| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_HEAP_HEAP_INL_H_ |
| #define V8_HEAP_HEAP_INL_H_ |
| |
| #include <atomic> |
| #include <cmath> |
| |
| // Clients of this interface shouldn't depend on lots of heap internals. |
| // Avoid including anything but `heap.h` from `src/heap` where possible. |
| #include "src/base/atomic-utils.h" |
| #include "src/base/atomicops.h" |
| #include "src/base/platform/mutex.h" |
| #include "src/base/platform/platform.h" |
| #include "src/base/sanitizer/msan.h" |
| #include "src/common/assert-scope.h" |
| #include "src/execution/isolate-data.h" |
| #include "src/execution/isolate.h" |
| #include "src/heap/code-object-registry.h" |
| #include "src/heap/concurrent-allocator-inl.h" |
| #include "src/heap/concurrent-allocator.h" |
| #include "src/heap/heap-allocator-inl.h" |
| #include "src/heap/heap-write-barrier.h" |
| #include "src/heap/heap.h" |
| #include "src/heap/large-spaces.h" |
| #include "src/heap/memory-allocator.h" |
| #include "src/heap/memory-chunk-layout.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/heap/new-spaces-inl.h" |
| #include "src/heap/paged-spaces-inl.h" |
| #include "src/heap/read-only-heap.h" |
| #include "src/heap/read-only-spaces.h" |
| #include "src/heap/safepoint.h" |
| #include "src/heap/spaces-inl.h" |
| #include "src/heap/third-party/heap-api.h" |
| #include "src/objects/allocation-site-inl.h" |
| #include "src/objects/cell-inl.h" |
| #include "src/objects/descriptor-array.h" |
| #include "src/objects/feedback-cell-inl.h" |
| #include "src/objects/feedback-vector.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/oddball.h" |
| #include "src/objects/property-cell.h" |
| #include "src/objects/scope-info.h" |
| #include "src/objects/slots-inl.h" |
| #include "src/objects/struct-inl.h" |
| #include "src/objects/visitors-inl.h" |
| #include "src/profiler/heap-profiler.h" |
| #include "src/strings/string-hasher.h" |
| #include "src/utils/ostreams.h" |
| #include "src/zone/zone-list-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| template <typename T> |
| T ForwardingAddress(T heap_obj) { |
| MapWord map_word = heap_obj.map_word(kRelaxedLoad); |
| |
| if (map_word.IsForwardingAddress()) { |
| return T::cast(map_word.ToForwardingAddress()); |
| } else if (Heap::InFromPage(heap_obj)) { |
| return T(); |
| } else { |
| return heap_obj; |
| } |
| } |
| |
| // static |
| base::EnumSet<CodeFlushMode> Heap::GetCodeFlushMode(Isolate* isolate) { |
| if (isolate->disable_bytecode_flushing()) { |
| return base::EnumSet<CodeFlushMode>(); |
| } |
| |
| base::EnumSet<CodeFlushMode> code_flush_mode; |
| if (FLAG_flush_bytecode) { |
| code_flush_mode.Add(CodeFlushMode::kFlushBytecode); |
| } |
| |
| if (FLAG_flush_baseline_code) { |
| code_flush_mode.Add(CodeFlushMode::kFlushBaselineCode); |
| } |
| |
| if (FLAG_stress_flush_code) { |
| // This is to check tests accidentally don't miss out on adding either flush |
| // bytecode or flush code along with stress flush code. stress_flush_code |
| // doesn't do anything if either one of them isn't enabled. |
| DCHECK(FLAG_fuzzing || FLAG_flush_baseline_code || FLAG_flush_bytecode); |
| code_flush_mode.Add(CodeFlushMode::kStressFlushCode); |
| } |
| |
| return code_flush_mode; |
| } |
| |
| Isolate* Heap::isolate() { return Isolate::FromHeap(this); } |
| |
| int64_t Heap::external_memory() { return external_memory_.total(); } |
| |
| int64_t Heap::update_external_memory(int64_t delta) { |
| return external_memory_.Update(delta); |
