blob: 005e1c4ad4e13c6fb3d1daaa5ba2b7cb2f57b9c8 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_UTILS_UTILS_H_
#define V8_UTILS_UTILS_H_
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include <string>
#include <type_traits>
#include "src/base/bits.h"
#include "src/base/compiler-specific.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/base/safe_conversions.h"
#include "src/base/v8-fallthrough.h"
#include "src/base/vector.h"
#include "src/common/globals.h"
#include "src/utils/allocation.h"
#if defined(V8_USE_SIPHASH)
#include "src/third_party/siphash/halfsiphash.h"
#endif
#if defined(V8_OS_AIX)
#include <fenv.h> // NOLINT(build/c++11)
#endif
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// General helper functions
template <typename T>
static T ArithmeticShiftRight(T x, int shift) {
DCHECK_LE(0, shift);
if (x < 0) {
// Right shift of signed values is implementation defined. Simulate a
// true arithmetic right shift by adding leading sign bits.
using UnsignedT = typename std::make_unsigned<T>::type;
UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift);
return (static_cast<UnsignedT>(x) >> shift) | mask;
} else {
return x >> shift;
}
}
// Returns the maximum of the two parameters according to JavaScript semantics.
template <typename T>
T JSMax(T x, T y) {
if (std::isnan(x)) return x;
if (std::isnan(y)) return y;
if (std::signbit(x) < std::signbit(y)) return x;
return x > y ? x : y;
}
// Returns the maximum of the two parameters according to JavaScript semantics.
template <typename T>
T JSMin(T x, T y) {
if (std::isnan(x)) return x;
if (std::isnan(y)) return y;
if (std::signbit(x) < std::signbit(y)) return y;
return x > y ? y : x;
}
// Returns the absolute value of its argument.
template <typename T,
typename = typename std::enable_if<std::is_signed<T>::value>::type>
typename std::make_unsigned<T>::type Abs(T a) {
// This is a branch-free implementation of the absolute value function and is
// described in Warren's "Hacker's Delight", chapter 2. It avoids undefined
// behavior with the arithmetic negation operation on signed values as well.
using unsignedT = typename std::make_unsigned<T>::type;
unsignedT x = static_cast<unsignedT>(a);
unsignedT y = static_cast<unsignedT>(a >> (sizeof(T) * 8 - 1));
return (x ^ y) - y;
}
inline double Modulo(double x, double y) {
#if defined(V8_OS_WIN)
// Workaround MS fmod bugs. ECMA-262 says:
// dividend is finite and divisor is an infinity => result equals dividend
// dividend is a zero and divisor is nonzero finite => result equals dividend
if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) &&
!(x == 0 && (y != 0 && std::isfinite(y)))) {
double result = fmod(x, y);
// Workaround MS bug in VS CRT in some OS versions, https://crbug.com/915045
// fmod(-17, +/-1) should equal -0.0 but now returns 0.0.
if (x < 0 && result == 0) result = -0.0;
x = result;
}
return x;
#elif defined(V8_OS_AIX)
// AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE)
feclearexcept(FE_ALL_EXCEPT);
double result = std::fmod(x, y);
int exception = fetestexcept(FE_UNDERFLOW);
return (exception ? x : result);
#else
return std::fmod(x, y);
#endif
}
template <typename T>
T SaturateAdd(T a, T b) {
if (std::is_signed<T>::value) {
if (a > 0 && b > 0) {
if (a > std::numeric_limits<T>::max() - b) {
return std::numeric_limits<T>::max();
}
} else if (a < 0 && b < 0) {
if (a < std::numeric_limits<T>::min() - b) {
return std::numeric_limits<T>::min();
}
}
} else {
CHECK(std::is_unsigned<T>::value);
if (a > std::numeric_limits<T>::max() - b) {
return std::numeric_limits<T>::max();
}
}
return a + b;
}
template <typename T>
T SaturateSub(T a, T b) {
if (std::is_signed<T>::value) {
if (a >= 0 && b < 0) {
if (a > std::numeric_limits<T>::max() + b) {
return std::numeric_limits<T>::max();
}
} else if (a < 0 && b > 0) {
if (a < std::numeric_limits<T>::min() + b) {
return std::numeric_limits<T>::min();
}
}
} else {
CHECK(std::is_unsigned<T>::value);
if (a < b) {
return static_cast<T>(0);
}
}
return a - b;
}
template <typename T>
T SaturateRoundingQMul(T a, T b) {
// Saturating rounding multiplication for Q-format numbers. See
// https://en.wikipedia.org/wiki/Q_(number_format) for a description.
