blob: 685e631f238b1d46899afa66ff50105c09331e56 [file] [log] [blame]
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/new-spaces.h"
#include "src/common/globals.h"
#include "src/heap/array-buffer-sweeper.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/paged-spaces.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/spaces.h"
namespace v8 {
namespace internal {
Page* SemiSpace::InitializePage(MemoryChunk* chunk) {
bool in_to_space = (id() != kFromSpace);
chunk->SetFlag(in_to_space ? MemoryChunk::TO_PAGE : MemoryChunk::FROM_PAGE);
Page* page = static_cast<Page*>(chunk);
page->SetYoungGenerationPageFlags(heap()->incremental_marking()->IsMarking());
page->list_node().Initialize();
if (FLAG_minor_mc) {
page->AllocateYoungGenerationBitmap();
heap()
->minor_mark_compact_collector()
->non_atomic_marking_state()
->ClearLiveness(page);
}
page->InitializationMemoryFence();
return page;
}
bool SemiSpace::EnsureCurrentCapacity() {
if (IsCommitted()) {
const int expected_pages =
static_cast<int>(target_capacity_ / Page::kPageSize);
MemoryChunk* current_page = first_page();
int actual_pages = 0;
// First iterate through the pages list until expected pages if so many
// pages exist.
while (current_page != nullptr && actual_pages < expected_pages) {
actual_pages++;
current_page = current_page->list_node().next();
}
// Free all overallocated pages which are behind current_page.
while (current_page) {
MemoryChunk* next_current = current_page->list_node().next();
AccountUncommitted(Page::kPageSize);
DecrementCommittedPhysicalMemory(current_page->CommittedPhysicalMemory());
memory_chunk_list_.Remove(current_page);
// Clear new space flags to avoid this page being treated as a new
// space page that is potentially being swept.
current_page->ClearFlags(Page::kIsInYoungGenerationMask);
heap()->memory_allocator()->Free(MemoryAllocator::kConcurrentlyAndPool,
current_page);
current_page = next_current;
}
// Add more pages if we have less than expected_pages.
IncrementalMarking::NonAtomicMarkingState* marking_state =
heap()->incremental_marking()->non_atomic_marking_state();
while (actual_pages < expected_pages) {
actual_pages++;
current_page = heap()->memory_allocator()->AllocatePage(
MemoryAllocator::kUsePool,
MemoryChunkLayout::AllocatableMemoryInDataPage(), this,
NOT_EXECUTABLE);
if (current_page == nullptr) return false;
DCHECK_NOT_NULL(current_page);
AccountCommitted(Page::kPageSize);
IncrementCommittedPhysicalMemory(current_page->CommittedPhysicalMemory());
memory_chunk_list_.PushBack(current_page);
marking_state->ClearLiveness(current_page);
current_page->SetFlags(first_page()->GetFlags(), Page::kAllFlagsMask);
heap()->CreateFillerObjectAt(current_page->area_start(),
static_cast<int>(current_page->area_size()),
ClearRecordedSlots::kNo);
}
}
return true;
}
// -----------------------------------------------------------------------------
// SemiSpace implementation
void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
target_capacity_ = minimum_capacity_;
maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
}
void SemiSpace::TearDown() {
// Properly uncommit memory to keep the allocator counters in sync.
if (IsCommitted()) {
Uncommit();
}
target_capacity_ = maximum_capacity_ = 0;
}
bool SemiSpace::Commit() {
DCHECK(!IsCommitted());
DCHECK_EQ(CommittedMemory(), size_t(0));
const int num_pages = static_cast<int>(target_capacity_ / Page::kPageSize);
DCHECK(num_pages);
for (int pages_added = 0; pages_added < num_pages; pages_added++) {
// Pages in the new spaces can be moved to the old space by the full
// collector. Therefore, they must be initialized with the same FreeList as
// old pages.
