blob: 311730480c65e74c0fe2270c6f5588c30c2046b5 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/factory.h"
#include <algorithm> // For copy
#include <memory> // For shared_ptr<>
#include <string>
#include <utility> // For move
#include "src/ast/ast-source-ranges.h"
#include "src/base/bits.h"
#include "src/builtins/accessors.h"
#include "src/builtins/constants-table-builder.h"
#include "src/codegen/compilation-cache.h"
#include "src/codegen/compiler.h"
#include "src/common/globals.h"
#include "src/diagnostics/basic-block-profiler.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/protectors-inl.h"
#include "src/heap/basic-memory-chunk.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/read-only-heap.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/init/bootstrapper.h"
#include "src/interpreter/interpreter.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/numbers/conversions.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/allocation-site-inl.h"
#include "src/objects/allocation-site-scopes.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/bigint.h"
#include "src/objects/cell-inl.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/feedback-cell-inl.h"
#include "src/objects/fixed-array-inl.h"
#include "src/objects/foreign-inl.h"
#include "src/objects/frame-array-inl.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-collection-inl.h"
#include "src/objects/js-generator-inl.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/js-weak-refs-inl.h"
#include "src/objects/literal-objects-inl.h"
#include "src/objects/microtask-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/promise-inl.h"
#include "src/objects/property-descriptor-object-inl.h"
#include "src/objects/scope-info.h"
#include "src/objects/stack-frame-info-inl.h"
#include "src/objects/struct-inl.h"
#include "src/objects/template-objects-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/roots/roots.h"
#include "src/strings/unicode-inl.h"
namespace v8 {
namespace internal {
namespace {
int ComputeCodeObjectSize(const CodeDesc& desc) {
bool has_unwinding_info = desc.unwinding_info != nullptr;
DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) ||
(!has_unwinding_info && desc.unwinding_info_size == 0));
int body_size = desc.instr_size;
int unwinding_info_size_field_size = kInt64Size;
if (has_unwinding_info) {
body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size +
unwinding_info_size_field_size;
}
int object_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment));
DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
return object_size;
}
} // namespace
Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc,
CodeKind kind)
: isolate_(isolate),
code_desc_(desc),
kind_(kind),
source_position_table_(isolate_->factory()->empty_byte_array()) {}
MaybeHandle<Code> Factory::CodeBuilder::BuildInternal(
bool retry_allocation_or_fail) {
const auto factory = isolate_->factory();
// Allocate objects needed for code initialization.
Handle<ByteArray> reloc_info =
factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld);
Handle<CodeDataContainer> data_container;
// Use a canonical off-heap trampoline CodeDataContainer if possible.
const int32_t promise_rejection_flag =
Code::IsPromiseRejectionField::encode(true);
if (read_only_data_container_ &&
(kind_specific_flags_ == 0 ||
kind_specific_flags_ == promise_rejection_flag)) {
const ReadOnlyRoots roots(isolate_);
const auto canonical_code_data_container =
kind_specific_flags_ == 0
? roots.trampoline_trivial_code_data_container_handle()
: roots.trampoline_promise_rejection_code_data_container_handle();
DCHECK_EQ(canonical_code_data_container->kind_specific_flags(),
kind_specific_flags_);
data_container = canonical_code_data_container;
} else {
data_container = factory->NewCodeDataContainer(
0, read_only_data_container_ ? AllocationType::kReadOnly
: AllocationType::kOld);
data_container->set_kind_specific_flags(kind_specific_flags_);
}
// Basic block profiling data for builtins is stored in the JS heap rather
// than in separately-allocated C++ objects. Allocate that data now if
// appropriate.
Handle<OnHeapBasicBlockProfilerData> on_heap_profiler_data;
if (profiler_data_ && isolate_->IsGeneratingEmbeddedBuiltins()) {
on_heap_profiler_data = profiler_data_->CopyToJSHeap(isolate_);
// Add the on-heap data to a global list, which keeps it alive and allows
// iteration.
Handle<ArrayList> list(isolate_->heap()->basic_block_profiling_data(),
isolate_);
Handle<ArrayList> new_list =
ArrayList::Add(isolate_, list, on_heap_profiler_data);
isolate_->heap()->SetBasicBlockProfilingData(new_list);
}
Handle<Code> code;
{
int object_size = ComputeCodeObjectSize(code_desc_);
Heap* heap = isolate_->heap();
CodePageCollectionMemoryModificationScope code_allocation(heap);
HeapObject result;
AllocationType allocation_type =
is_executable_ ? AllocationType::kCode : AllocationType::kReadOnly;
AllocationAlignment alignment = is_executable_
? AllocationAlignment::kCodeAligned
: AllocationAlignment::kWordAligned;
if (retry_allocation_or_fail) {
result = heap->AllocateRawWith<Heap::kRetryOrFail>(
object_size, allocation_type, AllocationOrigin::kRuntime, alignment);
} else {
result = heap->AllocateRawWith<Heap::kLightRetry>(
object_size, allocation_type, AllocationOrigin::kRuntime, alignment);
// Return an empty handle if we cannot allocate the code object.
if (result.is_null()) return MaybeHandle<Code>();
}
if (!is_movable_) {
result = heap->EnsureImmovableCode(result, object_size);
}
// The code object has not been fully initialized yet. We rely on the
// fact that no allocation will happen from this point on.
DisallowHeapAllocation no_gc;
result.set_map_after_allocation(*factory->code_map(), SKIP_WRITE_BARRIER);
code = handle(Code::cast(result), isolate_);
if (is_executable_) {
DCHECK(IsAligned(code->address(), kCodeAlignment));
DCHECK_IMPLIES(
!V8_ENABLE_THIRD_PARTY_HEAP_BOOL &&
!heap->memory_allocator()->code_range().is_empty(),
heap->memory_allocator()->code_range().contains(code->address()));
}
constexpr bool kIsNotOffHeapTrampoline = false;
const bool has_unwinding_info = code_desc_.unwinding_info != nullptr;
code->set_raw_instruction_size(code_desc_.instr_size);
code->set_relocation_info(*reloc_info);
code->initialize_flags(kind_, has_unwinding_info, is_turbofanned_,
stack_slots_, kIsNotOffHeapTrampoline);
code->set_builtin_index(builtin_index_);
code->set_inlined_bytecode_size(inlined_bytecode_size_);
code->set_code_data_container(*data_container);
code->set_deoptimization_data(*deoptimization_data_);
code->set_source_position_table(*source_position_table_);
code->set_safepoint_table_offset(code_desc_.safepoint_table_offset);
code->set_handler_table_offset(code_desc_.handler_table_offset);
code->set_constant_pool_offset(code_desc_.constant_pool_offset);
code->set_code_comments_offset(code_desc_.code_comments_offset);
// Allow self references to created code object by patching the handle to
// point to the newly allocated Code object.
Handle<Object> self_reference;
if (self_reference_.ToHandle(&self_reference)) {
DCHECK(self_reference->IsOddball());
DCHECK(Oddball::cast(*self_reference).kind() ==
Oddball::kSelfReferenceMarker);
if (isolate_->IsGeneratingEmbeddedBuiltins()) {
isolate_->builtins_constants_table_builder()->PatchSelfReference(
self_reference, code);
}
*(self_reference.location()) = code->ptr();
}
// Likewise, any references to the basic block counters marker need to be
// updated to point to the newly-allocated counters array.
if (!on_heap_profiler_data.is_null()) {
isolate_->builtins_constants_table_builder()
->PatchBasicBlockCountersReference(
handle(on_heap_profiler_data->counts(), isolate_));
}
// Migrate generated code.
// The generated code can contain embedded objects (typically from handles)
// in a pointer-to-tagged-value format (i.e. with indirection like a handle)
// that are dereferenced during the copy to point directly to the actual
// heap objects. These pointers can include references to the code object
// itself, through the self_reference parameter.
code->CopyFromNoFlush(heap, code_desc_);
code->clear_padding();
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) code->ObjectVerify(isolate_);
#endif
// Flush the instruction cache before changing the permissions.
// Note: we do this before setting permissions to ReadExecute because on
// some older ARM kernels there is a bug which causes an access error on
// cache flush instructions to trigger access error on non-writable memory.
// See https://bugs.chromium.org/p/v8/issues/detail?id=8157
code->FlushICache();
}
if (profiler_data_ && FLAG_turbo_profiling_verbose) {
#ifdef ENABLE_DISASSEMBLER
std::ostringstream os;
code->Disassemble(nullptr, os, isolate_);
if (!on_heap_profiler_data.is_null()) {
Handle<String> disassembly =
isolate_->factory()->NewStringFromAsciiChecked(os.str().c_str(),
AllocationType::kOld);
on_heap_profiler_data->set_code(*disassembly);
} else {
profiler_data_->SetCode(os);
}
#endif // ENABLE_DISASSEMBLER
}
return code;
}
MaybeHandle<Code> Factory::CodeBuilder::TryBuild() {
return BuildInternal(false);
}
Handle<Code> Factory::CodeBuilder::Build() {
return BuildInternal(true).ToHandleChecked();
}
HeapObject Factory::AllocateRaw(int size, AllocationType allocation,
AllocationAlignment alignment) {
return isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
size, allocation, AllocationOrigin::kRuntime, alignment);
}
HeapObject Factory::AllocateRawWithAllocationSite(
Handle<Map> map, AllocationType allocation,
Handle<AllocationSite> allocation_site) {
DCHECK(map->instance_type() != MAP_TYPE);
int size = map->instance_size();
if (!allocation_site.is_null()) size += AllocationMemento::kSize;
HeapObject result =
isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation);
WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
? SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
result.set_map_after_allocation(*map, write_barrier_mode);
if (!allocation_site.is_null()) {
AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
Object(result.ptr() + map->instance_size()));
InitializeAllocationMemento(alloc_memento, *allocation_site);
}
return result;
}
void Factory::InitializeAllocationMemento(AllocationMemento memento,
AllocationSite allocation_site) {
memento.set_map_after_allocation(*allocation_memento_map(),
SKIP_WRITE_BARRIER);
memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
if (FLAG_allocation_site_pretenuring) {
allocation_site.IncrementMementoCreateCount();
}
}
HeapObject Factory::New(Handle<Map> map, AllocationType allocation) {
DCHECK(map->instance_type() != MAP_TYPE);
int size = map->instance_size();
HeapObject result =
isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation);
// New space objects are allocated white.
WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
? SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
result.set_map_after_allocation(*map, write_barrier_mode);
return result;
}
Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align,
AllocationType allocation,
AllocationOrigin origin) {
AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned;
Heap* heap = isolate()->heap();
HeapObject result = heap->AllocateRawWith<Heap::kRetryOrFail>(
size, allocation, origin, alignment);
heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo);
return Handle<HeapObject>(result, isolate());
}
Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
Handle<PrototypeInfo> result = Handle<PrototypeInfo>::cast(
NewStruct(PROTOTYPE_INFO_TYPE, AllocationType::kOld));
result->set_prototype_users(Smi::zero());
result->set_registry_slot(PrototypeInfo::UNREGISTERED);
result->set_bit_field(0);
result->set_module_namespace(*undefined_value());
return result;
}
Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
Handle<FixedArray> indices) {
Handle<EnumCache> result =
Handle<EnumCache>::cast(NewStruct(ENUM_CACHE_TYPE, AllocationType::kOld));
result->set_keys(*keys);
result->set_indices(*indices);
return result;
}
Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
AllocationType allocation) {
Handle<Tuple2> result =
Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, allocation));
result->set_value1(*value1);
result->set_value2(*value2);
return result;
}
Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
Handle<Object> to_number,
const char* type_of, byte kind) {
Handle<Oddball> oddball(Oddball::cast(New(map, AllocationType::kReadOnly)),
isolate());
Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
return oddball;
}
Handle<Oddball> Factory::NewSelfReferenceMarker() {
return NewOddball(self_reference_marker_map(), "self_reference_marker",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kSelfReferenceMarker);
}
Handle<Oddball> Factory::NewBasicBlockCountersMarker() {
return NewOddball(basic_block_counters_marker_map(),
"basic_block_counters_marker",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kBasicBlockCountersMarker);
}
Handle<PropertyArray> Factory::NewPropertyArray(int length) {
DCHECK_LE(0, length);
if (length == 0) return empty_property_array();
HeapObject result = AllocateRawFixedArray(length, AllocationType::kYoung);
result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
Handle<PropertyArray> array(PropertyArray::cast(result), isolate());
array->initialize_length(length);
MemsetTagged(array->data_start(), *undefined_value(), length);
return array;
}
MaybeHandle<FixedArray> Factory::TryNewFixedArray(
int length, AllocationType allocation_type) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
int size = FixedArray::SizeFor(length);
Heap* heap = isolate()->heap();
AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
HeapObject result;
if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) {
BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(result);
chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
}
result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
Handle<FixedArray> array(FixedArray::cast(result), isolate());
array->set_length(length);
MemsetTagged(array->data_start(), ReadOnlyRoots(heap).undefined_value(),
length);
return array;
}
Handle<FixedArray> Factory::NewUninitializedFixedArray(int length) {
if (length == 0) return empty_fixed_array();
if (length < 0 || length > FixedArray::kMaxLength) {
isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
}
// TODO(ulan): As an experiment this temporarily returns an initialized fixed
// array. After getting canary/performance coverage, either remove the
// function or revert to returning uninitilized array.
return NewFixedArrayWithFiller(read_only_roots().fixed_array_map_handle(),
length, undefined_value(),
AllocationType::kYoung);
}
Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray(
int length) {
if (length == 0) return empty_closure_feedback_cell_array();
Handle<ClosureFeedbackCellArray> feedback_cell_array =
Handle<ClosureFeedbackCellArray>::cast(NewFixedArrayWithMap(
read_only_roots().closure_feedback_cell_array_map_handle(), length,
AllocationType::kOld));
return feedback_cell_array;
}
Handle<FeedbackVector> Factory::NewFeedbackVector(
Handle<SharedFunctionInfo> shared,
Handle<ClosureFeedbackCellArray> closure_feedback_cell_array) {
int length = shared->feedback_metadata().slot_count();
DCHECK_LE(0, length);
int size = FeedbackVector::SizeFor(length);
HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld,
*feedback_vector_map());
Handle<FeedbackVector> vector(FeedbackVector::cast(result), isolate());
vector->set_shared_function_info(*shared);
vector->set_optimized_code_weak_or_smi(MaybeObject::FromSmi(Smi::FromEnum(
FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution
: OptimizationMarker::kNone)));
vector->set_length(length);
vector->set_invocation_count(0);
vector->set_profiler_ticks(0);
vector->clear_padding();
vector->set_closure_feedback_cell_array(*closure_feedback_cell_array);
// TODO(leszeks): Initialize based on the feedback metadata.
MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length);
return vector;
}
Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(int length) {
DCHECK_LE(0, length);
int size = EmbedderDataArray::SizeFor(length);
HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kYoung,
*embedder_data_array_map());
Handle<EmbedderDataArray> array(EmbedderDataArray::cast(result), isolate());
array->set_length(length);
if (length > 0) {
ObjectSlot start(array->slots_start());
ObjectSlot end(array->slots_end());
size_t slot_count = end - start;
MemsetTagged(start, *undefined_value(), slot_count);
}
return array;
}
Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(int length) {
DCHECK_LE(0, length);
Handle<FixedArrayBase> array = NewFixedDoubleArray(length);
if (length > 0) {
Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
}
return array;
}
Handle<FrameArray> Factory::NewFrameArray(int number_of_frames) {
DCHECK_LE(0, number_of_frames);
Handle<FixedArray> result =
NewFixedArrayWithHoles(FrameArray::LengthFor(number_of_frames));
result->set(FrameArray::kFrameCountIndex, Smi::zero());
return Handle<FrameArray>::cast(result);
}
template <typename T>
Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
AllocationType allocation) {
// Capacity must be a power of two, since we depend on being able
// to divide and multiple by 2 (kLoadFactor) to derive capacity
// from number of buckets. If we decide to change kLoadFactor
// to something other than 2, capacity should be stored as another
// field of this object.
DCHECK_EQ(T::kLoadFactor, 2);
capacity = base::bits::RoundUpToPowerOfTwo32(Max(T::kMinCapacity, capacity));
capacity = Min(capacity, T::kMaxCapacity);
DCHECK_LT(0, capacity);
DCHECK_EQ(0, capacity % T::kLoadFactor);
int size = T::SizeFor(capacity);
HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map);
Handle<T> table(T::cast(result), isolate());
table->Initialize(isolate(), capacity);
return table;
}
Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
int capacity, AllocationType allocation) {
return AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
small_ordered_hash_set_map(), capacity, allocation);
}
Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
int capacity, AllocationType allocation) {
return AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
small_ordered_hash_map_map(), capacity, allocation);
}
Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary(
int capacity, AllocationType allocation) {
Handle<SmallOrderedNameDictionary> dict =
AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>(
small_ordered_name_dictionary_map(), capacity, allocation);
dict->SetHash(PropertyArray::kNoHashSentinel);
return dict;
}
Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity)
.ToHandleChecked();
}
Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity)
.ToHandleChecked();
}
Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary() {
return OrderedNameDictionary::Allocate(isolate(),
OrderedNameDictionary::kMinCapacity)
.ToHandleChecked();
}
Handle<PropertyDescriptorObject> Factory::NewPropertyDescriptorObject() {
Handle<PropertyDescriptorObject> object =
Handle<PropertyDescriptorObject>::cast(
NewStruct(PROPERTY_DESCRIPTOR_OBJECT_TYPE, AllocationType::kYoung));
object->set_flags(0);
object->set_value(*the_hole_value(), SKIP_WRITE_BARRIER);
object->set_get(*the_hole_value(), SKIP_WRITE_BARRIER);
object->set_set(*the_hole_value(), SKIP_WRITE_BARRIER);
return object;
}
// Internalized strings are created in the old generation (data space).