// Specifically this supports Q7, Q15, and Q31. This follows the
// implementation in simulator-logic-arm64.cc (sqrdmulh) to avoid overflow
// when a == b == int32 min.
static_assert(std::is_integral<T>::value, "only integral types");
constexpr int size_in_bits = sizeof(T) * 8;
int round_const = 1 << (size_in_bits - 2);
int64_t product = a * b;
product += round_const;
product >>= (size_in_bits - 1);
return base::saturated_cast<T>(product);
}
// Multiply two numbers, returning a result that is twice as wide, no overflow.
// Put Wide first so we can use function template argument deduction for Narrow,
// and callers can provide only Wide.
template <typename Wide, typename Narrow>
Wide MultiplyLong(Narrow a, Narrow b) {
static_assert(
std::is_integral<Narrow>::value && std::is_integral<Wide>::value,
"only integral types");
static_assert(std::is_signed<Narrow>::value == std::is_signed<Wide>::value,
"both must have same signedness");
static_assert(sizeof(Narrow) * 2 == sizeof(Wide), "only twice as long");
return static_cast<Wide>(a) * static_cast<Wide>(b);
}
// Add two numbers, returning a result that is twice as wide, no overflow.
// Put Wide first so we can use function template argument deduction for Narrow,
// and callers can provide only Wide.
template <typename Wide, typename Narrow>
Wide AddLong(Narrow a, Narrow b) {
static_assert(
std::is_integral<Narrow>::value && std::is_integral<Wide>::value,
"only integral types");
static_assert(std::is_signed<Narrow>::value == std::is_signed<Wide>::value,
"both must have same signedness");
static_assert(sizeof(Narrow) * 2 == sizeof(Wide), "only twice as long");
return static_cast<Wide>(a) + static_cast<Wide>(b);
}
template <typename T>
inline T RoundingAverageUnsigned(T a, T b) {
static_assert(std::is_unsigned<T>::value, "Only for unsiged types");
static_assert(sizeof(T) < sizeof(uint64_t), "Must be smaller than uint64_t");
return (static_cast<uint64_t>(a) + static_cast<uint64_t>(b) + 1) >> 1;
}
// Helper macros for defining a contiguous sequence of field offset constants.
// Example: (backslashes at the ends of respective lines of this multi-line
// macro definition are omitted here to please the compiler)
//
// #define MAP_FIELDS(V)
// V(kField1Offset, kTaggedSize)
// V(kField2Offset, kIntSize)
// V(kField3Offset, kIntSize)
// V(kField4Offset, kSystemPointerSize)
// V(kSize, 0)
//
// DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS)
//
#define DEFINE_ONE_FIELD_OFFSET(Name, Size, ...) \
Name, Name##End = Name + (Size)-1,
#define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \
enum { \
LIST_MACRO##_StartOffset = StartOffset - 1, \
LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \
};
// Size of the field defined by DEFINE_FIELD_OFFSET_CONSTANTS
#define FIELD_SIZE(Name) (Name##End + 1 - Name)
// Compare two offsets with static cast
#define STATIC_ASSERT_FIELD_OFFSETS_EQUAL(Offset1, Offset2) \
STATIC_ASSERT(static_cast<int>(Offset1) == Offset2)
// ----------------------------------------------------------------------------
// Hash function.
static const uint64_t kZeroHashSeed = 0;
// Thomas Wang, Integer Hash Functions.
// http://www.concentric.net/~Ttwang/tech/inthash.htm`
inline uint32_t ComputeUnseededHash(uint32_t key) {
uint32_t hash = key;
hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
hash = hash ^ (hash >> 12);
hash = hash + (hash << 2);
hash = hash ^ (hash >> 4);
hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
hash = hash ^ (hash >> 16);
return hash & 0x3fffffff;
}
inline uint32_t ComputeLongHash(uint64_t key) {
uint64_t hash = key;
hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
hash = hash ^ (hash >> 31);
hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
hash = hash ^ (hash >> 11);
hash = hash + (hash << 6);
hash = hash ^ (hash >> 22);
return static_cast<uint32_t>(hash & 0x3fffffff);
}
inline uint32_t ComputeSeededHash(uint32_t key, uint64_t seed) {
#ifdef V8_USE_SIPHASH
return halfsiphash(key, seed);
#else
return ComputeLongHash(static_cast<uint64_t>(key) ^ seed);
#endif // V8_USE_SIPHASH
}
inline uint32_t ComputePointerHash(void* ptr) {
return ComputeUnseededHash(
static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)));
}
inline uint32_t ComputeAddressHash(Address address) {
return ComputeUnseededHash(static_cast<uint32_t>(address & 0xFFFFFFFFul));
}
// ----------------------------------------------------------------------------
// Miscellaneous
// Memory offset for lower and higher bits in a 64 bit integer.