| } |
| |
| PagedSpace* Heap::space_for_maps() { |
| return V8_LIKELY(map_space_) ? static_cast<PagedSpace*>(map_space_) |
| : static_cast<PagedSpace*>(old_space_); |
| } |
| |
| ConcurrentAllocator* Heap::concurrent_allocator_for_maps() { |
| return V8_LIKELY(shared_map_allocator_) ? shared_map_allocator_.get() |
| : shared_old_allocator_.get(); |
| } |
| |
| RootsTable& Heap::roots_table() { return isolate()->roots_table(); } |
| |
| #define ROOT_ACCESSOR(Type, name, CamelName) \ |
| Type Heap::name() { \ |
| return Type::cast(Object(roots_table()[RootIndex::k##CamelName])); \ |
| } |
| MUTABLE_ROOT_LIST(ROOT_ACCESSOR) |
| #undef ROOT_ACCESSOR |
| |
| #define ROOT_ACCESSOR(type, name, CamelName) \ |
| void Heap::set_##name(type value) { \ |
| /* The deserializer makes use of the fact that these common roots are */ \ |
| /* never in new space and never on a page that is being compacted. */ \ |
| DCHECK_IMPLIES(deserialization_complete(), \ |
| !RootsTable::IsImmortalImmovable(RootIndex::k##CamelName)); \ |
| DCHECK_IMPLIES(RootsTable::IsImmortalImmovable(RootIndex::k##CamelName), \ |
| IsImmovable(HeapObject::cast(value))); \ |
| roots_table()[RootIndex::k##CamelName] = value.ptr(); \ |
| } |
| ROOT_LIST(ROOT_ACCESSOR) |
| #undef ROOT_ACCESSOR |
| |
| void Heap::SetRootMaterializedObjects(FixedArray objects) { |
| roots_table()[RootIndex::kMaterializedObjects] = objects.ptr(); |
| } |
| |
| void Heap::SetRootScriptList(Object value) { |
| roots_table()[RootIndex::kScriptList] = value.ptr(); |
| } |
| |
| void Heap::SetMessageListeners(TemplateList value) { |
| roots_table()[RootIndex::kMessageListeners] = value.ptr(); |
| } |
| |
| void Heap::SetPendingOptimizeForTestBytecode(Object hash_table) { |
| DCHECK(hash_table.IsObjectHashTable() || hash_table.IsUndefined(isolate())); |
| roots_table()[RootIndex::kPendingOptimizeForTestBytecode] = hash_table.ptr(); |
| } |
| |
| PagedSpace* Heap::paged_space(int idx) { |
| DCHECK(idx == OLD_SPACE || idx == CODE_SPACE || idx == MAP_SPACE); |
| return static_cast<PagedSpace*>(space_[idx]); |
| } |
| |
| Space* Heap::space(int idx) { return space_[idx]; } |
| |
| Address* Heap::NewSpaceAllocationTopAddress() { |
| return new_space_ ? new_space_->allocation_top_address() : nullptr; |
| } |
| |
| Address* Heap::NewSpaceAllocationLimitAddress() { |
| return new_space_ ? new_space_->allocation_limit_address() : nullptr; |
| } |
| |
| Address* Heap::OldSpaceAllocationTopAddress() { |
| return old_space_->allocation_top_address(); |
| } |
| |
| Address* Heap::OldSpaceAllocationLimitAddress() { |
| return old_space_->allocation_limit_address(); |
| } |
| |
| inline const base::AddressRegion& Heap::code_region() { |
| #ifdef V8_ENABLE_THIRD_PARTY_HEAP |
| return tp_heap_->GetCodeRange(); |
| #else |
| static constexpr base::AddressRegion kEmptyRegion; |
| return code_range_ ? code_range_->reservation()->region() : kEmptyRegion; |
| #endif |
| } |
| |
| Address Heap::code_range_base() { |
| return code_range_ ? code_range_->base() : kNullAddress; |
| } |
| |
| int Heap::MaxRegularHeapObjectSize(AllocationType allocation) { |
| if (!V8_ENABLE_THIRD_PARTY_HEAP_BOOL && |
| (allocation == AllocationType::kCode)) { |
| DCHECK_EQ(MemoryChunkLayout::MaxRegularCodeObjectSize(), |
| max_regular_code_object_size_); |
| return max_regular_code_object_size_; |
| } |
| return kMaxRegularHeapObjectSize; |
| } |
| |
| AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationType type, |
| AllocationOrigin origin, |
