| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/heap/factory.h" |
| |
| #include <algorithm> // For copy |
| #include <memory> // For shared_ptr<> |
| #include <string> |
| #include <utility> // For move |
| |
| #include "src/ast/ast-source-ranges.h" |
| #include "src/base/bits.h" |
| #include "src/builtins/accessors.h" |
| #include "src/builtins/constants-table-builder.h" |
| #include "src/codegen/compilation-cache.h" |
| #include "src/codegen/compiler.h" |
| #include "src/common/globals.h" |
| #include "src/diagnostics/basic-block-profiler.h" |
| #include "src/execution/isolate-inl.h" |
| #include "src/execution/protectors-inl.h" |
| #include "src/heap/basic-memory-chunk.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/heap/incremental-marking.h" |
| #include "src/heap/mark-compact-inl.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/heap/read-only-heap.h" |
| #include "src/ic/handler-configuration-inl.h" |
| #include "src/init/bootstrapper.h" |
| #include "src/interpreter/interpreter.h" |
| #include "src/logging/counters.h" |
| #include "src/logging/log.h" |
| #include "src/numbers/conversions.h" |
| #include "src/numbers/hash-seed-inl.h" |
| #include "src/objects/allocation-site-inl.h" |
| #include "src/objects/allocation-site-scopes.h" |
| #include "src/objects/api-callbacks.h" |
| #include "src/objects/arguments-inl.h" |
| #include "src/objects/bigint.h" |
| #include "src/objects/cell-inl.h" |
| #include "src/objects/debug-objects-inl.h" |
| #include "src/objects/embedder-data-array-inl.h" |
| #include "src/objects/feedback-cell-inl.h" |
| #include "src/objects/fixed-array-inl.h" |
| #include "src/objects/foreign-inl.h" |
| #include "src/objects/frame-array-inl.h" |
| #include "src/objects/instance-type-inl.h" |
| #include "src/objects/js-array-inl.h" |
| #include "src/objects/js-collection-inl.h" |
| #include "src/objects/js-generator-inl.h" |
| #include "src/objects/js-regexp-inl.h" |
| #include "src/objects/js-weak-refs-inl.h" |
| #include "src/objects/literal-objects-inl.h" |
| #include "src/objects/microtask-inl.h" |
| #include "src/objects/module-inl.h" |
| #include "src/objects/promise-inl.h" |
| #include "src/objects/property-descriptor-object-inl.h" |
| #include "src/objects/scope-info.h" |
| #include "src/objects/stack-frame-info-inl.h" |
| #include "src/objects/struct-inl.h" |
| #include "src/objects/template-objects-inl.h" |
| #include "src/objects/transitions-inl.h" |
| #include "src/roots/roots.h" |
| #include "src/strings/unicode-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace { |
| |
| int ComputeCodeObjectSize(const CodeDesc& desc) { |
| bool has_unwinding_info = desc.unwinding_info != nullptr; |
| DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) || |
| (!has_unwinding_info && desc.unwinding_info_size == 0)); |
| int body_size = desc.instr_size; |
| int unwinding_info_size_field_size = kInt64Size; |
| if (has_unwinding_info) { |
| body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size + |
| unwinding_info_size_field_size; |
| } |
| int object_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment)); |
| DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); |
| return object_size; |
| } |
| |
| } // namespace |
| |
| Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc, |
| CodeKind kind) |
| : isolate_(isolate), |
| code_desc_(desc), |
| kind_(kind), |
| source_position_table_(isolate_->factory()->empty_byte_array()) {} |
| |
| MaybeHandle<Code> Factory::CodeBuilder::BuildInternal( |
| bool retry_allocation_or_fail) { |
| const auto factory = isolate_->factory(); |
| // Allocate objects needed for code initialization. |
| Handle<ByteArray> reloc_info = |
| factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld); |
| Handle<CodeDataContainer> data_container; |
| |
| // Use a canonical off-heap trampoline CodeDataContainer if possible. |
| const int32_t promise_rejection_flag = |
| Code::IsPromiseRejectionField::encode(true); |
| if (read_only_data_container_ && |
| (kind_specific_flags_ == 0 || |
| kind_specific_flags_ == promise_rejection_flag)) { |
| const ReadOnlyRoots roots(isolate_); |
| const auto canonical_code_data_container = |
| kind_specific_flags_ == 0 |
| ? roots.trampoline_trivial_code_data_container_handle() |
| : roots.trampoline_promise_rejection_code_data_container_handle(); |
| DCHECK_EQ(canonical_code_data_container->kind_specific_flags(), |
| kind_specific_flags_); |
| data_container = canonical_code_data_container; |
| } else { |
| data_container = factory->NewCodeDataContainer( |
| 0, read_only_data_container_ ? AllocationType::kReadOnly |
| : AllocationType::kOld); |
| data_container->set_kind_specific_flags(kind_specific_flags_); |
| } |
| |
| // Basic block profiling data for builtins is stored in the JS heap rather |
| // than in separately-allocated C++ objects. Allocate that data now if |
| // appropriate. |
| Handle<OnHeapBasicBlockProfilerData> on_heap_profiler_data; |
| if (profiler_data_ && isolate_->IsGeneratingEmbeddedBuiltins()) { |
| on_heap_profiler_data = profiler_data_->CopyToJSHeap(isolate_); |
| |
| // Add the on-heap data to a global list, which keeps it alive and allows |
| // iteration. |
| Handle<ArrayList> list(isolate_->heap()->basic_block_profiling_data(), |
| isolate_); |
| Handle<ArrayList> new_list = |
| ArrayList::Add(isolate_, list, on_heap_profiler_data); |
| isolate_->heap()->SetBasicBlockProfilingData(new_list); |
| } |
| |
| Handle<Code> code; |
| { |
| int object_size = ComputeCodeObjectSize(code_desc_); |
| Heap* heap = isolate_->heap(); |
| |
| CodePageCollectionMemoryModificationScope code_allocation(heap); |
| HeapObject result; |
| AllocationType allocation_type = |
| is_executable_ ? AllocationType::kCode : AllocationType::kReadOnly; |
| AllocationAlignment alignment = is_executable_ |
| ? AllocationAlignment::kCodeAligned |
| : AllocationAlignment::kWordAligned; |
| if (retry_allocation_or_fail) { |
| result = heap->AllocateRawWith<Heap::kRetryOrFail>( |
| object_size, allocation_type, AllocationOrigin::kRuntime, alignment); |
| } else { |
| result = heap->AllocateRawWith<Heap::kLightRetry>( |
| object_size, allocation_type, AllocationOrigin::kRuntime, alignment); |
| // Return an empty handle if we cannot allocate the code object. |
| if (result.is_null()) return MaybeHandle<Code>(); |
| } |
| |
| if (!is_movable_) { |
| result = heap->EnsureImmovableCode(result, object_size); |
| } |
| |
| // The code object has not been fully initialized yet. We rely on the |
| // fact that no allocation will happen from this point on. |
| DisallowHeapAllocation no_gc; |
| |
| result.set_map_after_allocation(*factory->code_map(), SKIP_WRITE_BARRIER); |
| code = handle(Code::cast(result), isolate_); |
| if (is_executable_) { |
| DCHECK(IsAligned(code->address(), kCodeAlignment)); |
| DCHECK_IMPLIES( |
| !V8_ENABLE_THIRD_PARTY_HEAP_BOOL && |
| !heap->memory_allocator()->code_range().is_empty(), |
| heap->memory_allocator()->code_range().contains(code->address())); |
| } |
| |
| constexpr bool kIsNotOffHeapTrampoline = false; |
| const bool has_unwinding_info = code_desc_.unwinding_info != nullptr; |
| |
| code->set_raw_instruction_size(code_desc_.instr_size); |
| code->set_relocation_info(*reloc_info); |
| code->initialize_flags(kind_, has_unwinding_info, is_turbofanned_, |
| stack_slots_, kIsNotOffHeapTrampoline); |
| code->set_builtin_index(builtin_index_); |
| code->set_inlined_bytecode_size(inlined_bytecode_size_); |
| code->set_code_data_container(*data_container); |
| code->set_deoptimization_data(*deoptimization_data_); |
| code->set_source_position_table(*source_position_table_); |
| code->set_safepoint_table_offset(code_desc_.safepoint_table_offset); |
| code->set_handler_table_offset(code_desc_.handler_table_offset); |
| code->set_constant_pool_offset(code_desc_.constant_pool_offset); |
| code->set_code_comments_offset(code_desc_.code_comments_offset); |
| |
| // Allow self references to created code object by patching the handle to |
| // point to the newly allocated Code object. |
| Handle<Object> self_reference; |
| if (self_reference_.ToHandle(&self_reference)) { |
| DCHECK(self_reference->IsOddball()); |
| DCHECK(Oddball::cast(*self_reference).kind() == |
| Oddball::kSelfReferenceMarker); |
| if (isolate_->IsGeneratingEmbeddedBuiltins()) { |
| isolate_->builtins_constants_table_builder()->PatchSelfReference( |
| self_reference, code); |
| } |
| *(self_reference.location()) = code->ptr(); |
| } |
| |
| // Likewise, any references to the basic block counters marker need to be |
| // updated to point to the newly-allocated counters array. |
| if (!on_heap_profiler_data.is_null()) { |
| isolate_->builtins_constants_table_builder() |
| ->PatchBasicBlockCountersReference( |
| handle(on_heap_profiler_data->counts(), isolate_)); |
| } |
| |
| // Migrate generated code. |
| // The generated code can contain embedded objects (typically from handles) |
| // in a pointer-to-tagged-value format (i.e. with indirection like a handle) |
| // that are dereferenced during the copy to point directly to the actual |
| // heap objects. These pointers can include references to the code object |
| // itself, through the self_reference parameter. |
| code->CopyFromNoFlush(heap, code_desc_); |
| |
| code->clear_padding(); |
| |
| #ifdef VERIFY_HEAP |
| if (FLAG_verify_heap) code->ObjectVerify(isolate_); |
| #endif |
| |
| // Flush the instruction cache before changing the permissions. |
| // Note: we do this before setting permissions to ReadExecute because on |
| // some older ARM kernels there is a bug which causes an access error on |
| // cache flush instructions to trigger access error on non-writable memory. |
| // See https://bugs.chromium.org/p/v8/issues/detail?id=8157 |
| code->FlushICache(); |
| } |
| |
| if (profiler_data_ && FLAG_turbo_profiling_verbose) { |
| #ifdef ENABLE_DISASSEMBLER |
| std::ostringstream os; |
| code->Disassemble(nullptr, os, isolate_); |
| if (!on_heap_profiler_data.is_null()) { |
| Handle<String> disassembly = |
| isolate_->factory()->NewStringFromAsciiChecked(os.str().c_str(), |
| AllocationType::kOld); |
| on_heap_profiler_data->set_code(*disassembly); |
| } else { |
| profiler_data_->SetCode(os); |
| } |
| #endif // ENABLE_DISASSEMBLER |
| } |
| |
| return code; |
| } |
| |
| MaybeHandle<Code> Factory::CodeBuilder::TryBuild() { |
| return BuildInternal(false); |
| } |
| |
| Handle<Code> Factory::CodeBuilder::Build() { |
| return BuildInternal(true).ToHandleChecked(); |
| } |
| |
| HeapObject Factory::AllocateRaw(int size, AllocationType allocation, |
| AllocationAlignment alignment) { |
| return isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>( |
| size, allocation, AllocationOrigin::kRuntime, alignment); |
| } |
| |
| HeapObject Factory::AllocateRawWithAllocationSite( |
| Handle<Map> map, AllocationType allocation, |
| Handle<AllocationSite> allocation_site) { |
| DCHECK(map->instance_type() != MAP_TYPE); |
| int size = map->instance_size(); |
| if (!allocation_site.is_null()) size += AllocationMemento::kSize; |
| HeapObject result = |
| isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation); |
| WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung |
| ? SKIP_WRITE_BARRIER |
| : UPDATE_WRITE_BARRIER; |
| result.set_map_after_allocation(*map, write_barrier_mode); |
| if (!allocation_site.is_null()) { |
| AllocationMemento alloc_memento = AllocationMemento::unchecked_cast( |
| Object(result.ptr() + map->instance_size())); |
| InitializeAllocationMemento(alloc_memento, *allocation_site); |