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const int kInt64LowerHalfMemoryOffset = 0;
static const int kInt64UpperHalfMemoryOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const int kInt64LowerHalfMemoryOffset = 4;
static const int kInt64UpperHalfMemoryOffset = 0;
#endif // V8_TARGET_LITTLE_ENDIAN
// A pointer that can only be set once and doesn't allow NULL values.
template <typename T>
class SetOncePointer {
public:
SetOncePointer() = default;
bool is_set() const { return pointer_ != nullptr; }
T* get() const {
DCHECK_NOT_NULL(pointer_);
return pointer_;
}
void set(T* value) {
DCHECK(pointer_ == nullptr && value != nullptr);
pointer_ = value;
}
SetOncePointer& operator=(T* value) {
set(value);
return *this;
}
bool operator==(std::nullptr_t) const { return pointer_ == nullptr; }
bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; }
private:
T* pointer_ = nullptr;
};
// Compare 8bit/16bit chars to 8bit/16bit chars.
template <typename lchar, typename rchar>
inline bool CompareCharsEqualUnsigned(const lchar* lhs, const rchar* rhs,
size_t chars) {
STATIC_ASSERT(std::is_unsigned<lchar>::value);
STATIC_ASSERT(std::is_unsigned<rchar>::value);
if (sizeof(*lhs) == sizeof(*rhs)) {
// memcmp compares byte-by-byte, but for equality it doesn't matter whether
// two-byte char comparison is little- or big-endian.
return memcmp(lhs, rhs, chars * sizeof(*lhs)) == 0;
}
for (const lchar* limit = lhs + chars; lhs < limit; ++lhs, ++rhs) {
if (*lhs != *rhs) return false;
}
return true;
}
template <typename lchar, typename rchar>
inline bool CompareCharsEqual(const lchar* lhs, const rchar* rhs,
size_t chars) {
using ulchar = typename std::make_unsigned<lchar>::type;
using urchar = typename std::make_unsigned<rchar>::type;
return CompareCharsEqualUnsigned(reinterpret_cast<const ulchar*>(lhs),
reinterpret_cast<const urchar*>(rhs), chars);
}
// Compare 8bit/16bit chars to 8bit/16bit chars.
template <typename lchar, typename rchar>
inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
size_t chars) {
STATIC_ASSERT(std::is_unsigned<lchar>::value);
STATIC_ASSERT(std::is_unsigned<rchar>::value);
if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) {
// memcmp compares byte-by-byte, yielding wrong results for two-byte
// strings on little-endian systems.
return memcmp(lhs, rhs, chars);
}
for (const lchar* limit = lhs + chars; lhs < limit; ++lhs, ++rhs) {
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
if (r != 0) return r;
}
return 0;
}
template <typename lchar, typename rchar>
inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) {
using ulchar = typename std::make_unsigned<lchar>::type;
using urchar = typename std::make_unsigned<rchar>::type;
return CompareCharsUnsigned(reinterpret_cast<const ulchar*>(lhs),
reinterpret_cast<const urchar*>(rhs), chars);
}
// Calculate 10^exponent.
inline int TenToThe(int exponent) {
DCHECK_LE(exponent, 9);
DCHECK_GE(exponent, 1);
int answer = 10;
for (int i = 1; i < exponent; i++) answer *= 10;
return answer;
}
// Bit field extraction.
