blob: 03874820103f709b3e1f13fbcd05a3b522bb54de [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_FACTORY_H_
#define V8_HEAP_FACTORY_H_
// Clients of this interface shouldn't depend on lots of heap internals.
// Do not include anything from src/heap here!
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/baseline/baseline.h"
#include "src/builtins/builtins.h"
#include "src/common/globals.h"
#include "src/execution/messages.h"
#include "src/handles/handles.h"
#include "src/handles/maybe-handles.h"
#include "src/heap/factory-base.h"
#include "src/heap/heap.h"
#include "src/objects/code.h"
#include "src/objects/dictionary.h"
#include "src/objects/js-array.h"
#include "src/objects/js-regexp.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/string.h"
namespace v8 {
namespace internal {
// Forward declarations.
class AliasedArgumentsEntry;
class ObjectBoilerplateDescription;
class BasicBlockProfilerData;
class BreakPoint;
class BreakPointInfo;
class CallableTask;
class CallbackTask;
class CallHandlerInfo;
class CallSiteInfo;
class Expression;
class EmbedderDataArray;
class ArrayBoilerplateDescription;
class CoverageInfo;
class DebugInfo;
class EnumCache;
class FreshlyAllocatedBigInt;
class Isolate;
class JSArrayBufferView;
class JSDataView;
class JSGeneratorObject;
class JSMap;
class JSMapIterator;
class JSModuleNamespace;
class JSPromise;
class JSProxy;
class JSSet;
class JSSetIterator;
class JSTypedArray;
class JSWeakMap;
class LoadHandler;
class NativeContext;
class PromiseResolveThenableJobTask;
class RegExpMatchInfo;
class ScriptContextTable;
class SourceTextModule;
class StackFrameInfo;
class StringSet;
class StoreHandler;
class SyntheticModule;
class TemplateObjectDescription;
class WasmCapiFunctionData;
class WasmExportedFunctionData;
class WasmJSFunctionData;
class WeakCell;
#if V8_ENABLE_WEBASSEMBLY
namespace wasm {
class ArrayType;
class StructType;
class WasmValue;
} // namespace wasm
#endif
enum class SharedFlag : uint8_t;
enum class InitializedFlag : uint8_t;
enum FunctionMode {
kWithNameBit = 1 << 0,
kWithWritablePrototypeBit = 1 << 1,
kWithReadonlyPrototypeBit = 1 << 2,
kWithPrototypeBits = kWithWritablePrototypeBit | kWithReadonlyPrototypeBit,
// Without prototype.
FUNCTION_WITHOUT_PROTOTYPE = 0,
METHOD_WITH_NAME = kWithNameBit,
// With writable prototype.
FUNCTION_WITH_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit,
FUNCTION_WITH_NAME_AND_WRITEABLE_PROTOTYPE =
kWithWritablePrototypeBit | kWithNameBit,
// With readonly prototype.
FUNCTION_WITH_READONLY_PROTOTYPE = kWithReadonlyPrototypeBit,
FUNCTION_WITH_NAME_AND_READONLY_PROTOTYPE =
kWithReadonlyPrototypeBit | kWithNameBit,
};
enum class NumberCacheMode { kIgnore, kSetOnly, kBoth };
// Interface for handle based allocation.
class V8_EXPORT_PRIVATE Factory : public FactoryBase<Factory> {
public:
inline ReadOnlyRoots read_only_roots() const;
Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
Handle<Object> to_number, const char* type_of,
byte kind);
// Marks self references within code generation.
Handle<Oddball> NewSelfReferenceMarker();
// Marks references to a function's basic-block usage counters array during
// code generation.
Handle<Oddball> NewBasicBlockCountersMarker();
// Allocates a property array initialized with undefined values.
Handle<PropertyArray> NewPropertyArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Tries allocating a fixed array initialized with undefined values.
// In case of an allocation failure (OOM) an empty handle is returned.
// The caller has to manually signal an
// v8::internal::Heap::FatalProcessOutOfMemory typically by calling
// NewFixedArray as a fallback.
V8_WARN_UNUSED_RESULT
MaybeHandle<FixedArray> TryNewFixedArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates a closure feedback cell array whose feedback cells are
// initialized with undefined values.
Handle<ClosureFeedbackCellArray> NewClosureFeedbackCellArray(int num_slots);
// Allocates a feedback vector whose slots are initialized with undefined
// values.
Handle<FeedbackVector> NewFeedbackVector(
Handle<SharedFunctionInfo> shared,
Handle<ClosureFeedbackCellArray> closure_feedback_cell_array);
// Allocates a clean embedder data array with given capacity.
Handle<EmbedderDataArray> NewEmbedderDataArray(int length);
// Allocate a new fixed double array with hole values.
Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(int size);
// Allocates a NameDictionary with an internal capacity calculated such that
// |at_least_space_for| entries can be added without reallocating.
Handle<NameDictionary> NewNameDictionary(int at_least_space_for);
// Allocates an OrderedNameDictionary of the given capacity. This guarantees
// that |capacity| entries can be added without reallocating.