| AllocationAlignment alignment) { |
| return heap_allocator_.AllocateRaw(size_in_bytes, type, origin, alignment); |
| } |
| |
| Address Heap::AllocateRawOrFail(int size, AllocationType allocation, |
| AllocationOrigin origin, |
| AllocationAlignment alignment) { |
| return heap_allocator_ |
| .AllocateRawWith<HeapAllocator::kRetryOrFail>(size, allocation, origin, |
| alignment) |
| .address(); |
| } |
| |
| void Heap::RegisterExternalString(String string) { |
| DCHECK(string.IsExternalString()); |
| DCHECK(!string.IsThinString()); |
| external_string_table_.AddString(string); |
| } |
| |
| void Heap::FinalizeExternalString(String string) { |
| DCHECK(string.IsExternalString()); |
| ExternalString ext_string = ExternalString::cast(string); |
| |
| if (!FLAG_enable_third_party_heap) { |
| Page* page = Page::FromHeapObject(string); |
| page->DecrementExternalBackingStoreBytes( |
| ExternalBackingStoreType::kExternalString, |
| ext_string.ExternalPayloadSize()); |
| } |
| |
| ext_string.DisposeResource(isolate()); |
| } |
| |
| Address Heap::NewSpaceTop() { |
| return new_space_ ? new_space_->top() : kNullAddress; |
| } |
| |
| bool Heap::InYoungGeneration(Object object) { |
| DCHECK(!HasWeakHeapObjectTag(object)); |
| return object.IsHeapObject() && InYoungGeneration(HeapObject::cast(object)); |
| } |
| |
| // static |
| bool Heap::InYoungGeneration(MaybeObject object) { |
| HeapObject heap_object; |
| return object->GetHeapObject(&heap_object) && InYoungGeneration(heap_object); |
| } |
| |
| // static |
| bool Heap::InYoungGeneration(HeapObject heap_object) { |
| if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return false; |
| bool result = |
| BasicMemoryChunk::FromHeapObject(heap_object)->InYoungGeneration(); |
| #ifdef DEBUG |
| // If in the young generation, then check we're either not in the middle of |
| // GC or the object is in to-space. |
| if (result) { |
| // If the object is in the young generation, then it's not in RO_SPACE so |
| // this is safe. |
| Heap* heap = Heap::FromWritableHeapObject(heap_object); |
| DCHECK_IMPLIES(heap->gc_state() == NOT_IN_GC, InToPage(heap_object)); |
| } |
| #endif |
| return result; |
| } |
| |
| // static |
| bool Heap::InFromPage(Object object) { |
| DCHECK(!HasWeakHeapObjectTag(object)); |
| return object.IsHeapObject() && InFromPage(HeapObject::cast(object)); |
| } |
| |
| // static |
| bool Heap::InFromPage(MaybeObject object) { |
| HeapObject heap_object; |
| return object->GetHeapObject(&heap_object) && InFromPage(heap_object); |
| } |
| |
| // static |
| bool Heap::InFromPage(HeapObject heap_object) { |
| return BasicMemoryChunk::FromHeapObject(heap_object)->IsFromPage(); |
| } |
| |
| // static |
| bool Heap::InToPage(Object object) { |
| DCHECK(!HasWeakHeapObjectTag(object)); |
| return object.IsHeapObject() && InToPage(HeapObject::cast(object)); |
| } |
| |
| // static |
| bool Heap::InToPage(MaybeObject object) { |
| HeapObject heap_object; |
| return object->GetHeapObject(&heap_object) && InToPage(heap_object); |
| } |
| |
| // static |
| bool Heap::InToPage(HeapObject heap_object) { |
| return BasicMemoryChunk::FromHeapObject(heap_object)->IsToPage(); |
| } |
| |
| bool Heap::InOldSpace(Object object) { |
| if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { |
| return object.IsHeapObject() && |
| third_party_heap::Heap::InOldSpace(object.ptr()); |
| } |
| return old_space_->Contains(object); |
| } |
| |
| // static |
| Heap* Heap::FromWritableHeapObject(HeapObject obj) { |
