| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_UTILS_UTILS_H_ |
| #define V8_UTILS_UTILS_H_ |
| |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <cmath> |
| #include <string> |
| #include <type_traits> |
| |
| #include "src/base/bits.h" |
| #include "src/base/compiler-specific.h" |
| #include "src/base/logging.h" |
| #include "src/base/macros.h" |
| #include "src/base/platform/platform.h" |
| #include "src/base/safe_conversions.h" |
| #include "src/base/v8-fallthrough.h" |
| #include "src/base/vector.h" |
| #include "src/common/globals.h" |
| #include "src/utils/allocation.h" |
| |
| #if defined(V8_USE_SIPHASH) |
| #include "src/third_party/siphash/halfsiphash.h" |
| #endif |
| |
| #if defined(V8_OS_AIX) |
| #include <fenv.h> // NOLINT(build/c++11) |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ---------------------------------------------------------------------------- |
| // General helper functions |
| |
| template <typename T> |
| static T ArithmeticShiftRight(T x, int shift) { |
| DCHECK_LE(0, shift); |
| if (x < 0) { |
| // Right shift of signed values is implementation defined. Simulate a |
| // true arithmetic right shift by adding leading sign bits. |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift); |
| return (static_cast<UnsignedT>(x) >> shift) | mask; |
| } else { |
| return x >> shift; |
| } |
| } |
| |
| // Returns the maximum of the two parameters according to JavaScript semantics. |
| template <typename T> |
| T JSMax(T x, T y) { |
| if (std::isnan(x)) return x; |
| if (std::isnan(y)) return y; |
| if (std::signbit(x) < std::signbit(y)) return x; |
| return x > y ? x : y; |
| } |
| |
| // Returns the maximum of the two parameters according to JavaScript semantics. |
| template <typename T> |
| T JSMin(T x, T y) { |
| if (std::isnan(x)) return x; |
| if (std::isnan(y)) return y; |
| if (std::signbit(x) < std::signbit(y)) return y; |
| return x > y ? y : x; |
| } |
| |
| // Returns the absolute value of its argument. |
| template <typename T, |
| typename = typename std::enable_if<std::is_signed<T>::value>::type> |
| typename std::make_unsigned<T>::type Abs(T a) { |
| // This is a branch-free implementation of the absolute value function and is |
| // described in Warren's "Hacker's Delight", chapter 2. It avoids undefined |
| // behavior with the arithmetic negation operation on signed values as well. |
| using unsignedT = typename std::make_unsigned<T>::type; |
| unsignedT x = static_cast<unsignedT>(a); |
| unsignedT y = static_cast<unsignedT>(a >> (sizeof(T) * 8 - 1)); |
| return (x ^ y) - y; |
| } |
| |
| inline double Modulo(double x, double y) { |
| #if defined(V8_OS_WIN) |
| // Workaround MS fmod bugs. ECMA-262 says: |
| // dividend is finite and divisor is an infinity => result equals dividend |
| // dividend is a zero and divisor is nonzero finite => result equals dividend |
| if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) && |
| !(x == 0 && (y != 0 && std::isfinite(y)))) { |
| double result = fmod(x, y); |
| // Workaround MS bug in VS CRT in some OS versions, https://crbug.com/915045 |
| // fmod(-17, +/-1) should equal -0.0 but now returns 0.0. |
| if (x < 0 && result == 0) result = -0.0; |
| x = result; |
| } |
| return x; |
| #elif defined(V8_OS_AIX) |
| // AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE) |
| feclearexcept(FE_ALL_EXCEPT); |
| double result = std::fmod(x, y); |
| int exception = fetestexcept(FE_UNDERFLOW); |
| return (exception ? x : result); |
| #else |
| return std::fmod(x, y); |
| #endif |
| } |
| |
| template <typename T> |
| T SaturateAdd(T a, T b) { |
| if (std::is_signed<T>::value) { |
| if (a > 0 && b > 0) { |
| if (a > std::numeric_limits<T>::max() - b) { |
| return std::numeric_limits<T>::max(); |
| } |
| } else if (a < 0 && b < 0) { |
| if (a < std::numeric_limits<T>::min() - b) { |
| return std::numeric_limits<T>::min(); |
| } |
| } |
| } else { |