| } |
| return result; |
| } |
| |
| void Factory::InitializeAllocationMemento(AllocationMemento memento, |
| AllocationSite allocation_site) { |
| memento.set_map_after_allocation(*allocation_memento_map(), |
| SKIP_WRITE_BARRIER); |
| memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); |
| if (FLAG_allocation_site_pretenuring) { |
| allocation_site.IncrementMementoCreateCount(); |
| } |
| } |
| |
| HeapObject Factory::New(Handle<Map> map, AllocationType allocation) { |
| DCHECK(map->instance_type() != MAP_TYPE); |
| int size = map->instance_size(); |
| HeapObject result = |
| isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation); |
| // New space objects are allocated white. |
| WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung |
| ? SKIP_WRITE_BARRIER |
| : UPDATE_WRITE_BARRIER; |
| result.set_map_after_allocation(*map, write_barrier_mode); |
| return result; |
| } |
| |
| Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align, |
| AllocationType allocation, |
| AllocationOrigin origin) { |
| AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned; |
| Heap* heap = isolate()->heap(); |
| HeapObject result = heap->AllocateRawWith<Heap::kRetryOrFail>( |
| size, allocation, origin, alignment); |
| heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo); |
| return Handle<HeapObject>(result, isolate()); |
| } |
| |
| Handle<PrototypeInfo> Factory::NewPrototypeInfo() { |
| Handle<PrototypeInfo> result = Handle<PrototypeInfo>::cast( |
| NewStruct(PROTOTYPE_INFO_TYPE, AllocationType::kOld)); |
| result->set_prototype_users(Smi::zero()); |
| result->set_registry_slot(PrototypeInfo::UNREGISTERED); |
| result->set_bit_field(0); |
| result->set_module_namespace(*undefined_value()); |
| return result; |
| } |
| |
| Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys, |
| Handle<FixedArray> indices) { |
| Handle<EnumCache> result = |
| Handle<EnumCache>::cast(NewStruct(ENUM_CACHE_TYPE, AllocationType::kOld)); |
| result->set_keys(*keys); |
| result->set_indices(*indices); |
| return result; |
| } |
| |
| Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2, |
| AllocationType allocation) { |
| Handle<Tuple2> result = |
| Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, allocation)); |
| result->set_value1(*value1); |
| result->set_value2(*value2); |
| return result; |
| } |
| |
| Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string, |
| Handle<Object> to_number, |
| const char* type_of, byte kind) { |
| Handle<Oddball> oddball(Oddball::cast(New(map, AllocationType::kReadOnly)), |
| isolate()); |
| Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind); |
| return oddball; |
| } |
| |
| Handle<Oddball> Factory::NewSelfReferenceMarker() { |
| return NewOddball(self_reference_marker_map(), "self_reference_marker", |
| handle(Smi::FromInt(-1), isolate()), "undefined", |
| Oddball::kSelfReferenceMarker); |
| } |
| |
| Handle<Oddball> Factory::NewBasicBlockCountersMarker() { |
| return NewOddball(basic_block_counters_marker_map(), |
| "basic_block_counters_marker", |
| handle(Smi::FromInt(-1), isolate()), "undefined", |
| Oddball::kBasicBlockCountersMarker); |
| } |
| |
| Handle<PropertyArray> Factory::NewPropertyArray(int length) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_property_array(); |
| HeapObject result = AllocateRawFixedArray(length, AllocationType::kYoung); |
| result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER); |
| Handle<PropertyArray> array(PropertyArray::cast(result), isolate()); |
| array->initialize_length(length); |
| MemsetTagged(array->data_start(), *undefined_value(), length); |
| return array; |
| } |
| |
| MaybeHandle<FixedArray> Factory::TryNewFixedArray( |
| int length, AllocationType allocation_type) { |
| DCHECK_LE(0, length); |
| if (length == 0) return empty_fixed_array(); |
| |
| int size = FixedArray::SizeFor(length); |
| Heap* heap = isolate()->heap(); |
| AllocationResult allocation = heap->AllocateRaw(size, allocation_type); |
| HeapObject result; |
| if (!allocation.To(&result)) return MaybeHandle<FixedArray>(); |
| if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) { |
| BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(result); |
| chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR); |
| } |
| result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER); |
| Handle<FixedArray> array(FixedArray::cast(result), isolate()); |
| array->set_length(length); |
| MemsetTagged(array->data_start(), ReadOnlyRoots(heap).undefined_value(), |
| length); |
| return array; |
| } |
| |
| Handle<FixedArray> Factory::NewUninitializedFixedArray(int length) { |
| if (length == 0) return empty_fixed_array(); |
| if (length < 0 || length > FixedArray::kMaxLength) { |
| isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); |
| } |
| |
| // TODO(ulan): As an experiment this temporarily returns an initialized fixed |
| // array. After getting canary/performance coverage, either remove the |
| // function or revert to returning uninitilized array. |
| return NewFixedArrayWithFiller(read_only_roots().fixed_array_map_handle(), |
| length, undefined_value(), |
| AllocationType::kYoung); |
| } |
| |
| Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray( |
| int length) { |
| if (length == 0) return empty_closure_feedback_cell_array(); |
| |
| Handle<ClosureFeedbackCellArray> feedback_cell_array = |
| Handle<ClosureFeedbackCellArray>::cast(NewFixedArrayWithMap( |
| read_only_roots().closure_feedback_cell_array_map_handle(), length, |
| AllocationType::kOld)); |
| |
| return feedback_cell_array; |
| } |
| |
| Handle<FeedbackVector> Factory::NewFeedbackVector( |
| Handle<SharedFunctionInfo> shared, |
| Handle<ClosureFeedbackCellArray> closure_feedback_cell_array) { |
| int length = shared->feedback_metadata().slot_count(); |
| DCHECK_LE(0, length); |
| int size = FeedbackVector::SizeFor(length); |
| |
| HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld, |
| *feedback_vector_map()); |
| Handle<FeedbackVector> vector(FeedbackVector::cast(result), isolate()); |
| vector->set_shared_function_info(*shared); |
| vector->set_optimized_code_weak_or_smi(MaybeObject::FromSmi(Smi::FromEnum( |
| FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution |
| : OptimizationMarker::kNone))); |
| vector->set_length(length); |
| vector->set_invocation_count(0); |
| vector->set_profiler_ticks(0); |
| vector->clear_padding(); |
| vector->set_closure_feedback_cell_array(*closure_feedback_cell_array); |
| |
| // TODO(leszeks): Initialize based on the feedback metadata. |
| MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length); |
| return vector; |
| } |
| |
| Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(int length) { |
| DCHECK_LE(0, length); |
| int size = EmbedderDataArray::SizeFor(length); |
| |
| HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kYoung, |
| *embedder_data_array_map()); |
| Handle<EmbedderDataArray> array(EmbedderDataArray::cast(result), isolate()); |
| array->set_length(length); |
| |
| if (length > 0) { |
| ObjectSlot start(array->slots_start()); |
| ObjectSlot end(array->slots_end()); |
| size_t slot_count = end - start; |
| MemsetTagged(start, *undefined_value(), slot_count); |
| } |
| return array; |
| } |
| |
| Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(int length) { |
| DCHECK_LE(0, length); |
| Handle<FixedArrayBase> array = NewFixedDoubleArray(length); |
| if (length > 0) { |
| Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length); |
| } |
| return array; |
| } |
| |
| Handle<FrameArray> Factory::NewFrameArray(int number_of_frames) { |
| DCHECK_LE(0, number_of_frames); |
| Handle<FixedArray> result = |
| NewFixedArrayWithHoles(FrameArray::LengthFor(number_of_frames)); |
| result->set(FrameArray::kFrameCountIndex, Smi::zero()); |
| return Handle<FrameArray>::cast(result); |
| } |
| |
| template <typename T> |
| Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity, |
| AllocationType allocation) { |
| // Capacity must be a power of two, since we depend on being able |
| // to divide and multiple by 2 (kLoadFactor) to derive capacity |
| // from number of buckets. If we decide to change kLoadFactor |
| // to something other than 2, capacity should be stored as another |
| // field of this object. |
| DCHECK_EQ(T::kLoadFactor, 2); |
| capacity = base::bits::RoundUpToPowerOfTwo32(Max(T::kMinCapacity, capacity)); |
| capacity = Min(capacity, T::kMaxCapacity); |
| |
| DCHECK_LT(0, capacity); |
| DCHECK_EQ(0, capacity % T::kLoadFactor); |
| |
| int size = T::SizeFor(capacity); |
| HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map); |
| Handle<T> table(T::cast(result), isolate()); |
| table->Initialize(isolate(), capacity); |
| return table; |
| } |
| |
| Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet( |
| int capacity, AllocationType allocation) { |
| return AllocateSmallOrderedHashTable<SmallOrderedHashSet>( |
| small_ordered_hash_set_map(), capacity, allocation); |
| } |
| |
| Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap( |
| int capacity, AllocationType allocation) { |
| return AllocateSmallOrderedHashTable<SmallOrderedHashMap>( |
| small_ordered_hash_map_map(), capacity, allocation); |
| } |
| |
| Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary( |
| int capacity, AllocationType allocation) { |
| Handle<SmallOrderedNameDictionary> dict = |
| AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>( |
| small_ordered_name_dictionary_map(), capacity, allocation); |
| dict->SetHash(PropertyArray::kNoHashSentinel); |
| return dict; |
| } |
| |
| Handle<OrderedHashSet> Factory::NewOrderedHashSet() { |
| return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity) |
| .ToHandleChecked(); |
| } |
| |
| Handle<OrderedHashMap> Factory::NewOrderedHashMap() { |
| return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity) |
| .ToHandleChecked(); |
| } |
| |
| Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary() { |
| return OrderedNameDictionary::Allocate(isolate(), |
| OrderedNameDictionary::kMinCapacity) |
| .ToHandleChecked(); |
| } |
| |
| Handle<PropertyDescriptorObject> Factory::NewPropertyDescriptorObject() { |
| Handle<PropertyDescriptorObject> object = |
| Handle<PropertyDescriptorObject>::cast( |
| NewStruct(PROPERTY_DESCRIPTOR_OBJECT_TYPE, AllocationType::kYoung)); |
| object->set_flags(0); |
| object->set_value(*the_hole_value(), SKIP_WRITE_BARRIER); |
| object->set_get(*the_hole_value(), SKIP_WRITE_BARRIER); |
| object->set_set(*the_hole_value(), SKIP_WRITE_BARRIER); |
| return object; |
| } |
| |
| // Internalized strings are created in the old generation (data space). |
| Handle<String> Factory::InternalizeUtf8String( |
| const Vector<const char>& string) { |
| Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string); |
| Utf8Decoder decoder(utf8_data); |
| if (decoder.is_ascii()) return InternalizeString(utf8_data); |
| if (decoder.is_one_byte()) { |
| std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]); |
| decoder.Decode(buffer.get(), utf8_data); |
| return InternalizeString( |
| Vector<const uint8_t>(buffer.get(), decoder.utf16_length())); |
| } |
| std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]); |
| decoder.Decode(buffer.get(), utf8_data); |
| return InternalizeString( |
| Vector<const uc16>(buffer.get(), decoder.utf16_length())); |
| } |
| |
| Handle<String> Factory::InternalizeString(Vector<const uint8_t> string, |
| bool convert_encoding) { |
| SequentialStringKey<uint8_t> key(string, HashSeed(isolate()), |