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
}
inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
}
inline int32_t signed_bitextract_32(int msb, int lsb, uint32_t x) {
return static_cast<int32_t>(x << (31 - msb)) >> (lsb + 31 - msb);
}
// Check number width.
inline bool is_intn(int64_t x, unsigned n) {
DCHECK((0 < n) && (n < 64));
int64_t limit = static_cast<int64_t>(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
inline bool is_uintn(int64_t x, unsigned n) {
DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
return !(x >> n);
}
template <class T>
inline T truncate_to_intn(T x, unsigned n) {
DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
return (x & ((static_cast<T>(1) << n) - 1));
}
// clang-format off
#define INT_1_TO_63_LIST(V) \
V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) V(10) \
V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) V(20) \
V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) V(30) \
V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) V(50) \
V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) V(60) \
V(61) V(62) V(63)
// clang-format on
#define DECLARE_IS_INT_N(N) \
inline bool is_int##N(int64_t x) { return is_intn(x, N); }
#define DECLARE_IS_UINT_N(N) \
template <class T> \
inline bool is_uint##N(T x) { \
return is_uintn(x, N); \
}
#define DECLARE_TRUNCATE_TO_INT_N(N) \
template <class T> \
inline T truncate_to_int##N(T x) { \
return truncate_to_intn(x, N); \
}
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
#undef DECLARE_IS_INT_N
#undef DECLARE_IS_UINT_N
#undef DECLARE_TRUNCATE_TO_INT_N
// clang-format off
#define INT_0_TO_127_LIST(V) \
V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) \
V(10) V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) \
V(20) V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) \
V(30) V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) \
V(40) V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) \
V(50) V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) \
V(60) V(61) V(62) V(63) V(64) V(65) V(66) V(67) V(68) V(69) \
V(70) V(71) V(72) V(73) V(74) V(75) V(76) V(77) V(78) V(79) \
V(80) V(81) V(82) V(83) V(84) V(85) V(86) V(87) V(88) V(89) \
V(90) V(91) V(92) V(93) V(94) V(95) V(96) V(97) V(98) V(99) \
V(100) V(101) V(102) V(103) V(104) V(105) V(106) V(107) V(108) V(109) \
V(110) V(111) V(112) V(113) V(114) V(115) V(116) V(117) V(118) V(119) \
V(120) V(121) V(122) V(123) V(124) V(125) V(126) V(127)
// clang-format on
class FeedbackSlot {
public:
FeedbackSlot() : id_(kInvalidSlot) {}
explicit FeedbackSlot(int id) : id_(id) {}
int ToInt() const { return id_; }
static FeedbackSlot Invalid() { return FeedbackSlot(); }
bool IsInvalid() const { return id_ == kInvalidSlot; }
bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; }
bool operator!=(FeedbackSlot that) const { return !(*this == that); }
friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); }
V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream& os,
FeedbackSlot);
FeedbackSlot WithOffset(int offset) const {
return FeedbackSlot(id_ + offset);
}
private:
static const int kInvalidSlot = -1;
int id_;
};
V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, FeedbackSlot);
class BytecodeOffset {
public:
explicit BytecodeOffset(int id) : id_(id) {}
int ToInt() const { return id_; }
static BytecodeOffset None() { return BytecodeOffset(kNoneId); }
// Special bailout id support for deopting into the {JSConstructStub} stub.
// The following hard-coded deoptimization points are supported by the stub:
// - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}.
// - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}.
static BytecodeOffset ConstructStubCreate() { return BytecodeOffset(1); }
static BytecodeOffset ConstructStubInvoke() { return BytecodeOffset(2); }
bool IsValidForConstructStub() const {
return id_ == ConstructStubCreate().ToInt() ||
id_ == ConstructStubInvoke().ToInt();
}
bool IsNone() const { return id_ == kNoneId; }
bool operator==(const BytecodeOffset& other) const {
return id_ == other.id_;
}
bool operator!=(const BytecodeOffset& other) const {
return id_ != other.id_;
}
friend size_t hash_value(BytecodeOffset);
V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&,
BytecodeOffset);
private:
friend class Builtins;
static const int kNoneId = -1;
// Using 0 could disguise errors.
// Builtin continuations bailout ids start here. If you need to add a
// non-builtin BytecodeOffset, add it before this id so that this Id has the
// highest number.
static const int kFirstBuiltinContinuationId = 1;
int id_;
};
// ----------------------------------------------------------------------------
// I/O support.
// Our version of printf().
V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...);
V8_EXPORT_PRIVATE void PRINTF_FORMAT(2, 3)
PrintF(FILE* out, const char* format, ...);
// Prepends the current process ID to the output.
void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...);
// Prepends the current process ID and given isolate pointer to the output.
void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...);
// Read a line of characters after printing the prompt to stdout. The resulting
// char* needs to be disposed off with DeleteArray by the caller.
char* ReadLine(const char* prompt);
// Write size chars from str to the file given by filename.
