blob: 2df7083a84714fa16733f79d2c1f55511d64b413 [file] [log] [blame]
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_PAGED_SPACES_H_
#define V8_HEAP_PAGED_SPACES_H_
#include <atomic>
#include <memory>
#include <utility>
#include "src/base/bounds.h"
#include "src/base/macros.h"
#include "src/base/optional.h"
#include "src/base/platform/mutex.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/heap/allocation-stats.h"
#include "src/heap/memory-chunk-layout.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces.h"
namespace v8 {
namespace internal {
class CompactionSpace;
class Heap;
class HeapObject;
class Isolate;
class ObjectVisitor;
// -----------------------------------------------------------------------------
// Heap object iterator in old/map spaces.
//
// A PagedSpaceObjectIterator iterates objects from the bottom of the given
// space to its top or from the bottom of the given page to its top.
//
// If objects are allocated in the page during iteration the iterator may
// or may not iterate over those objects. The caller must create a new
// iterator in order to be sure to visit these new objects.
class V8_EXPORT_PRIVATE PagedSpaceObjectIterator : public ObjectIterator {
public:
// Creates a new object iterator in a given space.
PagedSpaceObjectIterator(Heap* heap, PagedSpace* space);
PagedSpaceObjectIterator(Heap* heap, PagedSpace* space, Page* page);
// Advance to the next object, skipping free spaces and other fillers and
// skipping the special garbage section of which there is one per space.
// Returns nullptr when the iteration has ended.
inline HeapObject Next() override;
// The pointer compression cage base value used for decompression of all
// tagged values except references to Code objects.
PtrComprCageBase cage_base() const {
#if V8_COMPRESS_POINTERS
return cage_base_;
#else
return PtrComprCageBase{};
#endif // V8_COMPRESS_POINTERS
}
private:
// Fast (inlined) path of next().
inline HeapObject FromCurrentPage();
// Slow path of next(), goes into the next page. Returns false if the
// iteration has ended.
bool AdvanceToNextPage();
Address cur_addr_; // Current iteration point.
Address cur_end_; // End iteration point.
PagedSpace* space_;
PageRange page_range_;
PageRange::iterator current_page_;
#if V8_COMPRESS_POINTERS
const PtrComprCageBase cage_base_;
#endif // V8_COMPRESS_POINTERS
};
class V8_EXPORT_PRIVATE PagedSpace
: NON_EXPORTED_BASE(public SpaceWithLinearArea) {
public:
using iterator = PageIterator;
using const_iterator = ConstPageIterator;
static const size_t kCompactionMemoryWanted = 500 * KB;
// Creates a space with an id.
PagedSpace(
Heap* heap, AllocationSpace id, Executability executable,
FreeList* free_list, LinearAllocationArea* allocation_info_,
CompactionSpaceKind compaction_space_kind = CompactionSpaceKind::kNone);
~PagedSpace() override { TearDown(); }
// Checks whether an object/address is in this space.
inline bool Contains(Address a) const;
inline bool Contains(Object o) const;
bool ContainsSlow(Address addr) const;
// Does the space need executable memory?
Executability executable() { return executable_; }
// Prepares for a mark-compact GC.
void PrepareForMarkCompact();
// Current capacity without growing (Size() + Available()).
size_t Capacity() { return accounting_stats_.Capacity(); }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
#if DEBUG
void VerifyCommittedPhysicalMemory();
#endif // DEBUG
void IncrementCommittedPhysicalMemory(size_t increment_value);
void DecrementCommittedPhysicalMemory(size_t decrement_value);
// Sets the capacity, the available space and the wasted space to zero.
// The stats are rebuilt during sweeping by adding each page to the
// capacity and the size when it is encountered. As free spaces are
// discovered during the sweeping they are subtracted from the size and added
// to the available and wasted totals. The free list is cleared as well.
void ClearAllocatorState() {
accounting_stats_.ClearSize();
free_list_->Reset();
}
// Available bytes without growing. These are the bytes on the free list.