Handle<OrderedNameDictionary> NewOrderedNameDictionary(
int capacity = OrderedNameDictionary::kInitialCapacity);
Handle<OrderedHashSet> NewOrderedHashSet();
Handle<OrderedHashMap> NewOrderedHashMap();
Handle<SmallOrderedHashSet> NewSmallOrderedHashSet(
int capacity = kSmallOrderedHashSetMinCapacity,
AllocationType allocation = AllocationType::kYoung);
Handle<SmallOrderedHashMap> NewSmallOrderedHashMap(
int capacity = kSmallOrderedHashMapMinCapacity,
AllocationType allocation = AllocationType::kYoung);
Handle<SmallOrderedNameDictionary> NewSmallOrderedNameDictionary(
int capacity = kSmallOrderedHashMapMinCapacity,
AllocationType allocation = AllocationType::kYoung);
Handle<SwissNameDictionary> CreateCanonicalEmptySwissNameDictionary();
// Create a new PrototypeInfo struct.
Handle<PrototypeInfo> NewPrototypeInfo();
// Create a new EnumCache struct.
Handle<EnumCache> NewEnumCache(Handle<FixedArray> keys,
Handle<FixedArray> indices);
// Create a new Tuple2 struct.
Handle<Tuple2> NewTuple2(Handle<Object> value1, Handle<Object> value2,
AllocationType allocation);
// Create a new PropertyDescriptorObject struct.
Handle<PropertyDescriptorObject> NewPropertyDescriptorObject();
// Finds the internalized copy for string in the string table.
// If not found, a new string is added to the table and returned.
Handle<String> InternalizeUtf8String(const base::Vector<const char>& str);
Handle<String> InternalizeUtf8String(const char* str) {
return InternalizeUtf8String(base::CStrVector(str));
}
// Import InternalizeString overloads from base class.
using FactoryBase::InternalizeString;
Handle<String> InternalizeString(base::Vector<const char> str,
bool convert_encoding = false) {
return InternalizeString(base::Vector<const uint8_t>::cast(str));
}
template <typename SeqString>
Handle<String> InternalizeString(Handle<SeqString>, int from, int length,
bool convert_encoding = false);
// Internalized strings are created in the old generation (data space).
inline Handle<String> InternalizeString(Handle<String> string);
inline Handle<Name> InternalizeName(Handle<Name> name);
// String creation functions. Most of the string creation functions take
// an AllocationType argument to optionally request that they be
// allocated in the old generation. Otherwise the default is
// AllocationType::kYoung.
//
// Creates a new String object. There are two String encodings: one-byte and
// two-byte. One should choose between the three string factory functions
// based on the encoding of the string buffer that the string is
// initialized from.
// - ...FromOneByte initializes the string from a buffer that is Latin1
// encoded (it does not check that the buffer is Latin1 encoded) and
// the result will be Latin1 encoded.
// - ...FromUtf8 initializes the string from a buffer that is UTF-8
// encoded. If the characters are all ASCII characters, the result
// will be Latin1 encoded, otherwise it will converted to two-byte.
// - ...FromTwoByte initializes the string from a buffer that is two-byte
// encoded. If the characters are all Latin1 characters, the result
// will be converted to Latin1, otherwise it will be left as two-byte.
//
// One-byte strings are pretenured when used as keys in the SourceCodeCache.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromOneByte(
const base::Vector<const uint8_t>& str,
AllocationType allocation = AllocationType::kYoung);
template <size_t N>
inline Handle<String> NewStringFromStaticChars(
const char (&str)[N],
AllocationType allocation = AllocationType::kYoung) {
DCHECK_EQ(N, strlen(str) + 1);
return NewStringFromOneByte(base::StaticOneByteVector(str), allocation)
.ToHandleChecked();
}
inline Handle<String> NewStringFromAsciiChecked(
const char* str, AllocationType allocation = AllocationType::kYoung) {
return NewStringFromOneByte(base::OneByteVector(str), allocation)
.ToHandleChecked();
}
// UTF8 strings are pretenured when used for regexp literal patterns and
// flags in the parser.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8(
const base::Vector<const char>& str,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int end,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte(
const base::Vector<const base::uc16>& str,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte(
const ZoneVector<base::uc16>* str,
AllocationType allocation = AllocationType::kYoung);
Handle<JSStringIterator> NewJSStringIterator(Handle<String> string);
Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
uint32_t hash_field);
// Compute the internalization strategy for the input string.
//
// Old-generation sequential strings can be internalized by mutating their map
// and return kInPlace, along with the matching internalized string map for
// string stored in internalized_map.
//
// Internalized strings return kAlreadyTransitioned.
//
// All other strings are internalized by flattening and copying and return
// kCopy.
V8_WARN_UNUSED_RESULT StringTransitionStrategy
ComputeInternalizationStrategyForString(Handle<String> string,
MaybeHandle<Map>* internalized_map);
// Creates an internalized copy of an external string. |string| must be
// of type StringClass.
template <class StringClass>
Handle<StringClass> InternalizeExternalString(Handle<String> string);
// Compute the sharing strategy for the input string.
