blob: fa06f9d080b453aaae86d83d232c243a0d1bafda [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_UTILS_BIT_VECTOR_H_
#define V8_UTILS_BIT_VECTOR_H_
#include "src/base/bits.h"
#include "src/utils/allocation.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
class V8_EXPORT_PRIVATE BitVector : public ZoneObject {
public:
union DataStorage {
uintptr_t* ptr_; // valid if data_length_ > 1
uintptr_t inline_; // valid if data_length_ == 1
explicit DataStorage(uintptr_t value) : inline_(value) {}
};
// Iterator for the elements of this BitVector.
class Iterator {
public:
V8_EXPORT_PRIVATE inline void operator++() {
current_++;
// Skip zeroed words.
while (current_value_ == 0) {
current_index_++;
if (Done()) return;
DCHECK(!target_->is_inline());
current_value_ = target_->data_.ptr_[current_index_];
current_ = current_index_ << kDataBitShift;
}
// Skip zeroed bits.
uintptr_t trailing_zeros = base::bits::CountTrailingZeros(current_value_);
current_ += trailing_zeros;
current_value_ >>= trailing_zeros;
// Get current_value ready for next advance.
current_value_ >>= 1;
}
int operator*() const {
DCHECK(!Done());
return current_;
}
bool operator!=(const Iterator& other) const {
// "other" is required to be the end sentinel value, to avoid us needing
// to compare exact "current" values.
DCHECK(other.Done());
DCHECK_EQ(target_, other.target_);
return current_index_ != other.current_index_;
}
private:
static constexpr struct StartTag {
} kStartTag = {};
static constexpr struct EndTag {
} kEndTag = {};
explicit Iterator(const BitVector* target, StartTag)
: target_(target),
current_value_(target->is_inline() ? target->data_.inline_
: target->data_.ptr_[0]),
current_index_(0),
current_(-1) {
++(*this);
}
explicit Iterator(const BitVector* target, EndTag)
: target_(target),
current_value_(0),
current_index_(target->data_length_),
current_(-1) {
DCHECK(Done());
}
bool Done() const { return current_index_ >= target_->data_length_; }
const BitVector* target_;
uintptr_t current_value_;
int current_index_;
int current_;
friend class BitVector;
};
static const int kDataLengthForInline = 1;
static const int kDataBits = kBitsPerSystemPointer;
static const int kDataBitShift = kBitsPerSystemPointerLog2;
static const uintptr_t kOne = 1; // This saves some static_casts.
BitVector() : length_(0), data_length_(kDataLengthForInline), data_(0) {}
BitVector(int length, Zone* zone)
: length_(length), data_length_(SizeFor(length)), data_(0) {
DCHECK_LE(0, length);
if (!is_inline()) {
data_.ptr_ = zone->NewArray<uintptr_t>(data_length_);
Clear();
}
// Otherwise, clearing is implicit
}
BitVector(const BitVector& other, Zone* zone)
: length_(other.length_),
data_length_(other.data_length_),
data_(other.data_.inline_) {
if (!is_inline()) {
data_.ptr_ = zone->NewArray<uintptr_t>(data_length_);
for (int i = 0; i < other.data_length_; i++) {
data_.ptr_[i] = other.data_.ptr_[i];
}
}
}
static int SizeFor(int length) {
if (length <= kDataBits) {
return kDataLengthForInline;
}
int data_length = 1 + ((length - 1) / kDataBits);
DCHECK_GT(data_length, kDataLengthForInline);
return data_length;
}
void CopyFrom(const BitVector& other) {
DCHECK_EQ(other.length(), length());
if (is_inline()) {
DCHECK(other.is_inline());
data_.inline_ = other.data_.inline_;
} else {
for (int i = 0; i < data_length_; i++) {
data_.ptr_[i] = other.data_.ptr_[i];
}
}
}
void Resize(int new_length, Zone* zone) {
DCHECK_GT(new_length, length());
int new_data_length = SizeFor(new_length);
if (new_data_length > data_length_) {
DataStorage old_data = data_;
int old_data_length = data_length_;
// Make sure the new data length is large enough to need allocation.
DCHECK_GT(new_data_length, kDataLengthForInline);
data_.ptr_ = zone->NewArray<uintptr_t>(new_data_length);
data_length_ = new_data_length;
// Copy over the data.
if (old_data_length == kDataLengthForInline) {
data_.ptr_[0] = old_data.inline_;
} else {
for (int i = 0; i < old_data_length; i++) {
data_.ptr_[i] = old_data.ptr_[i];
}
}
// Zero out the rest of the data.
for (int i = old_data_length; i < data_length_; i++) {
data_.ptr_[i] = 0;
}
}
length_ = new_length;
}
bool Contains(int i) const {
DCHECK(i >= 0 && i < length());
uintptr_t block = is_inline() ? data_.inline_ : data_.ptr_[i / kDataBits];
return (block & (kOne << (i % kDataBits))) != 0;
}
void Add(int i) {
DCHECK(i >= 0 && i < length());
if (is_inline()) {
data_.inline_ |= (kOne << i);
} else {
data_.ptr_[i / kDataBits] |= (kOne << (i % kDataBits));
}
}
void AddAll() {
// TODO(leszeks): This sets bits outside of the length of this bit-vector,
// which is observable if we resize it or copy from it. If this is a
// problem, we should clear the high bits either on add, or on resize/copy.