// The bytes in the linear allocation area are not included in this total
// because updating the stats would slow down allocation. New pages are
// immediately added to the free list so they show up here.
size_t Available() override;
// Allocated bytes in this space. Garbage bytes that were not found due to
// concurrent sweeping are counted as being allocated! The bytes in the
// current linear allocation area (between top and limit) are also counted
// here.
size_t Size() override { return accounting_stats_.Size(); }
// Wasted bytes in this space. These are just the bytes that were thrown away
// due to being too small to use for allocation.
virtual size_t Waste() { return free_list_->wasted_bytes(); }
// Allocate the requested number of bytes in the space if possible, return a
// failure object if not.
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawUnaligned(
int size_in_bytes, AllocationOrigin origin = AllocationOrigin::kRuntime);
// Allocate the requested number of bytes in the space double aligned if
// possible, return a failure object if not.
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned(
int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
// Allocate the requested number of bytes in the space and consider allocation
// alignment if needed.
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw(
int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
// Allocate the requested number of bytes in the space from a background
// thread.
V8_WARN_UNUSED_RESULT base::Optional<std::pair<Address, size_t>>
RawRefillLabBackground(LocalHeap* local_heap, size_t min_size_in_bytes,
size_t max_size_in_bytes,
AllocationAlignment alignment,
AllocationOrigin origin);
size_t Free(Address start, size_t size_in_bytes, SpaceAccountingMode mode) {
if (size_in_bytes == 0) return 0;
heap()->CreateFillerObjectAtBackground(
start, static_cast<int>(size_in_bytes),
ClearFreedMemoryMode::kDontClearFreedMemory);
if (mode == SpaceAccountingMode::kSpaceAccounted) {
return AccountedFree(start, size_in_bytes);
} else {
return UnaccountedFree(start, size_in_bytes);
}
}
// Give a block of memory to the space's free list. It might be added to
// the free list or accounted as waste.
// If add_to_freelist is false then just accounting stats are updated and
// no attempt to add area to free list is made.
size_t AccountedFree(Address start, size_t size_in_bytes) {
size_t wasted = free_list_->Free(start, size_in_bytes, kLinkCategory);
Page* page = Page::FromAddress(start);
accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page);
DCHECK_GE(size_in_bytes, wasted);
return size_in_bytes - wasted;
}
size_t UnaccountedFree(Address start, size_t size_in_bytes) {
size_t wasted = free_list_->Free(start, size_in_bytes, kDoNotLinkCategory);
DCHECK_GE(size_in_bytes, wasted);
return size_in_bytes - wasted;
}
inline bool TryFreeLast(Address object_address, int object_size);
void ResetFreeList();
// Empty space linear allocation area, returning unused area to free list.
void FreeLinearAllocationArea() override;
void MakeLinearAllocationAreaIterable();
void MarkLinearAllocationAreaBlack();
void UnmarkLinearAllocationArea();
void DecreaseAllocatedBytes(size_t bytes, Page* page) {
accounting_stats_.DecreaseAllocatedBytes(bytes, page);
}
void IncreaseAllocatedBytes(size_t bytes, Page* page) {
accounting_stats_.IncreaseAllocatedBytes(bytes, page);
}
void DecreaseCapacity(size_t bytes) {
accounting_stats_.DecreaseCapacity(bytes);
}
void IncreaseCapacity(size_t bytes) {
accounting_stats_.IncreaseCapacity(bytes);
}
void RefineAllocatedBytesAfterSweeping(Page* page);
Page* InitializePage(MemoryChunk* chunk) override;
void ReleasePage(Page* page);
// Adds the page to this space and returns the number of bytes added to the
// free list of the space.
size_t AddPage(Page* page);
void RemovePage(Page* page);
// Remove a page if it has at least |size_in_bytes| bytes available that can
// be used for allocation.