| convert_encoding); |
| return InternalizeStringWithKey(&key); |
| } |
| |
| Handle<String> Factory::InternalizeString(Vector<const uint16_t> string, |
| bool convert_encoding) { |
| SequentialStringKey<uint16_t> key(string, HashSeed(isolate()), |
| convert_encoding); |
| return InternalizeStringWithKey(&key); |
| } |
| |
| template <typename SeqString> |
| Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from, |
| int length, bool convert_encoding) { |
| SeqSubStringKey<SeqString> key(isolate(), string, from, length, |
| convert_encoding); |
| return InternalizeStringWithKey(&key); |
| } |
| |
| template Handle<String> Factory::InternalizeString( |
| Handle<SeqOneByteString> string, int from, int length, |
| bool convert_encoding); |
| template Handle<String> Factory::InternalizeString( |
| Handle<SeqTwoByteString> string, int from, int length, |
| bool convert_encoding); |
| |
| template <class StringTableKey> |
| Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) { |
| return StringTable::LookupKey(isolate(), key); |
| } |
| template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) |
| Handle<String> Factory::InternalizeStringWithKey(OneByteStringKey* key); |
| template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) |
| Handle<String> Factory::InternalizeStringWithKey(TwoByteStringKey* key); |
| |
| MaybeHandle<String> Factory::NewStringFromOneByte( |
| const Vector<const uint8_t>& string, AllocationType allocation) { |
| DCHECK_NE(allocation, AllocationType::kReadOnly); |
| int length = string.length(); |
| if (length == 0) return empty_string(); |
| if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, |
| NewRawOneByteString(string.length(), allocation), |
| String); |
| |
| DisallowHeapAllocation no_gc; |
| // Copy the characters into the new object. |
| CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(), |
| length); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromUtf8(const Vector<const char>& string, |
| AllocationType allocation) { |
| Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string); |
| Utf8Decoder decoder(utf8_data); |
| |
| if (decoder.utf16_length() == 0) return empty_string(); |
| |
| if (decoder.is_one_byte()) { |
| // Allocate string. |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawOneByteString(decoder.utf16_length(), allocation), String); |
| |
| DisallowHeapAllocation no_gc; |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| // Allocate string. |
| Handle<SeqTwoByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawTwoByteString(decoder.utf16_length(), allocation), String); |
| |
| DisallowHeapAllocation no_gc; |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromUtf8SubString( |
| Handle<SeqOneByteString> str, int begin, int length, |
| AllocationType allocation) { |
| Vector<const uint8_t> utf8_data; |
| { |
| DisallowHeapAllocation no_gc; |
| utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length); |
| } |
| Utf8Decoder decoder(utf8_data); |
| |
| if (length == 1) { |
| uint16_t t; |
| // Decode even in the case of length 1 since it can be a bad character. |
| decoder.Decode(&t, utf8_data); |
| return LookupSingleCharacterStringFromCode(t); |
| } |
| |
| if (decoder.is_ascii()) { |
| // If the string is ASCII, we can just make a substring. |
| // TODO(v8): the allocation flag is ignored in this case. |
| return NewSubString(str, begin, begin + length); |
| } |
| |
| DCHECK_GT(decoder.utf16_length(), 0); |
| |
| if (decoder.is_one_byte()) { |
| // Allocate string. |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawOneByteString(decoder.utf16_length(), allocation), String); |
| DisallowHeapAllocation no_gc; |
| // Update pointer references, since the original string may have moved after |
| // allocation. |
| utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length); |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| // Allocate string. |
| Handle<SeqTwoByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate(), result, |
| NewRawTwoByteString(decoder.utf16_length(), allocation), String); |
| |
| DisallowHeapAllocation no_gc; |
| // Update pointer references, since the original string may have moved after |
| // allocation. |
| utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length); |
| decoder.Decode(result->GetChars(no_gc), utf8_data); |
| return result; |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string, |
| int length, |
| AllocationType allocation) { |
| DCHECK_NE(allocation, AllocationType::kReadOnly); |
| if (length == 0) return empty_string(); |
| if (String::IsOneByte(string, length)) { |
| if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); |
| Handle<SeqOneByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, |
| NewRawOneByteString(length, allocation), String); |
| DisallowHeapAllocation no_gc; |
| CopyChars(result->GetChars(no_gc), string, length); |
| return result; |
| } else { |
| Handle<SeqTwoByteString> result; |
| ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, |
| NewRawTwoByteString(length, allocation), String); |
| DisallowHeapAllocation no_gc; |
| CopyChars(result->GetChars(no_gc), string, length); |
| return result; |
| } |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromTwoByte( |
| const Vector<const uc16>& string, AllocationType allocation) { |
| return NewStringFromTwoByte(string.begin(), string.length(), allocation); |
| } |
| |
| MaybeHandle<String> Factory::NewStringFromTwoByte( |
| const ZoneVector<uc16>* string, AllocationType allocation) { |
| return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()), |
| allocation); |
| } |
| |
| namespace { |
| |
| bool inline IsOneByte(Handle<String> str) { |
| return str->IsOneByteRepresentation(); |
| } |
| |
| inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) { |
| DCHECK(s->length() == len); |
| String::WriteToFlat(*s, chars, 0, len); |
| } |
| |
| inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) { |
| DCHECK(s->length() == len); |
| String::WriteToFlat(*s, chars, 0, len); |
| } |
| |
| } // namespace |
| |
| template <bool is_one_byte, typename T> |
| Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars, |
| uint32_t hash_field) { |
| DCHECK_LE(0, chars); |
| DCHECK_GE(String::kMaxLength, chars); |
| |
| // Compute map and object size. |
| int size; |
| Map map; |
| if (is_one_byte) { |
| map = *one_byte_internalized_string_map(); |
| size = SeqOneByteString::SizeFor(chars); |
| } else { |
| map = *internalized_string_map(); |
| size = SeqTwoByteString::SizeFor(chars); |
| } |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(size, |
| isolate()->heap()->CanAllocateInReadOnlySpace() |
| ? AllocationType::kReadOnly |
| : AllocationType::kOld, |
| map); |
| Handle<String> answer(String::cast(result), isolate()); |
| answer->set_length(chars); |
| answer->set_hash_field(hash_field); |
| DCHECK_EQ(size, answer->Size()); |
| DisallowHeapAllocation no_gc; |
| |
| if (is_one_byte) { |
| WriteOneByteData(t, SeqOneByteString::cast(*answer).GetChars(no_gc), chars); |
| } else { |
| WriteTwoByteData(t, SeqTwoByteString::cast(*answer).GetChars(no_gc), chars); |
| } |
| return answer; |
| } |
| |
| Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string, |
| int chars, |
| uint32_t hash_field) { |
| if (IsOneByte(string)) { |
| return AllocateInternalizedStringImpl<true>(string, chars, hash_field); |
| } |
| return AllocateInternalizedStringImpl<false>(string, chars, hash_field); |
| } |
| |
| namespace { |
| |
| MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) { |
| switch (string->map().instance_type()) { |
| case STRING_TYPE: |
| return f->internalized_string_map(); |
| case ONE_BYTE_STRING_TYPE: |
| return f->one_byte_internalized_string_map(); |
| case EXTERNAL_STRING_TYPE: |
| return f->external_internalized_string_map(); |
| case EXTERNAL_ONE_BYTE_STRING_TYPE: |
| return f->external_one_byte_internalized_string_map(); |
| case UNCACHED_EXTERNAL_STRING_TYPE: |
| return f->uncached_external_internalized_string_map(); |
| case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE: |
| return f->uncached_external_one_byte_internalized_string_map(); |
| default: |
| return MaybeHandle<Map>(); // No match found. |
| } |
| } |
| |
| } // namespace |
| |
| MaybeHandle<Map> Factory::InternalizedStringMapForString( |
| Handle<String> string) { |
| // If the string is in the young generation, it cannot be used as |
| // internalized. |
| if (Heap::InYoungGeneration(*string)) return MaybeHandle<Map>(); |
| |
| return GetInternalizedStringMap(this, string); |
| } |
| |
| template <class StringClass> |
| Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) { |
| Handle<StringClass> cast_string = Handle<StringClass>::cast(string); |
| Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked(); |
| Handle<StringClass> external_string( |
| StringClass::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(cast_string->length()); |
| external_string->set_hash_field(cast_string->hash_field()); |
| external_string->SetResource(isolate(), nullptr); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| return external_string; |
| } |
| |
| template Handle<ExternalOneByteString> |
| Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>); |
| template Handle<ExternalTwoByteString> |
| Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>); |
| |
| Handle<String> Factory::LookupSingleCharacterStringFromCode(uint16_t code) { |
| if (code <= unibrow::Latin1::kMaxChar) { |
| { |
| DisallowHeapAllocation no_allocation; |
| Object value = single_character_string_cache()->get(code); |
| if (value != *undefined_value()) { |
| return handle(String::cast(value), isolate()); |
| } |
| } |
| uint8_t buffer[] = {static_cast<uint8_t>(code)}; |
| Handle<String> result = InternalizeString(Vector<const uint8_t>(buffer, 1)); |
| single_character_string_cache()->set(code, *result); |
| return result; |
| } |
| uint16_t buffer[] = {code}; |
| return InternalizeString(Vector<const uint16_t>(buffer, 1)); |
| } |
| |
| Handle<String> Factory::MakeOrFindTwoCharacterString(uint16_t c1, uint16_t c2) { |
| if ((c1 | c2) <= unibrow::Latin1::kMaxChar) { |
| uint8_t buffer[] = {static_cast<uint8_t>(c1), static_cast<uint8_t>(c2)}; |
| return InternalizeString(Vector<const uint8_t>(buffer, 2)); |
| } |
| uint16_t buffer[] = {c1, c2}; |
| return InternalizeString(Vector<const uint16_t>(buffer, 2)); |
| } |
| |
| Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) { |
| DCHECK_GE(lead, 0xD800); |
| DCHECK_LE(lead, 0xDBFF); |
| DCHECK_GE(trail, 0xDC00); |
| DCHECK_LE(trail, 0xDFFF); |
| |
| Handle<SeqTwoByteString> str = |
| isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked(); |
| DisallowHeapAllocation no_allocation; |
| uc16* dest = str->GetChars(no_allocation); |
| dest[0] = lead; |
| dest[1] = trail; |
| return str; |
| } |
| |
| Handle<String> Factory::NewProperSubString(Handle<String> str, int begin, |
| int end) { |
| #if VERIFY_HEAP |
| if (FLAG_verify_heap) str->StringVerify(isolate()); |
| #endif |
| DCHECK(begin > 0 || end < str->length()); |
| |
| str = String::Flatten(isolate(), str); |
| |
| int length = end - begin; |
| if (length <= 0) return empty_string(); |
| if (length == 1) { |
| return LookupSingleCharacterStringFromCode(str->Get(begin)); |
| } |
| if (length == 2) { |
| // Optimization for 2-byte strings often used as keys in a decompression |
| // dictionary. Check whether we already have the string in the string |
| // table to prevent creation of many unnecessary strings. |
| uint16_t c1 = str->Get(begin); |