| if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { |
| return Heap::GetIsolateFromWritableObject(obj)->heap(); |
| } |
| BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(obj); |
| // RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to |
| // find a heap. The exception is when the ReadOnlySpace is writeable, during |
| // bootstrapping, so explicitly allow this case. |
| SLOW_DCHECK(chunk->IsWritable()); |
| Heap* heap = chunk->heap(); |
| SLOW_DCHECK(heap != nullptr); |
| return heap; |
| } |
| |
| bool Heap::ShouldBePromoted(Address old_address) { |
| Page* page = Page::FromAddress(old_address); |
| Address age_mark = new_space_->age_mark(); |
| return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) && |
| (!page->ContainsLimit(age_mark) || old_address < age_mark); |
| } |
| |
| void Heap::CopyBlock(Address dst, Address src, int byte_size) { |
| DCHECK(IsAligned(byte_size, kTaggedSize)); |
| CopyTagged(dst, src, static_cast<size_t>(byte_size / kTaggedSize)); |
| } |
| |
| template <Heap::FindMementoMode mode> |
| AllocationMemento Heap::FindAllocationMemento(Map map, HeapObject object) { |
| Address object_address = object.address(); |
| Address memento_address = object_address + object.SizeFromMap(map); |
| Address last_memento_word_address = memento_address + kTaggedSize; |
| // If the memento would be on another page, bail out immediately. |
| if (!Page::OnSamePage(object_address, last_memento_word_address)) { |
| return AllocationMemento(); |
| } |
| HeapObject candidate = HeapObject::FromAddress(memento_address); |
| ObjectSlot candidate_map_slot = candidate.map_slot(); |
| // This fast check may peek at an uninitialized word. However, the slow check |
| // below (memento_address == top) ensures that this is safe. Mark the word as |
| // initialized to silence MemorySanitizer warnings. |
| MSAN_MEMORY_IS_INITIALIZED(candidate_map_slot.address(), kTaggedSize); |
| if (!candidate_map_slot.contains_map_value( |
| ReadOnlyRoots(this).allocation_memento_map().ptr())) { |
| return AllocationMemento(); |
| } |
| |
| // Bail out if the memento is below the age mark, which can happen when |
| // mementos survived because a page got moved within new space. |
| Page* object_page = Page::FromAddress(object_address); |
| if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) { |
| Address age_mark = |
| reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark(); |
| if (!object_page->Contains(age_mark)) { |
| return AllocationMemento(); |
| } |
| // Do an exact check in the case where the age mark is on the same page. |
| if (object_address < age_mark) { |
| return AllocationMemento(); |
| } |
| } |
| |
| AllocationMemento memento_candidate = AllocationMemento::cast(candidate); |
| |
| // Depending on what the memento is used for, we might need to perform |
| // additional checks. |
| Address top; |
| switch (mode) { |
| case Heap::kForGC: |
| return memento_candidate; |
| case Heap::kForRuntime: |
| if (memento_candidate.is_null()) return AllocationMemento(); |
| // Either the object is the last object in the new space, or there is |
| // another object of at least word size (the header map word) following |
| // it, so suffices to compare ptr and top here. |
| top = NewSpaceTop(); |
| DCHECK(memento_address == top || |
| memento_address + HeapObject::kHeaderSize <= top || |
| !Page::OnSamePage(memento_address, top - 1)); |
| if ((memento_address != top) && memento_candidate.IsValid()) { |