Page* RemovePageSafe(int size_in_bytes);
void SetReadable();
void SetReadAndExecutable();
void SetCodeModificationPermissions();
void SetDefaultCodePermissions() {
if (FLAG_jitless) {
SetReadable();
} else {
SetReadAndExecutable();
}
}
#ifdef VERIFY_HEAP
// Verify integrity of this space.
virtual void Verify(Isolate* isolate, ObjectVisitor* visitor);
void VerifyLiveBytes();
// Overridden by subclasses to verify space-specific object
// properties (e.g., only maps or free-list nodes are in map space).
virtual void VerifyObject(HeapObject obj) {}
#endif
#ifdef DEBUG
void VerifyCountersAfterSweeping(Heap* heap);
void VerifyCountersBeforeConcurrentSweeping();
// Print meta info and objects in this space.
void Print() override;
// Report code object related statistics
static void ReportCodeStatistics(Isolate* isolate);
static void ResetCodeStatistics(Isolate* isolate);
#endif
bool CanExpand(size_t size);
// Returns the number of total pages in this space.
int CountTotalPages();
// Return size of allocatable area on a page in this space.
inline int AreaSize() { return static_cast<int>(area_size_); }
bool is_compaction_space() {
return compaction_space_kind_ != CompactionSpaceKind::kNone;
}
CompactionSpaceKind compaction_space_kind() { return compaction_space_kind_; }
// Merges {other} into the current space. Note that this modifies {other},
// e.g., removes its bump pointer area and resets statistics.
void MergeCompactionSpace(CompactionSpace* other);
// Refills the free list from the corresponding free list filled by the
// sweeper.
virtual void RefillFreeList();
base::Mutex* mutex() { return &space_mutex_; }
inline void UnlinkFreeListCategories(Page* page);
inline size_t RelinkFreeListCategories(Page* page);
Page* first_page() override {
return reinterpret_cast<Page*>(memory_chunk_list_.front());
}
const Page* first_page() const override {
return reinterpret_cast<const Page*>(memory_chunk_list_.front());
}
iterator begin() { return iterator(first_page()); }
iterator end() { return iterator(nullptr); }
const_iterator begin() const { return const_iterator(first_page()); }
const_iterator end() const { return const_iterator(nullptr); }
// Shrink immortal immovable pages of the space to be exactly the size needed
// using the high water mark.
void ShrinkImmortalImmovablePages();
size_t ShrinkPageToHighWaterMark(Page* page);
std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;
void SetLinearAllocationArea(Address top, Address limit);
Address original_top() { return original_top_; }
Address original_limit() { return original_limit_; }
void MoveOriginalTopForward() {
base::SharedMutexGuard<base::kExclusive> guard(&pending_allocation_mutex_);
DCHECK_GE(top(), original_top_);
DCHECK_LE(top(), original_limit_);
original_top_ = top();
}
base::SharedMutex* pending_allocation_mutex() {
return &pending_allocation_mutex_;
}
void AddRangeToActiveSystemPages(Page* page, Address start, Address end);
void ReduceActiveSystemPages(Page* page,
ActiveSystemPages active_system_pages);
private:
class ConcurrentAllocationMutex {
public:
explicit ConcurrentAllocationMutex(PagedSpace* space) {
if (space->SupportsConcurrentAllocation()) {
guard_.emplace(&space->space_mutex_);
}
}
base::Optional<base::MutexGuard> guard_;
};
bool SupportsConcurrentAllocation() { return !is_compaction_space(); }
// Set space linear allocation area.
void SetTopAndLimit(Address top, Address limit);
void DecreaseLimit(Address new_limit);
void UpdateInlineAllocationLimit(size_t min_size) override;
bool SupportsAllocationObserver() override { return !is_compaction_space(); }
// Slow path of allocation function
V8_WARN_UNUSED_RESULT AllocationResult
AllocateRawSlow(int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin);
protected:
// PagedSpaces that should be included in snapshots have different, i.e.,
// smaller, initial pages.
virtual bool snapshotable() { return true; }
bool HasPages() { return first_page() != nullptr; }
// Returns whether sweeping of this space is safe on this thread. Code space
// sweeping is only allowed on the main thread.