Handle<String> Factory::InternalizeUtf8String(
const Vector<const char>& string) {
Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string);
Utf8Decoder decoder(utf8_data);
if (decoder.is_ascii()) return InternalizeString(utf8_data);
if (decoder.is_one_byte()) {
std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]);
decoder.Decode(buffer.get(), utf8_data);
return InternalizeString(
Vector<const uint8_t>(buffer.get(), decoder.utf16_length()));
}
std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]);
decoder.Decode(buffer.get(), utf8_data);
return InternalizeString(
Vector<const uc16>(buffer.get(), decoder.utf16_length()));
}
Handle<String> Factory::InternalizeString(Vector<const uint8_t> string,
bool convert_encoding) {
SequentialStringKey<uint8_t> key(string, HashSeed(isolate()),
convert_encoding);
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeString(Vector<const uint16_t> string,
bool convert_encoding) {
SequentialStringKey<uint16_t> key(string, HashSeed(isolate()),
convert_encoding);
return InternalizeStringWithKey(&key);
}
template <typename SeqString>
Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from,
int length, bool convert_encoding) {
SeqSubStringKey<SeqString> key(isolate(), string, from, length,
convert_encoding);
return InternalizeStringWithKey(&key);
}
template Handle<String> Factory::InternalizeString(
Handle<SeqOneByteString> string, int from, int length,
bool convert_encoding);
template Handle<String> Factory::InternalizeString(
Handle<SeqTwoByteString> string, int from, int length,
bool convert_encoding);
template <class StringTableKey>
Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
return StringTable::LookupKey(isolate(), key);
}
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
Handle<String> Factory::InternalizeStringWithKey(OneByteStringKey* key);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
Handle<String> Factory::InternalizeStringWithKey(TwoByteStringKey* key);
MaybeHandle<String> Factory::NewStringFromOneByte(
const Vector<const uint8_t>& string, AllocationType allocation) {
DCHECK_NE(allocation, AllocationType::kReadOnly);
int length = string.length();
if (length == 0) return empty_string();
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawOneByteString(string.length(), allocation),
String);
DisallowHeapAllocation no_gc;
// Copy the characters into the new object.
CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(),
length);
return result;
}
MaybeHandle<String> Factory::NewStringFromUtf8(const Vector<const char>& string,
AllocationType allocation) {
Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string);
Utf8Decoder decoder(utf8_data);
if (decoder.utf16_length() == 0) return empty_string();
if (decoder.is_one_byte()) {
// Allocate string.
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawOneByteString(decoder.utf16_length(), allocation), String);
DisallowHeapAllocation no_gc;
decoder.Decode(result->GetChars(no_gc), utf8_data);
return result;
}
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(decoder.utf16_length(), allocation), String);
DisallowHeapAllocation no_gc;
decoder.Decode(result->GetChars(no_gc), utf8_data);
return result;
}
MaybeHandle<String> Factory::NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int length,
AllocationType allocation) {
Vector<const uint8_t> utf8_data;
{
DisallowHeapAllocation no_gc;
utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
}
Utf8Decoder decoder(utf8_data);
if (length == 1) {
uint16_t t;
// Decode even in the case of length 1 since it can be a bad character.
decoder.Decode(&t, utf8_data);
return LookupSingleCharacterStringFromCode(t);
}
if (decoder.is_ascii()) {
// If the string is ASCII, we can just make a substring.
// TODO(v8): the allocation flag is ignored in this case.
return NewSubString(str, begin, begin + length);
}
DCHECK_GT(decoder.utf16_length(), 0);
if (decoder.is_one_byte()) {
// Allocate string.
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawOneByteString(decoder.utf16_length(), allocation), String);
DisallowHeapAllocation no_gc;
// Update pointer references, since the original string may have moved after
// allocation.
utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
decoder.Decode(result->GetChars(no_gc), utf8_data);
return result;
}
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(decoder.utf16_length(), allocation), String);
DisallowHeapAllocation no_gc;
// Update pointer references, since the original string may have moved after
// allocation.
utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
decoder.Decode(result->GetChars(no_gc), utf8_data);
return result;
}
MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
int length,
AllocationType allocation) {
DCHECK_NE(allocation, AllocationType::kReadOnly);
if (length == 0) return empty_string();
if (String::IsOneByte(string, length)) {
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawOneByteString(length, allocation), String);
DisallowHeapAllocation no_gc;
CopyChars(result->GetChars(no_gc), string, length);
return result;
} else {
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawTwoByteString(length, allocation), String);
DisallowHeapAllocation no_gc;
CopyChars(result->GetChars(no_gc), string, length);
return result;
}
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const Vector<const uc16>& string, AllocationType allocation) {
return NewStringFromTwoByte(string.begin(), string.length(), allocation);
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const ZoneVector<uc16>* string, AllocationType allocation) {
return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
allocation);
}
namespace {
bool inline IsOneByte(Handle<String> str) {
return str->IsOneByteRepresentation();
}
inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) {
DCHECK(s->length() == len);
String::WriteToFlat(*s, chars, 0, len);
}
inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) {
DCHECK(s->length() == len);
String::WriteToFlat(*s, chars, 0, len);
}
} // namespace
template <bool is_one_byte, typename T>
Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars,
uint32_t hash_field) {
DCHECK_LE(0, chars);
DCHECK_GE(String::kMaxLength, chars);
// Compute map and object size.
int size;
Map map;
if (is_one_byte) {
map = *one_byte_internalized_string_map();
size = SeqOneByteString::SizeFor(chars);
} else {
map = *internalized_string_map();
size = SeqTwoByteString::SizeFor(chars);
}
HeapObject result =
AllocateRawWithImmortalMap(size,
isolate()->heap()->CanAllocateInReadOnlySpace()
? AllocationType::kReadOnly
: AllocationType::kOld,
map);
Handle<String> answer(String::cast(result), isolate());
answer->set_length(chars);
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
DisallowHeapAllocation no_gc;
if (is_one_byte) {
WriteOneByteData(t, SeqOneByteString::cast(*answer).GetChars(no_gc), chars);
} else {
WriteTwoByteData(t, SeqTwoByteString::cast(*answer).GetChars(no_gc), chars);
}
return answer;
}
Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
int chars,
uint32_t hash_field) {
if (IsOneByte(string)) {
return AllocateInternalizedStringImpl<true>(string, chars, hash_field);
}
return AllocateInternalizedStringImpl<false>(string, chars, hash_field);
}
namespace {
MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) {
switch (string->map().instance_type()) {
case STRING_TYPE:
return f->internalized_string_map();
case ONE_BYTE_STRING_TYPE:
return f->one_byte_internalized_string_map();
case EXTERNAL_STRING_TYPE:
return f->external_internalized_string_map();
case EXTERNAL_ONE_BYTE_STRING_TYPE:
return f->external_one_byte_internalized_string_map();
case UNCACHED_EXTERNAL_STRING_TYPE:
return f->uncached_external_internalized_string_map();
case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE:
return f->uncached_external_one_byte_internalized_string_map();
default:
return MaybeHandle<Map>(); // No match found.
}
}
} // namespace
MaybeHandle<Map> Factory::InternalizedStringMapForString(
Handle<String> string) {
// If the string is in the young generation, it cannot be used as
// internalized.
if (Heap::InYoungGeneration(*string)) return MaybeHandle<Map>();
return GetInternalizedStringMap(this, string);
}
template <class StringClass>
Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
Handle<StringClass> cast_string = Handle<StringClass>::cast(string);
Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked();
Handle<StringClass> external_string(
StringClass::cast(New(map, AllocationType::kOld)), isolate());
external_string->set_length(cast_string->length());
external_string->set_hash_field(cast_string->hash_field());
external_string->SetResource(isolate(), nullptr);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
template Handle<ExternalOneByteString>
Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
template Handle<ExternalTwoByteString>
Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
Handle<String> Factory::LookupSingleCharacterStringFromCode(uint16_t code) {
if (code <= unibrow::Latin1::kMaxChar) {
{
DisallowHeapAllocation no_allocation;
Object value = single_character_string_cache()->get(code);
if (value != *undefined_value()) {
return handle(String::cast(value), isolate());
}
}
uint8_t buffer[] = {static_cast<uint8_t>(code)};
Handle<String> result = InternalizeString(Vector<const uint8_t>(buffer, 1));
single_character_string_cache()->set(code, *result);
return result;
}
uint16_t buffer[] = {code};
return InternalizeString(Vector<const uint16_t>(buffer, 1));
}
Handle<String> Factory::MakeOrFindTwoCharacterString(uint16_t c1, uint16_t c2) {
if ((c1 | c2) <= unibrow::Latin1::kMaxChar) {
uint8_t buffer[] = {static_cast<uint8_t>(c1), static_cast<uint8_t>(c2)};
return InternalizeString(Vector<const uint8_t>(buffer, 2));
}
uint16_t buffer[] = {c1, c2};
return InternalizeString(Vector<const uint16_t>(buffer, 2));
}
Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
DCHECK_GE(lead, 0xD800);
DCHECK_LE(lead, 0xDBFF);
DCHECK_GE(trail, 0xDC00);
DCHECK_LE(trail, 0xDFFF);
Handle<SeqTwoByteString> str =
isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
DisallowHeapAllocation no_allocation;
uc16* dest = str->GetChars(no_allocation);
dest[0] = lead;
dest[1] = trail;
return str;
}
Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
int end) {
#if VERIFY_HEAP
if (FLAG_verify_heap) str->StringVerify(isolate());
#endif
DCHECK(begin > 0 || end < str->length());
str = String::Flatten(isolate(), str);
int length = end - begin;
if (length <= 0) return empty_string();
if (length == 1) {
return LookupSingleCharacterStringFromCode(str->Get(begin));
}
if (length == 2) {
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the string
// table to prevent creation of many unnecessary strings.
