blob: 65734d5b3488d9c2590876ed6c4e2391d7523342 [file] [log] [blame]
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_LARGE_SPACES_H_
#define V8_HEAP_LARGE_SPACES_H_
#include <atomic>
#include <functional>
#include <memory>
#include <unordered_map>
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/common/globals.h"
#include "src/heap/heap.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces.h"
#include "src/objects/heap-object.h"
namespace v8 {
namespace internal {
class Isolate;
class LocalHeap;
class LargePage : public MemoryChunk {
public:
// A limit to guarantee that we do not overflow typed slot offset in the old
// to old remembered set. Note that this limit is higher than what assembler
// already imposes on x64 and ia32 architectures.
static const int kMaxCodePageSize = 512 * MB;
static LargePage* FromHeapObject(HeapObject o) {
DCHECK(!V8_ENABLE_THIRD_PARTY_HEAP_BOOL);
return static_cast<LargePage*>(MemoryChunk::FromHeapObject(o));
}
HeapObject GetObject() { return HeapObject::FromAddress(area_start()); }
LargePage* next_page() { return static_cast<LargePage*>(list_node_.next()); }
// Uncommit memory that is not in use anymore by the object. If the object
// cannot be shrunk 0 is returned.
Address GetAddressToShrink(Address object_address, size_t object_size);
void ClearOutOfLiveRangeSlots(Address free_start);
private:
static LargePage* Initialize(Heap* heap, MemoryChunk* chunk,
Executability executable);
friend class MemoryAllocator;
};
STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
// -----------------------------------------------------------------------------
// Large objects ( > kMaxRegularHeapObjectSize ) are allocated and managed by
// the large object space. Large objects do not move during garbage collections.
class V8_EXPORT_PRIVATE LargeObjectSpace : public Space {
public:
using iterator = LargePageIterator;
~LargeObjectSpace() override { TearDown(); }
// Releases internal resources, frees objects in this space.
void TearDown();
// Available bytes for objects in this space.
size_t Available() override;
size_t Size() override { return size_; }
size_t SizeOfObjects() override { return objects_size_; }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
int PageCount() { return page_count_; }
// Frees unmarked objects.
virtual void FreeUnmarkedObjects();
// Checks whether a heap object is in this space; O(1).
bool Contains(HeapObject obj);
// Checks whether an address is in the object area in this space. Iterates all
// objects in the space. May be slow.
bool ContainsSlow(Address addr);
// Checks whether the space is empty.
bool IsEmpty() { return first_page() == nullptr; }
virtual void AddPage(LargePage* page, size_t object_size);
virtual void RemovePage(LargePage* page, size_t object_size);
LargePage* first_page() override {
return reinterpret_cast<LargePage*>(memory_chunk_list_.front());
}
iterator begin() { return iterator(first_page()); }
iterator end() { return iterator(nullptr); }
std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;
virtual bool is_off_thread() const { return false; }
#ifdef VERIFY_HEAP
virtual void Verify(Isolate* isolate);
#endif
#ifdef DEBUG
void Print() override;
#endif
// The last allocated object that is not guaranteed to be initialized when the
// concurrent marker visits it.
Address pending_object() {
return pending_object_.load(std::memory_order_acquire);
}
void ResetPendingObject() {
pending_object_.store(0, std::memory_order_release);
}
base::SharedMutex* pending_allocation_mutex() {
return &pending_allocation_mutex_;
}
protected:
LargeObjectSpace(Heap* heap, AllocationSpace id);
void AdvanceAndInvokeAllocationObservers(Address soon_object, size_t size);
LargePage* AllocateLargePage(int object_size, Executability executable);
void UpdatePendingObject(HeapObject object);
std::atomic<size_t> size_; // allocated bytes
int page_count_; // number of chunks
std::atomic<size_t> objects_size_; // size of objects
base::Mutex allocation_mutex_;
// Current potentially uninitialized object. Protected by
// pending_allocation_mutex_.
std::atomic<Address> pending_object_;
// Used to protect pending_object_.
base::SharedMutex pending_allocation_mutex_;
private:
friend class LargeObjectSpaceObjectIterator;
};
class OldLargeObjectSpace : public LargeObjectSpace {
public:
explicit OldLargeObjectSpace(Heap* heap);
V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT AllocationResult
AllocateRaw(int object_size);
V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT AllocationResult
AllocateRawBackground(LocalHeap* local_heap, int object_size);
// Clears the marking state of live objects.
void ClearMarkingStateOfLiveObjects();
void PromoteNewLargeObject(LargePage* page);
protected:
explicit OldLargeObjectSpace(Heap* heap, AllocationSpace id);
V8_WARN_UNUSED_RESULT AllocationResult AllocateRaw(int object_size,
Executability executable);
V8_WARN_UNUSED_RESULT AllocationResult AllocateRawBackground(
LocalHeap* local_heap, int object_size, Executability executable);
};
class NewLargeObjectSpace : public LargeObjectSpace {
public:
NewLargeObjectSpace(Heap* heap, size_t capacity);
V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT AllocationResult
AllocateRaw(int object_size);
// Available bytes for objects in this space.
size_t Available() override;
void Flip();
void FreeDeadObjects(const std::function<bool(HeapObject)>& is_dead);
void SetCapacity(size_t capacity);
private:
size_t capacity_;
};
class CodeLargeObjectSpace : public OldLargeObjectSpace {
public:
explicit CodeLargeObjectSpace(Heap* heap);
V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT AllocationResult
AllocateRaw(int object_size);
V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT AllocationResult
AllocateRawBackground(LocalHeap* local_heap, int object_size);
// Finds a large object page containing the given address, returns nullptr if
// such a page doesn't exist.
LargePage* FindPage(Address a);
protected:
void AddPage(LargePage* page, size_t object_size) override;
void RemovePage(LargePage* page, size_t object_size) override;
private:
static const size_t kInitialChunkMapCapacity = 1024;
void InsertChunkMapEntries(LargePage* page);
void RemoveChunkMapEntries(LargePage* page);
// Page-aligned addresses to their corresponding LargePage.
std::unordered_map<Address, LargePage*> chunk_map_;
};
class LargeObjectSpaceObjectIterator : public ObjectIterator {
public:
explicit LargeObjectSpaceObjectIterator(LargeObjectSpace* space);
HeapObject Next() override;
private:
LargePage* current_;
};
} // namespace internal
} // namespace v8
#endif // V8_HEAP_LARGE_SPACES_H_