| uint16_t c2 = str->Get(begin + 1); |
| return MakeOrFindTwoCharacterString(c1, c2); |
| } |
| |
| if (!FLAG_string_slices || length < SlicedString::kMinLength) { |
| if (str->IsOneByteRepresentation()) { |
| Handle<SeqOneByteString> result = |
| NewRawOneByteString(length).ToHandleChecked(); |
| DisallowHeapAllocation no_gc; |
| uint8_t* dest = result->GetChars(no_gc); |
| String::WriteToFlat(*str, dest, begin, end); |
| return result; |
| } else { |
| Handle<SeqTwoByteString> result = |
| NewRawTwoByteString(length).ToHandleChecked(); |
| DisallowHeapAllocation no_gc; |
| uc16* dest = result->GetChars(no_gc); |
| String::WriteToFlat(*str, dest, begin, end); |
| return result; |
| } |
| } |
| |
| int offset = begin; |
| |
| if (str->IsSlicedString()) { |
| Handle<SlicedString> slice = Handle<SlicedString>::cast(str); |
| str = Handle<String>(slice->parent(), isolate()); |
| offset += slice->offset(); |
| } |
| if (str->IsThinString()) { |
| Handle<ThinString> thin = Handle<ThinString>::cast(str); |
| str = handle(thin->actual(), isolate()); |
| } |
| |
| DCHECK(str->IsSeqString() || str->IsExternalString()); |
| Handle<Map> map = str->IsOneByteRepresentation() |
| ? sliced_one_byte_string_map() |
| : sliced_string_map(); |
| Handle<SlicedString> slice( |
| SlicedString::cast(New(map, AllocationType::kYoung)), isolate()); |
| |
| slice->set_hash_field(String::kEmptyHashField); |
| slice->set_length(length); |
| slice->set_parent(*str); |
| slice->set_offset(offset); |
| return slice; |
| } |
| |
| MaybeHandle<String> Factory::NewExternalStringFromOneByte( |
| const ExternalOneByteString::Resource* resource) { |
| size_t length = resource->length(); |
| if (length > static_cast<size_t>(String::kMaxLength)) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); |
| } |
| if (length == 0) return empty_string(); |
| |
| Handle<Map> map = resource->IsCacheable() |
| ? external_one_byte_string_map() |
| : uncached_external_one_byte_string_map(); |
| Handle<ExternalOneByteString> external_string( |
| ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(static_cast<int>(length)); |
| external_string->set_hash_field(String::kEmptyHashField); |
| external_string->SetResource(isolate(), resource); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| |
| return external_string; |
| } |
| |
| MaybeHandle<String> Factory::NewExternalStringFromTwoByte( |
| const ExternalTwoByteString::Resource* resource) { |
| size_t length = resource->length(); |
| if (length > static_cast<size_t>(String::kMaxLength)) { |
| THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); |
| } |
| if (length == 0) return empty_string(); |
| |
| Handle<Map> map = resource->IsCacheable() ? external_string_map() |
| : uncached_external_string_map(); |
| Handle<ExternalTwoByteString> external_string( |
| ExternalTwoByteString::cast(New(map, AllocationType::kOld)), isolate()); |
| external_string->set_length(static_cast<int>(length)); |
| external_string->set_hash_field(String::kEmptyHashField); |
| external_string->SetResource(isolate(), resource); |
| isolate()->heap()->RegisterExternalString(*external_string); |
| |
| return external_string; |
| } |
| |
| Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) { |
| Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(), |
| isolate()); |
| Handle<String> flat_string = String::Flatten(isolate(), string); |
| Handle<JSStringIterator> iterator = |
| Handle<JSStringIterator>::cast(NewJSObjectFromMap(map)); |
| iterator->set_string(*flat_string); |
| iterator->set_index(0); |
| |
| return iterator; |
| } |
| |
| Handle<Symbol> Factory::NewSymbol(AllocationType allocation) { |
| DCHECK(allocation != AllocationType::kYoung); |
| // Statically ensure that it is safe to allocate symbols in paged spaces. |
| STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize); |
| |
| HeapObject result = |
| AllocateRawWithImmortalMap(Symbol::kSize, allocation, *symbol_map()); |
| |
| // Generate a random hash value. |
| int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask); |
| |
| Handle<Symbol> symbol(Symbol::cast(result), isolate()); |
| symbol->set_hash_field(Name::kIsNotIntegerIndexMask | |
| (hash << Name::kHashShift)); |
| symbol->set_description(*undefined_value()); |
| symbol->set_flags(0); |
| DCHECK(!symbol->is_private()); |
| return symbol; |
| } |
| |
| Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) { |
| DCHECK(allocation != AllocationType::kYoung); |
| Handle<Symbol> symbol = NewSymbol(allocation); |
| symbol->set_is_private(true); |
| return symbol; |
| } |
| |
| Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) { |
| Handle<Symbol> symbol = NewSymbol(); |
| symbol->set_is_private_name(); |
| symbol->set_description(*name); |
| return symbol; |
| } |
| |
| Handle<Context> Factory::NewContext(Handle<Map> map, int size, |
| int variadic_part_length, |
| AllocationType allocation) { |
| DCHECK_LE(Context::kTodoHeaderSize, size); |
| DCHECK(IsAligned(size, kTaggedSize)); |
| DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length); |
| DCHECK_LE(Context::SizeFor(variadic_part_length), size); |
| |
| HeapObject result = |
| isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation); |
| result.set_map_after_allocation(*map); |
| Handle<Context> context(Context::cast(result), isolate()); |
| context->set_length(variadic_part_length); |
| DCHECK_EQ(context->SizeFromMap(*map), size); |
| if (size > Context::kTodoHeaderSize) { |
| ObjectSlot start = context->RawField(Context::kTodoHeaderSize); |
| ObjectSlot end = context->RawField(size); |
| size_t slot_count = end - start; |
| MemsetTagged(start, *undefined_value(), slot_count); |
| } |
| return context; |
| } |
| |
| Handle<NativeContext> Factory::NewNativeContext() { |
| Handle<Map> map = NewMap(NATIVE_CONTEXT_TYPE, kVariableSizeSentinel); |
| Handle<NativeContext> context = Handle<NativeContext>::cast( |
| NewContext(map, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS, |
| AllocationType::kOld)); |
| context->set_native_context_map(*map); |
| map->set_native_context(*context); |
| context->set_scope_info(ReadOnlyRoots(isolate()).native_scope_info()); |
| context->set_previous(Context::unchecked_cast(Smi::zero())); |
| context->set_extension(*undefined_value()); |
| context->set_errors_thrown(Smi::zero()); |
| context->set_math_random_index(Smi::zero()); |
| context->set_serialized_objects(*empty_fixed_array()); |
| context->set_microtask_queue(isolate(), nullptr); |
| context->set_osr_code_cache(*empty_weak_fixed_array()); |
| context->set_retained_maps(*empty_weak_array_list()); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer, |
| Handle<ScopeInfo> scope_info) { |
| DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE); |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = |
| NewContext(handle(outer->script_context_map(), isolate()), |
| Context::SizeFor(variadic_part_length), variadic_part_length, |
| AllocationType::kOld); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*outer); |
| DCHECK(context->IsScriptContext()); |
| return context; |
| } |
| |
| Handle<ScriptContextTable> Factory::NewScriptContextTable() { |
| Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast( |
| NewFixedArrayWithMap(read_only_roots().script_context_table_map_handle(), |
| ScriptContextTable::kMinLength)); |
| context_table->synchronized_set_used(0); |
| return context_table; |
| } |
| |
| Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module, |
| Handle<NativeContext> outer, |
| Handle<ScopeInfo> scope_info) { |
| DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE); |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = NewContext( |
| isolate()->module_context_map(), Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kOld); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*outer); |
| context->set_extension(*module); |
| DCHECK(context->IsModuleContext()); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewFunctionContext(Handle<Context> outer, |
| Handle<ScopeInfo> scope_info) { |
| Handle<Map> map; |
| switch (scope_info->scope_type()) { |
| case EVAL_SCOPE: |
| map = isolate()->eval_context_map(); |
| break; |
| case FUNCTION_SCOPE: |
| map = isolate()->function_context_map(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = |
| NewContext(map, Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*outer); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewCatchContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info, |
| Handle<Object> thrown_object) { |
| DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE); |
| STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); |
| // TODO(ishell): Take the details from CatchContext class. |
| int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1; |
| Handle<Context> context = NewContext( |
| isolate()->catch_context_map(), Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*previous); |
| context->set(Context::THROWN_OBJECT_INDEX, *thrown_object); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info, |
| Handle<JSReceiver> extension, |
| Handle<Context> wrapped, |
| Handle<StringSet> blocklist) { |
| STATIC_ASSERT(Context::BLOCK_LIST_INDEX == |
| Context::MIN_CONTEXT_EXTENDED_SLOTS + 1); |
| DCHECK(scope_info->IsDebugEvaluateScope()); |
| Handle<HeapObject> ext = extension.is_null() |
| ? Handle<HeapObject>::cast(undefined_value()) |
| : Handle<HeapObject>::cast(extension); |
| // TODO(ishell): Take the details from DebugEvaluateContextContext class. |
| int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS + 2; |
| Handle<Context> c = NewContext(isolate()->debug_evaluate_context_map(), |
| Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| c->set_scope_info(*scope_info); |
| c->set_previous(*previous); |
| c->set_extension(*ext); |
| if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped); |
| if (!blocklist.is_null()) c->set(Context::BLOCK_LIST_INDEX, *blocklist); |
| return c; |
| } |
| |
| Handle<Context> Factory::NewWithContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info, |
| Handle<JSReceiver> extension) { |
| DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE); |
| // TODO(ishell): Take the details from WithContext class. |
| int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS; |
| Handle<Context> context = NewContext( |
| isolate()->with_context_map(), Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*previous); |
| context->set_extension(*extension); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewBlockContext(Handle<Context> previous, |
| Handle<ScopeInfo> scope_info) { |
| DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE, |
| scope_info->scope_type() == CLASS_SCOPE); |
| int variadic_part_length = scope_info->ContextLength(); |
| Handle<Context> context = NewContext( |
| isolate()->block_context_map(), Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(*scope_info); |
| context->set_previous(*previous); |
| return context; |
| } |
| |
| Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context, |
| int variadic_part_length) { |
| DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length); |
| Handle<Context> context = NewContext( |
| isolate()->function_context_map(), Context::SizeFor(variadic_part_length), |
| variadic_part_length, AllocationType::kYoung); |
| context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info()); |
| context->set_previous(*native_context); |
| return context; |
| } |
| |
| Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry( |
| int aliased_context_slot) { |
| Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast( |
| NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung)); |
| entry->set_aliased_context_slot(aliased_context_slot); |
| return entry; |
| } |
| |
| Handle<AccessorInfo> Factory::NewAccessorInfo() { |
| Handle<AccessorInfo> info = Handle<AccessorInfo>::cast( |
| NewStruct(ACCESSOR_INFO_TYPE, AllocationType::kOld)); |
| DisallowHeapAllocation no_gc; |
| info->set_name(*empty_string()); |
| info->set_flags(0); // Must clear the flags, it was initialized as undefined. |
| info->set_is_sloppy(true); |
| info->set_initial_property_attributes(NONE); |
| |
| // Clear some other fields that should not be undefined. |
| info->set_getter(Smi::zero()); |
| info->set_setter(Smi::zero()); |
| info->set_js_getter(Smi::zero()); |
| |
| return info; |
| } |
| |
| void Factory::AddToScriptList(Handle<Script> script) { |
| Handle<WeakArrayList> scripts = script_list(); |
| scripts = WeakArrayList::Append(isolate(), scripts, |
| MaybeObjectHandle::Weak(script)); |
| isolate()->heap()->set_script_list(*scripts); |
| } |
| |
| Handle<Script> Factory::CloneScript(Handle<Script> script) { |
| Heap* heap = isolate()->heap(); |
| int script_id = isolate()->GetNextScriptId(); |
| Handle<Script> new_script = |
| Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld)); |
| new_script->set_source(script->source()); |
| new_script->set_name(script->name()); |
| new_script->set_id(script_id); |
| new_script->set_line_offset(script->line_offset()); |
| new_script->set_column_offset(script->column_offset()); |
| new_script->set_context_data(script->context_data()); |
| new_script->set_type(script->type()); |
| new_script->set_line_ends(ReadOnlyRoots(heap).undefined_value()); |
| new_script->set_eval_from_shared_or_wrapped_arguments( |
| script->eval_from_shared_or_wrapped_arguments()); |
| new_script->set_shared_function_infos(*empty_weak_fixed_array(), |
| SKIP_WRITE_BARRIER); |
| new_script->set_eval_from_position(script->eval_from_position()); |
| new_script->set_flags(script->flags()); |
| new_script->set_host_defined_options(script->host_defined_options()); |
| Handle<WeakArrayList> scripts = script_list(); |
| scripts = WeakArrayList::AddToEnd(isolate(), scripts, |
| MaybeObjectHandle::Weak(new_script)); |
| heap->set_script_list(*scripts); |
| LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id)); |
| return new_script; |
| } |
| |
| Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable, |
| Handle<Context> context) { |
| DCHECK(callable->IsCallable()); |
| Handle<CallableTask> microtask = |
| Handle<CallableTask>::cast(NewStruct(CALLABLE_TASK_TYPE)); |
| microtask->set_callable(*callable); |
| microtask->set_context(*context); |
| return microtask; |
| } |
| |
| Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback, |
| Handle<Foreign> data) { |
| Handle<CallbackTask> microtask = |
| Handle<CallbackTask>::cast(NewStruct(CALLBACK_TASK_TYPE)); |
| microtask->set_callback(*callback); |
| microtask->set_data(*data); |
| return microtask; |
| } |
| |
| Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask( |
| Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable, |
| Handle<JSReceiver> then, Handle<Context> context) { |
| DCHECK(then->IsCallable()); |
| Handle<PromiseResolveThenableJobTask> microtask = |
| Handle<PromiseResolveThenableJobTask>::cast( |
| NewStruct(PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE)); |
| microtask->set_promise_to_resolve(*promise_to_resolve); |
| microtask->set_thenable(*thenable); |
| microtask->set_then(*then); |
| microtask->set_context(*context); |
| return microtask; |
| } |
| |
| Handle<Foreign> Factory::NewForeign(Address addr) { |
| // Statically ensure that it is safe to allocate foreigns in paged spaces. |
| STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize); |
| Map map = *foreign_map(); |
| HeapObject result = AllocateRawWithImmortalMap(map.instance_size(), |
| AllocationType::kYoung, map); |
| Handle<Foreign> foreign(Foreign::cast(result), isolate()); |
| foreign->set_foreign_address(isolate(), addr); |
| return foreign; |
| } |
| |
| Handle<WasmTypeInfo> Factory::NewWasmTypeInfo(Address type_address, |
| Handle<Map> parent) { |
| Handle<ArrayList> subtypes = ArrayList::New(isolate(), 0); |
| Map map = *wasm_type_info_map(); |
| HeapObject result = AllocateRawWithImmortalMap(map.instance_size(), |
| AllocationType::kYoung, map); |
| Handle<WasmTypeInfo> info(WasmTypeInfo::cast(result), isolate()); |
| info->set_foreign_address(isolate(), type_address); |
| info->set_parent(*parent); |
| info->set_subtypes(*subtypes); |
| return info; |
| } |
| |
| Handle<Cell> Factory::NewCell(Handle<Object> value) { |
| STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize); |
| HeapObject result = AllocateRawWithImmortalMap( |
| Cell::kSize, AllocationType::kOld, *cell_map()); |
| Handle<Cell> cell(Cell::cast(result), isolate()); |
| cell->set_value(*value); |
| return cell; |
| } |
| |
| Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) { |
| HeapObject result = |
| AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize, |
| AllocationType::kOld, *no_closures_cell_map()); |
| Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate()); |
| cell->set_value(*value); |
| cell->SetInitialInterruptBudget(); |
| cell->clear_padding(); |
| return cell; |
| } |
| |
| Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) { |
| HeapObject result = |
| AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize, |
| AllocationType::kOld, *one_closure_cell_map()); |
| Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate()); |
| cell->set_value(*value); |
| cell->SetInitialInterruptBudget(); |
| cell->clear_padding(); |
| return cell; |
| } |
| |
| Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) { |
| HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize, |
| AllocationType::kOld, |
| *many_closures_cell_map()); |
| Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate()); |
| cell->set_value(*value); |
| cell->SetInitialInterruptBudget(); |
| cell->clear_padding(); |
| return cell; |
| } |
| |
| Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name, |
| AllocationType allocation) { |
| DCHECK(name->IsUniqueName()); |
| STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize); |
| HeapObject result = AllocateRawWithImmortalMap( |
| PropertyCell::kSize, allocation, *global_property_cell_map()); |
| Handle<PropertyCell> cell(PropertyCell::cast(result), isolate()); |
| cell->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()), |
| SKIP_WRITE_BARRIER); |
| cell->set_property_details(PropertyDetails(Smi::zero())); |
| cell->set_name(*name); |
| cell->set_value(*the_hole_value()); |
| return cell; |
| } |
| |
| Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions, |
| int slack) { |
| int capacity = TransitionArray::LengthFor(number_of_transitions + slack); |
| Handle<TransitionArray> array = Handle<TransitionArray>::cast( |
| NewWeakFixedArrayWithMap(read_only_roots().transition_array_map(), |
| capacity, AllocationType::kOld)); |
| // Transition arrays are AllocationType::kOld. When black allocation is on we |
| // have to add the transition array to the list of |
| // encountered_transition_arrays. |
| Heap* heap = isolate()->heap(); |
| if (heap->incremental_marking()->black_allocation()) { |
| heap->mark_compact_collector()->AddTransitionArray(*array); |
| } |
| array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex, |
| MaybeObject::FromObject(Smi::zero())); |
| array->WeakFixedArray::Set( |
| TransitionArray::kTransitionLengthIndex, |
| MaybeObject::FromObject(Smi::FromInt(number_of_transitions))); |
| return array; |
| } |
| |
| Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) { |
| Handle<Map> map = with_weak_next ? allocation_site_map() |
| : allocation_site_without_weaknext_map(); |
| Handle<AllocationSite> site( |
| AllocationSite::cast(New(map, AllocationType::kOld)), isolate()); |
| site->Initialize(); |
| |
| if (with_weak_next) { |
| // Link the site |
| site->set_weak_next(isolate()->heap()->allocation_sites_list()); |
| isolate()->heap()->set_allocation_sites_list(*site); |
| } |
| return site; |
| } |
| |
| Handle<Map> Factory::NewMap(InstanceType type, int instance_size, |
| ElementsKind elements_kind, |
| int inobject_properties) { |
| STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); |
| DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) && |
| !Map::CanHaveFastTransitionableElementsKind(type), |
| IsDictionaryElementsKind(elements_kind) || |
| IsTerminalElementsKind(elements_kind)); |
| HeapObject result = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>( |
| Map::kSize, AllocationType::kMap); |
| result.set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER); |
| return handle(InitializeMap(Map::cast(result), type, instance_size, |
| elements_kind, inobject_properties), |
| isolate()); |
| } |
| |
| Map Factory::InitializeMap(Map map, InstanceType type, int instance_size, |
| ElementsKind elements_kind, |
| int inobject_properties) { |
| map.set_instance_type(type); |
| map.set_prototype(*null_value(), SKIP_WRITE_BARRIER); |
| map.set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER); |
| map.set_instance_size(instance_size); |
| if (map.IsJSObjectMap()) { |
| DCHECK(!ReadOnlyHeap::Contains(map)); |
| map.SetInObjectPropertiesStartInWords(instance_size / kTaggedSize - |
| inobject_properties); |
| DCHECK_EQ(map.GetInObjectProperties(), inobject_properties); |
| map.set_prototype_validity_cell(*invalid_prototype_validity_cell()); |
| } else { |
| DCHECK_EQ(inobject_properties, 0); |
| map.set_inobject_properties_start_or_constructor_function_index(0); |
| map.set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid)); |
| } |
| map.set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()), |
| SKIP_WRITE_BARRIER); |
| map.set_raw_transitions(MaybeObject::FromSmi(Smi::zero())); |
| map.SetInObjectUnusedPropertyFields(inobject_properties); |
| map.SetInstanceDescriptors(isolate(), *empty_descriptor_array(), 0); |
| if (FLAG_unbox_double_fields) { |
| map.set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); |
| } |
| // Must be called only after |instance_type|, |instance_size| and |
| // |layout_descriptor| are set. |
| map.set_visitor_id(Map::GetVisitorId(map)); |
| map.set_relaxed_bit_field(0); |
| map.set_bit_field2(Map::Bits2::NewTargetIsBaseBit::encode(true)); |
| int bit_field3 = |
| Map::Bits3::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | |
| Map::Bits3::OwnsDescriptorsBit::encode(true) | |
| Map::Bits3::ConstructionCounterBits::encode(Map::kNoSlackTracking) | |
| Map::Bits3::IsExtensibleBit::encode(true); |
| map.set_bit_field3(bit_field3); |
| DCHECK(!map.is_in_retained_map_list()); |
| map.clear_padding(); |
| map.set_elements_kind(elements_kind); |
| isolate()->counters()->maps_created()->Increment(); |
| if (FLAG_trace_maps) LOG(isolate(), MapCreate(map)); |
| return map; |
| } |
| |
| Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) { |
| return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>()); |
| } |
| |
| Handle<JSObject> Factory::CopyJSObjectWithAllocationSite( |
| Handle<JSObject> source, Handle<AllocationSite> site) { |
| Handle<Map> map(source->map(), isolate()); |
| |
| // We can only clone regexps, normal objects, api objects, errors or arrays. |
| // Copying anything else will break invariants. |
| CHECK(map->instance_type() == JS_REG_EXP_TYPE || |
| map->instance_type() == JS_OBJECT_TYPE || |