uint16_t c1 = str->Get(begin);
uint16_t c2 = str->Get(begin + 1);
return MakeOrFindTwoCharacterString(c1, c2);
}
if (!FLAG_string_slices || length < SlicedString::kMinLength) {
if (str->IsOneByteRepresentation()) {
Handle<SeqOneByteString> result =
NewRawOneByteString(length).ToHandleChecked();
DisallowHeapAllocation no_gc;
uint8_t* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, end);
return result;
} else {
Handle<SeqTwoByteString> result =
NewRawTwoByteString(length).ToHandleChecked();
DisallowHeapAllocation no_gc;
uc16* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, end);
return result;
}
}
int offset = begin;
if (str->IsSlicedString()) {
Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
str = Handle<String>(slice->parent(), isolate());
offset += slice->offset();
}
if (str->IsThinString()) {
Handle<ThinString> thin = Handle<ThinString>::cast(str);
str = handle(thin->actual(), isolate());
}
DCHECK(str->IsSeqString() || str->IsExternalString());
Handle<Map> map = str->IsOneByteRepresentation()
? sliced_one_byte_string_map()
: sliced_string_map();
Handle<SlicedString> slice(
SlicedString::cast(New(map, AllocationType::kYoung)), isolate());
slice->set_hash_field(String::kEmptyHashField);
slice->set_length(length);
slice->set_parent(*str);
slice->set_offset(offset);
return slice;
}
MaybeHandle<String> Factory::NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
Handle<Map> map = resource->IsCacheable()
? external_one_byte_string_map()
: uncached_external_one_byte_string_map();
Handle<ExternalOneByteString> external_string(
ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate());
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
Handle<Map> map = resource->IsCacheable() ? external_string_map()
: uncached_external_string_map();
Handle<ExternalTwoByteString> external_string(
ExternalTwoByteString::cast(New(map, AllocationType::kOld)), isolate());
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(),
isolate());
Handle<String> flat_string = String::Flatten(isolate(), string);
Handle<JSStringIterator> iterator =
Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
iterator->set_string(*flat_string);
iterator->set_index(0);
return iterator;
}
Handle<Symbol> Factory::NewSymbol(AllocationType allocation) {
DCHECK(allocation != AllocationType::kYoung);
// Statically ensure that it is safe to allocate symbols in paged spaces.
STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize);
HeapObject result =
AllocateRawWithImmortalMap(Symbol::kSize, allocation, *symbol_map());
// Generate a random hash value.
int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask);
Handle<Symbol> symbol(Symbol::cast(result), isolate());
symbol->set_hash_field(Name::kIsNotIntegerIndexMask |
(hash << Name::kHashShift));
symbol->set_description(*undefined_value());
symbol->set_flags(0);
DCHECK(!symbol->is_private());
return symbol;
}
Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) {
DCHECK(allocation != AllocationType::kYoung);
Handle<Symbol> symbol = NewSymbol(allocation);
symbol->set_is_private(true);
return symbol;
}
Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) {
Handle<Symbol> symbol = NewSymbol();
symbol->set_is_private_name();
symbol->set_description(*name);
return symbol;
}
Handle<Context> Factory::NewContext(Handle<Map> map, int size,
int variadic_part_length,
AllocationType allocation) {
DCHECK_LE(Context::kTodoHeaderSize, size);
DCHECK(IsAligned(size, kTaggedSize));
DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
DCHECK_LE(Context::SizeFor(variadic_part_length), size);
HeapObject result =
isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation);
result.set_map_after_allocation(*map);
Handle<Context> context(Context::cast(result), isolate());
context->set_length(variadic_part_length);
DCHECK_EQ(context->SizeFromMap(*map), size);
if (size > Context::kTodoHeaderSize) {
ObjectSlot start = context->RawField(Context::kTodoHeaderSize);
ObjectSlot end = context->RawField(size);
size_t slot_count = end - start;
MemsetTagged(start, *undefined_value(), slot_count);
}
return context;
}
Handle<NativeContext> Factory::NewNativeContext() {
Handle<Map> map = NewMap(NATIVE_CONTEXT_TYPE, kVariableSizeSentinel);
Handle<NativeContext> context = Handle<NativeContext>::cast(
NewContext(map, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS,
AllocationType::kOld));
context->set_native_context_map(*map);
map->set_native_context(*context);
context->set_scope_info(ReadOnlyRoots(isolate()).native_scope_info());
context->set_previous(Context::unchecked_cast(Smi::zero()));
context->set_extension(*undefined_value());
context->set_errors_thrown(Smi::zero());
context->set_math_random_index(Smi::zero());
context->set_serialized_objects(*empty_fixed_array());
context->set_microtask_queue(isolate(), nullptr);
context->set_osr_code_cache(*empty_weak_fixed_array());
context->set_retained_maps(*empty_weak_array_list());
return context;
}
Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context =
NewContext(handle(outer->script_context_map(), isolate()),
Context::SizeFor(variadic_part_length), variadic_part_length,
AllocationType::kOld);
context->set_scope_info(*scope_info);
context->set_previous(*outer);
DCHECK(context->IsScriptContext());
return context;
}
Handle<ScriptContextTable> Factory::NewScriptContextTable() {
Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast(
NewFixedArrayWithMap(read_only_roots().script_context_table_map_handle(),
ScriptContextTable::kMinLength));
context_table->synchronized_set_used(0);
return context_table;
}
Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module,
Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context = NewContext(
isolate()->module_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kOld);
context->set_scope_info(*scope_info);
context->set_previous(*outer);
context->set_extension(*module);
DCHECK(context->IsModuleContext());
return context;
}
Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
Handle<ScopeInfo> scope_info) {
Handle<Map> map;
switch (scope_info->scope_type()) {
case EVAL_SCOPE:
map = isolate()->eval_context_map();
break;
case FUNCTION_SCOPE:
map = isolate()->function_context_map();
break;
default:
UNREACHABLE();
}
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context =
NewContext(map, Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
context->set_scope_info(*scope_info);
context->set_previous(*outer);
return context;
}
Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<Object> thrown_object) {
DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
// TODO(ishell): Take the details from CatchContext class.
int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1;
Handle<Context> context = NewContext(
isolate()->catch_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
context->set_scope_info(*scope_info);
context->set_previous(*previous);
context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
return context;
}
Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped,
Handle<StringSet> blocklist) {
STATIC_ASSERT(Context::BLOCK_LIST_INDEX ==
Context::MIN_CONTEXT_EXTENDED_SLOTS + 1);
DCHECK(scope_info->IsDebugEvaluateScope());
Handle<HeapObject> ext = extension.is_null()
? Handle<HeapObject>::cast(undefined_value())
: Handle<HeapObject>::cast(extension);
// TODO(ishell): Take the details from DebugEvaluateContextContext class.
int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS + 2;
Handle<Context> c = NewContext(isolate()->debug_evaluate_context_map(),
Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
c->set_scope_info(*scope_info);
c->set_previous(*previous);
c->set_extension(*ext);
if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
if (!blocklist.is_null()) c->set(Context::BLOCK_LIST_INDEX, *blocklist);
return c;
}
Handle<Context> Factory::NewWithContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension) {
DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE);
// TODO(ishell): Take the details from WithContext class.
int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS;
Handle<Context> context = NewContext(
isolate()->with_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
context->set_scope_info(*scope_info);
context->set_previous(*previous);
context->set_extension(*extension);
return context;
}
Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info) {
DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE,
scope_info->scope_type() == CLASS_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context = NewContext(
isolate()->block_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
context->set_scope_info(*scope_info);
context->set_previous(*previous);
return context;
}
Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
int variadic_part_length) {
DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
Handle<Context> context = NewContext(
isolate()->function_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info());
context->set_previous(*native_context);
return context;
}
Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
int aliased_context_slot) {
Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung));
entry->set_aliased_context_slot(aliased_context_slot);
return entry;
}
Handle<AccessorInfo> Factory::NewAccessorInfo() {
Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(
NewStruct(ACCESSOR_INFO_TYPE, AllocationType::kOld));
DisallowHeapAllocation no_gc;
info->set_name(*empty_string());
info->set_flags(0); // Must clear the flags, it was initialized as undefined.
info->set_is_sloppy(true);
info->set_initial_property_attributes(NONE);
// Clear some other fields that should not be undefined.
