
JSGlobalObject::cast(*this).global_dictionary(kAcquireLoad);
info->number_of_slow_used_properties_ += dict.NumberOfElements();
info->number_of_slow_unused_properties_ +=
dict.Capacity() - dict.NumberOfElements();
} else if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
SwissNameDictionary dict = property_dictionary_swiss();
info->number_of_slow_used_properties_ += dict.NumberOfElements();
info->number_of_slow_unused_properties_ +=
dict.Capacity() - dict.NumberOfElements();
} else {
NameDictionary dict = property_dictionary();
info->number_of_slow_used_properties_ += dict.NumberOfElements();
info->number_of_slow_unused_properties_ +=
dict.Capacity() - dict.NumberOfElements();
}
// Indexed properties
switch (GetElementsKind()) {
case HOLEY_SMI_ELEMENTS:
case PACKED_SMI_ELEMENTS:
case HOLEY_DOUBLE_ELEMENTS:
case PACKED_DOUBLE_ELEMENTS:
case HOLEY_ELEMENTS:
case HOLEY_FROZEN_ELEMENTS:
case HOLEY_SEALED_ELEMENTS:
case HOLEY_NONEXTENSIBLE_ELEMENTS:
case PACKED_ELEMENTS:
case PACKED_FROZEN_ELEMENTS:
case PACKED_SEALED_ELEMENTS:
case PACKED_NONEXTENSIBLE_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS: {
info->number_of_objects_with_fast_elements_++;
int holes = 0;
FixedArray e = FixedArray::cast(elements());
int len = e.length();
for (int i = 0; i < len; i++) {
if (e.get(i).IsTheHole(isolate)) holes++;
}
info->number_of_fast_used_elements_ += len - holes;
info->number_of_fast_unused_elements_ += holes;
break;
}
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
{
info->number_of_objects_with_fast_elements_++;
FixedArrayBase e = FixedArrayBase::cast(elements());
info->number_of_fast_used_elements_ += e.length();
break;
}
case DICTIONARY_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS: {
NumberDictionary dict = element_dictionary();
info->number_of_slow_used_elements_ += dict.NumberOfElements();
info->number_of_slow_unused_elements_ +=
dict.Capacity() - dict.NumberOfElements();
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case WASM_ARRAY_ELEMENTS:
case NO_ELEMENTS:
break;
}
}
void JSObject::SpillInformation::Clear() {
number_of_objects_ = 0;
number_of_objects_with_fast_properties_ = 0;
number_of_objects_with_fast_elements_ = 0;
number_of_fast_used_fields_ = 0;
number_of_fast_unused_fields_ = 0;
number_of_slow_used_properties_ = 0;
number_of_slow_unused_properties_ = 0;
number_of_fast_used_elements_ = 0;
number_of_fast_unused_elements_ = 0;
number_of_slow_used_elements_ = 0;
number_of_slow_unused_elements_ = 0;
}
void JSObject::SpillInformation::Print() {
PrintF("\n JSObject Spill Statistics (#%d):\n", number_of_objects_);
PrintF(" - fast properties (#%d): %d (used) %d (unused)\n",
number_of_objects_with_fast_properties_, number_of_fast_used_fields_,
number_of_fast_unused_fields_);
PrintF(" - slow properties (#%d): %d (used) %d (unused)\n",
number_of_objects_ - number_of_objects_with_fast_properties_,
number_of_slow_used_properties_, number_of_slow_unused_properties_);
PrintF(" - fast elements (#%d): %d (used) %d (unused)\n",
number_of_objects_with_fast_elements_, number_of_fast_used_elements_,
number_of_fast_unused_elements_);
PrintF(" - slow elements (#%d): %d (used) %d (unused)\n",
number_of_objects_ - number_of_objects_with_fast_elements_,
number_of_slow_used_elements_, number_of_slow_unused_elements_);
PrintF("\n");
}
bool DescriptorArray::IsSortedNoDuplicates() {
Name current_key;
uint32_t current = 0;
for (int i = 0; i < number_of_descriptors(); i++) {
Name key = GetSortedKey(i);
CHECK(key.HasHashCode());
if (key == current_key) {
Print();
return false;
}
current_key = key;
uint32_t hash = key.hash();
if (hash < current) {
Print();
return false;
}
current = hash;
}
return true;
}
bool TransitionArray::IsSortedNoDuplicates() {
Name prev_key;
PropertyKind prev_kind = PropertyKind::kData;
PropertyAttributes prev_attributes = NONE;
uint32_t prev_hash = 0;
for (int i = 0; i < number_of_transitions(); i++) {
Name key = GetSortedKey(i);
CHECK(key.HasHashCode());
uint32_t hash = key.hash();
PropertyKind kind = PropertyKind::kData;
PropertyAttributes attributes = NONE;
if (!TransitionsAccessor::IsSpecialTransition(key.GetReadOnlyRoots(),
key)) {
Map target = GetTarget(i);
PropertyDetails details =
TransitionsAccessor::GetTargetDetails(key, target);
kind = details.kind();
attributes = details.attributes();
} else {
// Duplicate entries are not allowed for non-property transitions.
DCHECK_NE(prev_key, key);
}
int cmp = CompareKeys(prev_key, prev_hash, prev_kind, prev_attributes, key,
hash, kind, attributes);
if (cmp >= 0) {
Print();
return false;
}
prev_key = key;
prev_hash = hash;
prev_attributes = attributes;
prev_kind = kind;
}
return true;
}
bool TransitionsAccessor::IsSortedNoDuplicates() {
// Simple and non-existent transitions are always sorted.
if (encoding() != kFullTransitionArray) return true;
return transitions().IsSortedNoDuplicates();
}
static bool CheckOneBackPointer(Map current_map, Object target) {
return !target.IsMap() || Map::cast(target).GetBackPointer() == current_map;
}
bool TransitionsAccessor::IsConsistentWithBackPointers() {
int num_transitions = NumberOfTransitions();
for (int i = 0; i < num_transitions; i++) {
Map target = GetTarget(i);
if (!CheckOneBackPointer(map_, target)) return false;
}
return true;
}
#undef USE_TORQUE_VERIFIER
#endif // DEBUG
} // namespace internal
} // namespace v8