Page* new_page = heap()->memory_allocator()->AllocatePage(
MemoryAllocator::kUsePool,
MemoryChunkLayout::AllocatableMemoryInDataPage(), this, NOT_EXECUTABLE);
if (new_page == nullptr) {
if (pages_added) RewindPages(pages_added);
DCHECK(!IsCommitted());
return false;
}
memory_chunk_list_.PushBack(new_page);
IncrementCommittedPhysicalMemory(new_page->CommittedPhysicalMemory());
}
Reset();
AccountCommitted(target_capacity_);
if (age_mark_ == kNullAddress) {
age_mark_ = first_page()->area_start();
}
DCHECK(IsCommitted());
return true;
}
bool SemiSpace::Uncommit() {
DCHECK(IsCommitted());
int actual_pages = 0;
while (!memory_chunk_list_.Empty()) {
actual_pages++;
MemoryChunk* chunk = memory_chunk_list_.front();
DecrementCommittedPhysicalMemory(chunk->CommittedPhysicalMemory());
memory_chunk_list_.Remove(chunk);
heap()->memory_allocator()->Free(MemoryAllocator::kConcurrentlyAndPool,
chunk);
}
current_page_ = nullptr;
current_capacity_ = 0;
size_t removed_page_size =
static_cast<size_t>(actual_pages * Page::kPageSize);
DCHECK_EQ(CommittedMemory(), removed_page_size);
DCHECK_EQ(CommittedPhysicalMemory(), 0);
AccountUncommitted(removed_page_size);
heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
DCHECK(!IsCommitted());
return true;
}
size_t SemiSpace::CommittedPhysicalMemory() {
if (!IsCommitted()) return 0;
if (!base::OS::HasLazyCommits()) return CommittedMemory();
return committed_physical_memory_;
}
bool SemiSpace::GrowTo(size_t new_capacity) {
if (!IsCommitted()) {
if (!Commit()) return false;
}
DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
DCHECK_LE(new_capacity, maximum_capacity_);
DCHECK_GT(new_capacity, target_capacity_);
const size_t delta = new_capacity - target_capacity_;
DCHECK(IsAligned(delta, AllocatePageSize()));
const int delta_pages = static_cast<int>(delta / Page::kPageSize);
DCHECK(last_page());
IncrementalMarking::NonAtomicMarkingState* marking_state =
heap()->incremental_marking()->non_atomic_marking_state();
for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
Page* new_page = heap()->memory_allocator()->AllocatePage(
MemoryAllocator::kUsePool,
MemoryChunkLayout::AllocatableMemoryInDataPage(), this, NOT_EXECUTABLE);
if (new_page == nullptr) {
if (pages_added) RewindPages(pages_added);
return false;
}
memory_chunk_list_.PushBack(new_page);
marking_state->ClearLiveness(new_page);
IncrementCommittedPhysicalMemory(new_page->CommittedPhysicalMemory());
// Duplicate the flags that was set on the old page.
new_page->SetFlags(last_page()->GetFlags(), Page::kCopyOnFlipFlagsMask);
}
AccountCommitted(delta);
target_capacity_ = new_capacity;
return true;
}
void SemiSpace::RewindPages(int num_pages) {
DCHECK_GT(num_pages, 0);
DCHECK(last_page());
while (num_pages > 0) {
MemoryChunk* last = last_page();
memory_chunk_list_.Remove(last);
DecrementCommittedPhysicalMemory(last->CommittedPhysicalMemory());
heap()->memory_allocator()->Free(MemoryAllocator::kConcurrentlyAndPool,
last);
num_pages--;
}
}
void SemiSpace::ShrinkTo(size_t new_capacity) {
DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
DCHECK_GE(new_capacity, minimum_capacity_);
DCHECK_LT(new_capacity, target_capacity_);
if (IsCommitted()) {
const size_t delta = target_capacity_ - new_capacity;
DCHECK(IsAligned(delta, Page::kPageSize));
int delta_pages = static_cast<int>(delta / Page::kPageSize);
RewindPages(delta_pages);
AccountUncommitted(delta);
heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
}
target_capacity_ = new_capacity;
}
void SemiSpace::FixPagesFlags(Page::MainThreadFlags flags,
Page::MainThreadFlags mask) {
for (Page* page : *this) {
page->set_owner(this);
page->SetFlags(flags, mask);
if (id_ == kToSpace) {