info->set_getter(Smi::zero());
info->set_setter(Smi::zero());
info->set_js_getter(Smi::zero());
return info;
}
void Factory::AddToScriptList(Handle<Script> script) {
Handle<WeakArrayList> scripts = script_list();
scripts = WeakArrayList::Append(isolate(), scripts,
MaybeObjectHandle::Weak(script));
isolate()->heap()->set_script_list(*scripts);
}
Handle<Script> Factory::CloneScript(Handle<Script> script) {
Heap* heap = isolate()->heap();
int script_id = isolate()->GetNextScriptId();
Handle<Script> new_script =
Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld));
new_script->set_source(script->source());
new_script->set_name(script->name());
new_script->set_id(script_id);
new_script->set_line_offset(script->line_offset());
new_script->set_column_offset(script->column_offset());
new_script->set_context_data(script->context_data());
new_script->set_type(script->type());
new_script->set_line_ends(ReadOnlyRoots(heap).undefined_value());
new_script->set_eval_from_shared_or_wrapped_arguments(
script->eval_from_shared_or_wrapped_arguments());
new_script->set_shared_function_infos(*empty_weak_fixed_array(),
SKIP_WRITE_BARRIER);
new_script->set_eval_from_position(script->eval_from_position());
new_script->set_flags(script->flags());
new_script->set_host_defined_options(script->host_defined_options());
Handle<WeakArrayList> scripts = script_list();
scripts = WeakArrayList::AddToEnd(isolate(), scripts,
MaybeObjectHandle::Weak(new_script));
heap->set_script_list(*scripts);
LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
return new_script;
}
Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
Handle<Context> context) {
DCHECK(callable->IsCallable());
Handle<CallableTask> microtask =
Handle<CallableTask>::cast(NewStruct(CALLABLE_TASK_TYPE));
microtask->set_callable(*callable);
microtask->set_context(*context);
return microtask;
}
Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
Handle<Foreign> data) {
Handle<CallbackTask> microtask =
Handle<CallbackTask>::cast(NewStruct(CALLBACK_TASK_TYPE));
microtask->set_callback(*callback);
microtask->set_data(*data);
return microtask;
}
Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable,
Handle<JSReceiver> then, Handle<Context> context) {
DCHECK(then->IsCallable());
Handle<PromiseResolveThenableJobTask> microtask =
Handle<PromiseResolveThenableJobTask>::cast(
NewStruct(PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE));
microtask->set_promise_to_resolve(*promise_to_resolve);
microtask->set_thenable(*thenable);
microtask->set_then(*then);
microtask->set_context(*context);
return microtask;
}
Handle<Foreign> Factory::NewForeign(Address addr) {
// Statically ensure that it is safe to allocate foreigns in paged spaces.
STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize);
Map map = *foreign_map();
HeapObject result = AllocateRawWithImmortalMap(map.instance_size(),
AllocationType::kYoung, map);
Handle<Foreign> foreign(Foreign::cast(result), isolate());
foreign->set_foreign_address(isolate(), addr);
return foreign;
}
Handle<WasmTypeInfo> Factory::NewWasmTypeInfo(Address type_address,
Handle<Map> parent) {
Handle<ArrayList> subtypes = ArrayList::New(isolate(), 0);
Map map = *wasm_type_info_map();
HeapObject result = AllocateRawWithImmortalMap(map.instance_size(),
AllocationType::kYoung, map);
Handle<WasmTypeInfo> info(WasmTypeInfo::cast(result), isolate());
info->set_foreign_address(isolate(), type_address);
info->set_parent(*parent);
info->set_subtypes(*subtypes);
return info;
}
Handle<Cell> Factory::NewCell(Handle<Object> value) {
STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize);
HeapObject result = AllocateRawWithImmortalMap(
Cell::kSize, AllocationType::kOld, *cell_map());
Handle<Cell> cell(Cell::cast(result), isolate());
cell->set_value(*value);
return cell;
}
Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
HeapObject result =
AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize,
AllocationType::kOld, *no_closures_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
cell->set_value(*value);
cell->SetInitialInterruptBudget();
cell->clear_padding();
return cell;
}
Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
HeapObject result =
AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize,
AllocationType::kOld, *one_closure_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
cell->set_value(*value);
cell->SetInitialInterruptBudget();
cell->clear_padding();
return cell;
}
Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize,
AllocationType::kOld,
*many_closures_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
cell->set_value(*value);
cell->SetInitialInterruptBudget();
cell->clear_padding();
return cell;
}
Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
AllocationType allocation) {
DCHECK(name->IsUniqueName());
STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
HeapObject result = AllocateRawWithImmortalMap(
PropertyCell::kSize, allocation, *global_property_cell_map());
Handle<PropertyCell> cell(PropertyCell::cast(result), isolate());
cell->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
SKIP_WRITE_BARRIER);
cell->set_property_details(PropertyDetails(Smi::zero()));
cell->set_name(*name);
cell->set_value(*the_hole_value());
return cell;
}
Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
int slack) {
int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
Handle<TransitionArray> array = Handle<TransitionArray>::cast(
NewWeakFixedArrayWithMap(read_only_roots().transition_array_map(),
capacity, AllocationType::kOld));
// Transition arrays are AllocationType::kOld. When black allocation is on we
// have to add the transition array to the list of
// encountered_transition_arrays.
Heap* heap = isolate()->heap();
if (heap->incremental_marking()->black_allocation()) {
heap->mark_compact_collector()->AddTransitionArray(*array);
}
array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
MaybeObject::FromObject(Smi::zero()));
array->WeakFixedArray::Set(
TransitionArray::kTransitionLengthIndex,
MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
return array;
}
Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
Handle<Map> map = with_weak_next ? allocation_site_map()
: allocation_site_without_weaknext_map();
Handle<AllocationSite> site(
AllocationSite::cast(New(map, AllocationType::kOld)), isolate());
site->Initialize();
if (with_weak_next) {
// Link the site
site->set_weak_next(isolate()->heap()->allocation_sites_list());
isolate()->heap()->set_allocation_sites_list(*site);
}
return site;
}
Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind,
int inobject_properties) {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) &&
!Map::CanHaveFastTransitionableElementsKind(type),
IsDictionaryElementsKind(elements_kind) ||
IsTerminalElementsKind(elements_kind));
HeapObject result = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
Map::kSize, AllocationType::kMap);
result.set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
return handle(InitializeMap(Map::cast(result), type, instance_size,
elements_kind, inobject_properties),
isolate());
}
Map Factory::InitializeMap(Map map, InstanceType type, int instance_size,
ElementsKind elements_kind,
int inobject_properties) {
map.set_instance_type(type);
map.set_prototype(*null_value(), SKIP_WRITE_BARRIER);
map.set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER);
map.set_instance_size(instance_size);
if (map.IsJSObjectMap()) {
DCHECK(!ReadOnlyHeap::Contains(map));
map.SetInObjectPropertiesStartInWords(instance_size / kTaggedSize -
inobject_properties);
DCHECK_EQ(map.GetInObjectProperties(), inobject_properties);
map.set_prototype_validity_cell(*invalid_prototype_validity_cell());
} else {
DCHECK_EQ(inobject_properties, 0);
map.set_inobject_properties_start_or_constructor_function_index(0);
map.set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
}
map.set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
SKIP_WRITE_BARRIER);
map.set_raw_transitions(MaybeObject::FromSmi(Smi::zero()));
map.SetInObjectUnusedPropertyFields(inobject_properties);
map.SetInstanceDescriptors(isolate(), *empty_descriptor_array(), 0);
if (FLAG_unbox_double_fields) {
map.set_layout_descriptor(LayoutDescriptor::FastPointerLayout());
}
// Must be called only after |instance_type|, |instance_size| and
// |layout_descriptor| are set.
map.set_visitor_id(Map::GetVisitorId(map));
map.set_relaxed_bit_field(0);
map.set_bit_field2(Map::Bits2::NewTargetIsBaseBit::encode(true));
int bit_field3 =
Map::Bits3::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
Map::Bits3::OwnsDescriptorsBit::encode(true) |
Map::Bits3::ConstructionCounterBits::encode(Map::kNoSlackTracking) |
Map::Bits3::IsExtensibleBit::encode(true);
map.set_bit_field3(bit_field3);
DCHECK(!map.is_in_retained_map_list());
map.clear_padding();
map.set_elements_kind(elements_kind);
isolate()->counters()->maps_created()->Increment();
if (FLAG_trace_maps) LOG(isolate(), MapCreate(map));
return map;
}
Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
}
Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
Handle<JSObject> source, Handle<AllocationSite> site) {
Handle<Map> map(source->map(), isolate());
// We can only clone regexps, normal objects, api objects, errors or arrays.
// Copying anything else will break invariants.
CHECK(map->instance_type() == JS_REG_EXP_TYPE ||
map->instance_type() == JS_OBJECT_TYPE ||
map->instance_type() == JS_ERROR_TYPE ||
map->instance_type() == JS_ARRAY_TYPE ||
map->instance_type() == JS_API_OBJECT_TYPE ||
map->instance_type() == WASM_GLOBAL_OBJECT_TYPE ||
map->instance_type() == WASM_INSTANCE_OBJECT_TYPE ||
map->instance_type() == WASM_MEMORY_OBJECT_TYPE ||
map->instance_type() == WASM_MODULE_OBJECT_TYPE ||
map->instance_type() == WASM_TABLE_OBJECT_TYPE ||
map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE);
DCHECK(site.is_null() || AllocationSite::CanTrack(map->instance_type()));
int object_size = map->instance_size();
int adjusted_object_size =
site.is_null() ? object_size : object_size + AllocationMemento::kSize;
HeapObject raw_clone = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
adjusted_object_size, AllocationType::kYoung);
DCHECK(Heap::InYoungGeneration(raw_clone) || FLAG_single_generation);
Heap::CopyBlock(raw_clone.address(), source->address(), object_size);
Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
if (FLAG_enable_unconditional_write_barriers) {
// By default, we shouldn't need to update the write barrier here, as the
// clone will be allocated in new space.
const ObjectSlot start(raw_clone.address());
const ObjectSlot end(raw_clone.address() + object_size);
isolate()->heap()->WriteBarrierForRange(raw_clone, start, end);
}
if (!site.is_null()) {
AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
Object(raw_clone.ptr() + object_size));
InitializeAllocationMemento(alloc_memento, *site);
}
SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
FixedArrayBase elements = source->elements();
// Update elements if necessary.
if (elements.length() > 0) {
FixedArrayBase elem;
if (elements.map() == *fixed_cow_array_map()) {
elem = elements;
} else if (source->HasDoubleElements()) {
elem = *CopyFixedDoubleArray(
handle(FixedDoubleArray::cast(elements), isolate()));
} else {
elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate()));
}
clone->set_elements(elem);
}
// Update properties if necessary.
if (source->HasFastProperties()) {
PropertyArray properties = source->property_array();
if (properties.length() > 0) {
// TODO(gsathya): Do not copy hash code.