bool IsSweepingAllowedOnThread(LocalHeap* local_heap);
// Cleans up the space, frees all pages in this space except those belonging
// to the initial chunk, uncommits addresses in the initial chunk.
void TearDown();
// Expands the space by allocating a fixed number of pages. Returns false if
// it cannot allocate requested number of pages from OS, or if the hard heap
// size limit has been hit.
virtual Page* Expand();
// Expands the space by a single page from a background thread and allocates
// a memory area of the given size in it. If successful the method returns
// the address and size of the area.
base::Optional<std::pair<Address, size_t>> ExpandBackground(
size_t size_in_bytes);
Page* AllocatePage();
// Sets up a linear allocation area that fits the given number of bytes.
// Returns false if there is not enough space and the caller has to retry
// after collecting garbage.
inline bool EnsureLabMain(int size_in_bytes, AllocationOrigin origin);
// Allocates an object from the linear allocation area. Assumes that the
// linear allocation area is large enought to fit the object.
inline AllocationResult AllocateFastUnaligned(int size_in_bytes);
// Tries to allocate an aligned object from the linear allocation area.
// Returns nullptr if the linear allocation area does not fit the object.
// Otherwise, returns the object pointer and writes the allocation size
// (object size + alignment filler size) to the size_in_bytes.
inline AllocationResult AllocateFastAligned(int size_in_bytes,
int* aligned_size_in_bytes,
AllocationAlignment alignment);
V8_WARN_UNUSED_RESULT bool TryAllocationFromFreeListMain(
size_t size_in_bytes, AllocationOrigin origin);
V8_WARN_UNUSED_RESULT bool ContributeToSweepingMain(int required_freed_bytes,
int max_pages,
int size_in_bytes,
AllocationOrigin origin);
// Refills LAB for EnsureLabMain. This function is space-dependent. Returns
// false if there is not enough space and the caller has to retry after
// collecting garbage.
V8_WARN_UNUSED_RESULT virtual bool RefillLabMain(int size_in_bytes,
AllocationOrigin origin);
// Actual implementation of refilling LAB. Returns false if there is not
// enough space and the caller has to retry after collecting garbage.
V8_WARN_UNUSED_RESULT bool RawRefillLabMain(int size_in_bytes,
AllocationOrigin origin);
V8_WARN_UNUSED_RESULT base::Optional<std::pair<Address, size_t>>
TryAllocationFromFreeListBackground(size_t min_size_in_bytes,
size_t max_size_in_bytes,
AllocationAlignment alignment,
AllocationOrigin origin);
V8_WARN_UNUSED_RESULT bool TryExpand(int size_in_bytes,
AllocationOrigin origin);
size_t committed_physical_memory() const {
return committed_physical_memory_.load(std::memory_order_relaxed);
}
Executability executable_;
CompactionSpaceKind compaction_space_kind_;
size_t area_size_;
// Accounting information for this space.
AllocationStats accounting_stats_;
// Mutex guarding any concurrent access to the space.
base::Mutex space_mutex_;
// The top and the limit at the time of setting the linear allocation area.
// These values are protected by pending_allocation_mutex_.
Address original_top_;
Address original_limit_;
// Protects original_top_ and original_limit_.
base::SharedMutex pending_allocation_mutex_;
std::atomic<size_t> committed_physical_memory_{0};
friend class IncrementalMarking;
friend class MarkCompactCollector;
// Used in cctest.
friend class heap::HeapTester;
};
// -----------------------------------------------------------------------------
// Compaction space that is used temporarily during compaction.
class V8_EXPORT_PRIVATE CompactionSpace : public PagedSpace {
public:
CompactionSpace(Heap* heap, AllocationSpace id, Executability executable,
CompactionSpaceKind compaction_space_kind)
: PagedSpace(heap, id, executable, FreeList::CreateFreeList(),
&allocation_info_, compaction_space_kind) {
DCHECK(is_compaction_space());
}
const std::vector<Page*>& GetNewPages() { return new_pages_; }
private:
LinearAllocationArea allocation_info_;
protected:
V8_WARN_UNUSED_RESULT bool RefillLabMain(int size_in_bytes,
AllocationOrigin origin) override;
Page* Expand() override;
// The space is temporary and not included in any snapshots.