//
// Old-generation sequential and thin strings can be shared by mutating their
// map and return kInPlace, along with the matching shared string map for the
// string stored in shared_map.
//
// Already-shared strings return kAlreadyTransitioned.
//
// All other strings are shared by flattening and copying into a sequential
// string then sharing that sequential string, and return kCopy.
V8_WARN_UNUSED_RESULT StringTransitionStrategy
ComputeSharingStrategyForString(Handle<String> string,
MaybeHandle<Map>* shared_map);
// Creates a single character string where the character has given code.
// A cache is used for Latin1 codes.
Handle<String> LookupSingleCharacterStringFromCode(uint16_t code);
// Create or lookup a single characters tring made up of a utf16 surrogate
// pair.
Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail);
// Create a new string object which holds a proper substring of a string.
Handle<String> NewProperSubString(Handle<String> str, int begin, int end);
// Create a new string object which holds a substring of a string.
inline Handle<String> NewSubString(Handle<String> str, int begin, int end);
// Creates a new external String object. There are two String encodings
// in the system: one-byte and two-byte. Unlike other String types, it does
// not make sense to have a UTF-8 factory function for external strings,
// because we cannot change the underlying buffer. Note that these strings
// are backed by a string resource that resides outside the V8 heap.
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource);
// Create a symbol in old or read-only space.
Handle<Symbol> NewSymbol(AllocationType allocation = AllocationType::kOld);
Handle<Symbol> NewPrivateSymbol(
AllocationType allocation = AllocationType::kOld);
Handle<Symbol> NewPrivateNameSymbol(Handle<String> name);
// Create a global (but otherwise uninitialized) context.
Handle<NativeContext> NewNativeContext();
// Create a script context.
Handle<Context> NewScriptContext(Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info);
// Create an empty script context table.
Handle<ScriptContextTable> NewScriptContextTable();
// Create a module context.
Handle<Context> NewModuleContext(Handle<SourceTextModule> module,
Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info);
// Create a function or eval context.
Handle<Context> NewFunctionContext(Handle<Context> outer,
Handle<ScopeInfo> scope_info);
// Create a catch context.
Handle<Context> NewCatchContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<Object> thrown_object);
// Create a 'with' context.
Handle<Context> NewWithContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension);
Handle<Context> NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped);
// Create a block context.
Handle<Context> NewBlockContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info);
// Create a context that's used by builtin functions.
//
// These are similar to function context but don't have a previous
// context or any scope info. These are used to store spec defined
// context values.
Handle<Context> NewBuiltinContext(Handle<NativeContext> native_context,
int length);
Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
int aliased_context_slot);
Handle<AccessorInfo> NewAccessorInfo();
Handle<ErrorStackData> NewErrorStackData(
Handle<Object> call_site_infos_or_formatted_stack,
Handle<Object> limit_or_stack_frame_infos);
Handle<Script> CloneScript(Handle<Script> script);
Handle<BreakPointInfo> NewBreakPointInfo(int source_position);
Handle<BreakPoint> NewBreakPoint(int id, Handle<String> condition);
Handle<CallSiteInfo> NewCallSiteInfo(Handle<Object> receiver_or_instance,
Handle<Object> function,
Handle<HeapObject> code_object,
int code_offset_or_source_position,
int flags,
Handle<FixedArray> parameters);
Handle<StackFrameInfo> NewStackFrameInfo(
Handle<HeapObject> shared_or_script,
int bytecode_offset_or_source_position, Handle<String> function_name,
bool is_constructor);
// Allocate various microtasks.
Handle<CallableTask> NewCallableTask(Handle<JSReceiver> callable,
Handle<Context> context);
Handle<CallbackTask> NewCallbackTask(Handle<Foreign> callback,
Handle<Foreign> data);
Handle<PromiseResolveThenableJobTask> NewPromiseResolveThenableJobTask(
Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable,
Handle<JSReceiver> then, Handle<Context> context);
// Foreign objects are pretenured when allocated by the bootstrapper.
Handle<Foreign> NewForeign(Address addr);
Handle<Cell> NewCell(Handle<Object> value);
Handle<PropertyCell> NewPropertyCell(
Handle<Name> name, PropertyDetails details, Handle<Object> value,
AllocationType allocation = AllocationType::kOld);
Handle<PropertyCell> NewProtector();
Handle<FeedbackCell> NewNoClosuresCell(Handle<HeapObject> value);
Handle<FeedbackCell> NewOneClosureCell(Handle<HeapObject> value);
Handle<FeedbackCell> NewManyClosuresCell(Handle<HeapObject> value);
Handle<TransitionArray> NewTransitionArray(int number_of_transitions,
int slack = 0);
// Allocate a tenured AllocationSite. Its payload is null.
Handle<AllocationSite> NewAllocationSite(bool with_weak_next);
// Allocates and initializes a new Map.