Handle<PropertyArray> prop = CopyArrayWithMap(
handle(properties, isolate()), handle(properties.map(), isolate()));
clone->set_raw_properties_or_hash(*prop);
}
} else {
Handle<FixedArray> properties(
FixedArray::cast(source->property_dictionary()), isolate());
Handle<FixedArray> prop = CopyFixedArray(properties);
clone->set_raw_properties_or_hash(*prop);
}
return clone;
}
namespace {
template <typename T>
void initialize_length(Handle<T> array, int length) {
array->set_length(length);
}
template <>
void initialize_length<PropertyArray>(Handle<PropertyArray> array, int length) {
array->initialize_length(length);
}
inline void ZeroEmbedderFields(i::Handle<i::JSObject> obj) {
auto count = obj->GetEmbedderFieldCount();
for (int i = 0; i < count; i++) {
obj->SetEmbedderField(i, Smi::zero());
}
}
} // namespace
template <typename T>
Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) {
int len = src->length();
HeapObject obj = AllocateRawFixedArray(len, AllocationType::kYoung);
obj.set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
Handle<T> result(T::cast(obj), isolate());
initialize_length(result, len);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *src, 0, len, mode);
return result;
}
template <typename T>
Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
AllocationType allocation) {
DCHECK_LT(0, grow_by);
DCHECK_LE(grow_by, kMaxInt - src->length());
int old_len = src->length();
int new_len = old_len + grow_by;
HeapObject obj = AllocateRawFixedArray(new_len, allocation);
obj.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
Handle<T> result(T::cast(obj), isolate());
initialize_length(result, new_len);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = obj.GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *src, 0, old_len, mode);
MemsetTagged(ObjectSlot(result->data_start() + old_len),
ReadOnlyRoots(isolate()).undefined_value(), grow_by);
return result;
}
Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map) {
return CopyArrayWithMap(array, map);
}
Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
int grow_by) {
return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
}
Handle<WeakArrayList> Factory::NewUninitializedWeakArrayList(
int capacity, AllocationType allocation) {
DCHECK_LE(0, capacity);
if (capacity == 0) return empty_weak_array_list();
HeapObject obj = AllocateRawWeakArrayList(capacity, allocation);
obj.set_map_after_allocation(*weak_array_list_map(), SKIP_WRITE_BARRIER);
Handle<WeakArrayList> result(WeakArrayList::cast(obj), isolate());
result->set_length(0);
result->set_capacity(capacity);
return result;
}
Handle<WeakArrayList> Factory::NewWeakArrayList(int capacity,
AllocationType allocation) {
Handle<WeakArrayList> result =
NewUninitializedWeakArrayList(capacity, allocation);
MemsetTagged(ObjectSlot(result->data_start()),
ReadOnlyRoots(isolate()).undefined_value(), capacity);
return result;
}
Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
Handle<WeakFixedArray> src, int grow_by) {
DCHECK(!src->IsTransitionArray()); // Compacted by GC, this code doesn't work
return CopyArrayAndGrow(src, grow_by, AllocationType::kOld);
}
Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
Handle<WeakArrayList> src, int grow_by, AllocationType allocation) {
int old_capacity = src->capacity();
int new_capacity = old_capacity + grow_by;
DCHECK_GE(new_capacity, old_capacity);
Handle<WeakArrayList> result =
NewUninitializedWeakArrayList(new_capacity, allocation);
int old_len = src->length();
result->set_length(old_len);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *src, 0, old_len, mode);
MemsetTagged(ObjectSlot(result->data_start() + old_len),
ReadOnlyRoots(isolate()).undefined_value(),
new_capacity - old_len);
return result;
}
Handle<WeakArrayList> Factory::CompactWeakArrayList(Handle<WeakArrayList> src,
int new_capacity,
AllocationType allocation) {
Handle<WeakArrayList> result =
NewUninitializedWeakArrayList(new_capacity, allocation);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
int copy_to = 0, length = src->length();
for (int i = 0; i < length; i++) {
MaybeObject element = src->Get(i);
if (element->IsCleared()) continue;
result->Set(copy_to++, element, mode);
}
result->set_length(copy_to);
MemsetTagged(ObjectSlot(result->data_start() + copy_to),
ReadOnlyRoots(isolate()).undefined_value(),
new_capacity - copy_to);
return result;
}
Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
Handle<PropertyArray> array, int grow_by) {
return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
}
Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
int new_len,
AllocationType allocation) {
DCHECK_LE(0, new_len);
DCHECK_LE(new_len, array->length());
if (new_len == 0) return empty_fixed_array();
HeapObject obj = AllocateRawFixedArray(new_len, allocation);
obj.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
Handle<FixedArray> result(FixedArray::cast(obj), isolate());
result->set_length(new_len);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *array, 0, new_len, mode);
return result;
}
Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
if (array->length() == 0) return array;
return CopyArrayWithMap(array, handle(array->map(), isolate()));
}
Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
Handle<FixedArray> array) {
DCHECK(Heap::InYoungGeneration(*array));
Handle<FixedArray> result =
CopyFixedArrayUpTo(array, array->length(), AllocationType::kOld);
// TODO(mvstanton): The map is set twice because of protection against calling
// set() on a COW FixedArray. Issue v8:3221 created to track this, and
// we might then be able to remove this whole method.
result->set_map_after_allocation(*fixed_cow_array_map(), SKIP_WRITE_BARRIER);
return result;
}
Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
Handle<FixedDoubleArray> array) {
int len = array->length();
if (len == 0) return array;
Handle<FixedDoubleArray> result =
Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len));
Heap::CopyBlock(
result->address() + FixedDoubleArray::kLengthOffset,
array->address() + FixedDoubleArray::kLengthOffset,
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
return result;
}
Handle<HeapNumber> Factory::NewHeapNumberForCodeAssembler(double value) {
return isolate()->heap()->CanAllocateInReadOnlySpace()
? NewHeapNumber<AllocationType::kReadOnly>(value)
: NewHeapNumber<AllocationType::kOld>(value);
}
Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
MessageTemplate template_index,
Handle<Object> arg0, Handle<Object> arg1,
Handle<Object> arg2) {
HandleScope scope(isolate());
if (arg0.is_null()) arg0 = undefined_value();
if (arg1.is_null()) arg1 = undefined_value();
if (arg2.is_null()) arg2 = undefined_value();
return scope.CloseAndEscape(ErrorUtils::MakeGenericError(
isolate(), constructor, template_index, arg0, arg1, arg2, SKIP_NONE));
}
Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
Handle<String> message) {
// Construct a new error object. If an exception is thrown, use the exception
// as the result.
Handle<Object> no_caller;
return ErrorUtils::Construct(isolate(), constructor, constructor, message,
SKIP_NONE, no_caller,
ErrorUtils::StackTraceCollection::kDetailed)
.ToHandleChecked();
}
Handle<Object> Factory::NewInvalidStringLengthError() {
if (FLAG_correctness_fuzzer_suppressions) {
FATAL("Aborting on invalid string length");
}
// Invalidate the "string length" protector.
if (Protectors::IsStringLengthOverflowLookupChainIntact(isolate())) {
Protectors::InvalidateStringLengthOverflowLookupChain(isolate());
}
return NewRangeError(MessageTemplate::kInvalidStringLength);
}
#define DEFINE_ERROR(NAME, name) \
Handle<JSObject> Factory::New##NAME( \
MessageTemplate template_index, Handle<Object> arg0, \
Handle<Object> arg1, Handle<Object> arg2) { \
return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
arg2); \
}
DEFINE_ERROR(Error, error)
DEFINE_ERROR(EvalError, eval_error)
DEFINE_ERROR(RangeError, range_error)
DEFINE_ERROR(ReferenceError, reference_error)
DEFINE_ERROR(SyntaxError, syntax_error)
DEFINE_ERROR(TypeError, type_error)
DEFINE_ERROR(WasmCompileError, wasm_compile_error)
DEFINE_ERROR(WasmLinkError, wasm_link_error)
DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
#undef DEFINE_ERROR
Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
Handle<SharedFunctionInfo> info,
Handle<Context> context,
AllocationType allocation) {
Handle<JSFunction> function(JSFunction::cast(New(map, allocation)),
isolate());
Handle<Code> code;
bool have_cached_code = info->TryGetCachedCode(isolate()).ToHandle(&code);
function->initialize_properties(isolate());
function->initialize_elements();
function->set_shared(*info);
function->set_code(have_cached_code ? *code : info->GetCode());
function->set_context(*context);
function->set_raw_feedback_cell(*many_closures_cell());
int header_size;
if (map->has_prototype_slot()) {
header_size = JSFunction::kSizeWithPrototype;
function->set_prototype_or_initial_map(*the_hole_value());
} else {
header_size = JSFunction::kSizeWithoutPrototype;
}
InitializeJSObjectBody(function, map, header_size);
if (have_cached_code) {
IsCompiledScope is_compiled_scope(info->is_compiled_scope(isolate()));
JSFunction::EnsureFeedbackVector(function, &is_compiled_scope);
if (FLAG_trace_turbo_nci) CompilationCacheCode::TraceHit(info, code);
}
return function;
}
Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) {
NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(
name, isolate()->sloppy_function_map(), LanguageMode::kSloppy);
Handle<JSFunction> result = NewFunction(args);
DCHECK(is_sloppy(result->shared().language_mode()));
return result;
}
Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) {
DCHECK(!args.name_.is_null());
// Create the SharedFunctionInfo.