| return memento_candidate; |
| } |
| return AllocationMemento(); |
| default: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| } |
| |
| void Heap::UpdateAllocationSite(Map map, HeapObject object, |
| PretenuringFeedbackMap* pretenuring_feedback) { |
| DCHECK_NE(pretenuring_feedback, &global_pretenuring_feedback_); |
| #ifdef DEBUG |
| BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); |
| DCHECK_IMPLIES(chunk->IsToPage(), |
| chunk->IsFlagSet(MemoryChunk::PAGE_NEW_NEW_PROMOTION)); |
| DCHECK_IMPLIES(!chunk->InYoungGeneration(), |
| chunk->IsFlagSet(MemoryChunk::PAGE_NEW_OLD_PROMOTION)); |
| #endif |
| if (!FLAG_allocation_site_pretenuring || |
| !AllocationSite::CanTrack(map.instance_type())) { |
| return; |
| } |
| AllocationMemento memento_candidate = |
| FindAllocationMemento<kForGC>(map, object); |
| if (memento_candidate.is_null()) return; |
| |
| // Entering cached feedback is used in the parallel case. We are not allowed |
| // to dereference the allocation site and rather have to postpone all checks |
| // till actually merging the data. |
| Address key = memento_candidate.GetAllocationSiteUnchecked(); |
| (*pretenuring_feedback)[AllocationSite::unchecked_cast(Object(key))]++; |
| } |
| |
| bool Heap::IsPendingAllocationInternal(HeapObject object) { |
| DCHECK(deserialization_complete()); |
| |
| if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { |
| return tp_heap_->IsPendingAllocation(object); |
| } |
| |
| BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); |
| if (chunk->InReadOnlySpace()) return false; |
| |
| BaseSpace* base_space = chunk->owner(); |
| Address addr = object.address(); |
| |
| switch (base_space->identity()) { |
| case NEW_SPACE: { |
| base::SharedMutexGuard<base::kShared> guard( |
| new_space_->pending_allocation_mutex()); |
| Address top = new_space_->original_top_acquire(); |
| Address limit = new_space_->original_limit_relaxed(); |
| DCHECK_LE(top, limit); |
| return top && top <= addr && addr < limit; |
| } |
| |
| case OLD_SPACE: |
| case CODE_SPACE: |
| case MAP_SPACE: { |
| PagedSpace* paged_space = static_cast<PagedSpace*>(base_space); |
| base::SharedMutexGuard<base::kShared> guard( |
| paged_space->pending_allocation_mutex()); |
| Address top = paged_space->original_top(); |
| Address limit = paged_space->original_limit(); |
| DCHECK_LE(top, limit); |
| return top && top <= addr && addr < limit; |
| } |
| |
| case LO_SPACE: |
| case CODE_LO_SPACE: |
| case NEW_LO_SPACE: { |
| LargeObjectSpace* large_space = |
| static_cast<LargeObjectSpace*>(base_space); |
| base::SharedMutexGuard<base::kShared> guard( |
| large_space->pending_allocation_mutex()); |
| return addr == large_space->pending_object(); |
| } |
| |
| case RO_SPACE: |
| UNREACHABLE(); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| bool Heap::IsPendingAllocation(HeapObject object) { |
| bool result = IsPendingAllocationInternal(object); |
| if (FLAG_trace_pending_allocations && result) { |
| StdoutStream{} << "Pending allocation: " << std::hex << "0x" << object.ptr() |
| << "\n"; |
| } |
| return result; |
| } |
| |
| bool Heap::IsPendingAllocation(Object object) { |
| return object.IsHeapObject() && IsPendingAllocation(HeapObject::cast(object)); |
| } |
| |
| void Heap::ExternalStringTable::AddString(String string) { |
| DCHECK(string.IsExternalString()); |
| DCHECK(!Contains(string)); |
| |
| if (InYoungGeneration(string)) { |
| young_strings_.push_back(string); |
| } else { |
| old_strings_.push_back(string); |