| CHECK(std::is_unsigned<T>::value); |
| if (a > std::numeric_limits<T>::max() - b) { |
| return std::numeric_limits<T>::max(); |
| } |
| } |
| return a + b; |
| } |
| |
| template <typename T> |
| T SaturateSub(T a, T b) { |
| if (std::is_signed<T>::value) { |
| if (a >= 0 && b < 0) { |
| if (a > std::numeric_limits<T>::max() + b) { |
| return std::numeric_limits<T>::max(); |
| } |
| } else if (a < 0 && b > 0) { |
| if (a < std::numeric_limits<T>::min() + b) { |
| return std::numeric_limits<T>::min(); |
| } |
| } |
| } else { |
| CHECK(std::is_unsigned<T>::value); |
| if (a < b) { |
| return static_cast<T>(0); |
| } |
| } |
| return a - b; |
| } |
| |
| template <typename T> |
| T SaturateRoundingQMul(T a, T b) { |
| // Saturating rounding multiplication for Q-format numbers. See |
| // https://en.wikipedia.org/wiki/Q_(number_format) for a description. |
| // Specifically this supports Q7, Q15, and Q31. This follows the |
| // implementation in simulator-logic-arm64.cc (sqrdmulh) to avoid overflow |
| // when a == b == int32 min. |
| static_assert(std::is_integral<T>::value, "only integral types"); |
| |
| constexpr int size_in_bits = sizeof(T) * 8; |
| int round_const = 1 << (size_in_bits - 2); |
| int64_t product = a * b; |
| product += round_const; |
| product >>= (size_in_bits - 1); |
| return base::saturated_cast<T>(product); |
| } |
| |
| // Multiply two numbers, returning a result that is twice as wide, no overflow. |
| // Put Wide first so we can use function template argument deduction for Narrow, |
| // and callers can provide only Wide. |
| template <typename Wide, typename Narrow> |
| Wide MultiplyLong(Narrow a, Narrow b) { |
| static_assert( |
| std::is_integral<Narrow>::value && std::is_integral<Wide>::value, |
| "only integral types"); |
| static_assert(std::is_signed<Narrow>::value == std::is_signed<Wide>::value, |
| "both must have same signedness"); |
| static_assert(sizeof(Narrow) * 2 == sizeof(Wide), "only twice as long"); |
| |
| return static_cast<Wide>(a) * static_cast<Wide>(b); |
| } |
| |
| // Add two numbers, returning a result that is twice as wide, no overflow. |
| // Put Wide first so we can use function template argument deduction for Narrow, |
| // and callers can provide only Wide. |
| template <typename Wide, typename Narrow> |
| Wide AddLong(Narrow a, Narrow b) { |
| static_assert( |
| std::is_integral<Narrow>::value && std::is_integral<Wide>::value, |
| "only integral types"); |
| static_assert(std::is_signed<Narrow>::value == std::is_signed<Wide>::value, |
| "both must have same signedness"); |
| static_assert(sizeof(Narrow) * 2 == sizeof(Wide), "only twice as long"); |
| |
| return static_cast<Wide>(a) + static_cast<Wide>(b); |
| } |
| |
| template <typename T> |
| inline T RoundingAverageUnsigned(T a, T b) { |
| static_assert(std::is_unsigned<T>::value, "Only for unsiged types"); |
| static_assert(sizeof(T) < sizeof(uint64_t), "Must be smaller than uint64_t"); |
| return (static_cast<uint64_t>(a) + static_cast<uint64_t>(b) + 1) >> 1; |
| } |
| |
| // Helper macros for defining a contiguous sequence of field offset constants. |
| // Example: (backslashes at the ends of respective lines of this multi-line |
| // macro definition are omitted here to please the compiler) |
| // |
| // #define MAP_FIELDS(V) |
| // V(kField1Offset, kTaggedSize) |
| // V(kField2Offset, kIntSize) |
| // V(kField3Offset, kIntSize) |
| // V(kField4Offset, kSystemPointerSize) |
| // V(kSize, 0) |
| // |
| // DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS) |
| // |
| #define DEFINE_ONE_FIELD_OFFSET(Name, Size, ...) \ |
| Name, Name##End = Name + (Size)-1, |
| |
| #define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \ |
| enum { \ |
| LIST_MACRO##_StartOffset = StartOffset - 1, \ |
| LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \ |
| }; |
| |
| // Size of the field defined by DEFINE_FIELD_OFFSET_CONSTANTS |
| #define FIELD_SIZE(Name) (Name##End + 1 - Name) |