bool snapshotable() override { return false; }
// Pages that were allocated in this local space and need to be merged
// to the main space.
std::vector<Page*> new_pages_;
};
// A collection of |CompactionSpace|s used by a single compaction task.
class CompactionSpaceCollection : public Malloced {
public:
explicit CompactionSpaceCollection(Heap* heap,
CompactionSpaceKind compaction_space_kind)
: old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE,
compaction_space_kind),
map_space_(heap, MAP_SPACE, Executability::NOT_EXECUTABLE,
compaction_space_kind),
code_space_(heap, CODE_SPACE, Executability::EXECUTABLE,
compaction_space_kind) {}
CompactionSpace* Get(AllocationSpace space) {
switch (space) {
case OLD_SPACE:
return &old_space_;
case MAP_SPACE:
return &map_space_;
case CODE_SPACE:
return &code_space_;
default:
UNREACHABLE();
}
UNREACHABLE();
}
private:
CompactionSpace old_space_;
CompactionSpace map_space_;
CompactionSpace code_space_;
};
// -----------------------------------------------------------------------------
// Old generation regular object space.
class OldSpace : public PagedSpace {
public:
// Creates an old space object. The constructor does not allocate pages
// from OS.
explicit OldSpace(Heap* heap, LinearAllocationArea* allocation_info)
: PagedSpace(heap, OLD_SPACE, NOT_EXECUTABLE, FreeList::CreateFreeList(),
allocation_info) {}
static bool IsAtPageStart(Address addr) {
return static_cast<intptr_t>(addr & kPageAlignmentMask) ==
MemoryChunkLayout::ObjectStartOffsetInDataPage();
}
size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) const final {
if (type == ExternalBackingStoreType::kArrayBuffer)
return heap()->OldArrayBufferBytes();
return external_backing_store_bytes_[type];
}
};
// -----------------------------------------------------------------------------
// Old generation code object space.
class CodeSpace : public PagedSpace {
public:
// Creates an old space object. The constructor does not allocate pages
// from OS.
explicit CodeSpace(Heap* heap)
: PagedSpace(heap, CODE_SPACE, EXECUTABLE, FreeList::CreateFreeList(),
&paged_allocation_info_) {}
private:
LinearAllocationArea paged_allocation_info_;
};
// -----------------------------------------------------------------------------
// Old space for all map objects
class MapSpace : public PagedSpace {
public:
// Creates a map space object.
explicit MapSpace(Heap* heap)
: PagedSpace(heap, MAP_SPACE, NOT_EXECUTABLE, FreeList::CreateFreeList(),
&paged_allocation_info_) {}
int RoundSizeDownToObjectAlignment(int size) override {
if (base::bits::IsPowerOfTwo(Map::kSize)) {
return RoundDown(size, Map::kSize);
} else {
return (size / Map::kSize) * Map::kSize;
}
}
void SortFreeList();
#ifdef VERIFY_HEAP
void VerifyObject(HeapObject obj) override;
#endif
private:
LinearAllocationArea paged_allocation_info_;
};
// Iterates over the chunks (pages and large object pages) that can contain
// pointers to new space or to evacuation candidates.
class OldGenerationMemoryChunkIterator {
public:
inline explicit OldGenerationMemoryChunkIterator(Heap* heap);
// Return nullptr when the iterator is done.
inline MemoryChunk* next();
private:
enum State {
kOldSpaceState,
kMapState,
kCodeState,
kLargeObjectState,
kCodeLargeObjectState,
kFinishedState
};
Heap* heap_;
State state_;
PageIterator old_iterator_;
PageIterator code_iterator_;
PageIterator map_iterator_;
LargePageIterator lo_iterator_;
LargePageIterator code_lo_iterator_;
};
} // namespace internal
} // namespace v8
#endif // V8_HEAP_PAGED_SPACES_H_