| map->instance_type() == JS_ERROR_TYPE || |
| map->instance_type() == JS_ARRAY_TYPE || |
| map->instance_type() == JS_API_OBJECT_TYPE || |
| map->instance_type() == WASM_GLOBAL_OBJECT_TYPE || |
| map->instance_type() == WASM_INSTANCE_OBJECT_TYPE || |
| map->instance_type() == WASM_MEMORY_OBJECT_TYPE || |
| map->instance_type() == WASM_MODULE_OBJECT_TYPE || |
| map->instance_type() == WASM_TABLE_OBJECT_TYPE || |
| map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE); |
| DCHECK(site.is_null() || AllocationSite::CanTrack(map->instance_type())); |
| |
| int object_size = map->instance_size(); |
| int adjusted_object_size = |
| site.is_null() ? object_size : object_size + AllocationMemento::kSize; |
| HeapObject raw_clone = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>( |
| adjusted_object_size, AllocationType::kYoung); |
| |
| DCHECK(Heap::InYoungGeneration(raw_clone) || FLAG_single_generation); |
| |
| Heap::CopyBlock(raw_clone.address(), source->address(), object_size); |
| Handle<JSObject> clone(JSObject::cast(raw_clone), isolate()); |
| |
| if (FLAG_enable_unconditional_write_barriers) { |
| // By default, we shouldn't need to update the write barrier here, as the |
| // clone will be allocated in new space. |
| const ObjectSlot start(raw_clone.address()); |
| const ObjectSlot end(raw_clone.address() + object_size); |
| isolate()->heap()->WriteBarrierForRange(raw_clone, start, end); |
| } |
| if (!site.is_null()) { |
| AllocationMemento alloc_memento = AllocationMemento::unchecked_cast( |
| Object(raw_clone.ptr() + object_size)); |
| InitializeAllocationMemento(alloc_memento, *site); |
| } |
| |
| SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind()); |
| FixedArrayBase elements = source->elements(); |
| // Update elements if necessary. |
| if (elements.length() > 0) { |
| FixedArrayBase elem; |
| if (elements.map() == *fixed_cow_array_map()) { |
| elem = elements; |
| } else if (source->HasDoubleElements()) { |
| elem = *CopyFixedDoubleArray( |
| handle(FixedDoubleArray::cast(elements), isolate())); |
| } else { |
| elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate())); |
| } |
| clone->set_elements(elem); |
| } |
| |
| // Update properties if necessary. |
| if (source->HasFastProperties()) { |
| PropertyArray properties = source->property_array(); |
| if (properties.length() > 0) { |
| // TODO(gsathya): Do not copy hash code. |
| Handle<PropertyArray> prop = CopyArrayWithMap( |
| handle(properties, isolate()), handle(properties.map(), isolate())); |
| clone->set_raw_properties_or_hash(*prop); |
| } |
| } else { |
| Handle<FixedArray> properties( |
| FixedArray::cast(source->property_dictionary()), isolate()); |
| Handle<FixedArray> prop = CopyFixedArray(properties); |
| clone->set_raw_properties_or_hash(*prop); |
| } |
| return clone; |
| } |
| |
| namespace { |
| template <typename T> |
| void initialize_length(Handle<T> array, int length) { |
| array->set_length(length); |
| } |
| |
| template <> |
| void initialize_length<PropertyArray>(Handle<PropertyArray> array, int length) { |
| array->initialize_length(length); |
| } |
| |
| inline void ZeroEmbedderFields(i::Handle<i::JSObject> obj) { |
| auto count = obj->GetEmbedderFieldCount(); |
| for (int i = 0; i < count; i++) { |
| obj->SetEmbedderField(i, Smi::zero()); |
| } |
| } |
| |
| } // namespace |
| |
| template <typename T> |
| Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) { |
| int len = src->length(); |
| HeapObject obj = AllocateRawFixedArray(len, AllocationType::kYoung); |
| obj.set_map_after_allocation(*map, SKIP_WRITE_BARRIER); |
| |
| Handle<T> result(T::cast(obj), isolate()); |
| initialize_length(result, len); |
| |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *src, 0, len, mode); |
| return result; |
| } |
| |
| template <typename T> |
| Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by, |
| AllocationType allocation) { |
| DCHECK_LT(0, grow_by); |
| DCHECK_LE(grow_by, kMaxInt - src->length()); |
| int old_len = src->length(); |
| int new_len = old_len + grow_by; |
| HeapObject obj = AllocateRawFixedArray(new_len, allocation); |
| obj.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER); |
| |
| Handle<T> result(T::cast(obj), isolate()); |
| initialize_length(result, new_len); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = obj.GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *src, 0, old_len, mode); |
| MemsetTagged(ObjectSlot(result->data_start() + old_len), |
| ReadOnlyRoots(isolate()).undefined_value(), grow_by); |
| return result; |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array, |
| Handle<Map> map) { |
| return CopyArrayWithMap(array, map); |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array, |
| int grow_by) { |
| return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung); |
| } |
| |
| Handle<WeakArrayList> Factory::NewUninitializedWeakArrayList( |
| int capacity, AllocationType allocation) { |
| DCHECK_LE(0, capacity); |
| if (capacity == 0) return empty_weak_array_list(); |
| |
| HeapObject obj = AllocateRawWeakArrayList(capacity, allocation); |
| obj.set_map_after_allocation(*weak_array_list_map(), SKIP_WRITE_BARRIER); |
| |
| Handle<WeakArrayList> result(WeakArrayList::cast(obj), isolate()); |
| result->set_length(0); |
| result->set_capacity(capacity); |
| return result; |
| } |
| |
| Handle<WeakArrayList> Factory::NewWeakArrayList(int capacity, |
| AllocationType allocation) { |
| Handle<WeakArrayList> result = |
| NewUninitializedWeakArrayList(capacity, allocation); |
| MemsetTagged(ObjectSlot(result->data_start()), |
| ReadOnlyRoots(isolate()).undefined_value(), capacity); |
| return result; |
| } |
| |
| Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow( |
| Handle<WeakFixedArray> src, int grow_by) { |
| DCHECK(!src->IsTransitionArray()); // Compacted by GC, this code doesn't work |
| return CopyArrayAndGrow(src, grow_by, AllocationType::kOld); |
| } |
| |
| Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow( |
| Handle<WeakArrayList> src, int grow_by, AllocationType allocation) { |
| int old_capacity = src->capacity(); |
| int new_capacity = old_capacity + grow_by; |
| DCHECK_GE(new_capacity, old_capacity); |
| Handle<WeakArrayList> result = |
| NewUninitializedWeakArrayList(new_capacity, allocation); |
| int old_len = src->length(); |
| result->set_length(old_len); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *src, 0, old_len, mode); |
| MemsetTagged(ObjectSlot(result->data_start() + old_len), |
| ReadOnlyRoots(isolate()).undefined_value(), |
| new_capacity - old_len); |
| return result; |
| } |
| |
| Handle<WeakArrayList> Factory::CompactWeakArrayList(Handle<WeakArrayList> src, |
| int new_capacity, |
| AllocationType allocation) { |
| Handle<WeakArrayList> result = |
| NewUninitializedWeakArrayList(new_capacity, allocation); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| int copy_to = 0, length = src->length(); |
| for (int i = 0; i < length; i++) { |
| MaybeObject element = src->Get(i); |
| if (element->IsCleared()) continue; |
| result->Set(copy_to++, element, mode); |
| } |
| result->set_length(copy_to); |
| |
| MemsetTagged(ObjectSlot(result->data_start() + copy_to), |
| ReadOnlyRoots(isolate()).undefined_value(), |
| new_capacity - copy_to); |
| return result; |
| } |
| |
| Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow( |
| Handle<PropertyArray> array, int grow_by) { |
| return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung); |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array, |
| int new_len, |
| AllocationType allocation) { |
| DCHECK_LE(0, new_len); |
| DCHECK_LE(new_len, array->length()); |
| if (new_len == 0) return empty_fixed_array(); |
| |
| HeapObject obj = AllocateRawFixedArray(new_len, allocation); |
| obj.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER); |
| Handle<FixedArray> result(FixedArray::cast(obj), isolate()); |
| result->set_length(new_len); |
| |
| // Copy the content. |
| DisallowHeapAllocation no_gc; |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| result->CopyElements(isolate(), 0, *array, 0, new_len, mode); |
| return result; |
| } |
| |
| Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) { |
| if (array->length() == 0) return array; |
| return CopyArrayWithMap(array, handle(array->map(), isolate())); |
| } |
| |
| Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray( |
| Handle<FixedArray> array) { |
| DCHECK(Heap::InYoungGeneration(*array)); |
| Handle<FixedArray> result = |
| CopyFixedArrayUpTo(array, array->length(), AllocationType::kOld); |
| |
| // TODO(mvstanton): The map is set twice because of protection against calling |
| // set() on a COW FixedArray. Issue v8:3221 created to track this, and |
| // we might then be able to remove this whole method. |
| result->set_map_after_allocation(*fixed_cow_array_map(), SKIP_WRITE_BARRIER); |
| return result; |
| } |
| |
| Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray( |
| Handle<FixedDoubleArray> array) { |
| int len = array->length(); |
| if (len == 0) return array; |
| Handle<FixedDoubleArray> result = |
| Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len)); |
| Heap::CopyBlock( |
| result->address() + FixedDoubleArray::kLengthOffset, |
| array->address() + FixedDoubleArray::kLengthOffset, |
| FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); |
| return result; |
| } |
| |
| Handle<HeapNumber> Factory::NewHeapNumberForCodeAssembler(double value) { |
| return isolate()->heap()->CanAllocateInReadOnlySpace() |
| ? NewHeapNumber<AllocationType::kReadOnly>(value) |
| : NewHeapNumber<AllocationType::kOld>(value); |
| } |
| |
| Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor, |
| MessageTemplate template_index, |
| Handle<Object> arg0, Handle<Object> arg1, |
| Handle<Object> arg2) { |
| HandleScope scope(isolate()); |
| |
| if (arg0.is_null()) arg0 = undefined_value(); |
| if (arg1.is_null()) arg1 = undefined_value(); |
| if (arg2.is_null()) arg2 = undefined_value(); |
| |
| return scope.CloseAndEscape(ErrorUtils::MakeGenericError( |
| isolate(), constructor, template_index, arg0, arg1, arg2, SKIP_NONE)); |
| } |
| |
| Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor, |
| Handle<String> message) { |
| // Construct a new error object. If an exception is thrown, use the exception |
| // as the result. |
| |
| Handle<Object> no_caller; |
| return ErrorUtils::Construct(isolate(), constructor, constructor, message, |
| SKIP_NONE, no_caller, |
| ErrorUtils::StackTraceCollection::kDetailed) |
| .ToHandleChecked(); |
| } |
| |
| Handle<Object> Factory::NewInvalidStringLengthError() { |
| if (FLAG_correctness_fuzzer_suppressions) { |
| FATAL("Aborting on invalid string length"); |
| } |
| // Invalidate the "string length" protector. |
| if (Protectors::IsStringLengthOverflowLookupChainIntact(isolate())) { |
| Protectors::InvalidateStringLengthOverflowLookupChain(isolate()); |
| } |
| return NewRangeError(MessageTemplate::kInvalidStringLength); |
| } |
| |
| #define DEFINE_ERROR(NAME, name) \ |
| Handle<JSObject> Factory::New##NAME( \ |
| MessageTemplate template_index, Handle<Object> arg0, \ |
| Handle<Object> arg1, Handle<Object> arg2) { \ |
| return NewError(isolate()->name##_function(), template_index, arg0, arg1, \ |
| arg2); \ |
| } |
| DEFINE_ERROR(Error, error) |
| DEFINE_ERROR(EvalError, eval_error) |
| DEFINE_ERROR(RangeError, range_error) |
| DEFINE_ERROR(ReferenceError, reference_error) |
| DEFINE_ERROR(SyntaxError, syntax_error) |
| DEFINE_ERROR(TypeError, type_error) |