| |
| // Compare two offsets with static cast |
| #define STATIC_ASSERT_FIELD_OFFSETS_EQUAL(Offset1, Offset2) \ |
| STATIC_ASSERT(static_cast<int>(Offset1) == Offset2) |
| // ---------------------------------------------------------------------------- |
| // Hash function. |
| |
| static const uint64_t kZeroHashSeed = 0; |
| |
| // Thomas Wang, Integer Hash Functions. |
| // http://www.concentric.net/~Ttwang/tech/inthash.htm` |
| inline uint32_t ComputeUnseededHash(uint32_t key) { |
| uint32_t hash = key; |
| hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1; |
| hash = hash ^ (hash >> 12); |
| hash = hash + (hash << 2); |
| hash = hash ^ (hash >> 4); |
| hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11); |
| hash = hash ^ (hash >> 16); |
| return hash & 0x3fffffff; |
| } |
| |
| inline uint32_t ComputeLongHash(uint64_t key) { |
| uint64_t hash = key; |
| hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1; |
| hash = hash ^ (hash >> 31); |
| hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4); |
| hash = hash ^ (hash >> 11); |
| hash = hash + (hash << 6); |
| hash = hash ^ (hash >> 22); |
| return static_cast<uint32_t>(hash & 0x3fffffff); |
| } |
| |
| inline uint32_t ComputeSeededHash(uint32_t key, uint64_t seed) { |
| #ifdef V8_USE_SIPHASH |
| return halfsiphash(key, seed); |
| #else |
| return ComputeLongHash(static_cast<uint64_t>(key) ^ seed); |
| #endif // V8_USE_SIPHASH |
| } |
| |
| inline uint32_t ComputePointerHash(void* ptr) { |
| return ComputeUnseededHash( |
| static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr))); |
| } |
| |
| inline uint32_t ComputeAddressHash(Address address) { |
| return ComputeUnseededHash(static_cast<uint32_t>(address & 0xFFFFFFFFul)); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Miscellaneous |
| |
| // Memory offset for lower and higher bits in a 64 bit integer. |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| static const int kInt64LowerHalfMemoryOffset = 0; |
| static const int kInt64UpperHalfMemoryOffset = 4; |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| static const int kInt64LowerHalfMemoryOffset = 4; |
| static const int kInt64UpperHalfMemoryOffset = 0; |
| #endif // V8_TARGET_LITTLE_ENDIAN |
| |
| // A pointer that can only be set once and doesn't allow NULL values. |
| template <typename T> |
| class SetOncePointer { |
| public: |
| SetOncePointer() = default; |
| |
| bool is_set() const { return pointer_ != nullptr; } |
| |
| T* get() const { |
| DCHECK_NOT_NULL(pointer_); |
| return pointer_; |
| } |
| |
| void set(T* value) { |
| DCHECK(pointer_ == nullptr && value != nullptr); |
| pointer_ = value; |
| } |
| |
| SetOncePointer& operator=(T* value) { |
| set(value); |
| return *this; |
| } |
| |
| bool operator==(std::nullptr_t) const { return pointer_ == nullptr; } |
| bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; } |
| |
| private: |
| T* pointer_ = nullptr; |
| }; |
| |
| // Compare 8bit/16bit chars to 8bit/16bit chars. |
| template <typename lchar, typename rchar> |
| inline bool CompareCharsEqualUnsigned(const lchar* lhs, const rchar* rhs, |
| size_t chars) { |
| STATIC_ASSERT(std::is_unsigned<lchar>::value); |
| STATIC_ASSERT(std::is_unsigned<rchar>::value); |
| if (sizeof(*lhs) == sizeof(*rhs)) { |
| // memcmp compares byte-by-byte, but for equality it doesn't matter whether |
| // two-byte char comparison is little- or big-endian. |
| return memcmp(lhs, rhs, chars * sizeof(*lhs)) == 0; |
| } |
| for (const lchar* limit = lhs + chars; lhs < limit; ++lhs, ++rhs) { |
| if (*lhs != *rhs) return false; |
| } |
| return true; |
| } |
| |
| template <typename lchar, typename rchar> |
| inline bool CompareCharsEqual(const lchar* lhs, const rchar* rhs, |
| size_t chars) { |
| using ulchar = typename std::make_unsigned<lchar>::type; |
| using urchar = typename std::make_unsigned<rchar>::type; |