Handle<NativeContext> context(isolate()->native_context());
Handle<Map> map = args.GetMap(isolate());
Handle<SharedFunctionInfo> info =
NewSharedFunctionInfo(args.name_, args.maybe_wasm_function_data_,
args.maybe_builtin_id_, kNormalFunction);
// Proper language mode in shared function info will be set later.
DCHECK(is_sloppy(info->language_mode()));
DCHECK(!map->IsUndefined(isolate()));
#ifdef DEBUG
if (isolate()->bootstrapper()->IsActive()) {
Handle<Code> code;
DCHECK(
// During bootstrapping some of these maps could be not created yet.
(*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) ||
(*map ==
context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) ||
(*map ==
context->get(
Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) ||
// Check if it's a creation of an empty or Proxy function during
// bootstrapping.
(args.maybe_builtin_id_ == Builtins::kEmptyFunction ||
args.maybe_builtin_id_ == Builtins::kProxyConstructor));
}
#endif
Handle<JSFunction> result = NewFunction(map, info, context);
if (args.should_set_prototype_) {
result->set_prototype_or_initial_map(
*args.maybe_prototype_.ToHandleChecked());
}
if (args.should_set_language_mode_) {
result->shared().set_language_mode(args.language_mode_);
}
if (args.should_create_and_set_initial_map_) {
ElementsKind elements_kind;
switch (args.type_) {
case JS_ARRAY_TYPE:
elements_kind = PACKED_SMI_ELEMENTS;
break;
case JS_ARGUMENTS_OBJECT_TYPE:
elements_kind = PACKED_ELEMENTS;
break;
default:
elements_kind = TERMINAL_FAST_ELEMENTS_KIND;
break;
}
Handle<Map> initial_map = NewMap(args.type_, args.instance_size_,
elements_kind, args.inobject_properties_);
result->shared().set_expected_nof_properties(args.inobject_properties_);
// TODO(littledan): Why do we have this is_generator test when
// NewFunctionPrototype already handles finding an appropriately
// shared prototype?
Handle<HeapObject> prototype = args.maybe_prototype_.ToHandleChecked();
if (!IsResumableFunction(result->shared().kind())) {
if (prototype->IsTheHole(isolate())) {
prototype = NewFunctionPrototype(result);
}
}
JSFunction::SetInitialMap(result, initial_map, prototype);
}
return result;
}
Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
// Make sure to use globals from the function's context, since the function
// can be from a different context.
Handle<NativeContext> native_context(function->context().native_context(),
isolate());
Handle<Map> new_map;
if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared().kind()))) {
new_map = handle(native_context->async_generator_object_prototype_map(),
isolate());
} else if (IsResumableFunction(function->shared().kind())) {
// Generator and async function prototypes can share maps since they
// don't have "constructor" properties.
new_map =
handle(native_context->generator_object_prototype_map(), isolate());
} else {
// Each function prototype gets a fresh map to avoid unwanted sharing of
// maps between prototypes of different constructors.
Handle<JSFunction> object_function(native_context->object_function(),
isolate());
DCHECK(object_function->has_initial_map());
new_map = handle(object_function->initial_map(), isolate());
}
DCHECK(!new_map->is_prototype_map());
Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
if (!IsResumableFunction(function->shared().kind())) {
JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
DONT_ENUM);
}
return prototype;
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> info, Handle<Context> context,
AllocationType allocation) {
Handle<Map> initial_map(
Map::cast(context->native_context().get(info->function_map_index())),
isolate());
return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
allocation);
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> info, Handle<Context> context,
Handle<FeedbackCell> feedback_cell, AllocationType allocation) {
Handle<Map> initial_map(
Map::cast(context->native_context().get(info->function_map_index())),
isolate());
return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
feedback_cell, allocation);
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
Handle<Context> context, AllocationType allocation) {
DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
Handle<JSFunction> result =
NewFunction(initial_map, info, context, allocation);
// Give compiler a chance to pre-initialize.
Compiler::PostInstantiation(result);
return result;
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
Handle<Context> context, Handle<FeedbackCell> feedback_cell,
AllocationType allocation) {
DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
Handle<JSFunction> result =
NewFunction(initial_map, info, context, allocation);
// Bump the closure count that is encoded in the feedback cell's map.
if (feedback_cell->map() == *no_closures_cell_map()) {
feedback_cell->set_map(*one_closure_cell_map());
} else if (feedback_cell->map() == *one_closure_cell_map()) {
feedback_cell->set_map(*many_closures_cell_map());
} else {
DCHECK(feedback_cell->map() == *many_closures_cell_map());
}
// Check that the optimized code in the feedback cell wasn't marked for
// deoptimization while not pointed to by any live JSFunction.
if (feedback_cell->value().IsFeedbackVector()) {
FeedbackVector::cast(feedback_cell->value())
.EvictOptimizedCodeMarkedForDeoptimization(
*info, "new function from shared function info");
}
result->set_raw_feedback_cell(*feedback_cell);
// Give compiler a chance to pre-initialize.
Compiler::PostInstantiation(result);
return result;
}
Handle<JSObject> Factory::NewExternal(void* value) {
Handle<Foreign> foreign = NewForeign(reinterpret_cast<Address>(value));
Handle<JSObject> external = NewJSObjectFromMap(external_map());
external->SetEmbedderField(0, *foreign);
return external;
}
Handle<CodeDataContainer> Factory::NewCodeDataContainer(
int flags, AllocationType allocation) {
Handle<CodeDataContainer> data_container(
CodeDataContainer::cast(New(code_data_container_map(), allocation)),
isolate());
data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER);
data_container->set_kind_specific_flags(flags);
data_container->clear_padding();
return data_container;
}
Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code,
Address off_heap_entry) {
CHECK_NOT_NULL(isolate()->embedded_blob_code());
CHECK_NE(0, isolate()->embedded_blob_code_size());
CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
bool generate_jump_to_instruction_stream =
Builtins::CodeObjectIsExecutable(code->builtin_index());
Handle<Code> result = Builtins::GenerateOffHeapTrampolineFor(
isolate(), off_heap_entry,
code->code_data_container().kind_specific_flags(),
generate_jump_to_instruction_stream);
// The CodeDataContainer should not be modified beyond this point since it's
// now possibly canonicalized.
// The trampoline code object must inherit specific flags from the original
// builtin (e.g. the safepoint-table offset). We set them manually here.
{
CodePageMemoryModificationScope code_allocation(*result);
const bool set_is_off_heap_trampoline = true;
const int stack_slots =
code->has_safepoint_info() ? code->stack_slots() : 0;
result->initialize_flags(code->kind(), code->has_unwinding_info(),
code->is_turbofanned(), stack_slots,
set_is_off_heap_trampoline);
result->set_builtin_index(code->builtin_index());
result->set_safepoint_table_offset(code->safepoint_table_offset());
result->set_handler_table_offset(code->handler_table_offset());
result->set_constant_pool_offset(code->constant_pool_offset());
result->set_code_comments_offset(code->code_comments_offset());
// Replace the newly generated trampoline's RelocInfo ByteArray with the
// canonical one stored in the roots to avoid duplicating it for every
// single builtin.
ByteArray canonical_reloc_info =
generate_jump_to_instruction_stream
? ReadOnlyRoots(isolate()).off_heap_trampoline_relocation_info()
: ReadOnlyRoots(isolate()).empty_byte_array();
#ifdef DEBUG
// Verify that the contents are the same.
ByteArray reloc_info = result->relocation_info();
DCHECK_EQ(reloc_info.length(), canonical_reloc_info.length());
for (int i = 0; i < reloc_info.length(); ++i) {
DCHECK_EQ(reloc_info.get(i), canonical_reloc_info.get(i));
}
#endif
result->set_relocation_info(canonical_reloc_info);
}
return result;
}
Handle<Code> Factory::CopyCode(Handle<Code> code) {
Handle<CodeDataContainer> data_container = NewCodeDataContainer(
code->code_data_container().kind_specific_flags(), AllocationType::kOld);
Heap* heap = isolate()->heap();
Handle<Code> new_code;
{
int obj_size = code->Size();
CodePageCollectionMemoryModificationScope code_allocation(heap);
HeapObject result = heap->AllocateRawWith<Heap::kRetryOrFail>(
obj_size, AllocationType::kCode, AllocationOrigin::kRuntime,
AllocationAlignment::kCodeAligned);
// Copy code object.
Address old_addr = code->address();
Address new_addr = result.address();
Heap::CopyBlock(new_addr, old_addr, obj_size);
new_code = handle(Code::cast(result), isolate());
// Set the {CodeDataContainer}, it cannot be shared.
new_code->set_code_data_container(*data_container);
new_code->Relocate(new_addr - old_addr);
// We have to iterate over the object and process its pointers when black
// allocation is on.
heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code);
// Record all references to embedded objects in the new code object.
