blob: 5322b7412ffc90ef26f414f8134babfb970ac841 [file] [log] [blame]
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef V8_RUNTIME_CALL_STATS
#include "src/logging/runtime-call-stats.h"
#include <iomanip>
#include "src/tracing/tracing-category-observer.h"
#include "src/utils/ostreams.h"
namespace v8 {
namespace internal {
base::TimeTicks (*RuntimeCallTimer::Now)() = &base::TimeTicks::Now;
base::TimeTicks RuntimeCallTimer::NowCPUTime() {
base::ThreadTicks ticks = base::ThreadTicks::Now();
return base::TimeTicks::FromInternalValue(ticks.ToInternalValue());
}
class RuntimeCallStatEntries {
public:
void Print(std::ostream& os) {
if (total_call_count_ == 0) return;
std::sort(entries_.rbegin(), entries_.rend());
os << std::setw(50) << "Runtime Function/C++ Builtin" << std::setw(12)
<< "Time" << std::setw(18) << "Count" << std::endl
<< std::string(88, '=') << std::endl;
for (Entry& entry : entries_) {
entry.SetTotal(total_time_, total_call_count_);
entry.Print(os);
}
os << std::string(88, '-') << std::endl;
Entry("Total", total_time_, total_call_count_).Print(os);
}
// By default, the compiler will usually inline this, which results in a large
// binary size increase: std::vector::push_back expands to a large amount of
// instructions, and this function is invoked repeatedly by macros.
V8_NOINLINE void Add(RuntimeCallCounter* counter) {
if (counter->count() == 0) return;
entries_.push_back(
Entry(counter->name(), counter->time(), counter->count()));
total_time_ += counter->time();
total_call_count_ += counter->count();
}
private:
class Entry {
public:
Entry(const char* name, base::TimeDelta time, uint64_t count)
: name_(name),
time_(time.InMicroseconds()),
count_(count),
time_percent_(100),
count_percent_(100) {}
bool operator<(const Entry& other) const {
if (time_ < other.time_) return true;
if (time_ > other.time_) return false;
return count_ < other.count_;
}
V8_NOINLINE void Print(std::ostream& os) {
os.precision(2);
os << std::fixed << std::setprecision(2);
os << std::setw(50) << name_;
os << std::setw(10) << static_cast<double>(time_) / 1000 << "ms ";
os << std::setw(6) << time_percent_ << "%";
os << std::setw(10) << count_ << " ";
os << std::setw(6) << count_percent_ << "%";
os << std::endl;
}
V8_NOINLINE void SetTotal(base::TimeDelta total_time,
uint64_t total_count) {
if (total_time.InMicroseconds() == 0) {
time_percent_ = 0;
} else {
time_percent_ = 100.0 * time_ / total_time.InMicroseconds();
}
count_percent_ = 100.0 * count_ / total_count;
}
private:
const char* name_;
int64_t time_;
uint64_t count_;
double time_percent_;
double count_percent_;
};
uint64_t total_call_count_ = 0;
base::TimeDelta total_time_;
std::vector<Entry> entries_;
};
void RuntimeCallCounter::Reset() {
count_ = 0;
time_ = 0;
}
void RuntimeCallCounter::Dump(v8::tracing::TracedValue* value) {
value->BeginArray(name_);
value->AppendDouble(count_);
value->AppendDouble(time_);
value->EndArray();
}
void RuntimeCallCounter::Add(RuntimeCallCounter* other) {
count_ += other->count();
time_ += other->time().InMicroseconds();
}
void RuntimeCallTimer::Snapshot() {
base::TimeTicks now = Now();
// Pause only / topmost timer in the timer stack.
Pause(now);
// Commit all the timer's elapsed time to the counters.