| return CompareCharsEqualUnsigned(reinterpret_cast<const ulchar*>(lhs), |
| reinterpret_cast<const urchar*>(rhs), chars); |
| } |
| |
| // Compare 8bit/16bit chars to 8bit/16bit chars. |
| template <typename lchar, typename rchar> |
| inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs, |
| size_t chars) { |
| STATIC_ASSERT(std::is_unsigned<lchar>::value); |
| STATIC_ASSERT(std::is_unsigned<rchar>::value); |
| if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) { |
| // memcmp compares byte-by-byte, yielding wrong results for two-byte |
| // strings on little-endian systems. |
| return memcmp(lhs, rhs, chars); |
| } |
| for (const lchar* limit = lhs + chars; lhs < limit; ++lhs, ++rhs) { |
| int r = static_cast<int>(*lhs) - static_cast<int>(*rhs); |
| if (r != 0) return r; |
| } |
| return 0; |
| } |
| |
| template <typename lchar, typename rchar> |
| inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) { |
| using ulchar = typename std::make_unsigned<lchar>::type; |
| using urchar = typename std::make_unsigned<rchar>::type; |
| return CompareCharsUnsigned(reinterpret_cast<const ulchar*>(lhs), |
| reinterpret_cast<const urchar*>(rhs), chars); |
| } |
| |
| // Calculate 10^exponent. |
| inline int TenToThe(int exponent) { |
| DCHECK_LE(exponent, 9); |
| DCHECK_GE(exponent, 1); |
| int answer = 10; |
| for (int i = 1; i < exponent; i++) answer *= 10; |
| return answer; |
| } |
| |
| // Bit field extraction. |
| inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { |
| return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); |
| } |
| |
| inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { |
| return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); |
| } |
| |
| inline int32_t signed_bitextract_32(int msb, int lsb, uint32_t x) { |
| return static_cast<int32_t>(x << (31 - msb)) >> (lsb + 31 - msb); |
| } |
| |
| // Check number width. |
| inline bool is_intn(int64_t x, unsigned n) { |
| DCHECK((0 < n) && (n < 64)); |
| int64_t limit = static_cast<int64_t>(1) << (n - 1); |
| return (-limit <= x) && (x < limit); |
| } |
| |
| inline bool is_uintn(int64_t x, unsigned n) { |
| DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); |
| return !(x >> n); |
| } |
| |
| template <class T> |
| inline T truncate_to_intn(T x, unsigned n) { |
| DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); |
| return (x & ((static_cast<T>(1) << n) - 1)); |
| } |
| |
| // clang-format off |
| #define INT_1_TO_63_LIST(V) \ |
| V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) V(10) \ |
| V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) V(20) \ |
| V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) V(30) \ |
| V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ |
| V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) V(50) \ |
| V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) V(60) \ |
| V(61) V(62) V(63) |
| // clang-format on |
| |
| #define DECLARE_IS_INT_N(N) \ |
| inline bool is_int##N(int64_t x) { return is_intn(x, N); } |
| #define DECLARE_IS_UINT_N(N) \ |
| template <class T> \ |
| inline bool is_uint##N(T x) { \ |
| return is_uintn(x, N); \ |
| } |
| #define DECLARE_TRUNCATE_TO_INT_N(N) \ |
| template <class T> \ |
| inline T truncate_to_int##N(T x) { \ |
| return truncate_to_intn(x, N); \ |
| } |
| INT_1_TO_63_LIST(DECLARE_IS_INT_N) |
| INT_1_TO_63_LIST(DECLARE_IS_UINT_N) |
| INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) |
| #undef DECLARE_IS_INT_N |
| #undef DECLARE_IS_UINT_N |
| #undef DECLARE_TRUNCATE_TO_INT_N |
| |
| // clang-format off |
| #define INT_0_TO_127_LIST(V) \ |
| V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) \ |
| V(10) V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) \ |
| V(20) V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) \ |
| V(30) V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) \ |
| V(40) V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) \ |