#ifndef V8_DISABLE_WRITE_BARRIERS
WriteBarrierForCode(*new_code);
#endif
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) new_code->ObjectVerify(isolate());
#endif
DCHECK(IsAligned(new_code->address(), kCodeAlignment));
DCHECK_IMPLIES(
!heap->memory_allocator()->code_range().is_empty(),
heap->memory_allocator()->code_range().contains(new_code->address()));
return new_code;
}
Handle<BytecodeArray> Factory::CopyBytecodeArray(
Handle<BytecodeArray> bytecode_array) {
int size = BytecodeArray::SizeFor(bytecode_array->length());
HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld,
*bytecode_array_map());
Handle<BytecodeArray> copy(BytecodeArray::cast(result), isolate());
copy->set_length(bytecode_array->length());
copy->set_frame_size(bytecode_array->frame_size());
copy->set_parameter_count(bytecode_array->parameter_count());
copy->set_incoming_new_target_or_generator_register(
bytecode_array->incoming_new_target_or_generator_register());
copy->set_constant_pool(bytecode_array->constant_pool());
copy->set_handler_table(bytecode_array->handler_table());
copy->set_source_position_table(bytecode_array->source_position_table());
copy->set_osr_loop_nesting_level(bytecode_array->osr_loop_nesting_level());
copy->set_bytecode_age(bytecode_array->bytecode_age());
bytecode_array->CopyBytecodesTo(*copy);
return copy;
}
Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
AllocationType allocation) {
JSFunction::EnsureHasInitialMap(constructor);
Handle<Map> map(constructor->initial_map(), isolate());
return NewJSObjectFromMap(map, allocation);
}
Handle<JSObject> Factory::NewJSObjectWithNullProto() {
Handle<JSObject> result = NewJSObject(isolate()->object_function());
Handle<Map> new_map = Map::Copy(
isolate(), Handle<Map>(result->map(), isolate()), "ObjectWithNullProto");
Map::SetPrototype(isolate(), new_map, null_value());
JSObject::MigrateToMap(isolate(), result, new_map);
return result;
}
Handle<JSGlobalObject> Factory::NewJSGlobalObject(
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map(), isolate());
DCHECK(map->is_dictionary_map());
// Make sure no field properties are described in the initial map.
// This guarantees us that normalizing the properties does not
// require us to change property values to PropertyCells.
DCHECK_EQ(map->NextFreePropertyIndex(), 0);
// Make sure we don't have a ton of pre-allocated slots in the
// global objects. They will be unused once we normalize the object.
DCHECK_EQ(map->UnusedPropertyFields(), 0);
DCHECK_EQ(map->GetInObjectProperties(), 0);
// Initial size of the backing store to avoid resize of the storage during
// bootstrapping. The size differs between the JS global object ad the
// builtins object.
int initial_size = 64;
// Allocate a dictionary object for backing storage.
int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
Handle<GlobalDictionary> dictionary =
GlobalDictionary::New(isolate(), at_least_space_for);
// The global object might be created from an object template with accessors.
// Fill these accessors into the dictionary.
Handle<DescriptorArray> descs(map->instance_descriptors(), isolate());
for (InternalIndex i : map->IterateOwnDescriptors()) {
PropertyDetails details = descs->GetDetails(i);
// Only accessors are expected.
DCHECK_EQ(kAccessor, details.kind());
PropertyDetails d(kAccessor, details.attributes(),
PropertyCellType::kMutable);
Handle<Name> name(descs->GetKey(i), isolate());
Handle<PropertyCell> cell = NewPropertyCell(name);
cell->set_value(descs->GetStrongValue(i));
// |dictionary| already contains enough space for all properties.
USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
}
// Allocate the global object and initialize it with the backing store.
Handle<JSGlobalObject> global(
JSGlobalObject::cast(New(map, AllocationType::kOld)), isolate());
InitializeJSObjectFromMap(global, dictionary, map);
// Create a new map for the global object.
Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
new_map->set_may_have_interesting_symbols(true);
new_map->set_is_dictionary_map(true);
LOG(isolate(), MapDetails(*new_map));
// Set up the global object as a normalized object.
global->set_global_dictionary(*dictionary);
global->synchronized_set_map(*new_map);
// Make sure result is a global object with properties in dictionary.
DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
return global;
}
void Factory::InitializeJSObjectFromMap(Handle<JSObject> obj,
Handle<Object> properties,
Handle<Map> map) {
obj->set_raw_properties_or_hash(*properties);
obj->initialize_elements();
// TODO(1240798): Initialize the object's body using valid initial values
// according to the object's initial map. For example, if the map's
// instance type is JS_ARRAY_TYPE, the length field should be initialized
// to a number (e.g. Smi::zero()) and the elements initialized to a
// fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
// verification code has to cope with (temporarily) invalid objects. See
// for example, JSArray::JSArrayVerify).
InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
}
void Factory::InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map,
int start_offset) {
if (start_offset == map->instance_size()) return;
DCHECK_LT(start_offset, map->instance_size());
// We cannot always fill with one_pointer_filler_map because objects
// created from API functions expect their embedder fields to be initialized
// with undefined_value.
// Pre-allocated fields need to be initialized with undefined_value as well
// so that object accesses before the constructor completes (e.g. in the
// debugger) will not cause a crash.
// In case of Array subclassing the |map| could already be transitioned
// to different elements kind from the initial map on which we track slack.
bool in_progress = map->IsInobjectSlackTrackingInProgress();
Object filler;
if (in_progress) {
filler = *one_pointer_filler_map();
} else {
filler = *undefined_value();
}
obj->InitializeBody(*map, start_offset, *undefined_value(), filler);
if (in_progress) {
map->FindRootMap(isolate()).InobjectSlackTrackingStep(isolate());
}
}
Handle<JSObject> Factory::NewJSObjectFromMap(
Handle<Map> map, AllocationType allocation,
Handle<AllocationSite> allocation_site) {
// JSFunctions should be allocated using AllocateFunction to be
// properly initialized.
DCHECK(map->instance_type() != JS_FUNCTION_TYPE);
// Both types of global objects should be allocated using
// AllocateGlobalObject to be properly initialized.
DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
HeapObject obj =
AllocateRawWithAllocationSite(map, allocation, allocation_site);
Handle<JSObject> js_obj(JSObject::cast(obj), isolate());
InitializeJSObjectFromMap(js_obj, empty_fixed_array(), map);
DCHECK(js_obj->HasFastElements() || js_obj->HasTypedArrayElements() ||
js_obj->HasFastStringWrapperElements() ||
js_obj->HasFastArgumentsElements() || js_obj->HasDictionaryElements());
return js_obj;
}
Handle<JSObject> Factory::NewSlowJSObjectFromMap(
Handle<Map> map, int capacity, AllocationType allocation,
Handle<AllocationSite> allocation_site) {
DCHECK(map->is_dictionary_map());
Handle<NameDictionary> object_properties =
NameDictionary::New(isolate(), capacity);
Handle<JSObject> js_object =
NewJSObjectFromMap(map, allocation, allocation_site);
js_object->set_raw_properties_or_hash(*object_properties);
return js_object;
}
Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements(
Handle<HeapObject> prototype, Handle<NameDictionary> properties,
Handle<FixedArrayBase> elements) {
Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map();
if (object_map->prototype() != *prototype) {
object_map = Map::TransitionToPrototype(isolate(), object_map, prototype);
}
DCHECK(object_map->is_dictionary_map());
Handle<JSObject> object =
NewJSObjectFromMap(object_map, AllocationType::kYoung);
object->set_raw_properties_or_hash(*properties);
if (*elements != ReadOnlyRoots(isolate()).empty_fixed_array()) {
DCHECK(elements->IsNumberDictionary());
object_map =
JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS);
JSObject::MigrateToMap(isolate(), object, object_map);
object->set_elements(*elements);
}
return object;
}
Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
int capacity,
ArrayStorageAllocationMode mode,
AllocationType allocation) {
DCHECK(capacity >= length);
if (capacity == 0) {
return NewJSArrayWithElements(empty_fixed_array(), elements_kind, length,
allocation);
}
HandleScope inner_scope(isolate());
Handle<FixedArrayBase> elms =
NewJSArrayStorage(elements_kind, capacity, mode);
return inner_scope.CloseAndEscape(NewJSArrayWithUnverifiedElements(
elms, elements_kind, length, allocation));
}
Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
ElementsKind elements_kind,
int length,
AllocationType allocation) {
Handle<JSArray> array = NewJSArrayWithUnverifiedElements(
elements, elements_kind, length, allocation);
JSObject::ValidateElements(*array);
return array;
}
Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements(
Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
AllocationType allocation) {
DCHECK(length <= elements->length());
NativeContext native_context = isolate()->raw_native_context();
Map map = native_context.GetInitialJSArrayMap(elements_kind);
if (map.is_null()) {
JSFunction array_function = native_context.array_function();
map = array_function.initial_map();
}
Handle<JSArray> array = Handle<JSArray>::cast(
NewJSObjectFromMap(handle(map, isolate()), allocation));
DisallowHeapAllocation no_gc;
array->set_elements(*elements);
array->set_length(Smi::FromInt(length));
return array;
}
void Factory::NewJSArrayStorage(Handle<JSArray