page->ClearFlag(MemoryChunk::FROM_PAGE);
page->SetFlag(MemoryChunk::TO_PAGE);
page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
heap()->incremental_marking()->non_atomic_marking_state()->SetLiveBytes(
page, 0);
} else {
page->SetFlag(MemoryChunk::FROM_PAGE);
page->ClearFlag(MemoryChunk::TO_PAGE);
}
DCHECK(page->InYoungGeneration());
}
}
void SemiSpace::Reset() {
DCHECK(first_page());
DCHECK(last_page());
current_page_ = first_page();
current_capacity_ = Page::kPageSize;
}
void SemiSpace::RemovePage(Page* page) {
if (current_page_ == page) {
if (page->prev_page()) {
current_page_ = page->prev_page();
}
}
memory_chunk_list_.Remove(page);
AccountUncommitted(Page::kPageSize);
DecrementCommittedPhysicalMemory(page->CommittedPhysicalMemory());
for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
DecrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
}
}
void SemiSpace::PrependPage(Page* page) {
page->SetFlags(current_page()->GetFlags(), Page::kAllFlagsMask);
page->set_owner(this);
memory_chunk_list_.PushFront(page);
current_capacity_ += Page::kPageSize;
AccountCommitted(Page::kPageSize);
IncrementCommittedPhysicalMemory(page->CommittedPhysicalMemory());
for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
IncrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
}
}
void SemiSpace::MovePageToTheEnd(Page* page) {
DCHECK_EQ(page->owner(), this);
memory_chunk_list_.Remove(page);
memory_chunk_list_.PushBack(page);
current_page_ = page;
}
void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
// We won't be swapping semispaces without data in them.
DCHECK(from->first_page());
DCHECK(to->first_page());
auto saved_to_space_flags = to->current_page()->GetFlags();
// We swap all properties but id_.
std::swap(from->target_capacity_, to->target_capacity_);
std::swap(from->maximum_capacity_, to->maximum_capacity_);
std::swap(from->minimum_capacity_, to->minimum_capacity_);
std::swap(from->age_mark_, to->age_mark_);
std::swap(from->memory_chunk_list_, to->memory_chunk_list_);
std::swap(from->current_page_, to->current_page_);
std::swap(from->external_backing_store_bytes_,
to->external_backing_store_bytes_);
std::swap(from->committed_physical_memory_, to->committed_physical_memory_);
to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
from->FixPagesFlags(Page::NO_FLAGS, Page::NO_FLAGS);
}
void SemiSpace::IncrementCommittedPhysicalMemory(size_t increment_value) {
if (!base::OS::HasLazyCommits()) return;
DCHECK_LE(committed_physical_memory_,
committed_physical_memory_ + increment_value);
committed_physical_memory_ += increment_value;
}
void SemiSpace::DecrementCommittedPhysicalMemory(size_t decrement_value) {
if (!base::OS::HasLazyCommits()) return;
DCHECK_LE(decrement_value, committed_physical_memory_);
committed_physical_memory_ -= decrement_value;
}
void SemiSpace::AddRangeToActiveSystemPages(Address start, Address end) {
Page* page = current_page();
DCHECK_LE(page->address(), start);
DCHECK_LT(start, end);
DCHECK_LE(end, page->address() + Page::kPageSize);
const size_t added_pages = page->active_system_pages()->Add(
start - page->address(), end - page->address(),
MemoryAllocator::GetCommitPageSizeBits());
IncrementCommittedPhysicalMemory(added_pages *
MemoryAllocator::GetCommitPageSize());
}
void SemiSpace::set_age_mark(Address mark) {
DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
age_mark_ = mark;
// Mark all pages up to the one containing mark.
for (Page* p : PageRange(space_start(), mark)) {
p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
}
}
std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator(Heap* heap) {
// Use the NewSpace::NewObjectIterator to iterate the ToSpace.