// The file is overwritten. Returns the number of chars written.
int WriteChars(const char* filename, const char* str, int size,
bool verbose = true);
// Write size bytes to the file given by filename.
// The file is overwritten. Returns the number of bytes written.
int WriteBytes(const char* filename, const byte* bytes, int size,
bool verbose = true);
// Simple support to read a file into std::string.
// On return, *exits tells whether the file existed.
V8_EXPORT_PRIVATE std::string ReadFile(const char* filename, bool* exists,
bool verbose = true);
V8_EXPORT_PRIVATE std::string ReadFile(FILE* file, bool* exists,
bool verbose = true);
bool DoubleToBoolean(double d);
template <typename Char>
bool TryAddIndexChar(uint32_t* index, Char c);
enum ToIndexMode { kToArrayIndex, kToIntegerIndex };
// {index_t} is meant to be {uint32_t} or {size_t}.
template <typename Stream, typename index_t,
enum ToIndexMode mode = kToArrayIndex>
bool StringToIndex(Stream* stream, index_t* index);
// Returns the current stack top. Works correctly with ASAN and SafeStack.
// GetCurrentStackPosition() should not be inlined, because it works on stack
// frames if it were inlined into a function with a huge stack frame it would
// return an address significantly above the actual current stack position.
V8_EXPORT_PRIVATE V8_NOINLINE uintptr_t GetCurrentStackPosition();
static inline uint16_t ByteReverse16(uint16_t value) {
#if V8_HAS_BUILTIN_BSWAP16
return __builtin_bswap16(value);
#else
return value << 8 | (value >> 8 & 0x00FF);
#endif
}
static inline uint32_t ByteReverse32(uint32_t value) {
#if V8_HAS_BUILTIN_BSWAP32
return __builtin_bswap32(value);
#else
return value << 24 | ((value << 8) & 0x00FF0000) |
((value >> 8) & 0x0000FF00) | ((value >> 24) & 0x00000FF);
#endif
}
static inline uint64_t ByteReverse64(uint64_t value) {
#if V8_HAS_BUILTIN_BSWAP64
return __builtin_bswap64(value);
#else
size_t bits_of_v = sizeof(value) * kBitsPerByte;
return value << (bits_of_v - 8) |
((value << (bits_of_v - 24)) & 0x00FF000000000000) |
((value << (bits_of_v - 40)) & 0x0000FF0000000000) |
((value << (bits_of_v - 56)) & 0x000000FF00000000) |
((value >> (bits_of_v - 56)) & 0x00000000FF000000) |
((value >> (bits_of_v - 40)) & 0x0000000000FF0000) |
((value >> (bits_of_v - 24)) & 0x000000000000FF00) |
((value >> (bits_of_v - 8)) & 0x00000000000000FF);
#endif
}
template <typename V>
static inline V ByteReverse(V value) {
size_t size_of_v = sizeof(value);
switch (size_of_v) {
case 1:
return value;
case 2:
return static_cast<V>(ByteReverse16(static_cast<uint16_t>(value)));
case 4:
return static_cast<V>(ByteReverse32(static_cast<uint32_t>(value)));
case 8:
return static_cast<V>(ByteReverse64(static_cast<uint64_t>(value)));
default:
UNREACHABLE();
}
}
#if V8_OS_AIX
// glibc on aix has a bug when using ceil, trunc or nearbyint:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97086
template <typename T>
T FpOpWorkaround(T input, T value) {
if (/*if -*/ std::signbit(input) && value == 0.0 &&
/*if +*/ !std::signbit(value)) {
return -0.0;
}
return value;
}
#endif
V8_EXPORT_PRIVATE bool PassesFilter(base::Vector<const char> name,
base::Vector<const char> filter);
// Zap the specified area with a specific byte pattern. This currently defaults
// to int3 on x64 and ia32. On other architectures this will produce unspecified
// instruction sequences.
// TODO(jgruber): Better support for other architectures.
V8_INLINE void ZapCode(Address addr, size_t size_in_bytes) {
static constexpr int kZapByte = 0xCC;
std::memset(reinterpret_cast<void*>(addr), kZapByte, size_in_bytes);
}
} // namespace internal
} // namespace v8
#endif // V8_UTILS_UTILS_H_