Handle<Map> NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
int inobject_properties = 0,
AllocationType allocation_type = AllocationType::kMap);
// Initializes the fields of a newly created Map using roots from the
// passed-in Heap. Exposed for tests and heap setup; other code should just
// call NewMap which takes care of it.
Map InitializeMap(Map map, InstanceType type, int instance_size,
ElementsKind elements_kind, int inobject_properties,
Heap* roots);
// Allocate a block of memory of the given AllocationType (filled with a
// filler). Used as a fall-back for generated code when the space is full.
Handle<HeapObject> NewFillerObject(
int size, AllocationAlignment alignment, AllocationType allocation,
AllocationOrigin origin = AllocationOrigin::kRuntime);
Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
// Returns a deep copy of the JavaScript object.
// Properties and elements are copied too.
Handle<JSObject> CopyJSObject(Handle<JSObject> object);
// Same as above, but also takes an AllocationSite to be appended in an
// AllocationMemento.
Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
Handle<AllocationSite> site);
Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map);
Handle<FixedArray> CopyFixedArrayAndGrow(Handle<FixedArray> array,
int grow_by);
Handle<WeakArrayList> NewWeakArrayList(
int capacity, AllocationType allocation = AllocationType::kYoung);
Handle<WeakFixedArray> CopyWeakFixedArrayAndGrow(Handle<WeakFixedArray> array,
int grow_by);
Handle<WeakArrayList> CopyWeakArrayListAndGrow(
Handle<WeakArrayList> array, int grow_by,
AllocationType allocation = AllocationType::kYoung);
Handle<WeakArrayList> CompactWeakArrayList(
Handle<WeakArrayList> array, int new_capacity,
AllocationType allocation = AllocationType::kYoung);
Handle<PropertyArray> CopyPropertyArrayAndGrow(Handle<PropertyArray> array,
int grow_by);
Handle<FixedArray> CopyFixedArrayUpTo(
Handle<FixedArray> array, int new_len,
AllocationType allocation = AllocationType::kYoung);
Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
Handle<FixedDoubleArray> CopyFixedDoubleArray(Handle<FixedDoubleArray> array);
// Creates a new HeapNumber in read-only space if possible otherwise old
// space.
Handle<HeapNumber> NewHeapNumberForCodeAssembler(double value);
Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
// Allocates and initializes a new JavaScript object based on a
// constructor.
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObject(
Handle<JSFunction> constructor,
AllocationType allocation = AllocationType::kYoung);
// JSObject without a prototype.
Handle<JSObject> NewJSObjectWithNullProto();
// JSObject without a prototype, in dictionary mode.
Handle<JSObject> NewSlowJSObjectWithNullProto();
// Global objects are pretenured and initialized based on a constructor.
Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
// Allocates and initializes a new JavaScript object based on a map.
// Passing an allocation site means that a memento will be created that
// points to the site.
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObjectFromMap(
Handle<Map> map, AllocationType allocation = AllocationType::kYoung,
Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
// Like NewJSObjectFromMap, but includes allocating a properties dictionary.
Handle<JSObject> NewSlowJSObjectFromMap(
Handle<Map> map,
int number_of_slow_properties = NameDictionary::kInitialCapacity,
AllocationType allocation = AllocationType::kYoung,
Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
// Calls NewJSObjectFromMap or NewSlowJSObjectFromMap depending on whether the
// map is a dictionary map.
inline Handle<JSObject> NewFastOrSlowJSObjectFromMap(
Handle<Map> map,
int number_of_slow_properties = NameDictionary::kInitialCapacity,
AllocationType allocation = AllocationType::kYoung,
Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
// Allocates and initializes a new JavaScript object with the given
// {prototype} and {properties}. The newly created object will be
// in dictionary properties mode. The {elements} can either be the
// empty fixed array, in which case the resulting object will have
// fast elements, or a NumberDictionary, in which case the resulting
// object will have dictionary elements.
Handle<JSObject> NewSlowJSObjectWithPropertiesAndElements(
Handle<HeapObject> prototype, Handle<HeapObject> properties,
Handle<FixedArrayBase> elements);
// JS arrays are pretenured when allocated by the parser.
// Create a JSArray with a specified length and elements initialized
// according to the specified mode.
Handle<JSArray> NewJSArray(
ElementsKind elements_kind, int length, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
AllocationType allocation = AllocationType::kYoung);
Handle<JSArray> NewJSArray(
int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
AllocationType allocation = AllocationType::kYoung) {
if (capacity != 0) {
elements_kind = GetHoleyElementsKind(elements_kind);
}
return NewJSArray(elements_kind, 0, capacity,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, allocation);
}
// Create a JSArray with the given elements.
Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
AllocationType allocation = AllocationType::kYoung);
inline Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
AllocationType allocation = AllocationType::kYoung);
void NewJSArrayStorage(
Handle<JSArray> array, int length, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
Handle<JSWeakMap> NewJSWeakMap();
Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
Handle<JSModuleNamespace> NewJSModuleNamespace();
Handle<JSWrappedFunction> NewJSWrappedFunction(
Handle<NativeContext> creation_context, Handle<Object> target);
#if V8_ENABLE_WEBASSEMBLY
Handle<WasmTypeInfo> NewWasmTypeInfo(Address type_address,
Handle<Map> opt_parent,
int instance_size_bytes,
Handle<WasmInstanceObject> instance);
Handle<WasmInternalFunction> NewWasmInternalFunction(Address opt_call_target,
Handle<HeapObject> ref,
Handle<Map> rtt);
Handle<WasmCapiFunctionData> NewWasmCapiFunctionData(
Address call_target, Handle<Foreign> embedder_data,
Handle<CodeT> wrapper_code, Handle<Map> rtt,
Handle<PodArray<wasm::ValueType>> serialized_sig);
Handle<WasmExportedFunctionData> NewWasmExportedFunctionData(
Handle<CodeT> export_wrapper, Handle<WasmInstanceObject> instance,
Address call_target, Handle<Object> ref, int func_index,
Address sig_address, int wrapper_budget, Handle<Map> rtt);
Handle<WasmApiFunctionRef> NewWasmApiFunctionRef(
Handle<JSReceiver> callable, Handle<HeapObject> suspender);
// {opt_call_target} is kNullAddress for JavaScript functions, and
// non-null for exported Wasm functions.
Handle<WasmJSFunctionData> NewWasmJSFunctionData(
Address opt_call_target, Handle<JSReceiver> callable, int return_count,
int parameter_count, Handle<PodArray<wasm::ValueType>> serialized_sig,
Handle<CodeT> wrapper_code, Handle<Map> rtt,
Handle<HeapObject> suspender);
Handle<WasmOnFulfilledData> NewWasmOnFulfilledData(
Handle<WasmSuspenderObject> suspender);
Handle<WasmStruct> NewWasmStruct(const wasm::StructType* type,
wasm::WasmValue* args, Handle<Map> map);
Handle<WasmArray> NewWasmArrayFromElements(
const wasm::ArrayType* type, const std::vector<wasm::WasmValue>& elements,
Handle<Map> map);
Handle<WasmArray> NewWasmArrayFromMemory(uint32_t length, Handle<Map> map,
Address source);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmExportedFunction(
Handle<String> name, Handle<WasmExportedFunctionData> data);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmJSFunction(
Handle<String> name, Handle<WasmJSFunctionData> data);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmOnFulfilled(
Handle<WasmOnFulfilledData> data);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmCapiFunction(
Handle<WasmCapiFunctionData> data);
#endif // V8_ENABLE_WEBASSEMBLY
Handle<SourceTextModule> NewSourceTextModule(Handle<SharedFunctionInfo> code);
Handle<SyntheticModule> NewSyntheticModule(
Handle<String> module_name, Handle<FixedArray> export_names,
v8::Module::SyntheticModuleEvaluationSteps evaluation_steps);
Handle<JSArrayBuffer> NewJSArrayBuffer(
std::shared_ptr<BackingStore> backing_store,
AllocationType allocation = AllocationType::kYoung);
MaybeHandle<JSArrayBuffer> NewJSArrayBufferAndBackingStore(
size_t byte_length, InitializedFlag initialized,
AllocationType allocation = AllocationType::kYoung);
Handle<JSArrayBuffer> NewJSSharedArrayBuffer(
std::shared_ptr<BackingStore> backing_store);
static void TypeAndSizeForElementsKind(ElementsKind kind,
ExternalArrayType* array_type,
size_t* element_size);
// Creates a new JSTypedArray with the specified buffer.
Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t length);
Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t byte_length);
Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done);
Handle<JSAsyncFromSyncIterator> NewJSAsyncFromSyncIterator(
Handle<JSReceiver> sync_iterator, Handle<Object> next);
Handle<JSMap> NewJSMap();
Handle<JSSet> NewJSSet();
// Allocates a bound function.
MaybeHandle<JSBoundFunction> NewJSBoundFunction(
Handle<JSReceiver> target_function, Handle<Object> bound_this,
base::Vector<Handle<Object>> bound_args);
// Allocates a Harmony proxy.
Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
Handle<JSReceiver> handler);
// Reinitialize an JSGlobalProxy based on a constructor. The object
// must have the same size as objects allocated using the
// constructor. The object is reinitialized and behaves as an
// object that has been freshly allocated using the constructor.
void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
Handle<JSFunction> constructor);
Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size);
// For testing only. Creates a sloppy function without code.
Handle<JSFunction> NewFunctionForTesting(Handle<String> name);
// Create an External object for V8's external API.
Handle<JSObject> NewExternal(void* value);
Handle<DeoptimizationLiteralArray> NewDeoptimizationLiteralArray(int length);
// Allocates a new code object and initializes it as the trampoline to the
// given off-heap entry point.
Handle<Code> NewOffHeapTrampolineFor(Handle<Code> code,
Address off_heap_entry);
Handle<Code> CopyCode(Handle<Code> code);
Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>);
// Interface for creating error objects.