UNREACHABLE();
}
#ifdef DEBUG
void SemiSpace::Print() {}
#endif
#ifdef VERIFY_HEAP
void SemiSpace::Verify() {
bool is_from_space = (id_ == kFromSpace);
size_t external_backing_store_bytes[kNumTypes];
for (int i = 0; i < kNumTypes; i++) {
external_backing_store_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
}
int actual_pages = 0;
size_t computed_committed_physical_memory = 0;
for (Page* page : *this) {
CHECK_EQ(page->owner(), this);
CHECK(page->InNewSpace());
CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::FROM_PAGE
: MemoryChunk::TO_PAGE));
CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::TO_PAGE
: MemoryChunk::FROM_PAGE));
CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
if (!is_from_space) {
// The pointers-from-here-are-interesting flag isn't updated dynamically
// on from-space pages, so it might be out of sync with the marking state.
if (page->heap()->incremental_marking()->IsMarking()) {
CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
} else {
CHECK(
!page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
}
}
for (int i = 0; i < kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
external_backing_store_bytes[t] += page->ExternalBackingStoreBytes(t);
}
computed_committed_physical_memory += page->CommittedPhysicalMemory();
CHECK_IMPLIES(page->list_node().prev(),
page->list_node().prev()->list_node().next() == page);
actual_pages++;
}
CHECK_EQ(actual_pages * size_t(Page::kPageSize), CommittedMemory());
CHECK_EQ(computed_committed_physical_memory, CommittedPhysicalMemory());
for (int i = 0; i < kNumTypes; i++) {
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
CHECK_EQ(external_backing_store_bytes[t], ExternalBackingStoreBytes(t));
}
}
#endif
#ifdef DEBUG
void SemiSpace::AssertValidRange(Address start, Address end) {
// Addresses belong to same semi-space
Page* page = Page::FromAllocationAreaAddress(start);
Page* end_page = Page::FromAllocationAreaAddress(end);
SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
DCHECK_EQ(space, end_page->owner());
// Start address is before end address, either on same page,
// or end address is on a later page in the linked list of
// semi-space pages.
if (page == end_page) {
DCHECK_LE(start, end);
} else {
while (page != end_page) {
page = page->next_page();
}
DCHECK(page);
}
}
#endif
// -----------------------------------------------------------------------------
// SemiSpaceObjectIterator implementation.
SemiSpaceObjectIterator::SemiSpaceObjectIterator(NewSpace* space) {
Initialize(space->first_allocatable_address(), space->top());
}
void SemiSpaceObjectIterator::Initialize(Address start, Address end) {
SemiSpace::AssertValidRange(start, end);
current_ = start;
limit_ = end;
}
size_t NewSpace::CommittedPhysicalMemory() {
if (!base::OS::HasLazyCommits()) return CommittedMemory();
BasicMemoryChunk::UpdateHighWaterMark(allocation_info_->top());
size_t size = to_space_.CommittedPhysicalMemory();
if (from_space_.IsCommitted()) {
size += from_space_.CommittedPhysicalMemory();
}
return size;
}
// -----------------------------------------------------------------------------
// NewSpace implementation
NewSpace::NewSpace(Heap* heap, v8::PageAllocator* page_allocator,
size_t initial_semispace_capacity,
size_t max_semispace_capacity,
LinearAllocationArea* allocation_info)
: SpaceWithLinearArea(heap, NEW_SPACE, new NoFreeList(), allocation_info),
to_space_(heap, kToSpace),
from_space_(heap, kFromSpace) {
DCHECK(initial_semispace_capacity <= max_semispace_capacity);
to_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
from_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
if (!to_space_.Commit()) {
V8::FatalProcessOutOfMemory(heap->isolate(), "New space setup");
}
DCHECK(!from_space_.IsCommitted()); // No need to use memory yet.
ResetLinearAllocationArea();
}
void NewSpace::TearDown() {
allocation_info_->Reset(kNullAddress, kNullAddress);
to_space_.TearDown();
from_space_.TearDown();
}
void NewSpace::ResetParkedAllocationBuffers() {
parked_allocation_buffers_.clear();
}
void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
void NewSpace::Grow() {
heap()->safepoint()->AssertActive();
// Double the semispace size but only up to maximum capacity.