| DEFINE_ERROR(WasmCompileError, wasm_compile_error) |
| DEFINE_ERROR(WasmLinkError, wasm_link_error) |
| DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error) |
| #undef DEFINE_ERROR |
| |
| Handle<JSFunction> Factory::NewFunction(Handle<Map> map, |
| Handle<SharedFunctionInfo> info, |
| Handle<Context> context, |
| AllocationType allocation) { |
| Handle<JSFunction> function(JSFunction::cast(New(map, allocation)), |
| isolate()); |
| |
| Handle<Code> code; |
| bool have_cached_code = info->TryGetCachedCode(isolate()).ToHandle(&code); |
| |
| function->initialize_properties(isolate()); |
| function->initialize_elements(); |
| function->set_shared(*info); |
| function->set_code(have_cached_code ? *code : info->GetCode()); |
| function->set_context(*context); |
| function->set_raw_feedback_cell(*many_closures_cell()); |
| int header_size; |
| if (map->has_prototype_slot()) { |
| header_size = JSFunction::kSizeWithPrototype; |
| function->set_prototype_or_initial_map(*the_hole_value()); |
| } else { |
| header_size = JSFunction::kSizeWithoutPrototype; |
| } |
| InitializeJSObjectBody(function, map, header_size); |
| |
| if (have_cached_code) { |
| IsCompiledScope is_compiled_scope(info->is_compiled_scope(isolate())); |
| JSFunction::EnsureFeedbackVector(function, &is_compiled_scope); |
| if (FLAG_trace_turbo_nci) CompilationCacheCode::TraceHit(info, code); |
| } |
| |
| return function; |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) { |
| NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode( |
| name, isolate()->sloppy_function_map(), LanguageMode::kSloppy); |
| Handle<JSFunction> result = NewFunction(args); |
| DCHECK(is_sloppy(result->shared().language_mode())); |
| return result; |
| } |
| |
| Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) { |
| DCHECK(!args.name_.is_null()); |
| |
| // Create the SharedFunctionInfo. |
| Handle<NativeContext> context(isolate()->native_context()); |
| Handle<Map> map = args.GetMap(isolate()); |
| Handle<SharedFunctionInfo> info = |
| NewSharedFunctionInfo(args.name_, args.maybe_wasm_function_data_, |
| args.maybe_builtin_id_, kNormalFunction); |
| |
| // Proper language mode in shared function info will be set later. |
| DCHECK(is_sloppy(info->language_mode())); |
| DCHECK(!map->IsUndefined(isolate())); |
| |
| #ifdef DEBUG |
| if (isolate()->bootstrapper()->IsActive()) { |
| Handle<Code> code; |
| DCHECK( |
| // During bootstrapping some of these maps could be not created yet. |
| (*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) || |
| (*map == |
| context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) || |
| (*map == |
| context->get( |
| Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) || |
| // Check if it's a creation of an empty or Proxy function during |
| // bootstrapping. |
| (args.maybe_builtin_id_ == Builtins::kEmptyFunction || |
| args.maybe_builtin_id_ == Builtins::kProxyConstructor)); |
| } |
| #endif |
| |
| Handle<JSFunction> result = NewFunction(map, info, context); |
| |
| if (args.should_set_prototype_) { |
| result->set_prototype_or_initial_map( |
| *args.maybe_prototype_.ToHandleChecked()); |
| } |
| |
| if (args.should_set_language_mode_) { |
| result->shared().set_language_mode(args.language_mode_); |
| } |
| |
| if (args.should_create_and_set_initial_map_) { |
| ElementsKind elements_kind; |
| switch (args.type_) { |
| case JS_ARRAY_TYPE: |
| elements_kind = PACKED_SMI_ELEMENTS; |
| break; |
| case JS_ARGUMENTS_OBJECT_TYPE: |
| elements_kind = PACKED_ELEMENTS; |
| break; |
| default: |
| elements_kind = TERMINAL_FAST_ELEMENTS_KIND; |
| break; |
| } |
| Handle<Map> initial_map = NewMap(args.type_, args.instance_size_, |
| elements_kind, args.inobject_properties_); |
| result->shared().set_expected_nof_properties(args.inobject_properties_); |
| // TODO(littledan): Why do we have this is_generator test when |
| // NewFunctionPrototype already handles finding an appropriately |
| // shared prototype? |
| Handle<HeapObject> prototype = args.maybe_prototype_.ToHandleChecked(); |
| if (!IsResumableFunction(result->shared().kind())) { |
| if (prototype->IsTheHole(isolate())) { |
| prototype = NewFunctionPrototype(result); |
| } |
| } |
| JSFunction::SetInitialMap(result, initial_map, prototype); |
| } |
| |
| return result; |
| } |
| |
| Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) { |
| // Make sure to use globals from the function's context, since the function |
| // can be from a different context. |
| Handle<NativeContext> native_context(function->context().native_context(), |
| isolate()); |
| Handle<Map> new_map; |
| if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared().kind()))) { |
| new_map = handle(native_context->async_generator_object_prototype_map(), |
| isolate()); |
| } else if (IsResumableFunction(function->shared().kind())) { |
| // Generator and async function prototypes can share maps since they |
| // don't have "constructor" properties. |
| new_map = |
| handle(native_context->generator_object_prototype_map(), isolate()); |
| } else { |
| // Each function prototype gets a fresh map to avoid unwanted sharing of |
| // maps between prototypes of different constructors. |
| Handle<JSFunction> object_function(native_context->object_function(), |
| isolate()); |
| DCHECK(object_function->has_initial_map()); |
| new_map = handle(object_function->initial_map(), isolate()); |
| } |
| |
| DCHECK(!new_map->is_prototype_map()); |
| Handle<JSObject> prototype = NewJSObjectFromMap(new_map); |
| |
| if (!IsResumableFunction(function->shared().kind())) { |
| JSObject::AddProperty(isolate(), prototype, constructor_string(), function, |
| DONT_ENUM); |
| } |
| |
| return prototype; |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<SharedFunctionInfo> info, Handle<Context> context, |
| AllocationType allocation) { |
| Handle<Map> initial_map( |
| Map::cast(context->native_context().get(info->function_map_index())), |
| isolate()); |
| return NewFunctionFromSharedFunctionInfo(initial_map, info, context, |
| allocation); |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<SharedFunctionInfo> info, Handle<Context> context, |
| Handle<FeedbackCell> feedback_cell, AllocationType allocation) { |
| Handle<Map> initial_map( |
| Map::cast(context->native_context().get(info->function_map_index())), |
| isolate()); |
| return NewFunctionFromSharedFunctionInfo(initial_map, info, context, |
| feedback_cell, allocation); |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<Map> initial_map, Handle<SharedFunctionInfo> info, |
| Handle<Context> context, AllocationType allocation) { |
| DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); |
| Handle<JSFunction> result = |
| NewFunction(initial_map, info, context, allocation); |
| |
| // Give compiler a chance to pre-initialize. |
| Compiler::PostInstantiation(result); |
| |
| return result; |
| } |
| |
| Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( |
| Handle<Map> initial_map, Handle<SharedFunctionInfo> info, |
| Handle<Context> context, Handle<FeedbackCell> feedback_cell, |
| AllocationType allocation) { |
| DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); |
| Handle<JSFunction> result = |
| NewFunction(initial_map, info, context, allocation); |
| |
| // Bump the closure count that is encoded in the feedback cell's map. |
| if (feedback_cell->map() == *no_closures_cell_map()) { |
| feedback_cell->set_map(*one_closure_cell_map()); |
| } else if (feedback_cell->map() == *one_closure_cell_map()) { |
| feedback_cell->set_map(*many_closures_cell_map()); |
| } else { |
| DCHECK(feedback_cell->map() == *many_closures_cell_map()); |
| } |
| |
| // Check that the optimized code in the feedback cell wasn't marked for |
| // deoptimization while not pointed to by any live JSFunction. |
| if (feedback_cell->value().IsFeedbackVector()) { |
| FeedbackVector::cast(feedback_cell->value()) |
| .EvictOptimizedCodeMarkedForDeoptimization( |
| *info, "new function from shared function info"); |
| } |
| result->set_raw_feedback_cell(*feedback_cell); |
| |
| // Give compiler a chance to pre-initialize. |
| Compiler::PostInstantiation(result); |
| |
| return result; |
| } |
| |
| Handle<JSObject> Factory::NewExternal(void* value) { |
| Handle<Foreign> foreign = NewForeign(reinterpret_cast<Address>(value)); |
| Handle<JSObject> external = NewJSObjectFromMap(external_map()); |
| external->SetEmbedderField(0, *foreign); |
| return external; |
| } |
| |
| Handle<CodeDataContainer> Factory::NewCodeDataContainer( |
| int flags, AllocationType allocation) { |
| Handle<CodeDataContainer> data_container( |
| CodeDataContainer::cast(New(code_data_container_map(), allocation)), |
| isolate()); |
| data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER); |
| data_container->set_kind_specific_flags(flags); |
| data_container->clear_padding(); |
| return data_container; |
| } |
| |
| Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code, |
| Address off_heap_entry) { |
| CHECK_NOT_NULL(isolate()->embedded_blob_code()); |
| CHECK_NE(0, isolate()->embedded_blob_code_size()); |
| CHECK(Builtins::IsIsolateIndependentBuiltin(*code)); |
| |
| bool generate_jump_to_instruction_stream = |
| Builtins::CodeObjectIsExecutable(code->builtin_index()); |
| Handle<Code> result = Builtins::GenerateOffHeapTrampolineFor( |
| isolate(), off_heap_entry, |
| code->code_data_container().kind_specific_flags(), |
| generate_jump_to_instruction_stream); |
| // The CodeDataContainer should not be modified beyond this point since it's |
| // now possibly canonicalized. |
| |
| // The trampoline code object must inherit specific flags from the original |
| // builtin (e.g. the safepoint-table offset). We set them manually here. |
| { |
| CodePageMemoryModificationScope code_allocation(*result); |
| |
| const bool set_is_off_heap_trampoline = true; |
| const int stack_slots = |
| code->has_safepoint_info() ? code->stack_slots() : 0; |
| result->initialize_flags(code->kind(), code->has_unwinding_info(), |
| code->is_turbofanned(), stack_slots, |
| set_is_off_heap_trampoline); |
| result->set_builtin_index(code->builtin_index()); |
| result->set_safepoint_table_offset(code->safepoint_table_offset()); |
| result->set_handler_table_offset(code->handler_table_offset()); |
| result->set_constant_pool_offset(code->constant_pool_offset()); |
| result->set_code_comments_offset(code->code_comments_offset()); |
| |
| // Replace the newly generated trampoline's RelocInfo ByteArray with the |
| // canonical one stored in the roots to avoid duplicating it for every |
| // single builtin. |
| ByteArray canonical_reloc_info = |
| generate_jump_to_instruction_stream |
| ? ReadOnlyRoots(isolate()).off_heap_trampoline_relocation_info() |
| : ReadOnlyRoots(isolate()).empty_byte_array(); |
| #ifdef DEBUG |
| // Verify that the contents are the same. |
| ByteArray reloc_info = result->relocation_info(); |
| DCHECK_EQ(reloc_info.length(), canonical_reloc_info.length()); |
| for (int i = 0; i < reloc_info.length(); ++i) { |
| DCHECK_EQ(reloc_info.get(i), canonical_reloc_info.get(i)); |
| } |
| #endif |
| result->set_relocation_info(canonical_reloc_info); |
| } |
| |
| return result; |
| } |
| |
| Handle<Code> Factory::CopyCode(Handle<Code> code) { |
| Handle<CodeDataContainer> data_container = NewCodeDataContainer( |
| code->code_data_container().kind_specific_flags(), AllocationType::kOld); |
| |
| Heap* heap = isolate()->heap(); |
| Handle<Code> new_code; |
| { |
| int obj_size = code->Size(); |
| CodePageCollectionMemoryModificationScope code_allocation(heap); |