Handle<JSObject> NewError(Handle<JSFunction> constructor,
Handle<String> message);
Handle<Object> NewInvalidStringLengthError();
inline Handle<Object> NewURIError();
Handle<JSObject> NewError(Handle<JSFunction> constructor,
MessageTemplate template_index,
Handle<Object> arg0 = Handle<Object>(),
Handle<Object> arg1 = Handle<Object>(),
Handle<Object> arg2 = Handle<Object>());
#define DECLARE_ERROR(NAME) \
Handle<JSObject> New##NAME(MessageTemplate template_index, \
Handle<Object> arg0 = Handle<Object>(), \
Handle<Object> arg1 = Handle<Object>(), \
Handle<Object> arg2 = Handle<Object>());
DECLARE_ERROR(Error)
DECLARE_ERROR(EvalError)
DECLARE_ERROR(RangeError)
DECLARE_ERROR(ReferenceError)
DECLARE_ERROR(SyntaxError)
DECLARE_ERROR(TypeError)
DECLARE_ERROR(WasmCompileError)
DECLARE_ERROR(WasmLinkError)
DECLARE_ERROR(WasmRuntimeError)
DECLARE_ERROR(WasmExceptionError)
#undef DECLARE_ERROR
Handle<String> NumberToString(Handle<Object> number,
NumberCacheMode mode = NumberCacheMode::kBoth);
Handle<String> SmiToString(Smi number,
NumberCacheMode mode = NumberCacheMode::kBoth);
Handle<String> HeapNumberToString(
Handle<HeapNumber> number, double value,
NumberCacheMode mode = NumberCacheMode::kBoth);
Handle<String> SizeToString(size_t value, bool check_cache = true);
inline Handle<String> Uint32ToString(uint32_t value,
bool check_cache = true) {
return SizeToString(value, check_cache);
}
#define ROOT_ACCESSOR(Type, name, CamelName) inline Handle<Type> name();
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
// Allocates a new SharedFunctionInfo object.
Handle<SharedFunctionInfo> NewSharedFunctionInfoForApiFunction(
MaybeHandle<String> maybe_name,
Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForBuiltin(
MaybeHandle<String> name, Builtin builtin,
FunctionKind kind = FunctionKind::kNormalFunction);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForWebSnapshot();
static bool IsFunctionModeWithPrototype(FunctionMode function_mode) {
return (function_mode & kWithPrototypeBits) != 0;
}
static bool IsFunctionModeWithWritablePrototype(FunctionMode function_mode) {
return (function_mode & kWithWritablePrototypeBit) != 0;
}
static bool IsFunctionModeWithName(FunctionMode function_mode) {
return (function_mode & kWithNameBit) != 0;
}
Handle<Map> CreateSloppyFunctionMap(
FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function);
Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode,
Handle<JSFunction> empty_function);
Handle<Map> CreateClassFunctionMap(Handle<JSFunction> empty_function);
// Allocates a new JSMessageObject object.
Handle<JSMessageObject> NewJSMessageObject(
MessageTemplate message, Handle<Object> argument, int start_position,
int end_position, Handle<SharedFunctionInfo> shared_info,
int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames);
Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
// Return a map for given number of properties using the map cache in the
// native context.
Handle<Map> ObjectLiteralMapFromCache(Handle<NativeContext> native_context,
int number_of_properties);
Handle<LoadHandler> NewLoadHandler(
int data_count, AllocationType allocation = AllocationType::kOld);
Handle<StoreHandler> NewStoreHandler(int data_count);
Handle<MegaDomHandler> NewMegaDomHandler(MaybeObjectHandle accessor,
MaybeObjectHandle context);
Handle<RegExpMatchInfo> NewRegExpMatchInfo();
// Creates a new FixedArray that holds the data associated with the
// atom regexp and stores it in the regexp.
void SetRegExpAtomData(Handle<JSRegExp> regexp, Handle<String> source,
JSRegExp::Flags flags, Handle<Object> match_pattern);
// Creates a new FixedArray that holds the data associated with the
// irregexp regexp and stores it in the regexp.
void SetRegExpIrregexpData(Handle<JSRegExp> regexp, Handle<String> source,
JSRegExp::Flags flags, int capture_count,
uint32_t backtrack_limit);
// Creates a new FixedArray that holds the data associated with the
// experimental regexp and stores it in the regexp.
void SetRegExpExperimentalData(Handle<JSRegExp> regexp, Handle<String> source,
JSRegExp::Flags flags, int capture_count);
// Returns the value for a known global constant (a property of the global
// object which is neither configurable nor writable) like 'undefined'.
// Returns a null handle when the given name is unknown.
Handle<Object> GlobalConstantFor(Handle<Name> name);
// Converts the given ToPrimitive hint to it's string representation.
Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint);
Handle<JSPromise> NewJSPromiseWithoutHook();
Handle<JSPromise> NewJSPromise();
Handle<CallHandlerInfo> NewCallHandlerInfo(bool has_no_side_effect = false);
HeapObject NewForTest(Handle<Map> map, AllocationType allocation) {
return New(map, allocation);
}
// Helper class for creating JSFunction objects.
class V8_EXPORT_PRIVATE JSFunctionBuilder final {
public:
JSFunctionBuilder(Isolate* isolate, Handle<SharedFunctionInfo> sfi,
Handle<Context> context);
V8_WARN_UNUSED_RESULT Handle<JSFunction> Build();
JSFunctionBuilder& set_map(Handle<Map> v) {
maybe_map_ = v;
return *this;
}
JSFunctionBuilder& set_allocation_type(AllocationType v) {
allocation_type_ = v;
return *this;
}
JSFunctionBuilder& set_feedback_cell(Handle<FeedbackCell> v) {
maybe_feedback_cell_ = v;
return *this;
}
private:
void PrepareMap();
void PrepareFeedbackCell();
V8_WARN_UNUSED_RESULT Handle<JSFunction> BuildRaw(Handle<Code> code);
Isolate* const isolate_;
Handle<SharedFunctionInfo> sfi_;
Handle<Context> context_;
MaybeHandle<Map> maybe_map_;
MaybeHandle<FeedbackCell> maybe_feedback_cell_;
AllocationType allocation_type_ = AllocationType::kOld;
friend class Factory;
};
// Allows creation of Code objects. It provides two build methods, one of
// which tries to gracefully handle allocation failure.
class V8_EXPORT_PRIVATE CodeBuilder final {
public:
CodeBuilder(Isolate* isolate, const CodeDesc& desc, CodeKind kind);
// TODO(victorgomes): Remove Isolate dependency from CodeBuilder.
CodeBuilder(LocalIsolate* local_isolate, const CodeDesc& desc,
CodeKind kind);
// Builds a new code object (fully initialized). All header fields of the
// returned object are immutable and the code object is write protected.
V8_WARN_UNUSED_RESULT Handle<Code> Build();
// Like Build, builds a new code object. May return an empty handle if the
// allocation fails.
V8_WARN_UNUSED_RESULT MaybeHandle<Code> TryBuild();
// Sets the self-reference object in which a reference to the code object is
// stored. This allows generated code to reference its own Code object by
// using this handle.
CodeBuilder& set_self_reference(Handle<Object> self_reference) {
DCHECK(!self_reference.is_null());
self_reference_ = self_reference;
return *this;
}
CodeBuilder& set_builtin(Builtin builtin) {
DCHECK_IMPLIES(builtin != Builtin::kNoBuiltinId,
!CodeKindIsJSFunction(kind_));
builtin_ = builtin;
return *this;
}
CodeBuilder& set_inlined_bytecode_size(uint32_t size) {
DCHECK_IMPLIES(size != 0, CodeKindIsOptimizedJSFunction(kind_));
inlined_bytecode_size_ = size;
return *this;
}
CodeBuilder& set_source_position_table(Handle<ByteArray> table) {
DCHECK_NE(kind_, CodeKind::BASELINE);
DCHECK(!table.is_null());
position_table_ = table;
return *this;
}
CodeBuilder& set_bytecode_offset_table(Handle<ByteArray> table) {
DCHECK_EQ(kind_, CodeKind::BASELINE);
DCHECK(!table.is_null());
position_table_ = table;
return *this;
}
CodeBuilder& set_deoptimization_data(
Handle<DeoptimizationData> deopt_data) {
DCHECK_NE(kind_, CodeKind::BASELINE);
DCHECK(!deopt_data.is_null());
deoptimization_data_ = deopt_data;
return *this;
}
inline CodeBuilder& set_interpreter_data(
Handle<HeapObject> interpreter_data);
CodeBuilder& set_is_turbofanned() {
DCHECK(!CodeKindIsUnoptimizedJSFunction(kind_));
is_turbofanned_ = true;
return *this;
}
CodeBuilder& set_is_executable(bool executable) {
DCHECK_EQ(kind_, CodeKind::BUILTIN);
is_executable_ = executable;
return *this;
}
// Indicates the CodeDataContainer should be allocated in read-only space.
// As an optimization, if the kind-specific flags match that of a canonical
// container, it will be used instead.
CodeBuilder& set_read_only_data_container(bool read_only) {
CHECK_IMPLIES(V8_EXTERNAL_CODE_SPACE_BOOL, !read_only);
read_only_data_container_ = read_only;
return *this;
}
CodeBuilder& set_kind_specific_flags(int32_t flags) {
kind_specific_flags_ = flags;
return *this;
}
CodeBuilder& set_stack_slots(int stack_slots) {
stack_slots_ = stack_slots;
return *this;
}
CodeBuilder& set_profiler_data(BasicBlockProfilerData* profiler_data) {
profiler_data_ = profiler_data;
return *this;
}
inline bool CompiledWithConcurrentBaseline() const;
private:
MaybeHandle<Code> BuildInternal(bool retry_allocation_or_fail);
MaybeHandle<Code> AllocateCode(bool retry_allocation_or_fail);
MaybeHandle<Code> AllocateConcurrentSparkplugCode(
bool retry_allocation_or_fail);
Isolate* const isolate_;
LocalIsolate* local_isolate_;
const CodeDesc& code_desc_;
const CodeKind kind_;
MaybeHandle<Object> self_reference_;
Builtin builtin_ = Builtin::kNoBuiltinId;
uint32_t inlined_bytecode_size_ = 0;
int32_t kind_specific_flags_ = 0;
// Either source_position_table for non-baseline code
// or bytecode_offset_table for baseline code.