DCHECK(TotalCapacity() < MaximumCapacity());
size_t new_capacity = std::min(
MaximumCapacity(),
static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
if (to_space_.GrowTo(new_capacity)) {
// Only grow from space if we managed to grow to-space.
if (!from_space_.GrowTo(new_capacity)) {
// If we managed to grow to-space but couldn't grow from-space,
// attempt to shrink to-space.
to_space_.ShrinkTo(from_space_.target_capacity());
}
}
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
void NewSpace::Shrink() {
size_t new_capacity = std::max(InitialTotalCapacity(), 2 * Size());
size_t rounded_new_capacity = ::RoundUp(new_capacity, Page::kPageSize);
if (rounded_new_capacity < TotalCapacity()) {
to_space_.ShrinkTo(rounded_new_capacity);
// Only shrink from-space if we managed to shrink to-space.
if (from_space_.IsCommitted()) from_space_.Reset();
from_space_.ShrinkTo(rounded_new_capacity);
}
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
bool NewSpace::Rebalance() {
// Order here is important to make use of the page pool.
return to_space_.EnsureCurrentCapacity() &&
from_space_.EnsureCurrentCapacity();
}
void NewSpace::UpdateLinearAllocationArea(Address known_top) {
AdvanceAllocationObservers();
Address new_top = known_top == 0 ? to_space_.page_low() : known_top;
BasicMemoryChunk::UpdateHighWaterMark(allocation_info_->top());
allocation_info_->Reset(new_top, to_space_.page_high());
// The order of the following two stores is important.
// See the corresponding loads in ConcurrentMarking::Run.
{
base::SharedMutexGuard<base::kExclusive> guard(&pending_allocation_mutex_);
original_limit_.store(limit(), std::memory_order_relaxed);
original_top_.store(top(), std::memory_order_release);
}
to_space_.AddRangeToActiveSystemPages(top(), limit());
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
UpdateInlineAllocationLimit(0);
}
void NewSpace::ResetLinearAllocationArea() {
to_space_.Reset();
UpdateLinearAllocationArea();
// Clear all mark-bits in the to-space.
IncrementalMarking::NonAtomicMarkingState* marking_state =
heap()->incremental_marking()->non_atomic_marking_state();
for (Page* p : to_space_) {
marking_state->ClearLiveness(p);
// Concurrent marking may have local live bytes for this page.
heap()->concurrent_marking()->ClearMemoryChunkData(p);
}
}
void NewSpace::UpdateInlineAllocationLimit(size_t min_size) {
Address new_limit = ComputeLimit(top(), to_space_.page_high(), min_size);
DCHECK_LE(top(), new_limit);
DCHECK_LE(new_limit, to_space_.page_high());
allocation_info_->SetLimit(new_limit);
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
#if DEBUG
VerifyTop();
#endif
}
bool NewSpace::AddFreshPage() {
Address top = allocation_info_->top();
DCHECK(!OldSpace::IsAtPageStart(top));
// Clear remainder of current page.
Address limit = Page::FromAllocationAreaAddress(top)->area_end();
int remaining_in_page = static_cast<int>(limit - top);
heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
if (!to_space_.AdvancePage()) {
// No more pages left to advance.
return false;
}
// We park unused allocation buffer space of allocations happenting from the
// mutator.
if (FLAG_allocation_buffer_parking && heap()->gc_state() == Heap::NOT_IN_GC &&
remaining_in_page >= kAllocationBufferParkingThreshold) {
parked_allocation_buffers_.push_back(
ParkedAllocationBuffer(remaining_in_page, top));
}
UpdateLinearAllocationArea();
return true;
}
bool NewSpace::AddFreshPageSynchronized() {
base::MutexGuard guard(&mutex_);
return AddFreshPage();
}
bool NewSpace::AddParkedAllocationBuffer(int size_in_bytes,
AllocationAlignment alignment) {
int parked_size = 0;
Address start = 0;
for (auto it = parked_allocation_buffers_.begin();
it != parked_allocation_buffers_.end();) {
parked_size = it->first;
start = it->second;
int filler_size = Heap::GetFillToAlign(start, alignment);
if (size_in_bytes + filler_size <= parked_size) {
parked_allocation_buffers_.erase(it);
Page* page = Page::FromAddress(start);
// We move a page with a parked allocaiton to the end of the pages list
// to maintain the invariant that the last page is the used one.