RuntimeCallTimer* timer = this;
while (timer != nullptr) {
timer->CommitTimeToCounter();
timer = timer->parent();
}
Resume(now);
}
RuntimeCallStats::RuntimeCallStats(ThreadType thread_type)
: in_use_(false), thread_type_(thread_type) {
static const char* const kNames[] = {
#define CALL_BUILTIN_COUNTER(name) "GC_" #name,
FOR_EACH_GC_COUNTER(CALL_BUILTIN_COUNTER) //
#undef CALL_BUILTIN_COUNTER
#define CALL_RUNTIME_COUNTER(name) #name,
FOR_EACH_MANUAL_COUNTER(CALL_RUNTIME_COUNTER) //
#undef CALL_RUNTIME_COUNTER
#define CALL_RUNTIME_COUNTER(name, nargs, ressize) #name,
FOR_EACH_INTRINSIC(CALL_RUNTIME_COUNTER) //
#undef CALL_RUNTIME_COUNTER
#define CALL_BUILTIN_COUNTER(name) #name,
BUILTIN_LIST_C(CALL_BUILTIN_COUNTER) //
#undef CALL_BUILTIN_COUNTER
#define CALL_BUILTIN_COUNTER(name) "API_" #name,
FOR_EACH_API_COUNTER(CALL_BUILTIN_COUNTER) //
#undef CALL_BUILTIN_COUNTER
#define CALL_BUILTIN_COUNTER(name) #name,
FOR_EACH_HANDLER_COUNTER(CALL_BUILTIN_COUNTER) //
#undef CALL_BUILTIN_COUNTER
#define THREAD_SPECIFIC_COUNTER(name) #name,
FOR_EACH_THREAD_SPECIFIC_COUNTER(THREAD_SPECIFIC_COUNTER) //
#undef THREAD_SPECIFIC_COUNTER
};
for (int i = 0; i < kNumberOfCounters; i++) {
this->counters_[i] = RuntimeCallCounter(kNames[i]);
}
if (FLAG_rcs_cpu_time) {
CHECK(base::ThreadTicks::IsSupported());
base::ThreadTicks::WaitUntilInitialized();
RuntimeCallTimer::Now = &RuntimeCallTimer::NowCPUTime;
}
}
namespace {
constexpr RuntimeCallCounterId FirstCounter(RuntimeCallCounterId first, ...) {
return first;
}
#define THREAD_SPECIFIC_COUNTER(name) k##name,
constexpr RuntimeCallCounterId kFirstThreadVariantCounter =
FirstCounter(FOR_EACH_THREAD_SPECIFIC_COUNTER(THREAD_SPECIFIC_COUNTER) 0);
#undef THREAD_SPECIFIC_COUNTER
#define THREAD_SPECIFIC_COUNTER(name) +1
constexpr int kThreadVariantCounterCount =
0 FOR_EACH_THREAD_SPECIFIC_COUNTER(THREAD_SPECIFIC_COUNTER);
#undef THREAD_SPECIFIC_COUNTER
constexpr auto kLastThreadVariantCounter = static_cast<RuntimeCallCounterId>(
kFirstThreadVariantCounter + kThreadVariantCounterCount - 1);
} // namespace
bool RuntimeCallStats::HasThreadSpecificCounterVariants(
RuntimeCallCounterId id) {
// Check that it's in the range of the thread-specific variant counters and
// also that it's one of the background counters.
return id >= kFirstThreadVariantCounter && id <= kLastThreadVariantCounter;
}
bool RuntimeCallStats::IsBackgroundThreadSpecificVariant(
RuntimeCallCounterId id) {
return HasThreadSpecificCounterVariants(id) &&
(id - kFirstThreadVariantCounter) % 2 == 1;
}
void RuntimeCallStats::Enter(RuntimeCallTimer* timer,
RuntimeCallCounterId counter_id) {
DCHECK(IsCalledOnTheSameThread());
RuntimeCallCounter* counter = GetCounter(counter_id);
DCHECK_NOT_NULL(counter->name());
timer->Start(counter, current_timer());
current_timer_.SetValue(timer);
current_counter_.SetValue(counter);
}
void RuntimeCallStats::Leave(RuntimeCallTimer* timer) {
DCHECK(IsCalledOnTheSameThread());
RuntimeCallTimer* stack_top = current_timer();
if (stack_top == nullptr) return; // Missing timer is a result of Reset().