| } |
| } |
| |
| Oddball Heap::ToBoolean(bool condition) { |
| ReadOnlyRoots roots(this); |
| return condition ? roots.true_value() : roots.false_value(); |
| } |
| |
| int Heap::NextScriptId() { |
| FullObjectSlot last_script_id_slot(&roots_table()[RootIndex::kLastScriptId]); |
| Smi last_id = Smi::cast(last_script_id_slot.Relaxed_Load()); |
| Smi new_id, last_id_before_cas; |
| do { |
| if (last_id.value() == Smi::kMaxValue) { |
| STATIC_ASSERT(v8::UnboundScript::kNoScriptId == 0); |
| new_id = Smi::FromInt(1); |
| } else { |
| new_id = Smi::FromInt(last_id.value() + 1); |
| } |
| |
| // CAS returns the old value on success, and the current value in the slot |
| // on failure. Therefore, we want to break if the returned value matches the |
| // old value (last_id), and keep looping (with the new last_id value) if it |
| // doesn't. |
| last_id_before_cas = last_id; |
| last_id = |
| Smi::cast(last_script_id_slot.Relaxed_CompareAndSwap(last_id, new_id)); |
| } while (last_id != last_id_before_cas); |
| |
| return new_id.value(); |
| } |
| |
| int Heap::NextDebuggingId() { |
| int last_id = last_debugging_id().value(); |
| if (last_id == DebugInfo::DebuggingIdBits::kMax) { |
| last_id = DebugInfo::kNoDebuggingId; |
| } |
| last_id++; |
| set_last_debugging_id(Smi::FromInt(last_id)); |
| return last_id; |
| } |
| |
| int Heap::GetNextTemplateSerialNumber() { |
| int next_serial_number = next_template_serial_number().value(); |
| set_next_template_serial_number(Smi::FromInt(next_serial_number + 1)); |
| return next_serial_number; |
| } |
| |
| int Heap::MaxNumberToStringCacheSize() const { |
| // Compute the size of the number string cache based on the max newspace size. |
| // The number string cache has a minimum size based on twice the initial cache |
| // size to ensure that it is bigger after being made 'full size'. |
| size_t number_string_cache_size = max_semi_space_size_ / 512; |
| number_string_cache_size = |
| std::max(static_cast<size_t>(kInitialNumberStringCacheSize * 2), |
| std::min(static_cast<size_t>(0x4000), number_string_cache_size)); |
| // There is a string and a number per entry so the length is twice the number |
| // of entries. |
| return static_cast<int>(number_string_cache_size * 2); |
| } |
| |
| void Heap::IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, |
| size_t amount) { |
| base::CheckedIncrement(&backing_store_bytes_, static_cast<uint64_t>(amount), |
| std::memory_order_relaxed); |
| // TODO(mlippautz): Implement interrupt for global memory allocations that can |
| // trigger garbage collections. |
| } |
| |
| void Heap::DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, |
| size_t amount) { |
| base::CheckedDecrement(&backing_store_bytes_, static_cast<uint64_t>(amount), |
| std::memory_order_relaxed); |
| } |
| |
| bool Heap::HasDirtyJSFinalizationRegistries() { |
| return !dirty_js_finalization_registries_list().IsUndefined(isolate()); |
| } |
| |
| VerifyPointersVisitor::VerifyPointersVisitor(Heap* heap) |
| : ObjectVisitorWithCageBases(heap), heap_(heap) {} |
| |
| AlwaysAllocateScope::AlwaysAllocateScope(Heap* heap) : heap_(heap) { |
| heap_->always_allocate_scope_count_++; |
| } |
| |
| AlwaysAllocateScope::~AlwaysAllocateScope() { |
| heap_->always_allocate_scope_count_--; |
| } |
| |
| OptionalAlwaysAllocateScope::OptionalAlwaysAllocateScope(Heap* heap) |
| : heap_(heap) { |
| if (heap_) heap_->always_allocate_scope_count_++; |
| } |
| |