| V(50) V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) \ |
| V(60) V(61) V(62) V(63) V(64) V(65) V(66) V(67) V(68) V(69) \ |
| V(70) V(71) V(72) V(73) V(74) V(75) V(76) V(77) V(78) V(79) \ |
| V(80) V(81) V(82) V(83) V(84) V(85) V(86) V(87) V(88) V(89) \ |
| V(90) V(91) V(92) V(93) V(94) V(95) V(96) V(97) V(98) V(99) \ |
| V(100) V(101) V(102) V(103) V(104) V(105) V(106) V(107) V(108) V(109) \ |
| V(110) V(111) V(112) V(113) V(114) V(115) V(116) V(117) V(118) V(119) \ |
| V(120) V(121) V(122) V(123) V(124) V(125) V(126) V(127) |
| // clang-format on |
| |
| class FeedbackSlot { |
| public: |
| FeedbackSlot() : id_(kInvalidSlot) {} |
| explicit FeedbackSlot(int id) : id_(id) {} |
| |
| int ToInt() const { return id_; } |
| |
| static FeedbackSlot Invalid() { return FeedbackSlot(); } |
| bool IsInvalid() const { return id_ == kInvalidSlot; } |
| |
| bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; } |
| bool operator!=(FeedbackSlot that) const { return !(*this == that); } |
| |
| friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); } |
| V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream& os, |
| FeedbackSlot); |
| |
| FeedbackSlot WithOffset(int offset) const { |
| return FeedbackSlot(id_ + offset); |
| } |
| |
| private: |
| static const int kInvalidSlot = -1; |
| |
| int id_; |
| }; |
| |
| V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, FeedbackSlot); |
| |
| class BytecodeOffset { |
| public: |
| explicit BytecodeOffset(int id) : id_(id) {} |
| int ToInt() const { return id_; } |
| |
| static BytecodeOffset None() { return BytecodeOffset(kNoneId); } |
| |
| // Special bailout id support for deopting into the {JSConstructStub} stub. |
| // The following hard-coded deoptimization points are supported by the stub: |
| // - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}. |
| // - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}. |
| static BytecodeOffset ConstructStubCreate() { return BytecodeOffset(1); } |
| static BytecodeOffset ConstructStubInvoke() { return BytecodeOffset(2); } |
| bool IsValidForConstructStub() const { |
| return id_ == ConstructStubCreate().ToInt() || |
| id_ == ConstructStubInvoke().ToInt(); |
| } |
| |
| bool IsNone() const { return id_ == kNoneId; } |
| bool operator==(const BytecodeOffset& other) const { |
| return id_ == other.id_; |
| } |
| bool operator!=(const BytecodeOffset& other) const { |
| return id_ != other.id_; |
| } |
| friend size_t hash_value(BytecodeOffset); |
| V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, |
| BytecodeOffset); |
| |
| private: |
| friend class Builtins; |
| |
| static const int kNoneId = -1; |
| |
| // Using 0 could disguise errors. |
| // Builtin continuations bailout ids start here. If you need to add a |
| // non-builtin BytecodeOffset, add it before this id so that this Id has the |
| // highest number. |
| static const int kFirstBuiltinContinuationId = 1; |
| |
| int id_; |
| }; |
| |
| // ---------------------------------------------------------------------------- |
| // I/O support. |
| |
| // Our version of printf(). |
| V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...); |
| V8_EXPORT_PRIVATE void PRINTF_FORMAT(2, 3) |
| PrintF(FILE* out, const char* format, ...); |
| |
| // Prepends the current process ID to the output. |
| void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...); |
| |
| // Prepends the current process ID and given isolate pointer to the output. |
| void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...); |
| |
| // Read a line of characters after printing the prompt to stdout. The resulting |
| // char* needs to be disposed off with DeleteArray by the caller. |
| char* ReadLine(const char* prompt); |
| |
| // Write size chars from str to the file given by filename. |
| // The file is overwritten. Returns the number of chars written. |
| int WriteChars(const char* filename, const char* str, int size, |