| HeapObject result = heap->AllocateRawWith<Heap::kRetryOrFail>( |
| obj_size, AllocationType::kCode, AllocationOrigin::kRuntime, |
| AllocationAlignment::kCodeAligned); |
| |
| // Copy code object. |
| Address old_addr = code->address(); |
| Address new_addr = result.address(); |
| Heap::CopyBlock(new_addr, old_addr, obj_size); |
| new_code = handle(Code::cast(result), isolate()); |
| |
| // Set the {CodeDataContainer}, it cannot be shared. |
| new_code->set_code_data_container(*data_container); |
| |
| new_code->Relocate(new_addr - old_addr); |
| // We have to iterate over the object and process its pointers when black |
| // allocation is on. |
| heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code); |
| // Record all references to embedded objects in the new code object. |
| #ifndef V8_DISABLE_WRITE_BARRIERS |
| WriteBarrierForCode(*new_code); |
| #endif |
| } |
| |
| #ifdef VERIFY_HEAP |
| if (FLAG_verify_heap) new_code->ObjectVerify(isolate()); |
| #endif |
| DCHECK(IsAligned(new_code->address(), kCodeAlignment)); |
| DCHECK_IMPLIES( |
| !heap->memory_allocator()->code_range().is_empty(), |
| heap->memory_allocator()->code_range().contains(new_code->address())); |
| return new_code; |
| } |
| |
| Handle<BytecodeArray> Factory::CopyBytecodeArray( |
| Handle<BytecodeArray> bytecode_array) { |
| int size = BytecodeArray::SizeFor(bytecode_array->length()); |
| HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld, |
| *bytecode_array_map()); |
| |
| Handle<BytecodeArray> copy(BytecodeArray::cast(result), isolate()); |
| copy->set_length(bytecode_array->length()); |
| copy->set_frame_size(bytecode_array->frame_size()); |
| copy->set_parameter_count(bytecode_array->parameter_count()); |
| copy->set_incoming_new_target_or_generator_register( |
| bytecode_array->incoming_new_target_or_generator_register()); |
| copy->set_constant_pool(bytecode_array->constant_pool()); |
| copy->set_handler_table(bytecode_array->handler_table()); |
| copy->set_source_position_table(bytecode_array->source_position_table()); |
| copy->set_osr_loop_nesting_level(bytecode_array->osr_loop_nesting_level()); |
| copy->set_bytecode_age(bytecode_array->bytecode_age()); |
| bytecode_array->CopyBytecodesTo(*copy); |
| return copy; |
| } |
| |
| Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor, |
| AllocationType allocation) { |
| JSFunction::EnsureHasInitialMap(constructor); |
| Handle<Map> map(constructor->initial_map(), isolate()); |
| return NewJSObjectFromMap(map, allocation); |
| } |
| |
| Handle<JSObject> Factory::NewJSObjectWithNullProto() { |
| Handle<JSObject> result = NewJSObject(isolate()->object_function()); |
| Handle<Map> new_map = Map::Copy( |
| isolate(), Handle<Map>(result->map(), isolate()), "ObjectWithNullProto"); |
| Map::SetPrototype(isolate(), new_map, null_value()); |
| JSObject::MigrateToMap(isolate(), result, new_map); |
| return result; |
| } |
| |
| Handle<JSGlobalObject> Factory::NewJSGlobalObject( |
| Handle<JSFunction> constructor) { |
| DCHECK(constructor->has_initial_map()); |
| Handle<Map> map(constructor->initial_map(), isolate()); |
| DCHECK(map->is_dictionary_map()); |
| |
| // Make sure no field properties are described in the initial map. |
| // This guarantees us that normalizing the properties does not |
| // require us to change property values to PropertyCells. |
| DCHECK_EQ(map->NextFreePropertyIndex(), 0); |
| |
| // Make sure we don't have a ton of pre-allocated slots in the |
| // global objects. They will be unused once we normalize the object. |
| DCHECK_EQ(map->UnusedPropertyFields(), 0); |
| DCHECK_EQ(map->GetInObjectProperties(), 0); |
| |
| // Initial size of the backing store to avoid resize of the storage during |
| // bootstrapping. The size differs between the JS global object ad the |
| // builtins object. |
| int initial_size = 64; |
| |
| // Allocate a dictionary object for backing storage. |
| int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size; |
| Handle<GlobalDictionary> dictionary = |
| GlobalDictionary::New(isolate(), at_least_space_for); |
| |
| // The global object might be created from an object template with accessors. |
| // Fill these accessors into the dictionary. |
| Handle<DescriptorArray> descs(map->instance_descriptors(), isolate()); |
| for (InternalIndex i : map->IterateOwnDescriptors()) { |
| PropertyDetails details = descs->GetDetails(i); |
| // Only accessors are expected. |
| DCHECK_EQ(kAccessor, details.kind()); |
| PropertyDetails d(kAccessor, details.attributes(), |
| PropertyCellType::kMutable); |
| Handle<Name> name(descs->GetKey(i), isolate()); |
| Handle<PropertyCell> cell = NewPropertyCell(name); |
| cell->set_value(descs->GetStrongValue(i)); |
| // |dictionary| already contains enough space for all properties. |
| USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d)); |
| } |
| |
| // Allocate the global object and initialize it with the backing store. |
| Handle<JSGlobalObject> global( |
| JSGlobalObject::cast(New(map, AllocationType::kOld)), isolate()); |
| InitializeJSObjectFromMap(global, dictionary, map); |
| |
| // Create a new map for the global object. |
| Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map); |
| new_map->set_may_have_interesting_symbols(true); |
| new_map->set_is_dictionary_map(true); |
| LOG(isolate(), MapDetails(*new_map)); |
| |
| // Set up the global object as a normalized object. |
| global->set_global_dictionary(*dictionary); |
| global->synchronized_set_map(*new_map); |
| |
| // Make sure result is a global object with properties in dictionary. |
| DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties()); |
| return global; |
| } |
| |
| void Factory::InitializeJSObjectFromMap(Handle<JSObject> obj, |
| Handle<Object> properties, |
| Handle<Map> map) { |
| obj->set_raw_properties_or_hash(*properties); |
| obj->initialize_elements(); |
| // TODO(1240798): Initialize the object's body using valid initial values |
| // according to the object's initial map. For example, if the map's |
| // instance type is JS_ARRAY_TYPE, the length field should be initialized |
| // to a number (e.g. Smi::zero()) and the elements initialized to a |
| // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object |
| // verification code has to cope with (temporarily) invalid objects. See |
| // for example, JSArray::JSArrayVerify). |
| InitializeJSObjectBody(obj, map, JSObject::kHeaderSize); |
| } |
| |
| void Factory::InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map, |
| int start_offset) { |
| if (start_offset == map->instance_size()) return; |
| DCHECK_LT(start_offset, map->instance_size()); |
| |
| // We cannot always fill with one_pointer_filler_map because objects |
| // created from API functions expect their embedder fields to be initialized |
| // with undefined_value. |
| // Pre-allocated fields need to be initialized with undefined_value as well |
| // so that object accesses before the constructor completes (e.g. in the |
| // debugger) will not cause a crash. |
| |
| // In case of Array subclassing the |map| could already be transitioned |
| // to different elements kind from the initial map on which we track slack. |
| bool in_progress = map->IsInobjectSlackTrackingInProgress(); |
| Object filler; |
| if (in_progress) { |
| filler = *one_pointer_filler_map(); |
| } else { |
| filler = *undefined_value(); |
| } |
| obj->InitializeBody(*map, start_offset, *undefined_value(), filler); |
| if (in_progress) { |
| map->FindRootMap(isolate()).InobjectSlackTrackingStep(isolate()); |
| } |
| } |
| |
| Handle<JSObject> Factory::NewJSObjectFromMap( |
| Handle<Map> map, AllocationType allocation, |
| Handle<AllocationSite> allocation_site) { |
| // JSFunctions should be allocated using AllocateFunction to be |
| // properly initialized. |
| DCHECK(map->instance_type() != JS_FUNCTION_TYPE); |
| |
| // Both types of global objects should be allocated using |
| // AllocateGlobalObject to be properly initialized. |
| DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); |
| |
| HeapObject obj = |
| AllocateRawWithAllocationSite(map, allocation, allocation_site); |
| Handle<JSObject> js_obj(JSObject::cast(obj), isolate()); |
| |
| InitializeJSObjectFromMap(js_obj, empty_fixed_array(), map); |
| |
| DCHECK(js_obj->HasFastElements() || js_obj->HasTypedArrayElements() || |
| js_obj->HasFastStringWrapperElements() || |
| js_obj->HasFastArgumentsElements() || js_obj->HasDictionaryElements()); |
| return js_obj; |
| } |
| |
| Handle<JSObject> Factory::NewSlowJSObjectFromMap( |
| Handle<Map> map, int capacity, AllocationType allocation, |
| Handle<AllocationSite> allocation_site) { |
| DCHECK(map->is_dictionary_map()); |
| Handle<NameDictionary> object_properties = |
| NameDictionary::New(isolate(), capacity); |
| Handle<JSObject> js_object = |
| NewJSObjectFromMap(map, allocation, allocation_site); |
| js_object->set_raw_properties_or_hash(*object_properties); |
| return js_object; |
| } |
| |
| Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements( |
| Handle<HeapObject> prototype, Handle<NameDictionary> properties, |
| Handle<FixedArrayBase> elements) { |
| Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map(); |
| if (object_map->prototype() != *prototype) { |
| object_map = Map::TransitionToPrototype(isolate(), object_map, prototype); |
| } |
| DCHECK(object_map->is_dictionary_map()); |
| Handle<JSObject> object = |
| NewJSObjectFromMap(object_map, AllocationType::kYoung); |
| object->set_raw_properties_or_hash(*properties); |
| if (*elements != ReadOnlyRoots(isolate()).empty_fixed_array()) { |
| DCHECK(elements->IsNumberDictionary()); |
| object_map = |
| JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS); |
| JSObject::MigrateToMap(isolate(), object, object_map); |
| object->set_elements(*elements); |
| } |
| return object; |
| } |
| |
| Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length, |
| int capacity, |
| ArrayStorageAllocationMode mode, |
| AllocationType allocation) { |
| DCHECK(capacity >= length); |
| if (capacity == 0) { |
| return NewJSArrayWithElements(empty_fixed_array(), elements_kind, length, |
| allocation); |
| } |
| |
| HandleScope inner_scope(isolate()); |
| Handle<FixedArrayBase> elms = |
| NewJSArrayStorage(elements_kind, capacity, mode); |
| return inner_scope.CloseAndEscape(NewJSArrayWithUnverifiedElements( |
| elms, elements_kind, length, allocation)); |
| } |
| |
| Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements, |
| ElementsKind elements_kind, |
| int length, |
| AllocationType allocation) { |
| Handle<JSArray> array = NewJSArrayWithUnverifiedElements( |
| elements, elements_kind, length, allocation); |
| JSObject::ValidateElements(*array); |
| return array; |
| } |
| |
| Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements( |
| Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length, |
| AllocationType allocation) { |
| DCHECK(length <= elements->length()); |
| NativeContext native_context = isolate()->raw_native_context(); |
| Map map = native_context.GetInitialJSArrayMap(elements_kind); |
| if (map.is_null()) { |
| JSFunction array_function = native_context.array_function(); |
| map = array_function.initial_map(); |
| } |
| Handle<JSArray> array = Handle<JSArray>::cast( |
| NewJSObjectFromMap(handle(map, isolate()), allocation)); |
| DisallowHeapAllocation no_gc; |
| array->set_elements(*elements); |
| array->set_length(Smi::FromInt(length)); |
| return array; |
| } |
| |
| void Factory::NewJSArrayStorage(Handle<JSArray |