Handle<ByteArray> position_table_;
Handle<DeoptimizationData> deoptimization_data_ =
DeoptimizationData::Empty(isolate_);
Handle<HeapObject> interpreter_data_;
BasicBlockProfilerData* profiler_data_ = nullptr;
bool is_executable_ = true;
bool read_only_data_container_ = false;
bool is_turbofanned_ = false;
int stack_slots_ = 0;
};
private:
friend class FactoryBase<Factory>;
// ------
// Customization points for FactoryBase
HeapObject AllocateRaw(int size, AllocationType allocation,
AllocationAlignment alignment = kTaggedAligned);
Isolate* isolate() const {
// Downcast to the privately inherited sub-class using c-style casts to
// avoid undefined behavior (as static_cast cannot cast across private
// bases).
// NOLINTNEXTLINE (google-readability-casting)
return (Isolate*)this; // NOLINT(readability/casting)
}
// This is the real Isolate that will be used for allocating and accessing
// external pointer entries when V8_SANDBOXED_EXTERNAL_POINTERS is enabled.
Isolate* isolate_for_sandbox() const {
#ifdef V8_SANDBOXED_EXTERNAL_POINTERS
return isolate();
#else
return nullptr;
#endif // V8_SANDBOXED_EXTERNAL_POINTERS
}
V8_INLINE HeapAllocator* allocator() const;
bool CanAllocateInReadOnlySpace();
bool EmptyStringRootIsInitialized();
AllocationType AllocationTypeForInPlaceInternalizableString();
void AddToScriptList(Handle<Script> shared);
// ------
HeapObject AllocateRawWithAllocationSite(
Handle<Map> map, AllocationType allocation,
Handle<AllocationSite> allocation_site);
Handle<JSArrayBufferView> NewJSArrayBufferView(
Handle<Map> map, Handle<FixedArrayBase> elements,
Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length);
Symbol NewSymbolInternal(AllocationType allocation = AllocationType::kOld);
// Allocates new context with given map, sets length and initializes the
// after-header part with uninitialized values and leaves the context header
// uninitialized.
Context NewContextInternal(Handle<Map> map, int size,
int variadic_part_length,
AllocationType allocation);
template <typename T>
Handle<T> AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
AllocationType allocation);
// Creates a heap object based on the map. The fields of the heap object are
// not initialized, it's the responsibility of the caller to do that.
HeapObject New(Handle<Map> map, AllocationType allocation);
template <typename T>
Handle<T> CopyArrayWithMap(Handle<T> src, Handle<Map> map);
template <typename T>
Handle<T> CopyArrayAndGrow(Handle<T> src, int grow_by,
AllocationType allocation);
template <bool is_one_byte, typename T>
Handle<String> AllocateInternalizedStringImpl(T t, int chars,
uint32_t hash_field);
Handle<String> AllocateTwoByteInternalizedString(
const base::Vector<const base::uc16>& str, uint32_t hash_field);
MaybeHandle<String> NewStringFromTwoByte(const base::uc16* string, int length,
AllocationType allocation);
// Attempt to find the number in a small cache. If we finds it, return
// the string representation of the number. Otherwise return undefined.
V8_INLINE Handle<Object> NumberToStringCacheGet(Object number, int hash);
// Update the cache with a new number-string pair.
V8_INLINE void NumberToStringCacheSet(Handle<Object> number, int hash,
Handle<String> js_string);
// Creates a new JSArray with the given backing storage. Performs no
// verification of the backing storage because it may not yet be filled.
Handle<JSArray> NewJSArrayWithUnverifiedElements(
Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
AllocationType allocation = AllocationType::kYoung);
// Creates the backing storage for a JSArray. This handle must be discarded
// before returning the JSArray reference to code outside Factory, which might
// decide to left-trim the backing store. To avoid unnecessary HandleScopes,
// this method requires capacity greater than zero.
Handle<FixedArrayBase> NewJSArrayStorage(
ElementsKind elements_kind, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
void InitializeAllocationMemento(AllocationMemento memento,
AllocationSite allocation_site);
// Initializes a JSObject based on its map.
void InitializeJSObjectFromMap(JSObject obj, Object properties, Map map);
// Initializes JSObject body starting at given offset.
void InitializeJSObjectBody(JSObject obj, Map map, int start_offset);
Handle<WeakArrayList> NewUninitializedWeakArrayList(
int capacity, AllocationType allocation = AllocationType::kYoung);
};
} // namespace internal
} // namespace v8
#endif // V8_HEAP_FACTORY_H_