to_space_.MovePageToTheEnd(page);
UpdateLinearAllocationArea(start);
return true;
} else {
it++;
}
}
return false;
}
bool NewSpace::EnsureAllocation(int size_in_bytes,
AllocationAlignment alignment) {
AdvanceAllocationObservers();
Address old_top = allocation_info_->top();
Address high = to_space_.page_high();
int filler_size = Heap::GetFillToAlign(old_top, alignment);
int aligned_size_in_bytes = size_in_bytes + filler_size;
if (old_top + aligned_size_in_bytes <= high) {
UpdateInlineAllocationLimit(aligned_size_in_bytes);
return true;
}
// Not enough room in the page, try to allocate a new one.
if (!AddFreshPage()) {
// When we cannot grow NewSpace anymore we query for parked allocations.
if (!FLAG_allocation_buffer_parking ||
!AddParkedAllocationBuffer(size_in_bytes, alignment))
return false;
}
old_top = allocation_info_->top();
high = to_space_.page_high();
filler_size = Heap::GetFillToAlign(old_top, alignment);
aligned_size_in_bytes = size_in_bytes + filler_size;
DCHECK(old_top + aligned_size_in_bytes <= high);
UpdateInlineAllocationLimit(aligned_size_in_bytes);
return true;
}
void NewSpace::MaybeFreeUnusedLab(LinearAllocationArea info) {
if (allocation_info_->MergeIfAdjacent(info)) {
original_top_.store(allocation_info_->top(), std::memory_order_release);
}
#if DEBUG
VerifyTop();
#endif
}
std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator(Heap* heap) {
return std::unique_ptr<ObjectIterator>(new SemiSpaceObjectIterator(this));
}
AllocationResult NewSpace::AllocateRawSlow(int size_in_bytes,
AllocationAlignment alignment,
AllocationOrigin origin) {
return USE_ALLOCATION_ALIGNMENT_BOOL && alignment != kTaggedAligned
? AllocateRawAligned(size_in_bytes, alignment, origin)
: AllocateRawUnaligned(size_in_bytes, origin);
}
AllocationResult NewSpace::AllocateRawUnaligned(int size_in_bytes,
AllocationOrigin origin) {
DCHECK(!FLAG_enable_third_party_heap);
if (!EnsureAllocation(size_in_bytes, kTaggedAligned)) {
return AllocationResult::Failure();
}
DCHECK_EQ(allocation_info_->start(), allocation_info_->top());
AllocationResult result = AllocateFastUnaligned(size_in_bytes, origin);
DCHECK(!result.IsFailure());
InvokeAllocationObservers(result.ToAddress(), size_in_bytes, size_in_bytes,
size_in_bytes);
return result;
}
AllocationResult NewSpace::AllocateRawAligned(int size_in_bytes,
AllocationAlignment alignment,
AllocationOrigin origin) {
DCHECK(!FLAG_enable_third_party_heap);
if (!EnsureAllocation(size_in_bytes, alignment)) {
return AllocationResult::Failure();
}
DCHECK_EQ(allocation_info_->start(), allocation_info_->top());
int aligned_size_in_bytes;
AllocationResult result = AllocateFastAligned(
size_in_bytes, &aligned_size_in_bytes, alignment, origin);
DCHECK(!result.IsFailure());
InvokeAllocationObservers(result.ToAddress(), size_in_bytes,
aligned_size_in_bytes, aligned_size_in_bytes);
return result;
}
void NewSpace::MakeLinearAllocationAreaIterable() {
Address to_top = top();
Page* page = Page::FromAddress(to_top - kTaggedSize);
if (page->Contains(to_top)) {
int remaining_in_page = static_cast<int>(page->area_end() - to_top);
heap_->CreateFillerObjectAt(to_top, remaining_in_page,
ClearRecordedSlots::kNo);
}
}
void NewSpace::FreeLinearAllocationArea() {
MakeLinearAllocationAreaIterable();
UpdateInlineAllocationLimit(0);
}
void NewSpace::VerifyTop() {
// Ensure validity of LAB: start <= top <= limit
DCHECK_LE(allocation_info_->start(), allocation_info_->top());
DCHECK_LE(allocation_info_->top(), allocation_info_->limit());
// Ensure that original_top_ always >= LAB start. The delta between start_
// and top_ is still to be processed by allocation observers.