CHECK(stack_top == timer);
current_timer_.SetValue(timer->Stop());
RuntimeCallTimer* cur_timer = current_timer();
current_counter_.SetValue(cur_timer ? cur_timer->counter() : nullptr);
}
void RuntimeCallStats::Add(RuntimeCallStats* other) {
for (int i = 0; i < kNumberOfCounters; i++) {
GetCounter(i)->Add(other->GetCounter(i));
}
}
// static
void RuntimeCallStats::CorrectCurrentCounterId(RuntimeCallCounterId counter_id,
CounterMode mode) {
DCHECK(IsCalledOnTheSameThread());
if (mode == RuntimeCallStats::CounterMode::kThreadSpecific) {
counter_id = CounterIdForThread(counter_id);
}
DCHECK(IsCounterAppropriateForThread(counter_id));
RuntimeCallTimer* timer = current_timer();
if (timer == nullptr) return;
RuntimeCallCounter* counter = GetCounter(counter_id);
timer->set_counter(counter);
current_counter_.SetValue(counter);
}
bool RuntimeCallStats::IsCalledOnTheSameThread() {
if (thread_id_.IsValid()) return thread_id_ == ThreadId::Current();
thread_id_ = ThreadId::Current();
return true;
}
void RuntimeCallStats::Print() {
StdoutStream os;
Print(os);
}
void RuntimeCallStats::Print(std::ostream& os) {
RuntimeCallStatEntries entries;
if (current_timer_.Value() != nullptr) {
current_timer_.Value()->Snapshot();
}
for (int i = 0; i < kNumberOfCounters; i++) {
entries.Add(GetCounter(i));
}
entries.Print(os);
}
void RuntimeCallStats::Reset() {
if (V8_LIKELY(!TracingFlags::is_runtime_stats_enabled())) return;
// In tracing, we only what to trace the time spent on top level trace events,
// if runtime counter stack is not empty, we should clear the whole runtime
// counter stack, and then reset counters so that we can dump counters into
// top level trace events accurately.
while (current_timer_.Value()) {
current_timer_.SetValue(current_timer_.Value()->Stop());
}
for (int i = 0; i < kNumberOfCounters; i++) {
GetCounter(i)->Reset();
}
in_use_ = true;
}
void RuntimeCallStats::Dump(v8::tracing::TracedValue* value) {
for (int i = 0; i < kNumberOfCounters; i++) {
if (GetCounter(i)->count() > 0) GetCounter(i)->Dump(value);
}
in_use_ = false;
}
WorkerThreadRuntimeCallStats::WorkerThreadRuntimeCallStats()
: isolate_thread_id_(ThreadId::Current()) {}
WorkerThreadRuntimeCallStats::~WorkerThreadRuntimeCallStats() {
if (tls_key_) base::Thread::DeleteThreadLocalKey(*tls_key_);
}
base::Thread::LocalStorageKey WorkerThreadRuntimeCallStats::GetKey() {
base::MutexGuard lock(&mutex_);
DCHECK(TracingFlags::is_runtime_stats_enabled());
if (!tls_key_) tls_key_ = base::Thread::CreateThreadLocalKey();
return *tls_key_;
}
RuntimeCallStats* WorkerThreadRuntimeCallStats::NewTable() {
DCHECK(TracingFlags::is_runtime_stats_enabled());
// Never create a new worker table on the isolate's main thread.
DCHECK_NE(ThreadId::Current(), isolate_thread_id_);
std::unique_ptr<RuntimeCallStats> new_table =
std::make_unique<RuntimeCallStats>(RuntimeCallStats::kWorkerThread);
RuntimeCallStats* result = new_table.get();
base::MutexGuard lock(&mutex_);
tables_.push_back(std::move(new_table));
return result;
}
void WorkerThreadRuntimeCallStats::AddToMainTable(
RuntimeCallStats* main_call_stats) {
base::MutexGuard lock(&mutex_);
for (auto& worker_stats : tables_) {
DCHECK_NE(main_call_stats, worker_stats.get());
main_call_stats->Add(worker_stats.get());
worker_stats->Reset();
}
}
WorkerThreadRuntimeCallStatsScope::WorkerThreadRuntimeCallStatsScope(
WorkerThreadRuntimeCallStats* worker_stats) {
if (V8_LIKELY(!TracingFlags::is_runtime_stats_enabled())) return;
table_ = reinterpret_cast<RuntimeCallStats*>(
base::Thread::GetThreadLocal(worker_stats->GetKey()));
if (table_ == nullptr) {
table_ = worker_stats->NewTable();
base::Thread::SetThreadLocal(worker_stats->GetKey(), table_);
}
if ((TracingFlags::runtime_stats.load(std::memory_order_relaxed) &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING)) {
table_->Reset();
}
}
WorkerThreadRuntimeCallStatsScope::~WorkerThreadRuntimeCallStatsScope() {
if (V8_LIKELY(table_ == nullptr)) return;
if ((TracingFlags::runtime_stats.load(std::memory_order_relaxed) &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING)) {
auto value = v8::tracing::TracedValue::Create();
table_->Dump(value.get());
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("v8.runtime_stats"),
"V8.RuntimeStats", TRACE_EVENT_SCOPE_THREAD,
"runtime-call-stats", std::move(value));
}
}
} // namespace internal
} // namespace v8
#endif // V8_RUNTIME_CALL_STATS