| bool verbose = true); |
| |
| // Write size bytes to the file given by filename. |
| // The file is overwritten. Returns the number of bytes written. |
| int WriteBytes(const char* filename, const byte* bytes, int size, |
| bool verbose = true); |
| |
| // Simple support to read a file into std::string. |
| // On return, *exits tells whether the file existed. |
| V8_EXPORT_PRIVATE std::string ReadFile(const char* filename, bool* exists, |
| bool verbose = true); |
| V8_EXPORT_PRIVATE std::string ReadFile(FILE* file, bool* exists, |
| bool verbose = true); |
| |
| bool DoubleToBoolean(double d); |
| |
| template <typename Char> |
| bool TryAddIndexChar(uint32_t* index, Char c); |
| |
| enum ToIndexMode { kToArrayIndex, kToIntegerIndex }; |
| |
| // {index_t} is meant to be {uint32_t} or {size_t}. |
| template <typename Stream, typename index_t, |
| enum ToIndexMode mode = kToArrayIndex> |
| bool StringToIndex(Stream* stream, index_t* index); |
| |
| // Returns the current stack top. Works correctly with ASAN and SafeStack. |
| // GetCurrentStackPosition() should not be inlined, because it works on stack |
| // frames if it were inlined into a function with a huge stack frame it would |
| // return an address significantly above the actual current stack position. |
| V8_EXPORT_PRIVATE V8_NOINLINE uintptr_t GetCurrentStackPosition(); |
| |
| static inline uint16_t ByteReverse16(uint16_t value) { |
| #if V8_HAS_BUILTIN_BSWAP16 |
| return __builtin_bswap16(value); |
| #else |
| return value << 8 | (value >> 8 & 0x00FF); |
| #endif |
| } |
| |
| static inline uint32_t ByteReverse32(uint32_t value) { |
| #if V8_HAS_BUILTIN_BSWAP32 |
| return __builtin_bswap32(value); |
| #else |
| return value << 24 | ((value << 8) & 0x00FF0000) | |
| ((value >> 8) & 0x0000FF00) | ((value >> 24) & 0x00000FF); |
| #endif |
| } |
| |
| static inline uint64_t ByteReverse64(uint64_t value) { |
| #if V8_HAS_BUILTIN_BSWAP64 |
| return __builtin_bswap64(value); |
| #else |
| size_t bits_of_v = sizeof(value) * kBitsPerByte; |
| return value << (bits_of_v - 8) | |
| ((value << (bits_of_v - 24)) & 0x00FF000000000000) | |
| ((value << (bits_of_v - 40)) & 0x0000FF0000000000) | |
| ((value << (bits_of_v - 56)) & 0x000000FF00000000) | |
| ((value >> (bits_of_v - 56)) & 0x00000000FF000000) | |
| ((value >> (bits_of_v - 40)) & 0x0000000000FF0000) | |
| ((value >> (bits_of_v - 24)) & 0x000000000000FF00) | |
| ((value >> (bits_of_v - 8)) & 0x00000000000000FF); |
| #endif |
| } |
| |
| template <typename V> |
| static inline V ByteReverse(V value) { |
| size_t size_of_v = sizeof(value); |
| switch (size_of_v) { |
| case 1: |
| return value; |
| case 2: |
| return static_cast<V>(ByteReverse16(static_cast<uint16_t>(value))); |
| case 4: |
| return static_cast<V>(ByteReverse32(static_cast<uint32_t>(value))); |
| case 8: |
| return static_cast<V>(ByteReverse64(static_cast<uint64_t>(value))); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| #if V8_OS_AIX |
| // glibc on aix has a bug when using ceil, trunc or nearbyint: |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97086 |
| template <typename T> |
| T FpOpWorkaround(T input, T value) { |
| if (/*if -*/ std::signbit(input) && value == 0.0 && |
| /*if +*/ !std::signbit(value)) { |
| return -0.0; |
| } |
| return value; |
| } |
| #endif |
| |
| V8_EXPORT_PRIVATE bool PassesFilter(base::Vector<const char> name, |
| base::Vector<const char> filter); |
| |
| // Zap the specified area with a specific byte pattern. This currently defaults |
| // to int3 on x64 and ia32. On other architectures this will produce unspecified |
| // instruction sequences. |
| // TODO(jgruber): Better support for other architectures. |
| V8_INLINE void ZapCode(Address addr, size_t size_in_bytes) { |
| static constexpr int kZapByte = 0xCC; |
| std::memset(reinterpret_cast<void*>(addr), kZapByte, size_in_bytes); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_UTILS_UTILS_H_ |