if (is_inline()) {
data_.inline_ = -1;
} else {
memset(data_.ptr_, -1, sizeof(uintptr_t) * data_length_);
}
}
void Remove(int i) {
DCHECK(i >= 0 && i < length());
if (is_inline()) {
data_.inline_ &= ~(kOne << i);
} else {
data_.ptr_[i / kDataBits] &= ~(kOne << (i % kDataBits));
}
}
void Union(const BitVector& other) {
DCHECK(other.length() == length());
if (is_inline()) {
DCHECK(other.is_inline());
data_.inline_ |= other.data_.inline_;
} else {
for (int i = 0; i < data_length_; i++) {
data_.ptr_[i] |= other.data_.ptr_[i];
}
}
}
bool UnionIsChanged(const BitVector& other) {
DCHECK(other.length() == length());
if (is_inline()) {
DCHECK(other.is_inline());
uintptr_t old_data = data_.inline_;
data_.inline_ |= other.data_.inline_;
return data_.inline_ != old_data;
} else {
bool changed = false;
for (int i = 0; i < data_length_; i++) {
uintptr_t old_data = data_.ptr_[i];
data_.ptr_[i] |= other.data_.ptr_[i];
if (data_.ptr_[i] != old_data) changed = true;
}
return changed;
}
}
void Intersect(const BitVector& other) {
DCHECK(other.length() == length());
if (is_inline()) {
DCHECK(other.is_inline());
data_.inline_ &= other.data_.inline_;
} else {
for (int i = 0; i < data_length_; i++) {
data_.ptr_[i] &= other.data_.ptr_[i];
}
}
}
bool IntersectIsChanged(const BitVector& other) {
DCHECK(other.length() == length());
if (is_inline()) {
DCHECK(other.is_inline());
uintptr_t old_data = data_.inline_;
data_.inline_ &= other.data_.inline_;
return data_.inline_ != old_data;
} else {
bool changed = false;
for (int i = 0; i < data_length_; i++) {
uintptr_t old_data = data_.ptr_[i];
data_.ptr_[i] &= other.data_.ptr_[i];
if (data_.ptr_[i] != old_data) changed = true;
}
return changed;
}
}
void Subtract(const BitVector& other) {
DCHECK(other.length() == length());
if (is_inline()) {
DCHECK(other.is_inline());
data_.inline_ &= ~other.data_.inline_;
} else {
for (int i = 0; i < data_length_; i++) {
data_.ptr_[i] &= ~other.data_.ptr_[i];
}
}
}
void Clear() {
if (is_inline()) {
data_.inline_ = 0;
} else {
for (int i = 0; i < data_length_; i++) {
data_.ptr_[i] = 0;
}
}
}
bool IsEmpty() const {
if (is_inline()) {
return data_.inline_ == 0;
} else {
for (int i = 0; i < data_length_; i++) {
if (data_.ptr_[i] != 0) return false;
}
return true;
}
}
bool Equals(const BitVector& other) const {
DCHECK(other.length() == length());
if (is_inline()) {
DCHECK(other.is_inline());
return data_.inline_ == other.data_.inline_;
} else {
for (int i = 0; i < data_length_; i++) {
if (data_.ptr_[i] != other.data_.ptr_[i]) return false;
}
return true;
}
}
int Count() const;
int length() const { return length_; }
Iterator begin() const { return Iterator(this, Iterator::kStartTag); }
Iterator end() const { return Iterator(this, Iterator::kEndTag); }
#ifdef DEBUG
void Print() const;
#endif
MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(BitVector);
private:
int length_;
int data_length_;
DataStorage data_;
bool is_inline() const { return data_length_ == kDataLengthForInline; }
};
class GrowableBitVector {
public:
GrowableBitVector() : bits_() {}
GrowableBitVector(int length, Zone* zone) : bits_(length, zone) {}
bool Contains(int value) const {
if (!InBitsRange(value)) return false;
return bits_.Contains(value);
}
void Add(int value, Zone* zone) {
EnsureCapacity(value, zone);
bits_.Add(value);
}
void Clear() { bits_.Clear(); }
int length() const { return bits_.length(); }
bool Equals(const GrowableBitVector& other) const {
return length() == other.length() && bits_.Equals(other.bits_);
}
BitVector::Iterator begin() const { return bits_.begin(); }
BitVector::Iterator end() const { return bits_.end(); }
private:
static constexpr int kInitialLength = 1024;
bool InBitsRange(int value) const { return bits_.length() > value; }
void EnsureCapacity(int value, Zone* zone) {
if (InBitsRange(value)) return;
int new_length =
base::bits::RoundUpToPowerOfTwo32(static_cast<uint32_t>(value));
new_length = std::min(new_length, kInitialLength);
while (new_length <= value) new_length *= 2;
bits_.Resize(new_length, zone);
}
BitVector bits_;
};
} // namespace internal
} // namespace v8
#endif // V8_UTILS_BIT_VECTOR_H_