DCHECK_GE(original_top_, allocation_info_->start());
// Ensure that limit() is <= original_limit_, original_limit_ always needs
// to be end of curent to space page.
DCHECK_LE(allocation_info_->limit(), original_limit_);
DCHECK_EQ(original_limit_, to_space_.page_high());
}
#ifdef VERIFY_HEAP
// We do not use the SemiSpaceObjectIterator because verification doesn't assume
// that it works (it depends on the invariants we are checking).
void NewSpace::Verify(Isolate* isolate) {
// The allocation pointer should be in the space or at the very end.
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
// There should be objects packed in from the low address up to the
// allocation pointer.
Address current = to_space_.first_page()->area_start();
CHECK_EQ(current, to_space_.space_start());
size_t external_space_bytes[kNumTypes];
for (int i = 0; i < kNumTypes; i++) {
external_space_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
}
CHECK(!Page::FromAllocationAreaAddress(current)->IsFlagSet(
Page::PAGE_NEW_OLD_PROMOTION));
CHECK(!Page::FromAllocationAreaAddress(current)->IsFlagSet(
Page::PAGE_NEW_NEW_PROMOTION));
PtrComprCageBase cage_base(isolate);
while (current != top()) {
if (!Page::IsAlignedToPageSize(current)) {
// The allocation pointer should not be in the middle of an object.
CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
current < top());
HeapObject object = HeapObject::FromAddress(current);
// The first word should be a map, and we expect all map pointers to
// be in map space or read-only space.
Map map = object.map(cage_base);
CHECK(map.IsMap(cage_base));
CHECK(ReadOnlyHeap::Contains(map) ||
isolate->heap()->space_for_maps()->Contains(map));
// The object should not be code or a map.
CHECK(!object.IsMap(cage_base));
CHECK(!object.IsAbstractCode(cage_base));
// The object itself should look OK.
object.ObjectVerify(isolate);
// All the interior pointers should be contained in the heap.
VerifyPointersVisitor visitor(heap());
int size = object.Size(cage_base);
object.IterateBody(map, size, &visitor);
if (object.IsExternalString(cage_base)) {
ExternalString external_string = ExternalString::cast(object);
size_t string_size = external_string.ExternalPayloadSize();
external_space_bytes[ExternalBackingStoreType::kExternalString] +=
string_size;
}
current += size;
} else {
// At end of page, switch to next page.
Page* page = Page::FromAllocationAreaAddress(current)->next_page();
CHECK(!page->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION));
CHECK(!page->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION));
current = page->area_start();
}
}
for (int i = 0; i < kNumTypes; i++) {
if (i == ExternalBackingStoreType::kArrayBuffer) continue;
ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
CHECK_EQ(external_space_bytes[t], ExternalBackingStoreBytes(t));
}
if (!FLAG_concurrent_array_buffer_sweeping) {
size_t bytes = heap()->array_buffer_sweeper()->young().BytesSlow();
CHECK_EQ(bytes,
ExternalBackingStoreBytes(ExternalBackingStoreType::kArrayBuffer));
}
// Check semi-spaces.
CHECK_EQ(from_space_.id(), kFromSpace);
CHECK_EQ(to_space_.id(), kToSpace);
from_space_.Verify();
to_space_.Verify();
}
#endif
} // namespace internal
} // namespace v8