| OptionalAlwaysAllocateScope::~OptionalAlwaysAllocateScope() { |
| if (heap_) heap_->always_allocate_scope_count_--; |
| } |
| |
| AlwaysAllocateScopeForTesting::AlwaysAllocateScopeForTesting(Heap* heap) |
| : scope_(heap) {} |
| |
| CodeSpaceMemoryModificationScope::CodeSpaceMemoryModificationScope(Heap* heap) |
| : heap_(heap) { |
| DCHECK_EQ(ThreadId::Current(), heap_->isolate()->thread_id()); |
| heap_->safepoint()->AssertActive(); |
| if (heap_->write_protect_code_memory()) { |
| heap_->increment_code_space_memory_modification_scope_depth(); |
| heap_->code_space()->SetCodeModificationPermissions(); |
| LargePage* page = heap_->code_lo_space()->first_page(); |
| while (page != nullptr) { |
| DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE)); |
| DCHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page)); |
| page->SetCodeModificationPermissions(); |
| page = page->next_page(); |
| } |
| } |
| } |
| |
| CodeSpaceMemoryModificationScope::~CodeSpaceMemoryModificationScope() { |
| if (heap_->write_protect_code_memory()) { |
| heap_->decrement_code_space_memory_modification_scope_depth(); |
| heap_->code_space()->SetDefaultCodePermissions(); |
| LargePage* page = heap_->code_lo_space()->first_page(); |
| while (page != nullptr) { |
| DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE)); |
| DCHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page)); |
| page->SetDefaultCodePermissions(); |
| page = page->next_page(); |
| } |
| } |
| } |
| |
| CodePageCollectionMemoryModificationScope:: |
| CodePageCollectionMemoryModificationScope(Heap* heap) |
| : heap_(heap) { |
| if (heap_->write_protect_code_memory()) { |
| heap_->IncrementCodePageCollectionMemoryModificationScopeDepth(); |
| } |
| } |
| |
| CodePageCollectionMemoryModificationScope:: |
| ~CodePageCollectionMemoryModificationScope() { |
| if (heap_->write_protect_code_memory()) { |
| heap_->DecrementCodePageCollectionMemoryModificationScopeDepth(); |
| if (heap_->code_page_collection_memory_modification_scope_depth() == 0) { |
| heap_->ProtectUnprotectedMemoryChunks(); |
| } |
| } |
| } |
| |
| #ifdef V8_ENABLE_THIRD_PARTY_HEAP |
| CodePageMemoryModificationScope::CodePageMemoryModificationScope(Code code) |
| : chunk_(nullptr), scope_active_(false) {} |
| #else |
| CodePageMemoryModificationScope::CodePageMemoryModificationScope(Code code) |
| : CodePageMemoryModificationScope(BasicMemoryChunk::FromHeapObject(code)) {} |
| #endif |
| |
| CodePageMemoryModificationScope::CodePageMemoryModificationScope( |
| BasicMemoryChunk* chunk) |
| : chunk_(chunk), |
| scope_active_(chunk_->heap()->write_protect_code_memory() && |
| chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) { |
| if (scope_active_) { |
| DCHECK(chunk_->owner()->identity() == CODE_SPACE || |
| (chunk_->owner()->identity() == CODE_LO_SPACE)); |
| MemoryChunk::cast(chunk_)->SetCodeModificationPermissions(); |
| } |
| } |
| |
| CodePageMemoryModificationScope::~CodePageMemoryModificationScope() { |
| if (scope_active_) { |
| MemoryChunk::cast(chunk_)->SetDefaultCodePermissions(); |
| } |
| } |
| |
| IgnoreLocalGCRequests::IgnoreLocalGCRequests(Heap* heap) : heap_(heap) { |
| DCHECK_EQ(ThreadId::Current(), heap_->isolate()->thread_id()); |
| heap_->ignore_local_gc_requests_depth_++; |
| } |
| |
| IgnoreLocalGCRequests::~IgnoreLocalGCRequests() { |
| DCHECK_GT(heap_->ignore_local_gc_requests_depth_, 0); |
| heap_->ignore_local_gc_requests_depth_--; |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_HEAP_HEAP_INL_H_ |